

i

ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICS FACULTY

SENIOR DESIGN PROJECT

JUNE 2023
JANUARY, 2023

DESIGN AND IMPLEMENTATION OF VECTOR EXTENSION ON RISC-V
CORE USING SPINALHDL

Cemalettin Cem BELENTEPE
Yunus Emre ÇAKIROĞLU

Erinç Utku ÖZTÜRK

ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT

ii

ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT

JUNE 2023

ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICS FACULTY

DESIGN AND IMPLEMENTATION OF VECTOR EXTENSION ON RISC-V
CORE USING SPINALHDL

SENIOR DESIGN PROJECT

Cemalettin Cem BELENTEPE
 040180255

Yunus Emre ÇAKIROĞLU

 040190019

Erinç Utku Öztürk
 04019102

Project Advisor: Prof. Dr. Sıddıka Berna Örs YALÇIN
 Uygundur

Berna Örs Yalçın

iii

Cemalettin Cem BELENTEPE
040180255

We are submitting the Senior Design Project entitled as “Design And Implementation Of
Vector Extension On VexRiscv Using SpinalHDL”. The Senior Design Project has been
prepared as to fulfill the relevant regulations of the Electronics and Communication
Engineering Department of Istanbul Technical University. We hereby confirm that we
have realized all stages of the Senior Design Project Report by ourselves, and we have
abided by the ethical rules with respect to academic and professional integrity .

Yunus Emre ÇAKIROĞLU
040190019

Erinç Utku ÖZTÜRK
040190102

iv

FOREWORD

We are deeply grateful to Prof. Dr. Sıddıka Berna Örs Yalçın, our esteemed
academic advisor, who has provided insightful guidance and unwavering mentorship
throughout this project. Her sagacity and encouragement have opened us to new
perspectives and learning opportunities, playing an instrumental role in shaping the
direction and quality of our work.

Our heartfelt appreciation extends to Mr. Emre Göncü, our advisor from the industry.
His inputs has considerably enriched our project, adding a layer of practical
understanding to our theoretical knowledge.

We also wish to express our thanks to Mr. Yasin Yılmaz, whose assistance and
commitment played a pivotal role in our project's success.

Lastly, we wish to express our sincere gratitude to Dolu1990, the creator of
SpinalHDL. Without his innovative creation, this project would not have been
feasible. His groundbreaking work has served as an inspiration and motivation for us,
illuminating the path we tread in our exploration.

June 2023

Cemalettin Cem BELENTEPE
Yunus Emre ÇAKIROĞLU

Erinç Utku ÖZTÜRK

v

TABLE OF CONTENTS

Page

FOREWORD ... iv
TABLE OF CONTENTS ... v
ABBREVIATIONS ... vi
LIST OF TABLES ... vii
LIST OF FIGURES .. viii

 INTRODUCTION .. 11
 Purpose of Project .. 11
 Literature Review ... 11

 BACKGROUND INFORMATION .. 13
 What is RISC-V? .. 13
2.1.1 RISC-V Instruction Sets .. 13
2.1.2 RISC-V Standard Vector Extension ... 14
 What is SpinalHDL? .. 15
 Design and Test Environment .. 16

 VECTOR EXTENSION ON RISC-V CORE USING SPINALHDL 17
 Proposed Vector Extension Architecture ... 17
 Vector Register File and Control Status Registers ... 20
3.2.1 Control Status Registers .. 20
3.2.2 Vector Registers .. 20
 Configuration Setting Instructions ... 22
 Load and Store Instructions .. 22
 Arithmetic Instruction .. 26
3.5.1 Vector Adder Unit ... 26
3.5.2 Cumulative Operation Circuit ... 30
3.5.3 Shifter Circuit for Vector Single-Width Shift Instructions 32

3.5.3.1 16-bit Right shifter ... 35
Case 1: When the shifter is working as a single 16-bit shifter. 35
Case 2: when the shifter is working as two separate 8-bit shifters. 37

3.5.3.2 64-bit Right shifter ... 37
3.5.4 Divide by two unit ... 38
3.5.5 Vector Multiplier Unit .. 39
3.5.6 Vector Division Unit ... 43
 Permutation Instructions .. 43
3.6.1 Slider Unit ... 43

 REALISTIC CONSTRAINTS AND CONCLUSIONS 45
 Realistic Constraints ... 45
4.1.1 Social, environmental and economic impact .. 45
4.1.2 Cost analysis ... 45
4.1.3 Standards ... 46
 Conclusion .. 46

 REFERENCES ... 48

vi

ABBREVIATIONS

RISC : Reduced Instruction Set Computer

CISC : Complex Instruction Set Computer

HDL : Hardware Description Language

ISA : Instruction Set Architecture

VLEN : Vector Length

CSR : Control Status Register

LMUL : Length Multiplier

EMUL : Effective Length Multiplier

SEW : Selected Element Width

EEW : Effective Element Width

vii

LIST OF TABLES

Page

Table 3.1 Addition configurations with different EEW’s. ... 27
Table 3.2 Bit spans of the elements in the table above .. 27
Table 3.3 Enable signal table. .. 30
Table 3.4 Truth table for 4-bit pseudo-shifter .. 34

viii

LIST OF FIGURES

Page

Figure 3.1 Proposed Pipeline Architecture .. 19
Figure 3.2 Conceptual design of the vector register file .. 21
Figure 3.3 Proposed vector register file ... 21
Figure 3.4 Pseudocode for the unit stride load instruction ... 23
Figure 3.5 Pseudocode for the constant stride load instruction 23
Figure 3.6 Pseudocode for the indexed load instruction .. 24
Figure 3.7 Pseudocode for address generator unit ... 25
Figure 3.8 List of instructions specified in the RISC-V Vector Extension ISA

specification ... 26
Figure 3.9 Top level view of Adder ... 29
Figure 3.10 Schematic of the cumulative adder ... 31
Figure 3.11 An instance for addition .. 32
Figure 3.12 Set of 64 bit shifters .. 34
Figure 3.13 Set of 16 bit shifters .. 34
Figure 3.14 Top-down view of 16-bit shifter ... 35
Figure 3.15 64-bit shifter top-down view ... 38
Figure 3.16 16 bit halver diagram .. 39
Figure 3.17 64 bit halver diagram .. 39
Figure 3.18 Multiplication topology .. 40
Figure 3.19 Optimized multiplication topology ... 40
Figure 3.20 RTL schematics for multiplier circuit ... 42
Figure 3.21 Example of combined multiplication cells in datapath 43

ix

DESIGN AND IMPLEMENTATION OF VECTOR EXTENSION ON RISC-V
CORE USING SPINALHDL

SUMMARY

The objective of this project is to develop and implement a RISC-V Vector Extension

compliant core. For this purpose, SpinalHDL has been chosen as the design language.

The selection of SpinalHDL serves two purposes: firstly, to evaluate the language's

performance in handling a complex design, and secondly, to assess the advantages and

benefits it offers in the design process.

Initially, all instructions outlined in the official set are categorized based on their

intended purposes. Subsequently, in order to reduce the area occupied by the design,

the utilization of multiple microinstructions is implemented. To achieve this goal, a

dedicated decoder unit consisting of two stages is proposed. The first stage is

responsible for converting instructions into microinstructions, while the second stage

focuses on decoding these microinstructions.

The execution data path is designed with the maximum element width of 64-bit as the

primary consideration. The proposed design ensures scalability in terms of this

maximum element width, allowing for parallel processing to reduce the number of

cycles required to complete an instruction. However, this scalability comes at the cost

of increased area utilization.

Unit cells in the execute path are modules that have 64-bit data input, which is the

maximum element width. This data can be utilized as an array of various data sizes,

including 8-bit, 16-bit, 32-bit, or 64-bit. The cells in the design are compact and

optimized to exploit the properties of the instruction, enabling their efficient

implementation for this particular data type.

By employing this design strategy, the vector instruction set instructions are

implemented and designed to interface with an RV32I or RV64I core. In order to test

the design, it is presently directly integrated into a small RV32IM design with a

modified MIPS architecture.

x

DESIGN AND IMPLEMENTATION OF VECTOR EXTENSION ON RISC-V
CORE USING SPINALHDL

ÖZET

Bu proje, RISC-V Vektör Uzantısı standartlarına uygun bir çekirdek geliştirmeyi ve

uygulamayı amaçlamaktadır. Bu amaçla, tasarım dili olarak SpinalHDL seçilmiştir.

SpinalHDL'nin seçimi iki amaç için yapılmıştır: birincisi, dilin karmaşık bir tasarımla

başa çıkma performansını değerlendirmek; ikincisi ise tasarım sürecinde sunduğu

avantajları ve faydaları değerlendirmektir.

İlk olarak, resmi sette belirtilen tüm buyruklar amaçlarına göre kategorilere ayrılmıştır.

Ardından, tasarımda kapladığı alanı azaltmak için birden fazla mikro-buyruk

kullanımı uygulanmıştır. Bu hedefe ulaşmak için, iki aşamadan oluşan bir özel bir kod

çözücü birimi önerilmiştir. İlk aşama, talimatları mikro-buyruklara dönüştürmekten

sorumlu iken, ikinci aşama bu mikro-buyrukları çözümlemeye odaklanmaktadır.

Yürütme veri yolu, maksimum 64 bit veri genişliği temel alınarak tasarlanmıştır.

Önerilen tasarım, bu maksimum veri genişliği açısından ölçeklenebilirlik sağlar ve

talimatı tamamlamak için gereken döngü sayısını azaltmak için paralel işleme imkanı

sunar. Ancak, bu ölçeklenebilirlik, artan alan kullanımı maliyetiyle birlikte gelir.

Çalışma yolundaki birim hücreleri, maksimum 64 bit veri girişine sahip modüllerdir.

Bu veri, 8 bit, 16 bit, 32 bit veya 64 bit dahil olmak üzere çeşitli veri boyutları dizisi

olarak kullanılabilir. Tasarımdaki hücreler, talimatın özelliklerinden yararlanmak için

optimize edilmiş ve kompakt bir yapıya sahiptir, böylece bu belirli veri türü için

verimli bir şekilde uygulanabilir.

Bu tasarım stratejisi kullanılarak, vektör talimat kümesi talimatları bir RV32I veya

RV64I çekirdekle etkileşimli olarak uygulanmış ve tasarlanmıştır. Tasarımı test etmek

için, şu anda değiştirilmiş bir MIPS mimarisiyle küçük bir RV32IM tasarımına

doğrudan entegre edilmektedir.

11

 INTRODUCTION

 Purpose of Project

The purpose of the project is designing and implementing a circuit to accelerate

cryptology and artificial intelligence applications. Our objective is implementing

integer and fixed-point vector commands while complying to the Vector Extension

Spec 1.0 document [1]. The currently available solutions make customizing circuits a

lot harder. The HDL language of our choice which is SpinalHDL [2] will allow us to

implement our circuit in a more modular manner. This way whenever someone wants

to contribute to the circuit, they will not have to change all the circuit.

The reason we have chosen this problem is our interest in computer architecture and

the fact that RISC-V Vector Extension Spec 1.0 was not implemented before.

We gathered our background information from our Computer Organization,

Microprocessor Systems, Introduction to Embedded Systems, Computer Architecture,

Logic Lab, Microprocessor Lab courses, previous internship experiences and our

personal works.

 Literature Review

Our project started with the idea of implementing RISC-V Vector Instruction Set

Architecture (ISA) [1] based on newly proposed release candidate specification. To

implement ISA, we needed a baseline open-source RISC-V implementation. After

several researches we concluded that an open-source RISC-V implementation written

in SpinalHDL [2] suits best for our implementation. SpinalHDL is an open-source

high-level hardware description language (HDL) based on Scala [3]. It can be used as

an alternative to VHDL or Verilog and has several advantages over them:

• It focuses on efficient hardware description instead of being event-driven.

• It is embedded into a general-purpose programming language, enabling

powerful hardware generation.

12

In this manner we have chosen RV32IM implementation based on SpinalHDL called

VexRiscv [5]. VexRiscv takes an object-oriented approach in implementation.

Modular “plugin” system eases things like adding new instructions to decode stage.

This allows us to focus on Vector Instruction Set Architecture implementation.

13

 BACKGROUND INFORMATION

 What is RISC-V?

RISC-V is an instruction set architecture (ISA) based on the principles of Reduced

Instruction Set Computer (RISC) architecture. It follows an open standard, allowing

anyone to use, modify, and distribute it freely without royalty payments. The ISA

encompasses various aspects of programming in a computer architecture, including

data types, instructions, registers, addressing modes, memory organization, interrupt

and exception handling, and external input/output operations.

What sets RISC-V apart from most other ISAs is its open-source nature. This means

that it is available under open-source licenses, promoting accessibility and

encouraging collaboration. RISC-V is designed with modularity and extensibility in

mind. It provides a foundation of base instructions while allowing for additional

instruction set extensions to cater to specialized workloads.

The base instruction set in RISC-V consists of fixed-length 32-bit instructions. This

simplicity and consistency enable compatibility across different implementations.

RISC-V is versatile and adaptable, capable of supporting a wide range of devices and

applications, from small embedded systems to personal computers and large

supercomputers.

One of the advantages of the RISC-V architecture is its support for different address

spaces. It can accommodate 32-bit, 64-bit, and potentially even 128-bit address spaces.

This capability enables efficient handling of large amounts of data and memory.

As a RISC architecture, RISC-V adheres to the philosophy of simplicity. This

approach contributes to lower costs, higher processing speeds, and improved power

efficiency. It follows a load-store architecture, which separates data processing

operations from load and store operations, enhancing the overall performance and

efficiency of the system.

2.1.1 RISC-V Instruction Sets

In computer architecture, an instruction set, also known as instruction set architecture

(ISA), is the part of the computer's brain or processor that is responsible for

14

programming. It is a protocol that the hardware understands and follows to execute

commands coming from the software.

In the case of RISC-V, the instruction sets are based on the Reduced Instruction Set

Computer (RISC) principles, which emphasize efficiency in cycles per instruction

(CPI). RISC design philosophy aims to minimize the complexity and number of

instruction sets to improve performance, speed, and efficiency.

RISC-V architecture consist of multiple instruction set architectures. Most notable

ones are:

• Base Integer ISA: This is the foundational part of the RISC-V ISA, which

comes in three variants: RV32I, RV64I, and RV128I, designed for 32-bit, 64-

bit, and 128-bit (theoretical) architectures respectively. Each variant defines a

set of registers, the basic RISC-V instructions, and the control flow

instructions.

• Standard Extensions: To increase functionality while keeping the base ISA

stable and compact, RISC-V includes several standard extensions. The ratified

standard extensions included "M" for integer multiplication and division, "A"

for atomic instructions to support multithreading, "F" and "D" for single and

double-precision floating-point instructions respectively, and "C" for

compressed instructions that provide more compact code size. Additional

extensions are under development.

• User-level ISA: This defines the instructions available to user-level software.

It includes the base instruction set and the standard extensions.

• Privileged ISA: This defines additional instructions and functionality for

privileged software, such as operating system kernels, hypervisors, and

firmware.

• Variable Length Extensions: The base instruction set has a fixed length of

32-bit instructions, and the ISA supports variable-length extensions where each

instruction can be of any number of 16-bit parcels in length.

2.1.2 RISC-V Standard Vector Extension

The RISC-V Standard Vector Extension, often referred to as the "Vector Extension"

or "V Extension," is an addition to the core RISC-V instruction set that facilitates

15

vector operations. These operations allow a single instruction to be performed on

multiple data points simultaneously, which can significantly enhance performance for

certain types of tasks, including digital signal processing, multimedia tasks, and

machine learning.

What sets the RISC-V Vector Extension apart from vector instructions in many other

architectures is its flexibility and scalability. Rather than having a fixed vector length

embedded into the architecture, RISC-V allows the vector length to be configured at

runtime. This means that the hardware can set the most efficient vector length based

on its capabilities, and software can be written to maximize the available vector length.

Another notable feature of the RISC-V Vector Extension is full support for vector

predication. This allows any vector operation to be selectively applied to individual

elements in the vector, based on a separate mask vector. As a result, it can eliminate

the need for many conditional branches in the code, enhancing code efficiency.

The Vector Extension is also equipped with operations that mix a vector with a single

scalar value, in addition to operations on whole vectors. These vector-scalar operations

are often useful in practical code. Moreover, it supports flexible memory access

patterns, including strided and indexed loads and stores, greatly improving memory

efficiency for a variety of workloads.

 What is SpinalHDL?

SpinalHDL, a high-level hardware description language (HDL), presents several

advantages over traditional HDLs such as VHDL or Verilog, making it an attractive

choice for digital design.

Firstly, SpinalHDL employs a high-level abstraction, allowing for a more abstract and

concise description of logic circuits. This feature enhances the readability and

maintainability of the code, thereby increasing the efficiency of the design process.

Secondly, SpinalHDL leverages the features of the Scala programming language,

including its support for object-oriented and functional programming. This leads to

more modular and reusable code, further enhancing the efficiency of the design

process.

16

Thirdly, SpinalHDL supports generics and parameterization, which can be used to

create more flexible and reusable components. This feature enhances the versatility of

the language, allowing for a wider range of design possibilities.

Furthermore, SpinalHDL has a strong typing system which can catch errors at

compile-time rather than at runtime. This feature enhances the robustness of the design

process, ensuring the reliability of the final product.

Finally, since SpinalHDL is built on Scala, it can leverage the Scala ecosystem,

including its build tools, testing frameworks, and libraries. This feature enhances the

adaptability of the language, allowing it to be used in a wider range of contexts.

In conclusion, SpinalHDL offers a compelling alternative to traditional HDLs,

providing capabilities that VHDL and Verilog lack, while meeting or exceeding their

performance and efficiency. By providing a high level of abstraction and leveraging

the features of the Scala programming language, SpinalHDL enhances the efficiency,

versatility, robustness, and adaptability of the digital design process.

 Design and Test Environment

The design process involves three levels and utilizes three distinct tools, with testing

conducted using the same set of tools. The tools are IntelliJ IDE with SpinalHDL,

Xilinx Vivado with Verilog, and Visual Studio Code with OpenLane.

SpinalHDL is employed for the design itself, as well as for unit testing and integration

testing. The rationale behind this choice is elaborated in other sections. The IntelliJ

IDE is utilized as the development and testing environment due to its support for

SpinalHDL.

To examine the compiled Verilog code generated by SpinalHDL, the RTL Schematic

view of Xilinx Vivado is employed. This tool is also used for synthesis,

implementation, and synthesis and implementation simulations. The preference for

Vivado stems from the fact that the available FPGA kits for our project are Xilinx

boards.

Furthermore, following FPGA implementations, OpenLane is utilized to verify the

ASIC implementation of the design.

17

 VECTOR EXTENSION ON RISC-V CORE USING SPINALHDL

SpinalHDL is a domain-specific language (DSL) built on Scala programming

language. Scala programming language is a scalable general-purpose language with

strong and static typing. This language is designed to support mainly object-oriented

design and functional design paradigms [3]. SpinalHDL itself is a hardware description

language (HDL). HDLs are languages designed for modeling hardware on dataflow,

behavioral, or structural levels. Dataflow modeling allows the writer to describe their

circuit on the gate level, using given operators such as ‘and’, ‘or’, ‘assign’, ‘+’, and so

on. On the other hand, behavioral modeling allows the writer to describe the behavior

of the circuit with ‘if - else’, ‘case’, ‘for’, ‘always@’, and such keywords so the design

process can be faster, and easier to both design and understand. Lastly, the structural

design method allows the user to design modules by combining other modules that are

written using any of the mentioned design methods. Examples of conventional HDLs

are Verilog, VHDL, and System Verilog languages.

SpinalHDL also supports these modeling methods, but it differs by enhancing the

support on structural design and changing the paradigm from event-driven to Scala’s

OOP and FP paradigms. SpinalHDL also allows its user to use all the features of Scala,

so the circuit is much more modular and easier to combine than conventional HDLs.

This results in faster and easier development with a paradigm more suitable for digital

hardware description [4]. After the hardware is described using SpinalHDL, it is then

compiled into Verilog or VHDL. Therefore, the rest of the development process can

continue as it was before.

For this purpose, we also designed a simple RISC-V core called FlexiRISC. It is

written and vitrificated on SpinalHDL. It is capable of RV32IM instruction sets. We

have chosen to write a RISC-V core from scratch since we wanted a core that leverages

SpinalHDL’s features.

We also utilized SpinalHDL on our Vector extension for given benefits.

 Proposed Vector Extension Architecture

The modified architecture being proposed is an adaptation of the MIPS architecture

that incorporates the vector extension. When considering the vector extension in RISC-

18

V architecture, a notable deviation from the instructions found in the base integer set

and other extensions is observed. Contrary to the instruction in the base integer set and

the other RISC-V extensions, the vector extension works with wider data. However,

this wide execute datapath would result in a larger overall size. To address this issue,

a multicycle decoder is introduced to optimize the area occupied by the datapath. Block

diagram of this architecture is shown in Figure Error! No text of specified style in

document..1.

The execute datapath is designed to be configurable, allowing the width of the datapath

to be adjusted as a multiple of 64 bits which is the maximum ELEN for a vector

instruction. The decoder is tasked with issuing the correct microinstructions for a

vector instruction to be executed.

19

Figure Error! No text of specified style in document..1 Proposed Pipeline Architecture

20

 Vector Register File and Control Status Registers

Vector Extension Spec [1] describes two sets of registers namely vector register file

and control status registers. This section describes the design and the implementation

of those register sets.

3.2.1 Control Status Registers

Control Status Registers (CSRs) are used for containing information about the state of

the extension module [1, p. 9]. There are 7, XLEN-bit CSRs named ‘vstart’, ‘vxsat’,

‘vxrm’, ‘vcsr’, ‘vl’, ‘vtype’, and ‘vlenb’.

The CSR ‘vstart’ holds the information about the position of the element that will be

processed next in the next instruction. This could be thought of as analogous to the

starting value of the iterator in a ‘for’ loop.

The CSRs ‘vxsat’ and ‘vxrm’ holds the information for the saturation mode and

rounding mode of the fixed value instructions accordingly.

The CSR ‘vcsr’ contains the ‘vxsat’ and ‘vxrm’ registers.

The CSR ‘vl’ shows how many elements are affected by a single vector instruction.

The value of the register will only change after a ‘vset{i}vl{i}’ instruction.

The CSR ‘vtype’ is set by the configuration instructions and used for holding the

information about the register grouping (LMUL) and size of an element (EEW) along

with some implementation values.

Lastly, the ‘vlenb’ register is a constant value, showing the length of a physical register

in bytes.

3.2.2 Vector Registers

Vector register file of the architecture has 32 of the VLEN width registers. These

registers are also addressable by the datapath length. Figure Error! No text of

specified style in document..2 illustrates an example that showcases a VLEN of 256

and a datapath width of 64.

21

Figure Error! No text of specified style in document..2 Conceptual design of the
vector register file

While the conceptual design of the vector register file resembles Figure Error! No

text of specified style in document..2, the actual implementation follows the approach

depicted in Figure Error! No text of specified style in document..3. This approach

offers a more compact and simpler design, as it utilizes a single block RAM with a

narrower width instead of employing both a block RAM and multiplexers. For the sake

of simplicity, the write mask and the second read port are not depicted in the figure.

Figure Error! No text of specified style in document..3 Proposed vector register file

22

 Configuration Setting Instructions

Vector Instruction Set consists of highly configurable instructions. These

configurations are determined by Control Status Registers (CSR) which are configured

by Configuration Setting Instructions. Most of the instructions make use of

“Stripmining”

"Stripmining" is a technique for efficiently processing large numbers of elements by

dividing the work into multiple iterations. In the context of the RISC-V Vector

Specification, the application specifies the total number of elements to be processed

(the "application vector length" or AVL) and the hardware responds with the number

of elements it can handle in each iteration, stored in the "vl" register. This value is

based on the microarchitectural implementation and the vtype setting. A loop structure

can be used to keep track of the remaining number of elements and the number of

elements handled by the hardware in each iteration.

The RISC-V Vector Specification includes a set of instructions that allow the values

in the "vl" and "vtype" control status registers to be quickly configured to match the

needs of the application. These instructions, called "vset{i}vl{i}", set the "vtype" and

"vl" control and status registers based on their arguments and write the new value of

"vl" into the "rd" register. These instructions can be used to quickly adjust the

configuration of the vector unit to suit the needs of different applications or parts of

the same application.

These instructions configure Selected element width (SEW) setting and Vector register

group multiplier (LMUL) setting field in vtype register which used in stripmining.

We have implemented Configuration Setting Instructions as proposed on RISC-V

Vector Specification. Implementing these instructions was crucial since most of

instructions are configured via related CSR such as Vector type register, vtype and

Vector length register, vl.

 Load and Store Instructions

Vector Extension Spec [1] describes load and store instructions. These instructions are

used to transfer data from or to the vector registers. According to the spec, the

instructions have three main versions, unit stride, constant stride, and indexed. For the

23

algorithms of each version, pseudocode is written to explain. Pseudocodes for load

unit stride, constant stride, and indexed version can be seen in the following figures,

Figure Error! No text of specified style in document..4, Figure Error! No text of

specified style in document..5, Figure Error! No text of specified style in

document..6.

Figure Error! No text of specified style in document..4 Pseudocode for the unit stride
load instruction

Figure Error! No text of specified style in document..5 Pseudocode for the constant
stride load instruction

24

Figure Error! No text of specified style in document..6 Pseudocode for the indexed
load instruction

After the above-mentioned pseudocodes are generated for the load instructions, by

switching the data flow from memory to vector register to vector register to memory,

store instructions are also designed. In the pseudocode, EEW denotes the effective

element width of a vector, which is the SEW at the time of load/store. EMUL decodes

the LMUL at the time of load/store. Those are connected to the register file with the

select-by-element mode so that the correct element of the correct register can be

selected for load/store operations. Since both load and store instruction has the same

addressing modes, an address generator module is created and used for both of the

instructions. This module takes the addressing mode along with the rs2 and vs2

registers and returns the correct address to work with. The pseudocode of the address

generator algorithm is shown in Figure Error! No text of specified style in

document..7.

25

Figure Error! No text of specified style in document..7 Pseudocode for address
generator unit

The microinstructions are generated based on the address generator algorithm and the

load-store instruction outlined in the vector extension specification [1]. These

microinstructions share the same opcodes as the base integer set, but the register fields

differ depending on whether they belong to the vector set or the integer set, depending

on the specific instruction being executed.

26

 Arithmetic Instruction

As shown below in the Figure 2.5.1, There are 16 arithmetic instructions that are

specified in the RISC-V Vector Extension ISA specification. [1]

Figure Error! No text of specified style in document..8 List of instructions specified
in the RISC-V Vector Extension ISA specification

So far, a circuit for addition of vectors of different length has been designed and

implemented. This circuit is the basis for the implementation of the following:

• Vector Single-Width Integer Add and Subtract

• Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions

A new adder has been designed for the cumulative addition operation. Those designs

will be described further in the following subsections. So far, the circuitry that will be

the basis for the instructions are being designed. In the following weeks those building

blocks will be combined to implement arithmetic instructions.

3.5.1 Vector Adder Unit

The specs of the RISC-V require an addition unit that can support different EEW operations.

Addition operation with different EEW’s is show in the Table Error! No text of specified

27

style in document..1. To ease of readability, Table Error! No text of specified style in

document..2 is given to see mapping of elements. Tables are written for vlen of 64 bits. To

achieve the target vlen VLEN/64 of those modules are put in parallel configuration.

Table Error! No text of specified style in document..1 Addition configurations with
different EEW’s.

EEW configuration

8 a7+b7 a6+b6 a5+b5 a4+b4 a3+b3 a2+b2 a1+b1 a0+b0

16 a3+b3 a2+b2 a1+b1 a0+b0

32 a1+b1 a0+b0

64 a0+b0

Table Error! No text of specified style in document..2 Bit spans of the elements in
the table above

EEW Representation of bytes with units

8 ai=a[8*(i+1)-1,8*i], bi=b[8*(i+1)-1,8*i]

16 ai=a[16*(i+1)-1,16*i], bi=b[16*(i+1)-1,16*i]

32 ai=a[32*(i+1)-1,32*i], bi=b[32*(i+1)-1,32*i]

64 ai=a[64*(i+1)-1,64*i], bi=b[64*(i+1)-1,64*i]

A top module that can perform addition, subtraction, and comparison instructions is designed.

Two’s complement is taken by inversing B input and adding 1 to carry-in ports of adders. When

performing subtraction carry-in inputs of designated adders are set to one. More information

will be given about the logic to set carry-in inputs to one will be given in proceeding pages.

To meet the requirements stated above, a carry select adder with block size of 8 is generated.

By following our design policy first, a 64 bits wide adder is generated. Then VLEN/64 of the

adders are generated in parallel configuration. Choice of carry select adder is done with the

consideration of speeds and ease of integration. In addition to this, the base 64-bit adder must

be able to generate N, V, C, Z flags from 7, 15 ,23 ,31 ,39 ,47 ,55 and 63rd bits. The reasoning

28

behind the generation of these flags will be explained shortly after. With addition of an and gate

between the 8-bit adder blocks, carry propagation can be blocked and desired addition

configurations are achieved. Carry in set signal that is required to perform subtraction

operations is or-ed in every stage. A top-level view of 64-bit adder unit can be seen in Figure

Error! No text of specified style in document..9.

29

Figure Error! No text of specified style in document..9 Top level view of Adder

30

Every adder present in the figure is 8 bits wide. Every enable and carry in signals are generated

according to the EEW. Propagation of carryout will be cut by setting enable to 0 when needed

and carry in set will overwrite the carry out of previous stage if needed. A sample demonstrating

the state of enable signal for rightmost adder is given in Table Error! No text of specified style

in document..3.

Table Error! No text of specified style in document..3 Enable signal table.

EEW 8 16 32 64

Enable 0 1 1 1

Carry-in set 1 0 0 0

To perform compare instructions the flag outputs of every adder block is used. When a

compare instruction is set to perform; adder, performs subtraction operation. In this case flags

will be generated on every 8*ith bit. 8 sets of flags will be used to generate 8 comparison bits,

and resulting comparison bits will be used in write-back stage to write the desired element.

With this set-up comparison of every element is achieved without using the already existing

adder.

3.5.2 Cumulative Operation Circuit

A cumulative adder circuit is designed for later usages in narrowing additions. This

circuit will be a basis for dot product operation and other narrowing operations. The

schematic of the circuit is given in Figure 2.5.2.1. Note that every circle in the diagram

represents a small ALU like unit. The width of the unit is given in the number indicated

inside the circle. Green line represents the copy of the circuit starting from the 128-bit

adder. The second branch of the circuit is not drawn to save space and to avoid

cumbersome representation.

31

Figure Error! No text of specified style in document..10 Schematic of the cumulative
adder

Blue lines in the circuit schematic represent a multiplexer. An instance of blue line is

taken in Figure Error! No text of specified style in document..10 in the circle on

bottom left. More insight of this line is given in the rectangle on bottom right.

Depending on the EEW, either data or the sum from the previous stage is passed to

32

the next stage. 8-bit units on the top always receive 8 bits of data without a

multiplexer. With the multiplexers operation can start directly from the

corresponding element width.

For instance, if we are to make an addition by a vector with element width of 32 bits,

the muxes inside the blue lines indicated in Figure 2.5.2.2 will be selecting data.

Because we have fed data into those muxes the results of 8- and 16-bit adders will

not be used. Addition of the element will start from the 32-bit adders and their results

will be propagates until the 256-bit wide adder.

Figure Error! No text of specified style in document..11 An instance for addition

The schematic of the ALU like units is presented in Figure Error! No text of

specified style in document..11.

3.5.3 Shifter Circuit for Vector Single-Width Shift Instructions

Vector shifter needs to be able to shift every vector element by any arbitrary value. To

achieve this, a set-up of 8-bit barrel shifters is implemented. To achieve the desired

behavior, a barrel shifter like block is implemented. The mentioned block will be

called pseudo-shifter.

To demonstrate the behavior of the design right shift operation will be mentioned, but

to perform left shift a mirror-copy of the circuit is implemented. Pseudo-shifter takes

shift amount and operand as inputs and will put the least significant “shift amount” of

bits onto the most significant “shift amount” output bits. The remaining least

significant bits will be 0. Truth table for 4-bit pseudo-shifter is given in Table Error!

No text of specified style in document..4. n-bit pseudo-shifter gives the same

behavior in n bits.

33

34

Table Error! No text of specified style in document..4 Truth table for 4-bit pseudo-
shifter

Shift Amount y3 y2 y1 y0

0 0 0 0 0

1 x0 0 0 0

2 x1 x0 0 0

3 x2 x1 x0 0

4 x3 x2 x1 x0

The shifter selects between two sets of outputs. One set of output is generated by 16,

16-bit wide parallel shifters. These 16-bit shifters can work as one 16-bit shifter or 2

individual 8-bit shifters. Work dynamics will be mentioned soon. Similarly, the other

set of output is generated by 4, 32-bit wide shifters. Similarly, this shifter can work

as a 64-bit shifter or two 32-bit wide individual shifters. Set of 4 64-bit shifters and

set of 16 16-bit shifters are illustrated in Figure Error! No text of specified style in

document..12 and Figure Error! No text of specified style in document..13.

Figure Error! No text of specified style in document..12 Set of 64 bit shifters

Figure Error! No text of specified style in document..13 Set of 16 bit shifters

35

A mux chooses between the outputs a and b depending on EEW[1].

3.5.3.1 16-bit Right shifter

Top-down design of the 16-bit right shifter is presented in Figure 2.5.3.1.

Figure Error! No text of specified style in document..14 Top-down view of 16-bit
shifter

Here in the circuit, operands are x and shamt. X represents the input to be shifted and

shamt is the shift amount to be performed, y is the output from the circuit. Operation

of the circuit will be explained in two cases.

• Case 1: when the shifter is working as a 16-bit single shifter.

• Case 2: when the shifter is working as two separate 8-bit shifters.

Case 1: When the shifter is working as a single 16-bit shifter.

When the shifter is working as a single 16-bit shifter EEW[0] will be 1. This will let

the output of the pseudo shifter to appear in the input of the or gate. When the shift

36

amount is less than 8, shifter on left will shift the 8 most significant bits of the x

input. Likewise, shifter on right will shift the least significant 8 bits by shift amount.

The resulting zeros from the shift operation will be filled by output of pseudo shifter.

When the shift amount is greater or equal to 8, shamt[3] will equal to 1. Because of

the resulting 1 from shamt[3] and gate at the output of the left shifter will produce

zeros. At the same time, when the shift amount is greater or equal to 8, the and gate

will force the shamt input of the pseudo shifter to 0. This will make all the outputs of

the pseudo shifter zeroes. The mux on the input of the right shifter will shift switch

the inputs from x[7:0] to x[15:8]. This way the shifter will start shifting the most

significant bits.

All of these operations combined will simulate a single 16-bit shifter from 2 separate

8-bit shifters. An example will be shown to solidify the understanding.

Let’s consider an example when x bit series is 1010_1010_0101_0101, shamt is 2

and 10, and EEW[0] is 1.

When shamt=2 left shifter will shift the most significant 8 bits of x by two bits.

0 0 1 0 1 0 1 0

On the other hand, shifter on right will generate the following bit series.

0 0 0 1 0 1 0 1

And finally, pseudo shifter will generate the following bit series.

1 0 0 0 0 0 0 0

Anding the outputs of right shifter and pseudo shifter will give the following series.

1 0 0 1 0 1 0 1

Notice by appending the and operation result of pseudo shifter and right shifter to left

shifter output we arrive at the following series 0010_1010_1001_0101. Indeed, this

is the result of the binary sequence 1010_1010_0101_0101, shifted right by two bits.

When shamt is 10 resulting most significant 8 bits will be zeroes thanks to the and

operator at the output of the shifter. Shamt input to the pseudo shifter will be forced

37

to zero. This will result in zeroes on the output of the pseudo shifter. Therefore,

output of the least significant 8-bits will be determined by the output of the right

shifter. The resulting output for least significant 8-bits will be as follows.

0 0 1 0 1 0 1 0

By appending this result to 0000_000 we arrive at 0000_0000_0010_1010.

Case 2: when the shifter is working as two separate 8-bit shifters.

When the shifter is working as two separate 8-bit shifters EEW[0] will be 0. In this

setup output of pseudo shifter will be orred with zeroes. So, two shifters will be able

to work individually. This set up will work as long as the shift amount is less than 7

which is the expected input range.

Generating this circuit in parallel 16 times will be able to shift 16-16 bits wide

elements or 32 8-bits wide elements.

3.5.3.2 64-bit Right shifter

64-bit right shifter is given in the Figure Error! No text of specified style in

document..15.

38

Figure Error! No text of specified style in document..15 64-bit shifter top-down
view

The circuit behaves the same as the 16-bit shifter circuit does. The only differences

are the buses being 32 bits wide instead of 8 bits and shamt[5] is used in the control

circuit instead of shamt[3]. The circuit again consists of two length(y)/2 bits wide

shifters and pseudo shifter.

3.5.4 Divide by two unit

This circuit’s sole purpose is shifting the input by 1 bit when enabled. This circuit is

needed to perform averaging of operands without needing to add the shifter unit to the

critical path of execute. By addition of this circuit, shifter circuits can be placed in

parallel to the adder. Similarly, to shifter module, 16 16-bit halvers are generated in a

parallel to generate a output of a mux; and 8-64 bit halvers are generated in parallel to

generate b output of the mux. The mux chooses the right output by EEW[1]. Circuit

diagram for 16 bit halver can be seen in Figure Error! No text of specified style in

document..16 and diagram for 64 bit halver can be seen in Figure Error! No text of

specified style in document..17.

39

Figure Error! No text of specified style in document..16 16 bit halver diagram

Figure Error! No text of specified style in document..17 64 bit halver diagram

Shifter module hardwired is to 1 input is a mere cable, and the and result of EEW[0]

with [8] only needs to be orred with [7]. So, with the critical path of two logic

elements and a mux, division by 2 is implemented.

3.5.5 Vector Multiplier Unit

Similar to other parallel arithmetic operations, this unit is also designed using

repetitive unit cells. These cells are specifically designed with a maximum element

width of 64 bits, enabling them to perform parallel multiplication of elements in sizes

of 8, 16, 32, and 64 bits. Essentially, this unit serves as the multiplication counterpart

to the vector adder unit.

The design of the unit cell draws inspiration from the fundamentals of multiplication.

When multiplying two numbers, X and Y, each consisting of 2*N bits, the

multiplication process can be represented as follows: 𝑋 ∗ 𝑌 = (𝑋ℎ ∗ 2𝑁 + 𝑋𝑙) ∗

 (𝑌ℎ ∗ 2𝑁 + 𝑌𝑙) = (𝑋ℎ ∗ 𝑌ℎ) ∗ 22𝑁 + (𝑋ℎ ∗ 𝑌𝑙 + 𝑋𝑙 ∗ 𝑌ℎ) ∗ 2𝑁 + (𝑋𝑙 ∗ 𝑌𝑙). To

facilitate a better understanding of this concept, Figure Error! No text of specified

style in document..18 provides a detailed illustration. Also from the figure, it can be

seen that if a 2N-bit number is divided in two N-bits, and multiplication of numbers

can also be expressed in terms of those numbers. For example, multiplication of two

32-bit numbers with other two 32-bit numbers are also calculated as intermediate

40

results in such topology. Figure Error! No text of specified style in document..19

illustrates this fact.

Figure Error! No text of specified style in document..18 Multiplication topology

Figure Error! No text of specified style in document..19 Optimized multiplication
topology

From these facts, a unit with two 64-bit data inputs, and four 128-bit data outputs for

each mode(8, 16, 32 and 64) can be created. Where the inputs and the outputs can be

an array of 64, 32, 16 and 8-bit and the output is the element wise multiplication of

these elements. The unit can be designed recursively. Which means that while the H*L

multiplications are done with N-bit multipliers, H*H and L*L multipliers are done

with the N-bit version of the vector multiplication unit. This recursive structure is

terminated at the 8-bit case. RTL schematic of the designed circuit is shown on Figure

41

Error! No text of specified style in document..20. RTL schematic also shows

arithmetic shifts, but they are only used for the arrangement of the wires and are

constant shifts.

42

Figure Error! No text of specified style in document..20 RTL schematics for
multiplier circuit

Furthermore, to adjust the length of the datapath, the unit cells can be combined in

parallel. By arranging multiple unit cells next to each other, the datapath can be tailored

to handle different data sizes. For example, if a 64-bit datapath is required, a single

unit cell would be adequate. However, for a 256-bit datapath, four unit cells would be

arranged in parallel without any interconnections between them. This parallel

configuration offers scalability and flexibility, allowing the system to accommodate

various data sizes without the need for additional inter-module connections. The block

diagram illustrating this configuration can be seen in Figure X.X.

43

Figure Error! No text of specified style in document..21 Example of combined
multiplication cells in datapath

3.5.6 Vector Division Unit

Unlike the other arithmetic operations, such as addition, subtraction, and

multiplication, the division operation does not make use of a dedicated unit specifically

designed for vector operations. This is because the division algorithm employed by the

divider takes into account the length of the input and output values. The number of

cycles required to perform the division is directly related to the number of bits involved

in the division process.

Considering these factors, it appears that there is no immediate requirement for

additional circuitry or specialized modules to adapt the division operation to a different

and potentially more efficient computing module. The division algorithm implemented

in the divider already accounts for the length calculations and cycle count, making it

unnecessary to introduce further circuitry for this purpose.

 Permutation Instructions

To implement permutation instructions. We utilized our CISC style decoder to handle

most of permutation instruction. We chose this way because permutation instructions

are too complex to implement on hardware. This approach allowed us to save space in

FPGA.

3.6.1 Slider Unit

We also designed a slider unit similar to shifter to work with vector slide instructions.

Unlike shift operations, a vector register group's elements are moved up and down by

44

the slide instructions. To accomplish that we modified our shifter circuit slightly. If we

shift our vector register by EEW amount multiplied with slide amount, we can achieve

slide operation. Since our shift amounts are limited by EEW, we got rid of unused

shifts in our slider circuit to save space.

45

 REALISTIC CONSTRAINTS AND CONCLUSIONS

 Realistic Constraints

The constraints of this project can be classified into three categories: economic impact,

cost analysis, and standards. Each of these categories is explained in detail in the

subsequent sections.

4.1.1 Social, environmental and economic impact

The primary objective of this project is to enhance processing power within a single

unit and decrease the time required to run applications. While it has versatile

applications, the ultimate aim is to optimize runtime efficiency.

The social impact of this project lies in its ability to leverage increased computational

capabilities. Various domains, such as scientific research, cryptography, simulation,

and others that can make use of this extension, stand to benefit significantly. By

enabling more efficient and powerful computations, the project can contribute to

advancements in these fields, fostering innovation, knowledge sharing, and potential

breakthroughs in scientific understanding and technological applications.

Additionally, the reduction in computation time achieved through this project has a

positive environmental impact by lowering power usage. By optimizing processing

power and improving efficiency, the project offers a greener alternative for the

industry. Decreased power consumption translates to reduced energy requirements,

which can contribute to sustainability efforts and help mitigate the environmental

impact of computing technologies. This greener alternative aligns with the growing

emphasis on energy efficiency and eco-friendly practices in various industries.

4.1.2 Cost analysis

By enabling more computation within a single unit, this module eliminates the

necessity for additional compute units in a system. This reduction in the number of

units required leads to a decrease in manufacturing costs. With the module's enhanced

processing power and decreased computation times, the overall cost of utilizing this

46

module is also reduced. This cost reduction can be attributed to the optimized

efficiency and improved performance, resulting in more efficient resource utilization

and potentially lowering expenses associated with computational tasks. Overall, the

module's ability to consolidate computation and reduce costs can have a positive

impact on the economic viability and affordability of utilizing this technology.

4.1.3 Standards

This project strictly adheres to the RISC-V Vector Extension ISA v1.0, which means

that any compiler capable of compiling code for a RISC-V machine can be used to

leverage the capabilities of this project. The compatibility with existing RISC-V

compilers ensures flexibility and ease of integration with different software

development workflows. Developers can utilize their preferred compilers and

programming languages to harness the benefits of the project while leveraging the

extensive tooling and ecosystem already available for RISC-V architecture.

 Conclusion

To conclude, this project has presented a comprehensive architectural proposal for the

RISC-V Vector Extension. The implementation phase involved the development of a

majority of the modules using SpinalHDL, a hardware description language. However,

it is important to note that the integration process and subsequent integration tests were

not conducted as part of this project and are recommended for future work.

One of the key findings of this project is the successful demonstration of a RISC-V

Vector Extension module that strikes a balance between flexibility and compactness.

This achievement highlights the potential of leveraging SpinalHDL, as its impact on

the overall design and implementation is undeniably significant. The project's

outcomes serve as a valuable foundation for further exploration and refinement in the

field of RISC-V Vector Extension development.

In addition to the accomplishments mentioned earlier, an important discovery made

during this project was the compact nature of the RISC-V Vector Extension

instructions and the opportunity it provided to explore unorthodox module designs for

enhanced performance. This aspect of the project allowed for greater creativity and

47

fostered the improvement of our design skills. By leveraging the unique characteristics

of the vector instructions, we were able to devise innovative solutions that contributed

to the overall efficiency and effectiveness of the core. This finding highlights the

flexibility and adaptability of the RISC-V architecture, as well as the potential for

further exploration and innovation in future projects. The experience gained through

this endeavor has undoubtedly enhanced our design capabilities and broadened our

perspectives in the field of processor development.

48

 REFERENCES

[1] K. Asanovic, "GitHub," 20 September 2021. [Online]. Available:
https://github.com/riscv/riscv-v-spec/releases/tag/v1.0. [Accessed September
2022].

[2] C. Papon, "SpinalHDL," 2022. [Online]. Available:
https://spinalhdl.github.io/SpinalDoc-RTD/master/artefacts/SpinalHDL_docs-
master.pdf.

[3] [Online]. Available: https://www.scala-lang.org/.

[4] C. Papon, 2022. [Online]. Available: https://spinalhdl.github.io/SpinalDoc-
RTD/master/SpinalHDL/Foreword/index.html#why-moving-away-from-
traditional-hdl.

[5] C. Papon, "GitHub - SpinalHDL/VexRiscv: A FPGA friendly 32 bit RISC-V
CPU implementation," [Online]. Available:
https://github.com/SpinalHDL/VexRiscv. [Accessed 2022].

