ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICS FACULTY

IMPLEMENTATION OF HIGH FREQUENCY TRADING TECHNOLOGY ON
FPGA

SENIOR DESIGN PROJECT

Behi¢c ERDEM
Rana TILKI
Armin ASGHARIFARD Uygundur

Berna Ors Yalgin

4

ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT

JUNE 2023

i

ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICS FACULTY

IMPLEMENTATION OF HIGH FREQUENCY TRADING TECHNOLOGY ON
FPGA

SENIOR DESIGN PROJECT
INTERIM REPORT

Behic ERDEM
040170213

Rana Tilki
040180741

Armin ASGHARIFARD
040190912

JUNE 2023

ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT

Prof. Dr. Siddika Berna Ors Yal¢in

1l

We are submitting the Senior Design Project Interim Report entitled as “Implementation
Of High Frequency Trading Technology On FPGA”. The Senior Design Project Interim
Report has been prepared as to fulfill the relevant regulations of the Electronics and
Communication Engineering Department of Istanbul Technical University. We hereby
confirm that we have realized all stages of the Senior Design Project Interim Report by
ourselves, and we have abided by the ethical rules with respect to academic and
professional integrity .

Behic ERDEM

040170213

Rana TiLKi
040180741

Armin ASGHARIFARD .
040190912 Jf,.#az

v

FOREWORD

We are three students in Istanbul Technical University Electronics and
Communications Engineering program. The purpose of this thesis is to do
comprehensive research on the technologies of High-Frequency Trading in the stock
market and how they are implemented to provide very fast automated trading
platform.

We sincerely thank Prof. Dr. Berna Ors Yalgin from Istanbul Technical University
and Ismail Hakki Topcu from Electra IC company, based in Istanbul, for mentoring
and guiding us through this project.

The motivation to start this project rised from the fact that this technology is
implemented on FPGA, in communication with a CPU to implement the desired
trading strategy and run it directly on the stock exchange server through the FPGA
system. FPGA design and embedded programming is what we are interested in and
since so much financial profits can be made if the system is successfully
implemented, we decided to work and research on this topic.

In this report, after going through an introduction on how this system works, each
part of this FPGA system, and the communication and messaging protocols used in
this system will be discussed, seperately. The key points to keep in mind for now is
that the FPGA system receives live stock market data through ethernet connection
with the stock exchange server; this data is processed in real-time and organized into
sorted tables, which we call Order Books; The CPU part will receive and process
these Order Books and decide on which stock and what quantity will be bought or
sold; These decisions will be informed to the FPGA system, and the FPGA system
will transfer these orders to the stock exchange server.

The excitement of going through this project is the vast amount of things we learned.
We thank all the readers for their interest in our thesis and we invite you to delve into
the following chapters.

TABLE OF CONTENTS

Page
FOREWORD........ocoiiiiee ettt sttt ettt e naeeneenaeenne e v
TABLE OF CONTENTS. ...ttt et s vi
ABBREVIATIONS. ...ttt ettt sttt sse b e ensee e vii
SYMBOLSttt ettt e eenee e viil
LIST OF TABLES........cooieee ettt ettt e e ix
LIST OF FIGURESc.oiiiiii ettt X
SUMMARY ..ottt ettt ettt et e st e steebeeseenteenseeneesnseeenseeennnas xi
OZET ...ttt xii
1. INTRODUCGCTION.......cooiiiiiieiteieetee ettt ettt nse e sneenees 1

1.1. Purpose of The Project........cccccieiiiiiiiiiiieiiecieeieeeee ettt s 2
1.2, LIterature REVIEW......uvieiiiieeiie ettt e e esnae e 2

2. FPGA Implementation for HFT..................cccooiiiiiiii e, 5
2.1 HET PrOtOCOIS. ...ccuiieiiiiectie ettt ettt st tae e e e saneaaeeeas 6
2.1.1. OUCH ProtOCOL......couiiiiiieiiriieieeiesiteeeestee ettt 6
2.1.1.1. OUCH Protocol MesSage TYPES......ccvureerrrrerirreerirreenieeesreeenreeeeeeeneens 7

2.1.2. ITCH ProtOCOL...c.eeiiiiieiieiieieetet ettt 10
2.1.2.1. ITCH Protocol Message TYPES.......cccvueercereeiieeriiieeriieesieeenveeeeeennens 10

2.2. TCP/IP and UDP......ccooiiiiiiiiiiieiieeeeeset ettt 14
2.3. FPGA Board and Tools Specifications...........cccceeerveeerieeesiieeiieeeiee e 15
2.4. Intellectual Property COTes........covieiiieriieniieiienieeieeeieeieesieeeesereeeesveeeeereees 19
R T B 1SS 19
2.4.2. AXT 1G/2.5G ethernet SUbSYStEM......cccceeevieriieriienieeiienieeieesieeeiree e 19
2.4.3. AXT INtEICONNECT.eeiviieeirieeeerieeetieeiteeesreeeteeeeteeesteeesaeeessseeessseeensneeens 20
2.4.4. AXI direct memory access — DMA........ccooiiiiiiinieeieeieee e 21
2.4.5. AXTUARTLIE.eeuteeiieeieieeiesieeie ettt ettt eteeennaeenees 21
2.4.6. MICTODIAZE.coueiiiiiieiecieeee ettt 22

3. RESULT AND ANALYSIS... oottt s 23
3.1. Non-FPGA Environment EXperiment............cccceeveerieenieenieenienieeieesee e 23
3.2. ECho Server on FPGA..........ooo it 25
3.3. TCP Server on FPGA.....ccooiiiiiiieeee e 29

4. REALISTIC CONSTRAINTS AND CONCLUSIONS......ccocoiiieieieeeeeeenn 31
4.1. Application Area of ProJect........ccccoviiiiiieriieiiiieiieeieeiie et 31
4.2. Realistic CONSIIAINES.eeeeiieeriieeriieeireeeiiteeeteeeeteeesreeessseeeesnssreeeeesssnsneeaeans 32
4.3. Social, environmental and €cONOMIC IMPACL........c.eevveeruierreerieeriieeeriieeeeneenn 33
4.4. Health and Safety CONCEINS........cccvierrieeriieeiiie ettt evee e svee e e eenaeee s 34
4.5, SANAATAS. ..cc.eeiiiiieieee et 34
4.6. COSt ANALYSIS....ccccuiieeiiieeiiieciieeeieeeetee et e et e et e e et eesaaeesaeeessssseeeeensnnsaeeeens 36
4.7, CONCIUSIONS. ..c..eeuiiiuiiiiiiieie sttt ettt ettt et be et s e e 36
4.8. Future Work and Recommendations.............ccccueerveeercieeenieeeeeeciiieee e 37

5. REFERENCES. ...ttt sttt st 39

Vi

ABBREVIATIONS

HFT
OUCH
ITCH
FPGA
TCP
AXI
UDP
DHCP
IP
EUR
USD
TRY
UART
RISC
HDL
VHDL
Language
LWIP
BSP
PEP
BSD
FIFO

: High Frequency Trading

: Order, Update, Cancel and Hit

: Information Technology Channel

: Field Programmable Gate Array

: Transmission Control Protocol

: Advanced Extensible Interface

: User Datagram Protocol

: Dynamic Host Configuration Protocol
: Internet Protocol Address

: Euro

: United States Dollar

: Turkish Lira

: Universal Asynchronous Receiver/Transmitter
: Reduced Instruction Set Computer

: Hardware Desription Language

: Very High Speed Integrated Circuit Hardware Description

: Light Weight Internet Protocol
: Board Support Package

: Python Enchancement Protocol
: Berkeley Software Distribution

: First in First out

vil

SYMBOLS

MHz : Mega Hertz
ns : Nano Second

ms : Mili Second

viil

LIST OF TABLES

Table 2.2 : ITCH New Order Order Book Directory Message
Table 2.1 : OUCH decoding for new sell order message type.

1X

LIST OF FIGURES

Figure 2.1 :

Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 3.1:

Figure 3.2:

is the price.
Figure 3.3:
Figure 3.4:

Figure 3.5:

Page
HFT implementaion block diagram of real environment.......................... 5
Example python OUCH Simulation..........ccccceeveeviiienienieniienieeicenee e 7
Example python ITCH Simulation...........cccccveeviierieiciienieeiieie e 10
Nexys Video Trainer Board..........cccooovveeiiieeiiieniieccieceecee e, 16
AXI Ethernet Subsystem Block Design...........ccccveeeiiieviiieiciieeieecieees 20
Example order BOOK.........c.coiiiiiiiiiiieiieiecee e 24

Example python order cook. Left column is the quantities, right column

Every new block is represent different timestamp...........cccccoeceerieennnenne 25
Complete Block design of the ethernet subsystem.............cceeeveeereveennns 27
Localhost echoing with hardware..............ccccoovieniiiiiiiniiiieeee, 28
Serial output of EChO SEIVer.........cccvveiiiiiiiiiiciieieceee e 29

SUMMARY
High-frequency trading (HFT) refers to a specific type of algorithmic trading in the

financial market that involves rapid trade execution, extensive use of technology, and
analysis of high-frequency financial data. It is characterized by its high speeds,
frequent trading activity, the utilization of advanced algorithms, and short investment
timeframes. HFT employs sophisticated computer algorithms and hardware to
rapidly buy and sell stocks or other financial instruments within very short time

intervals, often in seconds or fractions of a second.

Having a low-latency technology in implementing HFT is very important. HFT
traders aim to capitalize on brief market inefficiencies, leading to not only their own
profit but also an overall increase in market efficiency. However, the growing
number of participants in the HFT sector attempting to exploit these opportunities
means that only the initial traders to execute orders may benefit from a particular
opportunity. This underscores the significance of latency, which is the first reason

why it matters.

Furthermore, certain HFT strategies like latency arbitrage rely on the ability to access
market data and execute orders faster than other investors. Successfully profiting
from such activities necessitates real-time reaction to market events using low-
latency and low-jitter market access. Even a millisecond reduction in latency can
significantly enhance arbitrage profitability. Therefore, HFT strategies demand low-
latency market access to receive market data promptly and transmit new orders

efficiently.

Due to these reasons, and the hardware acceleration opportunities that FPGA can
provide, FPGA is chosen as the primary infrastructure for HFT systems. The
parallelism and determinism of FPGA solutions greatly enhance the speed of
computing mathematical models and transmitting data to the matching engines of

exchanges.

X1

OZET

Yiiksek frekansh ticaret (HFT), finans piyasasinda hizli islem gerceklestirmeyi,
teknolojinin kapsamli kullanimin1 ve yiiksek frekansli finansal verilerin analizini
iceren belirli bir algoritmik ticaret tiirlinii ifade eder. Yiiksek hizlari, sik alim satim
faaliyetleri, gelismis algoritmalarin kullanimi ve kisa yatirim zaman dilimleri ile
karakterize edilir. HFT, hisse senetlerini veya diger finansal araglar1 ¢ok kisa zaman
araliklarinda, genellikle saniyeler veya saniyenin kesirleri i¢inde hizla alip satmak

icin sofistike bilgisayar algoritmalar1 ve donanimlar1 kullanir.

HFT'nin uygulanmasinda diisiik gecikmeli bir teknolojiye sahip olmak c¢ok
onemlidir. HFT yatirimcilar1 kisa siireli piyasa verimsizliklerinden faydalanarak
yalnizca kendi karlarin1 degil ayni zamanda piyasa verimliliginde genel bir artis
saglamay1 amaclamaktadir. Ancak, HFT sektoriinde bu firsatlardan yararlanmaya
calisan katilimcilarin sayisinin giderek artmasi, belirli bir firsattan yalnizca emirleri
gerceklestiren ilk yatirimceilarin faydalanabilecegi anlamina gelmektedir. Bu da
gecikmenin 6nemini vurgulamaktadir ki bu da gecikmenin neden 6nemli oldugunun

1lk nedenidir.

Ayrica, gecikme arbitraji gibi belirli HFT stratejileri, piyasa verilerine erisme ve
emirleri diger yatinmcilardan daha hizli gerceklestirme becerisine dayanir. Bu tiir
faaliyetlerden basaril1 bir sekilde kar elde etmek, diisiik gecikmeli ve diisiik titresimli
piyasa erisimi kullanarak piyasa olaylarina ger¢cek zamanli tepki vermeyi gerektirir.
Gecikme siiresindeki milisaniyelik bir azalma bile arbitraj karliligin1 6nemli dlglide
artirabilir. Bu nedenle, HFT stratejileri piyasa verilerini aninda almak ve yeni

emirleri verimli bir sekilde iletmek i¢in diisiik gecikmeli piyasa erisimi talep eder.

Bu nedenlerden ve FPGA'nin saglayabilecegi donanim hizlandirma olanaklarindan
dolay1 FPGA, HFT sistemleri igin birincil altyapt olarak se¢ilmektedir. FPGA
cOziimlerinin paralelligi ve determinizmi, matematiksel modellerin hesaplanma ve

verilerin borsalarin eslestirme motorlarina iletilme hizinmi biiyiik 6l¢iide artirir.

Xil

1. INTRODUCTION

High-Frequency Trading (HFT) has emerged as a prominent trading strategy in
financial markets, enabled by rapid advancements in technology and computational
capabilities. HFT involves executing a large number of trades in fractions of a
second, leveraging sophisticated algorithms to capitalize on market inefficiencies
and exploit short-term price fluctuations. This approach requires ultra-low-latency
and high-performance systems to process vast amounts of market data and execute

trades swiftly.

Field-Programmable Gate Arrays (FPGAs) have gained significant attention in the
domain of HFT due to their inherent parallel processing capabilities, low-latency
characteristics, and ability to be reprogrammed for specific tasks. FPGA-based
solutions offer the potential for enhanced performance, reduced latency, and

improved flexibility compared to traditional software-based trading systems.

This thesis aims to explore the implementation of HFT on FPGA platform, focusing
on the design, development, and evaluation of a high-performance trading system.
The objective is to investigate how FPGA technology can be effectively utilized to
enhance the speed and efficiency of HFT algorithms, thereby gaining a competitive

edge in the financial markets.

The thesis will then focus on the development and implementation of HFT strategies
on FPGA platforms, covering market data analysis and processing, order execution,
and risk management. It will address the hardware requirements, design
considerations, and challenges encountered during the FPGA implementation

process.

Finally, the thesis will discuss the challenges faced during the research, identify
limitations, and propose potential avenues for future work in this domain. It will
conclude by summarizing the findings, contributions, and implications of the

research conducted.

Through this investigation, the thesis aims to contribute to the understanding and
advancement of FPGA-based HFT systems, offering insights into the potential
benefits and challenges of employing FPGA technology in the dynamic and

competitive landscape of high-frequency trading.

1.1. Purpose of The Project

The purpose of using field-programmable gate arrays (FPGAs) in high-frequency
trading (HFT) is to achieve faster trade execution speeds. FPGAs are special types of
computer chips that can be customized to perform specific tasks, making them more
efficient and faster than general-purpose processors like those found in a typical
computer. In HFT, FPGAs are used to implement the algorithms that analyze market
data and make trading decisions. Because FPGAs can be programmed to perform
specific tasks very quickly, they can help HFT firms to execute trades faster than
their competitors. By using FPGAs, HFT firms can reduce the latency (or delay)
between receiving market data and executing a trade, which can give them an

advantage in fast-moving markets.

1.2. Literature Review

An strategy to investing that is still relatively new is high-frequency trading. As a
result, it's frequently unclear and unclear how high-frequency trading relates to other,

more traditional investment approaches.

Different sorts of HFT modules are used in the current trading market. We intend to

apply the Borsa Istanbul (BIST) criteria in our project.

TCP/UDP, OUCH, and ITCH message formats are all used by HFT. BIST uses the
2022 OUCH and ITCH message formats, as well as the SoupBin TCP/Mold UDP
standards. But because they run on non-FPGA systems, these protocols have a lot of

latency.

HFT is used on FPGA boards in Turkey by the business known as "Matrix
Investment." On such project, there are essentially two main tiers. The first layer is
the host, which accepts trade orders from clients and notifies them of the process.

The second layer is the FPGA board, which communicates with BIST servers and

encodes and decodes OUCH and ITCH messages. [1]

Researchers from Brno University in the Czech Republic successfully develop HFT
architecture with a 150 MHz clock speed and an average latency of 253 ns on a
Xilinx Combo-LXT board. [2] In order to find speedier solutions in 2014, they apply
several hashing algorithms on transferred messages. By then, hashing and other
algorithms had undergone significant alteration. In contrast to 2014's algorithms,

hypothetically newer algorithms offer little latency.

Actually, the project initiative and the Matrix Investment model are extremely
similar. To create a client side and an FPGA side. On the client side, it has a user
interface to communicate with clients, such as the ability to view current stock
market values, place orders, cancel orders, edit orders, and so forth. On the FPGA
side, it maintains communication with BIST servers to obtain market data, converts
order actions to the desired format OUCH/ITH before transmitting via TCP/UDP to

clients between servers, and provides feedback from clients to servers. The ITCH

protocol gathers information from other clients and the market to help clients make

decisions about whether to purchase, sell, or cancel orders.

The communication format known as the OUCH protocol consists of requests from
clients for services and responses from servers to clients. Due to the undesirable
latencies of typical encode/decode operations, the FPGA portion is what delivers
low-latency. FPGA processing operations are faster than those of a typical computer
because of their nature. Our work is based on hand-written code on FGPA, and this
project will be offer a faster method by avoiding the use of FPGA components like
DSP, which introduces irregularity into signals, and by streamlining encode/decode

functions and fundamental mathematical operations like multiplication.

Alongside with that main goal is the project implement and run all the processes on
the FPGA board. All the steps that previously done by now trying to convert to
FPGA’s HDL language, we prefer to use verilog. Instead of rewriting the modules to
be used in the project from scratch, some of the Intellectual Properties (IP) in the
Xilinx Vivado program were used. For instance for ethernet module “AXI 1G/2.5G

Ethernet Subsystem” IP were used.

2. FPGA Implementation for HFT

By their very nature, high-frequency trading systems demand quick, hesitating-free
decision-making and execution. In these "mission-critical" trading jobs, properly
coded computer systems usually outperform human traders, especially in risky
market conditions. As a result, traditional human traders are quickly being replaced
by computer trading systems on trading desks all over the world. HFT firms use
complex algorithms and high-speed data feeds to identify and act on opportunities to
buy or sell securities fractions of a second faster than their competitors. HFT
technology consists of both software and hardware parts together, where software
part runs on a dedicated CPU, and the hardware is implemented on Field

Programmable Gate Array, known as FGPA.

MATRIKS HFT GEN 3

Host |
[cru |

[Trading | “L:ull
Stratejisi |
Emir Cefier fauct
Borza |
Istanbul l,sm
—/-;- Siiricd \
s A
‘ {?PM
i —_ —
v * PCle [P I
NIC | 1
OUCH pas | RucH e

Layer! / Layer2 . | UDP-TCP*_,Amplrma &| | Emir Detieri
Switeh TmCH T 7 ¥ Kaman [reil Stzme | 7| Ohgtuma |

Figure 2.1 :HFT implementaion block diagram of real environment

Basically aimed HFT system has following functions:

* Receive and classify in-coming orders/quotes

* Perform run-time low latency buy and sell trading signals

» Listens stock market or server confirmation signal belongs to sended order

signal.

With this functions aimed HFT system has some differs with traditional HFT
systems. Traditional HFT systems has “decide mechanism”. Traditional ones calcute
and create meaningful high profitable orders with indicators which belongs to stock

market. Some of them has some features to calculate indicators by own.

2.1. HFT Protocols

HFT system has some unique demands to implementation. Generally uses TCP
uplink and UDP downlink communication structure. Also uses specific encodind and
decoding schemes, “Order, Update, Cancel and Hit — OUCH” and “Intellitest
Categorized Historical — ITCH” protocols.

2.1.1. OUCH Protocol

OUCH is a protocol used by financial firms to transmit orders between themselves
and other market participants. It stands for Order, Update, Cancel and Hit (match)
and is used primarily in the options market. It is a text-based protocol that allows
firms to communicate order and trade information in a standardized format. The
OUCH protocol is maintained by the Options Clearing Corporation (OCC) and is
designed to facilitate the automation of options trading. The abbreviation "OUCH"
still refers to "NASDAQ OUCH," the order entry protocol that NASDAQ employs
for the submission, modification, and cancellation of orders.

This project used OUCH protocol defined at 29 September 2021 via BISTNET.[3]

Figure 2.2: Example python OUCH Simulation

2.1.1.1. OUCH Protocol Message Types

The OUCH protocol consists of a series of messages that are used to transmit
information between firms and other market participants. Some of the types of
messages that are defined in the OUCH protocol includes; order messages, these
messages are used to transmit orders to the market. They include information such as
the symbol, side (buy or sell), quantity, and price; cancel messages, these messages
are used to cancel orders that have been previously submitted to the market; replace
messages, these messages are used to modify the terms of a previously submitted
order; trade messages ,these messages are used to confirm the execution of an order.
They include information such as the trade price and the quantity of the trade.
Indication of Interest (IOI) messages, these messages are used to indicate a firm's
interest in potentially trading a particular security. They do not commit the firm to
making a trade, but rather are used to gauge interest in the market. Also OUCH
protocol messages consists feedback that consist the information about sended

message whether accepted, cancelled, executed.

The OUCH protocol is designed to facilitate the automation of options trading by
providing a standardized way for firms to communicate order and trade information.
It is used by firms to transmit orders to exchanges, as well as to communicate with

other firms and market participants.

OUCH New Order Message

Length | Name Type |Value Binary

(byte)

1 Message Type |byte D 01000100

4 Time Stamp integer | 17.31:45'151 00000000 00011101
00010001 11111111

1 Message ID byte 32 00100000

4 Client Order ID |integer |unique id : 1542454 | 00000000 00010111
10001001 00110110

8 CCYPair alpha |EUR/USD 01000101 01010101
01010010 00101111
01010101 01010011
01000100 00000000

1 Order Type byte limit order 00000010

1 Side byte sell 00000010

8 Quantity long 150000.54==15000054 | 00000000 11100100
11100001 11110110

8 Minimum long 150000.54==15000054 | 00000000 11100100

Quantity 11100001 11110110

4 Rate integer | 1.24==124000 00000000 00000001
11100100 01100000

1 Time In Force |byte 2 = immediate 00000010

Total Message in binary = 01000100 00000000 00011101 00010001 11111111

00100000 00000000 00010111 10001001 00110110 01000101 01010101

01010010 00101111 01010101 01010011 01000100 00000000 00000010

00000010 00000000 11100100 11100001 11110110 00000000 11100100

11100001 11110110 00000000 00000001 11100100 01100000 00000010

First 3 sections are , highlighted with blue, called message header. Every OUCH

message has the same data block even though message type or values are different.

Table 2.1 : OUCH decoding for new sell order message type

Rest of the blocks are changeable due to message or order type.

Client Order Id is unique for every client hence in stock market server many

different clients has connected. Their ID determined by the stock markets

regulations. It can be based on region, client priority or something else.

Message ID is the value that message number comes from that client since beginning

of the trade on current day.

Time Stamp calculated by miliseconds from 17:00.

CCY Pair is exchange pairs. It has some abbreviations, for instance United States
Dollar for USD, Turkish Lira for TRY. CCY pair’s abbreviations for one pair can
only be 4 letters or 4 characters long. If it is shorter than 4 characters, character

“slash “/”” ” should coded based on ASCII. For example for EUR/USD:

First 3 bytes in order E — U — R , 4™ byte is “/”, 5 — 7" bytes in order U — S —

D and last byte is zero.

Side is order verb it can be buy — 1 or sell — 2 for “new order” message. In this

example it is “sell” coded in binary 10.

Quantity is the amount of EUR that sold in exchange of USD.

Minimum Quantity is the minimum amount of EUR that sold in exchange of USD.
The reason that minimum quantity existence is some days stock markets has vast
fluctuations on prices when order received it monitors the price to sell or buy in right
amount of pair and price. For instance if current price is 1.24 and new buying order
sent with price 1.23 market server waits to price falls to 1.23. At the same time
maybe thousands of orders completed and price rise up again 1.24 like this rapid
changes stock market look for minimum quantity. If it has enough time to complete
order with minimum quantity it executes the order, if it has not enough time to

complete order with minimum quantity buy/sell order waits in the order book.

Rate is the value of the CCY pair that client wants to buy or sell.

Time in force is the place act for stock market for placing order to order book.

2.1.2. ITCH Protocol

ITCH stands for Information Technology Channel. It is a text-based protocol used by
financial firms to communicate information about orders and trades in the market. It
is primarily used in the options market and is maintained by the Options Clearing
Corporation (OCC).This project used ITCH protocol defined at 20 December 2022
via BISTNET.[4]

Figure 2.3: Example python ITCH Simulation

2.1.2.1. ITCH Protocol Message Types

The ITCH protocol consists of a series of messages that are used to transmit
information about orders and trades between firms and other market participants.

The types of messages that are defined in the ITCH protocol include; time messages,

10

reference data messages, event and state messages, market by order messages and

trade messages.

Timestamps are split into two parts for bandwidth saving reasons: Seconds and
nanoseconds. Every second that at least one ITCH message is being created, the
message is sent. The message includes the duration of 1970-01-01 00:00:00 UTC,

generally known as Unix Time, in seconds.

First reference data message is order book directory. Order book directory messages
are sent out for all active securities in the Genium INET Trading system at the
beginning of each trading day. Second is Combination Order Book Leg. A mapping
between a combination order book and one of the combination leg order books is
provided by this message and it may be transmitted throughout the day if new
combination order books are integrated into the network. Final order book leg
message is Tick Size Table Entry. This message provides details about a tick size for
a pricing range. A whole Tick Size Tableprice range is comprised of all Tick Size

messages that have the same order book ID.

Event and State Change Messages includes System Event Message and Order Book
State Message. A data or market feed handler event is signaled by the System Event
Message type. Information about state changes is communicated through the Order

Book State Message.

Market by Order Messages are Add Order Messages and Modify Order Messages.
An Add Order Message signifies that the Genium INET Trading system has accepted
a new order and added it to the displayable book. An Order ID, which is exclusive to
each order book and is used by Genium INET Trading to track the order, is included
in the message. The Order ID, Order book ID and Side of the Add Order that the
update applies are always included in Modify Order notifications. First Modify

Order Messages is Order Executed Message. Every time a book order is executed in

11

full or in part, this message is generated. Second is Order Executed with Price

Message. When an order on the book is executed in full or in part at a price other

than the initial display price, a rtaher uncommon occurrence, this mesaage is

received. An other message is Order Replace Message. When a book order is

canceled or replaced, this message is sent. The remainder of the original orders

amount is no longer usable and needs to be taken out. Order Delete Message which

is the final message of Modify Order Message, is sent when a book order is deleted.

New Order Message

Length
(byte)

Name

Type

Value

Binary

Message Type

integer

R

1010010

Timestamp

integer

2018-10-
07T21:37:32.102462105(
1538948252102462105)

01011011 10111010 01010010
01101100

Order Book ID

integer

161098

00000000 00000010 01110101
01001010

32

Symbol

Alpha

O _USDTRYKE1018P65
75

01001111 01011111 01010101
01010011 01000100 01010100
01010010 01011001 01001011
01000101 00110001 00110000
00110001 00111000 01010000
00110110 00110101 00110111
00110101

32

Long Name

Alpha

USDTRY 10/2018 AVR
UPA_OPSIYON

01010101 01010011 01000100
01010100 01010010 01011001
01011111 00110001 00110000
00101111 00110010 00110000
00110001 00111000 01011111
01000001 01010110 01010010
01010101 01010000 01000001
01011111 01001111 01010000
01010011 01001001 01011001
01001111 01001110

12

ISIN

Alpha

TROXISTOYMRO

01010100 01010010 01001111
01011000 01001001 01010011
01010100 00110000 01011001
01001101 01010010 00110000

12

Financial integer 1 1

Product

Trading Alpha TRY 01010100 01010010 01011001

Currency

Number of integer 1 00000000 00000001

decimals in Price

Number of integer 0 00000000 00000000

decimals in

Nominal Value

Odd lot size integer 0 00000000 00000000 00000000
00000000

Round lot size integer 1 00000000 00000000 00000000
00000001

Block lot size integer 0 00000000 00000000 00000000
00000000

Nominal value integer 0 00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000

Number of legs integer 0 0

Underlying integer 30026 00000000 00000000 01110101

Order Book ID 01001010

Strike Price Price 6575 00000000 00000000
0001100110101111

Expiration Date Date 20181031 00000001 00110011 11110000
00100111

Number of integer 1 00000000 00000001

decials in Strike

Price

Put or Call integer 2 00000000 00000010

Table 2.2 : ITCH New Order Order Book Directory Message

13

Finally, Trade Messages are split into Trade Message and Auction Messages. For
typcial match occurences involving order types that are not displayable, execution
information are provided in Trade Message. Additionally, specific cross trades are
published using this message. In auction messages, markets for order dissemination
can be configured to be deactivated during auctions. In such instances, each active

order will be cancelled by an Order Delete message just before the auction.

2.2. TCP/IP and UDP

TCP/IP is a set of networking protocols that allows devices on a network to
communicate with each other. It is the foundation of the internet and most local area

networks (LANSs). [31,34]

TCP (Transmission Control Protocol) is a connection-oriented protocol that ensures
that data is delivered reliably from one device to another. It does this by breaking the
data into small packets and sending them to the destination device, where they are
reassembled into their original form. If any packets are lost along the way, TCP will

retransmit them until they are received correctly.

IP (Internet Protocol) is a connectionless protocol that routes packets of data from
one device to another based on the destination device's IP address. It does not
guarantee that the packets will be delivered successfully, but it does its best to get
them to the destination as efficiently as possible. Together, TCP and IP form the

foundation of the internet and are used by almost all devices that are connected to it.

UDP (User Datagram Protocol) is a connectionless protocol that is used to send data
between devices on a network. It is an alternative to the more common connection-

oriented protocol, TCP (Transmission Control Protocol).

14

Like TCP, UDP breaks data into small packets and sends them to their destination.
However, unlike TCP, UDP does not establish a connection between the devices
before sending the packets, and it does not guarantee that the packets will be
delivered successfully. This makes UDP faster and more efficient than TCP, but it

also means that it is less reliable.

UDP is often used for real-time applications that require low latency, such as online
gaming and voice over IP (VolP). It is also used for tasks that do not require a

reliable connection, such as broadcasting data to multiple devices.

2.3. FPGA Board and Tools Specifications

In the project Nexys Video Artix-7 FPGA Trainer board will be used. It is optimized
for high data transfers and it has its own ethernet hardware. Also it is supported by
Xilinx's ISE® toolset, Vivado ® Design Suite and its licence allows us to use

Microblaze units on it.[8]

15

Figure 2.4: Nexys Video Trainer Board

To facilitate communication between an FPGA and an Ethernet network, hardware
and software components are referred to as Ethernet subsystems for FPGA boards.
The MAC (Media Access Control) layer, TCP/IP (Transmission Control
Protocol/Internet Protocol) stack, and physical Ethernet interface are the three

components that make up these subsystems most frequently.

The electrical signals produced by the FPGA are transformed via the physical
Ethernet interface into signals that may be transferred over an Ethernet network, and
the opposite is also true. The TCP/IP stack manages higher-level networking
functions including routing, error correction, and the fragmentation and reassembly
of data packets, whereas the MAC layer is in charge of controlling the transmission

and reception of Ethernet packets.

16

As understandable designing ethernet subsystem is quite vast task to do therefore
AXI ethernet subsystem IP used in the project. Yet standalone AXI Ethernet
Subsystem is no sufficent for transferring data and receiving data it is lack of Central

Processing Unit (CPU). Microblaze CPU IPs used as well.

We can explain the reason for using a processor as follows; due to its capacity for
high-speed data processing and customizability, FPGAs are frequently employed in
Ethernet applications. To manage network protocols like TCP/IP and to enable data
transfer between the Ethernet controller and other peripherals, a processor is
frequently included in an FPGA for Ethernet applications. In addition, hardware
accelerators for Ethernet protocols, such as checksum computations and packet
filtering, can be implemented using FPGAs, offloading operations from the CPU and
enhancing system performance. An FPGA-based Ethernet system can achieve a high
level of integration and minimize system complexity while maintaining great

performance and flexibility by adding a processor.

A soft processor core called MicroBlaze was created by Xilinx and may be used with
their FPGAs. It is a highly configurable, high-performance, low-power CPU that
may be altered to satisfy particular design specifications. MicroBlaze can be used to
implement a variety of embedded applications, including as networking, motor
control, and digital signal processing. It has a tiny footprint, is highly expandable,
and can be configured to only have the capabilities and peripherals needed for a

particular application.

A tri-mode (10/100/1000 Mb/s) Ethernet MAC or a 10/100 Mb/s Ethernet MAC can
be implemented via the Xilinx 1G/2.5G AXI Ethernet Subsystem. This core allows
for the connection of a media access control (MAC) chip to a physical-side interface
(PHY) chip using the MII, GMII, SGMII, RGMII, and 1000BASE-X interfaces.
Additionally, it offers an on-chip PHY for the 1000/2500 BASE-X and 1G/2.5G
SGMII modes. PHY Management registers can be accessed using the MDIO
interface. The TCP/UDP complete checksum offload, VLAN stripping, tagging,

17

translation, and expanded filtering for multicast frames features are all potentially

enabled via this subsystem.

The Vivado IP integrator block design allows for the addition of the AXI Ethernet
Subsystem to the design's canvas. If the subsystem is chosen from the IP catalog in
the Vivado Integrated Design Environment (IDE), it can also be used in a register
transfer level (RTL) flow. Customization, instantiation inside of a design, output
product generation, behavioral simulation, design elaboration, synthesis and
implementation, and bitstream generation for the target device are all possible with
the catalog. During the system design session, various infrastructure cores are
configured and joined to form the hierarchical design block known as the AXI
Ethernet Subsystem.

With regard to Ethernet, this subsystem offers more capability and simplicity of use.
This subsystem instantiates the necessary infrastructure cores, establishes interface
ports based on the configuration, and connects these cores. The Xilinx Tri-Mode
Ethernet MAC (TEMAC) and 1G/2.5G Ethernet PCS/PMA or Serial Gigabit Media
Independent Interface (SGMII) cores are the infrastructure cores for this subsystem.
Also, the AXI Ethernet Buffer core offers additional capabilities such as TX and RX
TCP/UDP Partial Checksum offload, IPv4 TX and RX TCP/UDP full checksum
offload.

A commercial Ethernet PHY device that supports the BASE-T standard at rates of 1
Gb/s, 100 Mb/s, and 10 Mb/s is attached to the PHY side of the subsystem. Any of
the following supporting interfaces, including GMII/MII, RGMII, 1G/2.5G Ethernet
PCS/PMA, or SGMII, can be used to link the PHY device.

In this design we use RGMII (Reduced Gigabit Media Independent Interface) as
physical interface type. It is essentially a Double Data Rate type of GMII and it
allows Ethernet operation at speeds of 10 Mb/s, 100 Mb/s, and 1 Gb/s.

18

2.4. Intellectual Property Cores

FPGA board has its own physical layer of ethernet system. Able to use it additional

tools needed. Most of them are available on Vivado with TEMAC license.

2.4.1. AXIIps

A prominent interface used in Xilinx Vivado, a design suite for creating FPGA
(Field-Programmable Gate Array) designs, is AXI (Advanced eXtensible Interface).
AXI is a widely used interconnect standard that makes it easier for different IP

(Intellectual Property) blocks in an FPGA design to communicate with one another.

For effective data transfer between IP cores, memory controllers, and other parts of
an FPGA design, AXI is created to offer a high-performance, low-latency, and
scalable interface. It uses a master-slave architecture, in which a master demands

data transfers and a slave complies.

2.4.2. AXI 1G/2.5G ethernet subsystem

The AXI 1G/2.5G Ethernet Subsystem IP is a pre-built intellectual property (IP)
block provided by Xilinx for implementing Ethernet connectivity in FPGA designs
using the AXI (Advanced eXtensible Interface) protocol. It is designed to support
high-speed Ethernet communication at 1 Gigabit per second (Gbps) and 2.5 Gbps

data rates.

The AXI 1G/2.5G Ethernet Subsystem IP offers a complete solution for integrating
Ethernet connectivity into FPGA designs, providing a range of features and
capabilities including; Direct memory access, Ethernet Media Access Control, FIFOs

and buffers, clock and reset interfaces.[9]

19

eh_tut

s axi O 50
s s we o sTR_THE
o i v O ma_STR_ DO
R A maac
-+ maio_temac
= o s
5 o seEse™
o sac_cuenT auTones mir
o s reser_oone _mir
= EMAC_RX_DCM_LOCKED_INT S_ANFTEMAC + | e—
| FCSFMA STATUS VECTOR[ISD] TX_AXIS_WAC
anis ok [Or Bx1_STR_TXD_ACLK A1_STR_RXD O m_axis md
axi_taed_arstn > F1_STR_THD_ARESETH Ax1_5TR_RXS > m_axis ns
RI_STR_TXE_ACLK. mao_io_top +
axi_tic_arst [0_STR_THE_ARESETN NTERRUPT [interupt
ron_8TR_Fox AL pame g e
Rou_STR_FXD_ARESETN fe— —
Rou_STR_Foxs_pcik o_rg_owagaaan)
R_STR_Foxs_ARESETN ReseTrCsAA [
oL _ENARLE W REseTTERAGn B
FHY_RSTN B
mac —
A1 Ethe: B
O rami
o maic
[gw_ek_out
s_axi e dk [D g a0 ou
oix_dk [
rel el [
F
-
[mac_ing
Tri Made Ethemal MAC
axi s _arsin [
axi_rd_amt O
&_awi e resatn [uli_vecter_logic 0
A{q,.m _Do. mw,]_
Tty Vedior Togc
©_counter_binary_0
ax THEs©
san aRz0
woonstant ©_shift_ram_0
| ot I)
ax
o = oo phy_rst_nlo0]
s

Figure 2.5: AXI Ethernet Subsystem Block Design

2.4.3. AXI interconnect

The AXI Interconnect is a key component in the ARM AMBA (Advanced

Microcontroller Bus Architecture) specification.It functions as a System-on-Chip

(SoC) design's system-level interconnect for tying together numerous masters and

slaves. The AXI Interconnect makes it possible for the system's IP (intellectual

property) cores, memory controllers, and other peripherals to communicate

effectively and at high speeds.[10]

20

The AXI Interconnect regulates the routing of data and control signals between many

channels, commonly referred to as "masters" and "slaves," to enable communication.

2.4.4. AXI direct memory access —- DMA

AXI DMA designed to facilitate efficient data transfer between external devices and
the FPGA's memory. It employs the AXI protocol for communication, providing

high-performance, low-latency, and configurable DMA capabilities.[11]

The AXI DMA IP block acts as a data mover, offloading data transfer tasks from the
processor or software, resulting in improved system performance and reduced CPU
utilization. It is particularly useful when large volumes of data need to be moved
between different memory regions or exchanged with external devices, such as high-

speed interfaces, storage devices, or peripherals.

2.4.5. AXI UARTLite

AXI UARTLite core provides a standardized interface for integrating UART
functionality into FPGA designs, allowing for asynchronous serial communication

with external devices.

Typically, the AXI UARTLite IP core is used to facilitate serial interface
communication between the FPGA and external devices, such as PCs,
microcontrollers, or other peripherals. It adheres to the AXI protocol, which offers an

interconnect standard that is high-performance, low-latency, and scalable.[12]

21

2.4.6. Microblaze

MicroBlaze is a soft processor IP core. It is a configurable, 32-bit RISC (Reduced

Instruction Set Computer) processor designed to be implemented on FPGA. [13]

The MicroBlaze IP core offers a flexible and customizable embedded processing
solution within an FPGA design. It is highly configurable, allowing designers to
tailor the processor's features and resources to meet the specific requirements of their

application.

Communication, OUCH and ITCH protocols runs on the microblaze IP. It runs C or

C++ code on FPGA.

In addition, the required clock, reset and interrupt handler IPs have also been

appropriately added.

22

3. RESULT AND ANALYSIS

First part of the project was implementing HFT communication system on local

computers with real data using python language coding.

3.1. Non-FPGA Environment Experiment

As stated experiment made by using Python language and local computers. Real data
was obtained from “BIST Educational Support” section. Real data has one day of
every information about stock market including; buy orders, sell orders, cancel
orders, limit-stop orders, volalities etc. Buy and sell orders quantities and paper
names extracted from example data and converted to OUCH or ITCH protocol as
demand. OUCH and ITCH protocol specifications, encoding and decoding schemes

writen by BIST recommendations. [3-4]

Also the order book that a list of buy and sell orders for a particular security or
financial instrument that is sorted by price level created to read and observe the

coming orders.

23

17.355 130.162.50
0.020 147.18
4539 33,134.70
1.000 7.249.90

269.144 1,931,154.50
283.813 2,022,520.76
314.581 2,228,138.87
229.299 1,611,627 .44
395.468 2,760,509.15
159.534 1,105,208.98
166535 1,146,065.85
257.956 1,761,894.41
598.330 4,052,466.85
960.836 6,463,149.97

6,698.28

22594 151,392.09
447.251 2,984,777.77
457.673 3,030,868.70
158.721 1,043,469.27
182.293 1,187,954.21
181.141 1,172,942 57
354.811 2,340,689.17
350.398 2,231,186.14
358.067 2,326,286.74
213.954 1,342,399.67
345.874 2,151,905.53

97.428 603,337.66

46585 284,168.50

0.002 12.15

Figure 3.1: Example order book

In other words, the order book shows the prices at which buyers are willing to
purchase the security, as well as the quantities of the security that they are willing to
buy at each price level. It also shows the prices at which sellers are willing to sell the

security, and the quantities that they are willing to sell at each price.

The order book can be thought of as a snapshot of the current supply and demand for
a particular security. It is constantly changing as new orders are placed and existing

orders are filled.

24

Figure 3.2: Example python order cook. Left column is the quantities, right

column is the price. Every new block is represent different timestamp.

3.2. Echo Server on FPGA

By the name echo servers is type of the network term that system sents back

whatever the data sent to it basically echoing the received data.

25

Example design implemented on Nexys Video A7 FPGA board. Design taken as an
example from Digilent’s sources “Nexys Video - Getting Started with Microblaze
Servers” to create base of the ethernet subsystem. Further developments will be

unique for the OUCH, ITCH protocols.[6]

To use AXI Subsystem Ethernet subsystem; we need to implement first Microblaze
and run block automation. Then clock and concat blocks will added to microblaze IP.
After Microblaze implemented 4 cores will added for AXI, Memory Interface
Generator, AXI Uartlite, AXI Ethernet Subsystem, AXI Timer. Then running block
automation for them. After automation done ethernet physical interface should be
selected in this case it is RGMII. Running block automation again. Concat block
takes interrup inputs and sends them to microblaze controller. After all block design

completed HDL wrapper should be obtain and then bitstream should generated.

Using that block design on Figure 3.3 firstly on Vivado bitstream file has been
generated. Empty ports and connections setted on constraint file to ignore state due
to prevent bitstream generation failure. Using bitstream file and project itself it

exported to Vitis on Vivado.

On Vitis there are some ready-to-use application projects like echo server, TCP
Client, TCP server etc. using “Lite Weight Internet Protocol” to realize modules.
LWIP is an open-source TCP/IP networking stack made primarily for embedded
systems with minimal resources. TCP/IP stands for Transmission Control
Protocol/Internet Protocol. It seeks to offer a compact and effective TCP/IP
implementation, enabling network access in hardware with limited resources, such as

embedded systems, microcontrollers, and microprocessors.

26

PIULDISE Y
MLTEINY o ===
W v Pt
MLTEIEN D et
NN Eon
| LTSI (0 e
il L o NN eom
ke . 001 0N Iﬂ- LTSI T it
AR AT
= o -M— MLTEINY Ty ey
fpa NN o
e
¥ oS
[T
wary s s099 0
o el
o} | S.Smmwl " e Lonnbnd
i \ = i Erbond
£ L _ e
— Jo e
| e] o
e X0V . -
| o T w0 s’
i e —
2+ 20w 0
o=t =i e = p— -
o et f ———
o s 1)+ v E U o [LEE
looEs
o < -~ ! (DI DI .-
——r— = Il -
LR
—I\“
Jﬁ By el
o
P 0 e)
" = b
L o e L
. o o s
e IMI o, bprlandle; .R,-ana._.-.
2 oy iy nand sy axu...hnn. puemy, Bumpony
Y s 2 o TN N sy o4
et RS
4 gk
ovom 1 .u:._-_“.“ﬂxs eSS 4{ o
—_ o Ty A g
T “ “_ ST =
| 05 Y
sl i il iom muan sxeuny Lo sy uapnds oy !}ic:i:t
bl o P s Buan a3euE o = —7 ks -
Dol S I T ’ It e o
it oy I b s B0 B Ou [It
Lyt i
wn H W |l Lldid] i
2 el TRt Sl W WS Al 56 HOT 0¥
7000 Lt + 2000 i s *
sauey By TECTRETE i
o s WOOL § o nee'nb e
CEar] T
- i] =
T st) =
Lo s rar
e o
. W
" = =
- i L1y
e " iy
aimen s o5
L e
v - 1
e
iy)
s

& PR T

27

Figure 3.3: Complete Block design of the ethernet subsystem

On the Figure 3.3 complete block design can be seen by all the connections.

LWIP Echo server listens on static IP by default 192.168.1.10 and port 7 it can be

changed by demands. In first experiments there are some IP address overlapping

because of the given IP address is the already taken by another device on the network

thats why at first tries IP address is setted to localhost — 127.0.0.1.

Wireshark is used for the demonstrate the data traffic on the network, capture and

analyze whether it is useful or corrupted.[7] At the below figure on localhost

(IP:127.0.0.1) send some info packages ,that contains only few bytes long ping

requests, to itself (echoing) clearly captured and seen.

Na. Time

- 1 @.0006000
2 @.200049
3 @.116448
4 @.110464
5 @.289733
6 @.289783
7 @.220727
8 @.220883
9 @.228425
16 @.228447

Source

127.8.0.1
127.8.0.1
127.8.8.1
127.8.0.1
127.8.0.1
127.0.0.1
127.8.0.1
127.8.0.1
127.8.0.1
127.8.0.1

Destination

127.6.0.1
127.6.0.1
127.6.0.1
127.6.0.1
127.6.0.1
127.6.0.1
127.6.0.1
127.0.90.1
127.6.0.1
127.6.0.1

Protocol Length Info

e
Ee
e
Ee
Ee

Ee
EE
Ee
Ee

45 58857 =+ 58858 [PSH, ACK] Seq=1 Ack=1 Win=18233 Len=1
44 58858 + 58857 [ACK] Seq=1 Ack=2 Win=3991 Len=@
45 58857 =+ 58858 [PSH, ACK] Seq=2 Ack=1 Win=18233 Len=1
44 58858 + 58857 [ACK] Seq=1 Ack=3 Win=3991 Len=@
45 58857 + 58858 [PSH, ACK] Seq=3 Ack=1 Win=18233 Len=1
44 58858 + 58857 [ACK] Seq=1 Ack=4 Win=9991 Len=@
45 58857 + 58858 [PSH, ACK] Seq=4 Ack=1 Win=18233 Len=1
44 58858 + 58857 [ACK] Seq=1 Ack=5 Win=9991 Len=@
45 58857 =+ 58858 [PSH, ACK] Seq=5 Ack=1 Win=18233 Len=1
44 58858 + 58857 [ACK] Seq=1 Ack=6 Win=3991 Len=@

Figure 3.4: Localhost echoing with hardware

After succesfully seen echoes IP addresses on the local network scanned by some

tools on Ubuntu like “nmap” and cleared default given address hence LwIP codes on

Vitis designed to run server on 192.168.1.10. Clearing another device on local

network is easier to changing all IP parameters on the code.

28

1wIP TCP echo server
TCP packets sent to port 6801 will be echoed back
WARNING: Not a Marvell or TI or Realtek Ethernet PHY. Please verify the initialization sequence
Start PHY autonegotiation
Walting for PHY to complete autonegotiation.
autonegotiation complete

link speed for phy address 4: 100

DHCP Timeout

Configuring default IP of 192.168.1.10
: 192.168.1.10
i 255.255.255.8
: 192.168.1.1

TCP echo server started @ port 7

Figure 3.5: Serial output of Echo server

On Vitis LwIP Echo Server there is also DHCP method. But it is unavailable by
default by the reason of DHCP protocol has unique hand shake methods to discover
empty IP locations on local network. An example code assumes the while designed

hardware necessary DHCP modules not added.

3.3. TCP Server on FPGA

The BSD license applies to the open source TCP/IP protocol suite known as 1wlIP.
Although it can be used in conjunction with operating systems, the IwIP is a stand-
alone stack without any operating system dependencies. The IwIP gives apps access

to two AO5PIs:

* RAW API: Offers access to the basic components of the IwIP stack.

» Socket API: Offers a stack interface in the BSD sockets manner.

To use lwip, the hardware system is set first.
The following are some of the hardware system's main parts:

* MAC: Axi_ethernet, axi_ethernetlite, and MAC (GigE) and Gigabit Ethernet

controller cores are supported by LwIP.

* Processor: MicroBlaze is used.

29

* Timer: Applications using the IwIP raw API must call specific functions at periodic
times in order to maintain TCP timers. This can be accomplished by an application

that registers an interrupt handler with a timer.

DMA: In axi_ethernet-based systems, the axi_ethernet cores are set up with a FIFO

interface or a soft DMA engine (AXI DMA).

After the hardware system is set, the software system is set.

The IwIP library must first be built into the software application in order to use it
with IwIP. To do this, first, new Platform Project is initiated in the software
application and a new Hardware Platform Specification is created. Then, selection of
where the board support project files will be located is made. The suitable hardware
platform is chosen for application and the target CPU is picked from the list
provided. The type of BSP (board support package) to be created is selected. After
that, the creation of the new software platform is finalized and it will be visible in the
Vitis Navigator. Automatic building of the board support package is enabled and
domain settings are adjusted as needed. The settings are confirmed, the platform is
builded, and the settings dialog box is closed. The appropriate domain/BSP is
selected from the platform.spr file. Finally, BSP settings are modified, LwIP library

is selected from the list of available libraries and it is configured.

30

4. REALISTIC CONSTRAINTS AND CONCLUSIONS
4.1. Application Area of Project

Equity markets, HFT began in the equity markets and continues to have a strong
presence here [14]. Algorithmic strategies rapidly execute trades, exploiting minute
price discrepancies in milliseconds [15]. HFT firms can contribute significantly to
the overall market liquidity, which can reduce trading costs for other market

participants and improve overall market efficiency [16].

Futures and options market, The technological advancements that enabled HFT in
the equity markets have also made it possible in futures and options markets. These
markets have grown more electronic, enabling HFT firms to play a significant role.
HFT strategies can improve price discovery, market depth, and tighten bid-ask
spreads [17].

Forex markets, The foreign exchange market, or Forex, has also seen the
introduction and growth of HFT. As the largest and most liquid financial market
globally, Forex presents substantial opportunities for high-speed, high-volume

trading. Market-making strategies have been widely adopted in this space [18].

Fixed income markets, While HFT is less common in fixed-income markets due to
these markets' traditionally over-the-counter nature, the introduction of electronic
trading platforms has led to increased HFT presence. This trend is particularly

noticeable in the U.S. Treasury market [19].

Cryptocurrency markets, The advent and subsequent rise of cryptocurrencies have
opened a new frontier for HFT. Their high volatility, along with the 24/7 operating
hours of cryptocurrency markets, make them ideal for HFT strategies. HFT can

contribute to the liquidity and price discovery process in these markets [20].

31

4.2. Realistic Constraints

Complexity in programming and design, programming an FPGA requires a level of
expertise far beyond what is required for coding in high-level languages like Python
or Java, commonly used in algorithmic trading. Designing circuits for FPGA often
involves hardware description languages (HDL) like VHDL or Verilog, which are

significantly more complex to use.

Moreover, while an FPGA offers parallelism to speed up computations, effectively
utilizing this feature is a non-trivial task. Designing highly parallel algorithms that

correctly and efficiently solve complex trading problems is an area of active research

Cost implications, FPGAs can be quite expensive, not only in terms of hardware cost
but also in terms of the development time and resources required. It's necessary to
have skilled engineers who understand both the hardware and the trading algorithms
to get the most out of an FPGA implementation. Additionally, due to the rapid pace
of technological evolution, FPGAs may need to be updated or replaced frequently,

contributing to ongoing costs.

Scalability challenges, Scaling FPGA designs to handle more complex algorithms or
larger data sets is not as straightforward as it is with CPU or GPU-based systems.
This is due to the fundamental difference in architecture, where FPGA solutions are

explicitly parallel and require manual management of resources [21].

Lack of flexibility, Once an FPGA is programmed for a particular task, making
changes or updates can be more complicated compared to software solutions. The

need to reconfigure hardware for every algorithm change can limit the flexibility and

32

adaptability of FPGA solutions in a market environment that often requires quick

adaptation to changing conditions.

Software licenses of programs and tools, due to the this project is belongs to the
university and students most of the tools and licenses are free. Therefore it did not
create limit while working on the project however in normal circumcitences software

and tools licences will create limits for project owners.

4.3. Social, environmental and economic impact

Trading is now much faster and more easily accessible thanks to HFT. There is now
a gap between those who can access HFT technology and those who cannot as a
result of this. A multiple-tier market is created as a result of companies with access
to more capital being able to afford to invest in the newest connectivity and

technology.

With suggestions that HFT may contribute to an unfair market structure where HFT
businesses can use their speed to the detriment of slower traders, concerns about

market fairness have also surfaced. [22].

Due to the robust servers and cooling systems required to support HFT operations,
HFT has been linked to rising energy consumption. Data centers' environmental
impact increases along with their energy usage, which adds to carbon emissions and

climate change. [23].

By supplying liquidity and lowering bid-ask spreads, HFT can improve market
efficiency. It enables the quick integration of information into prices, improving

price discovery.

33

HFT, on the other hand, can raise systemic risk in the financial markets. This was
particularly evident during the "Flash Crash" of May 2010, when a sudden sell-off
caused the Dow Jones Industrial Average to plummet significantly before quickly

rising again [24].

It has been hypothesized that HFT will increase economic inequality. While it
produces substantial profits for some businesses and people, it may also lead to

wealth inequality and a widening income disparity.

4.4. Health and Safety Concerns

There are no relative work about HFT and its health and safety concerns directly
however, the stress and mental health impact of the financial industry more broadly
have been studied, as the high pressure, high stakes nature of the work can contribute

stress and related issues.

One might also infer potential indirect health and safety considerations. For example,
the immense energy consumption and subsequent environmental impact of large-
scale computing operations, including HFT, might be considered a health and safety

concern from an environmental perspective. Yet, this is not specific to HFT.

4.5. Standards

In the United States, the Securities and Exchange Commission (SEC) and the
Commodity Futures Trading Commission (CFTC) are the primary regulatory bodies
that oversee financial trading, including HFT. There are rules in place regarding
fraud, market manipulation, and disruptive practices. For example, the SEC's Rule
15¢3-5 (the Market Access Rule) requires brokers to have risk controls in place

before providing customers with access to the market [25].

34

In the European Union, the Markets in Financial Instruments Directive I (MiFID II)
has specific rules about HFT, such as requiring firms to store time-sequenced records

of their algorithmic trading systems and strategies for at least five years [26].

There are also market-specific regulations that HFT firms must follow. For example,
the New York Stock Exchange (NYSE) and NASDAQ have rules regarding

manipulative trading practices [27].

However, there is ongoing debate about whether existing regulations are sufficient to
handle the unique challenges posed by HFT, and new rules and standards may be

introduced in the future.

The standard for Verilog is maintained by the IEEE (Institute of Electrical and

Electronics Engineers) under the standard [28].

Ethernet is a network communication standard used to establish a local area network
(LAN). The IEEE 802.3 standard defines the rules for configuring an Ethernet
network [29].

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are core
protocols of the Internet protocol suite. They are defined in the Internet Engineering

Task Force's (IETF) RFC 793 and RFC 768, respectively[30-31].

Python is an interpreted, high-level, and general-purpose programming language.
The Python Software Foundation is the organization behind Python and they provide
and maintain the standard implementation of Python, known as CPython. While
there isn't a formal "standard" like IEEE or IETF standards, the language's evolution

follows a community-driven process where new features, improvements, or changes

35

are proposed, discussed, and approved via Python Enhancement Proposals (PEPs)

[32].

4.6. Cost Analysis

Mainly project based on human work and open source implementation. However
AXI Ethernet Core property requires TEMAC licence from Xilinx Vivado yet it can
be purchased via student account for free for limited days. FPGA board is selected
and given by advisor Prof. Dr. Berna Ors Yal¢in normally it cost approximately 600
USD. Apart from these overall cost can be calculated via adding all parameters such

as working times, simulation computer time etc.

4.7. Conclusions

In the previous sections implementing HFT on FPGA subject explanied detailed by

achieved works.

First of all gathered information about HFT and how it works. In the same way

research has been done for technical aspects of HFT and requirements.

Secondly, a local dry-run HFT environment created with python code. All the
necessary encoding-decoding schemes, communication protocols and command line
interface established succesfully. Then local environment run by real life data

obtained from BIST.

Lastly, python work transformed step by step to hardware environment, FPGA. First
simple echo server created on board. Then monitor its data flow, time responses and

overall answers to the sent data. After adequote observation done simple TCP client

36

built on FPGA. Howevet TCP Client is not working as expected. Due to the lack of

time it can not be corrected.

4.8. Future Work and Recommendations

Fully integrated HFT module on hardware could be implemented. Furthermore with
enough resource and suitable FPGA board buy and sell orders can be created with
using artifical intelligence software. This would allow faster transactions. If Al
trained well and error rates set properly orders and transactions would yield more
profit to users. In the event of all these steps achieved succesfully HFT hardware
design can be run on directly on to stock market servers, it will reduce latency
between stock market and HFT hardware to minimum and yields more profit to

users.

37

38

5. REFERENCES

[1] Matriks HFT. Matriks Bilgi Dagitim Hizmetleri - Matriks Data. (n.d.). Retrieved
November 27, 2022, from

https://www.matriksdata.com/website/kurumsal-urunler/matriks-hft

[2] Dvorak, M., & Korenek, J. (2014). Low latency book handling in FPGA for high
frequency trading. /7th International Symposium on Design and

Diagnostics of Electronic Circuits & Systems.

https://doi.org/10.1109/ddecs.2014.6868785

[3] Ouch protocol specification - borsa istanbul. (n.d.). Retrieved November 27,
2022, from
https://www.borsaistanbul.com/filessfOUCH_ProtSpec BIST va2414
pdf

[4] Itch protocol specification - borsa istanbul. (n.d.). Retrieved January 5, 2023,

from https://www.borsaistanbul.com/files/bistech-itch-protocol-

specification.pdf

[S] AMD Adaptive Computing Documentation Portal. (n.d.). Retrieved April 27,

2023, from https://docs.xilinx.com/r/en-US/pg138-axi-ethernet/ AXI-1G/2.5G-
Ethernet-Subsystem-v7.2-Product-Guide

[6] K, S. (n.d.). NEXYS video - getting started with microblaze servers. Nexys Video
- Getting Started with Microblaze Servers - Digilent Reference.
Retrieved April 27, 2023, from
https://digilent.com/reference/learn/programmable-logic/tutorials/

nexys-video-getting-started-with-microblaze-servers/start

[7] Wireshark. Wireshark user's guide. (n.d.). Retrieved April 27, 2023, from
https://www.wireshark.org/docs/wsug_html chunked/

[8] Martha. (n.d.). NEXYS Video Reference Manual. Nexys Video Reference Manual
- Digilent Reference. Retrieved April 27, 2023, from

39

https://digilent.com/reference/programmable-logic/nexys-video/referen

ce-manual?redirect=1

[9] AXI 1G/2.5G ethernet subsystem. (n.d.). Retrieved from
https://docs.xilinx.com/r/en-US/pg138-axi-ethernet/IP-Facts

[10] AXI interconnect. (n.d.-b). Retrieved from

https://docs.xilinx.com/r/en-US/pg059-axi-interconnect

[11] AXI Direct Memory Access. (n.d.-b). Retrieved from
https://docs.xilinx.com/r/en-US/pg021 axi dma

[12] AXI UARTLite. (n.d.-d). Retrieved from https://docs.xilinx.com/v/u/2.0-
English/axi_uartlite ds741

[13] Microblaze IP Core. (n.d.-e). Retrieved from
https://docs.xilinx.com/r/en-US/ug1579-microblaze-design/Instantiate-
MicroBlaze-IP-Cores

[14] Chlistalla M., 2011, High Frequency Trading. Better than its Reputation?,
Deutsch Bank Research, Research Briefing, February

[15] Aldridge, 1. (2013). High-frequency trading: A practical guide to algorithmic
strategies and trading systems. Hoboken: Wiley.

[16] Brogaard, J., Hendershott, T. J., & Riordan, R. (2013). High frequency trading
and price discovery. SSRN Electronic Journal.

do1:10.2139/ssrn.2341037

[17] Hasbrouck, J., & Saar, G. (2011). Low-latency trading. SSRN Electronic
Journal. doi:10.2139/ssrn. 1695460

40

[18] Chaboud, A. (2009). Rise of the machines: Algorithmic trading in the Foreign
Exchange Market. Washington, D.C.: Board of Governors of the

Federal Reserve System.

[19] Mizrach, B., & Fleming, M. J. (2008). The microstructure of a U.S. treasury
ECN: The brokertec platform. SSRN Electronic Journal.
doi:10.2139/ssrn.1107933

[20] Hu, A., Parlour, C. A., & Rajan, U. (2018). Cryptocurrencies: Stylized facts on
a new investible instrument. SSRN Electronic Journal.

doi:10.2139/ssrn.3182113

[21] Parvez, Husain, and Habib Mehrez. “Asif: Application Specific INFLEXIBLE
FPGA.” Application-Specific Mesh-Based Heterogeneous FPGA
Architectures, 26 Oct. 2010, pp. 77-101, doi:10.1007/978-1-4419-
7928-5 5.

[22] Aldridge, Irene. High-Frequency Trading: A Practical Guide to Algorithmic
Strategies and Trading Systems. Wiley, 2013.

[23] Lewis, Michael. Flash Boys: A Wall Street Revolt. W.W. Norton & Company,
2015.

[24] Kirilenko, Andrei, et al. “The Flash Crash: High-Frequency Trading in an
Electronic Market.” The Journal of Finance, vol. 72, no. 3, 21 Apr.
2017, pp. 967-998, doi:10.1111/jofi.12498.

[25] “Rule 15C3-5 - Risk Management Controls for Brokers or Dealers with Market
Access.” Small Entity Compliance Guide: Rule 15¢3-5 - Risk
Management Controls for Brokers or Dealers with Market Access,
2011, www.sec.gov/rules/final/2010/34-63241-secg.htm. Accessed 05
June 2023.

41

[26] “MIFID II: European Securities and Markets Authority.” MiFID II | European
Securities and Markets Authority, www.esma.europa.eu/publications-

and-data/interactive-single-rulebook/mifid-ii. Accessed 05 June 2023.

[27] New York Stock Exchange LLC, NYSE ARCA, Inc., NYSE MKT LLC F/K/a
NYSE ..., www.sec.gov/litigation/admin/2014/34-72065.pdf. Accessed
05 June 2023.

[28] "IEEE Standard for Verilog Hardware Description Language," in IEEE Std
1364-2005 (Revision of IEEE Std 1364-2001) , vol., no., pp.1-590, 7
April 2006, doi: 10.1109/IEEESTD.2006.99495.

[29] "IEEE Standard for Ethernet," in IEEE Std 802.3-2022 (Revision of IEEE Std
802.3-2018) , vol., no., pp.1-7025, 29 July 2022, doi:
10.1109/IEEESTD.2022.9844436.

[30] Postel, J. “Transmission Control Protocol.” RFC Editor, 1 Sept. 1981, www.rfc-
editor.org/rfc/rfc793. Accessed 05 June 2023.

[31] Postel, J. “User Datagram Protocol.” RFC Editor, 1 Aug. 1980, www.rfc-
editor.org/rfc/rfc768. Accessed 05 June 2023.

[32] “What Is Python? Executive Summary.” Python.Org,
www.python.org/doc/essays/blurb/. Accessed 05 June 2023.

[33] “LwlIP 2.1.1 Library.” AMD Adaptive Computing Documentation Portal,
docs.xilinx.com/r/2021.2-English/oslib_rm/LwIP-2.1.1-Library-v1.6.

Accessed 05 June 2023.

[34] Specification of Internet Transmission Control Program,

www.rfc-editor.org/info/rfc675. Accessed 05 June 2023.

42

Kisisel Bilgiler

Dogum Tarihi: 01/01/1999 Konya —
Tirkiye

Askerlik: Tecilli — 2027

Ehliyet: B

Medeni Durum: Bekar

Adres: Istanbul/ Tiirkiye

Iletisim

E-Posta: erdembel7@itu.edu.tr
Github: github.com/erdembehic
Linkedin: @behic-erdem
Telefon: +90 542 247 44 84

Dil
Tiirkge Ana Dil
Ingilizce fleri — B2-C1
Almanca Baslangic A1.1

Hobiler

Tenis oynamak
Bisiklet siirmek
Tiiplii dahs
Psikoanaliz

Katildigim Yarigsmalar

2022

Formula Student Czech
Teknofest Robotaksi

Teknofest Saghkta Yapay Zeka
Teknofest Ulasimda Yapay Zeka
2021

Formula Student East(19. takim)

Teknofest Robotaksi (En yiiksek puan)

2019
Formula Student Italy
2018
ODTU Robot Giinleri

Behi¢ Erdem

Istanbul Teknik Universitesi Elektronik Haberlesme (%100 Ingilizce) Miihendisligi béliimiinde
okuyorum. Cok hareketli bir 6grencilik hayati gecirdim. Lisede okul bagkanligi yaptim.
Universiteye baslayinca ise hem sosyal olarak hem de yabanci dilimi gelistirmek igin birgok Model
Birlesmis Milletler konferanslarinda hem delege hem de organizatér olarak yer aldim. Ana konusu
Formula Student yarismalari olan ve elektrikli otonom & icten yanmali sekilde arag iirettigimiz ITU

Racing takiminda 1 sene Gomiilii Sistemler ekip iiyesi 2 sene de Otonom Ekip liderligi yaptaim.
Web tasarim, gérsel dizayn ve 3D modelleme bilgim mevcut. Lisans bitirme tezi konum HFT
sisteminin FPGA kartinda gerceklenmesi. Bu proje icin HDL, python ve C yazilun dilleri
kullaniyorum. Kisisel olarak kendimi gelistirirken bir yandan da proje yapmayi severim. Python ve
Al kullanarak yazdigim birkac projem mevcut akilh sistemler, otomasyon ve tarim alaninda AR-Ge
calismalar yapiyorum. Su anda Argela Yazilim ve Bilisim Teknolojileri firmasinda yari-zamanli
olarak calistyorum. Bulut bilisim sistemleri, linux, docker, kubernetes, openstack vb. alanlarda
calismalar yapiyoruz. Analitik diigiinen, gelisime agik, hizli karar veren, cevreye uyum saglayabilen
ve liderlik yapabilen birisiyim.

Egitim

=>» 2017 - Mezuniyet 2023 Haziran

Miihendisligi (100% Ingilizce)

Istanbul Teknik Universitesi/ Elektronik ve Haberlesme

= 2015 - 2017 Konya Ozel Form Kampiis Anadolu Lisesi (Tam Burs)
= 2013 -2015 Konya Meram Fen Lisesi

Kurslar
=>» 2023 Preperation to Openstack COA Exam Udemy — Kris Kelmer

TCP/IP Training Course Udemy — Infinite Skills
=>» 2022 Intel FPGA Designer Intel
Certified Kubernetes Admin (CKA) Udemy — Mumshad Mannambeth
Kubernetes Hand-On Beginner Udemy — Mumshad Mannambeth
Docker & Kubernetes Complete Guide Udemy — Stephen Grider
Daocker for Absolute Beginners Udemy — Mumshad Mannambeth
Linux Edx — Linux Foundation
=>» 2021 Embedded System Essentials with ARM - 1 & 2 Edx — ARM Education
Robot Operating System 1 & 2 Udemy — Aanis Kouba
=» 2020 Python ve Veri Bilimi Udemy — Engin Demirog
=>» 2019 Biyometrik Yiiz Tanima Hali¢ Akademi
NLP (Neuro Linguistic Programming) Hali¢ Akademi
HTML & CSS Edc — World Wide Web Consortium
= 2018 C/C++ kurslan Youtube
Yetenekler
C & C++ Orta — Ileri MS-Office fleri
Python Orta — fleri Adobe Design Tools Orta
Assembly Orta Vivado fleri
Verilog fleri Intel Quartus Prime Orta
HTML/CSS ileri Matlab Orta
Bash Orta CST Studio Orta
TCL Orta LT Spice Orta
AWR Orta

Calisma Hayat1 ve Tecriibeler

2022 May1s — giiniimiiz Yari-zamanli Bulut Orkestrasyon ve Sistem Miihendisi Argela Yazilim

ve Bilisim

2021 Yaz Stajyer Baykar Savunma — Elektronik Sistem Gelistirme

2021 Yaz Stajyer Tiibitak BILGEM — Tiim Devre Elektronik Tasarim
Laboratuvari

2020 Yaz Stajyer Baykar Savunma — RF Mikrodalga Ekibi

2020 — 2022 ITU Racing Takimi Otonom Ekip Lideri

2019 — 2020 ITU Racing Takimu Elektronik Ekip Uyesi

2018 ve 2019 yillar arasinda ITU MUN, IKUMUN, ITU MDK DFS Zirvesi, MarmaraMUN gibi
etkinliklerde IT Koordinatérii ve organizatér olarak yer aldim.

2017 May1s -2019

Peer Mentor

ProBro Akademi

Rana TilRi

Education

2018 - present Electronics and Communication Engineering
(100% English)
Istanbul Technical University, Istanbul
Senior student
Current GPA: 3.26 / 4.00

0 2017 -2018 Medicine

Aydin Adnan Menderes University

Drop out GPA: 275 / 4.00

O 2014 -2017 Izmir Science Highschool
GPA: 95.66 /100

PERSONAL
Name Experience
Rana TilRi .
June 2021-July 2021 TUBITAK BILGEM
2232%24 34 90 Digital Design Engineering Intern
L o August 2021- ArceliR
E-mail September 2021 Hardware Engineering Intern
ranatilRi@hotmail.com .
_ o October 2021- ITU Racing Autonomous Team
Birthday June 2022 Team Member
18.03.1999
& August 2022- Procenne
September 2022 Embedded Software Engineering Intern
S October 2022- BAYIKAR
February 2023 Digital Design Engineering Intern
S March 2023- BAYKAR
Present Digital Design Engineer
Part-time
Languages
. @ Significant Courses Taken
English
French VLSI Circuit Design Il (This Term)
German + Satellite Communications (This Term)

+ Digital System Design Applications
+ Data Communications
Introduction to Embedded Systems
Microprocessor Systems
Analog Electronics
Digital Electronics
* Introduction to Logic Design
Introduction to Sci & Eng Comp. (C)
Data Structures & Programming (C++)
« Digital Signal Processing
Analog Communications
Digital Communications
« Electromagnetic Waves
Object Oriented Programming

@ Skills

C
Verilog
C++

MATLAB

LTspice

¢

Armin Asgharifard

Student

Profile

A motivated and detail-oriented Electronics and Communications
Engineering student, currently in the fourth year of my Bachelor's
degree at Istanbul Technical University. Skilled in software
programming, with a strong focus on mobile app development, and
experienced in Java and Android app development. Additionally,
experienced in digital hardware design, including FPGA, ASIC, and
embedded network design. Possessing excellent time management,
planning, and team work skills, | am eager to apply my skills and
knowledge to real-world projects in a dynamic and challenging work
environment. | am confident in my ability to quickly learn new
technologies and work towards achieving my career goals.

Education

Electronics and Communications Engineering , Istanbul Technical
University, Istanbul
September 2019

Bachelors degree

GPA: 3.46/4

Work Experience

Internship at Istanbul Technical University Embedded System
Design Laboratory, Istanbul
June 2022 — July 2022

FPGA design with VHDL

Projects

Comparator Circuit in FPGA

2023

As an FPGA design project with Verilog, an ALU and a Control Unit were
designed and connected together to build a digital circuit, in which
given two inputs A and B, the circuit compares 2A and B and produces
the corresponding output.

RAM Data Swapper Using Assembly
2023

As an embedded network design project, a PicoBlaze microcontroller
was programmed to swap the contents of two Block RAMs.

Developing a Game Using Assembly
2022

A game called 'Stacker' was developed using Assembly programming
language, where you put the blocks on top each other to make a high
building.

Details

Istanbul

Turkey

+90 552 661 04 75
asgharifard19@itu.edu.tr

Links
Linkedin

Skills
Leadership

Effective Time Management

Planning

Hobbies
Piano playing
Running

Languages
Azerbaijani

Persian

Turkish

English

Dadda Tree Multiplier in FPGA
2022

As an FPGA design project with Verilog, a Dadda Tree Multiplier was
implemented to multiply two inputs.

Sequence Detector in FPGA
2022

As an FPGA design project with Verilog, a sequence detector circuit
was designed, in which two different 4-bit sequences can be detected,
including overlapping.

Image Filtering in FPGA
2022

Using Verilog, a circuit was designed to receive the bits of an image,
apply smoothingfilter onit,and produce the bits of theresultingimage.

% Activities

Active Member of ITU IEEE ComSoc Club at Istanbul Technical
University
2019 — 2020

#% Courses & Certifications

Beginner and Intermediate Java Course, with a specialization in
Android app development, Tabriz Institute of Technology, Tabriz,
Iran

June 2019 — September 2019

First place in Iran High Schools Music Competition Classical Piano
Category, Iran Culture and Art Organization
2017

* Computer Skills
Java
VHDL/Verilog
C/C++
Assembly

Python

47

