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EXTENDING THE INSTRUCTION SET  
OF RISC-V PROCESSOR FOR ASCON ALGORITHM 

 

SUMMARY 

These days where technology is developing at a rapid pace, the amount of personal 
data we store in the digital environment increasing. Therefore, data security is 
important and personal data must be encrypted well. Many asymmetric and 
symmetric encryption algorithms have been proposed to ensure security but current 
algorithms are suitable for devices with higher processing power. When these 
algorithms are applied to constrained devices as RFID tags, smart cards, and low 
power sensors, the performance of the devices is insufficient. For this reason, the 
field of lightweight cryptography has emerged to ensure confidentiality in devices 
with low processing performance and many studies are being conducted on it. One of 
these studies is the standardization of lightweight cryptography algorithms that were 
initiated by the National Institute of Standards and Technology (NIST) in 2013. 
Among the 57 algorithms sent to the study, the ASCON algorithm was chosen in this 
project due to its speed, simplicity of the operations and small footprint in hardware 
implementations. 
High performance is one of the most anticipated attributes of lightweight cryptology 
algorithms. One of the ways to improve performance is to design a processor with 
higher processing power, but this way is very costly and time-consuming. Another 
way is to expand the instruction sets of an existing processor. This way was aimed at 
the project. Ibex core, the RISC-V processor designed by lowRISC, was chosen as 
the processor to expand its instruction set. Then, the C program in ASCON's Github 
repository was run over Ibex, the energy consumed, the execution time of the 
program, the size of the program and the area covered by the processor were 
measured. After that, the most used operation in the program was determined with 
the SPIKE RISC-V simulator. It was observed that the s-box and rotation operations 
were mostly used. These two operations are designed in the Verilog hardware 
description language and included in the arithmetic logic unit of Ibex. In addition, the 
compiler was modified to call the added commands, and the ASCON program was 
rewritten with the inline assembly method. Finally, the program was compiled again 
and the instruction set was run on the modified processor and the energy consumed, 
the execution time of the program, the size of the program and the area covered by 
the processor were measured and compared with the previous measurements. 
As a result, the blocks we have added have significantly increased the performance 
of the program, the area covered by the processor has increased, the energy 
consumed, the program size and the encryption time have decreased. 
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RISC-V İŞLEMCİSİNİN KOMUT SETİNİN 
ASCON ALGORİTMASI İÇİN GENİŞLETİLMESİ 

 

ÖZET 

 
Teknolojinin büyük bir hızla geliştiği bu çağda dijital ortamda sakladığımız kişisel 
veri miktarı artmaktadır. Bu yüzden veri güvenliği büyük önem arz etmekte, veriler 
iyi bir şekilde gizlenmek zorundadır. Veri güvenliğini sağlamak için birçok asimetrik 
ve simetrik şifreleme algoritması ortaya atılmıştır ancak güncel algoritmalar işlem 
gücü daha yüksek cihazlar için uygundur; RFID etiketleri, akıllı kartlar, düşük güçlü 
sensörler gibi kısıtlı cihazlarda uygulandığında performansı yetersiz kalmakta. Bu 
nedenle işlem gücü düşük cihazlarda gizliliğin sağlanması için hafif kriptoloji alanı 
ortaya çıkmış ve hakkında birçok çalışma yapılmaktadır. Bu çalışmalardan biri 
Ulusal Standartlar ve Teknoloji Enstitüsü (NIST)’nün 2013’te başlattığı 
standardizasyon çalışmasıdır. Çalışmaya gönderilen 57 algoritma arasından hızı, 
yapılan işlemlerin basitliği ve donanım gerçeklemelerinde az yer kaplaması sebebiyle 
bu projede ASCON algoritması seçilmiştir. 
Yüksek performans, hafif kriptoloji algoritmalarından en çok beklenen niteliklerden 
biridir. Performansı arttırmanın yollarından biri daha yüksek işlem gücüne sahip bir 
işlemci tasarlamaktır ancak bu yol epey maliyetlidir ve zaman gerektirir. Bir diğer 
yol ise var olan işlemcilerin komut setlerini genişletmektir. Projede de bu 
hedeflenmiştir. Komut seti genişletilecek işlemci olarak lowRISC’in tasarladığı 
RISC-V işlemcisi Ibex core seçilmiştir. Ardından ASCON’ın Github reposundaki C 
programı Ibex üzerinden çalıştırılmış, harcadığı enerji, kaç saat darbesinde şifreleme 
yapıldığı, programın boyutu ve işlemcinin kapladığı alan ölçülmüştür. Bundan sonra 
program SPIKE RISC-V simülatörü ile hangi operasyonun en çok kullanıldığı tespit 
edilmiştir. Simülasyon sonucunda en çok s-box ve döndürme operasyonlarının 
kullanıldığı gözlenmiştir. Bu iki operasyon Verilog donanım tanımlama dilinde 
tasarlanıp Ibex’in aritmetik lojik birimine dahil edilmiştir. Bunun yanında eklenen 
komutları çağırmak için derleyici düzenlenmiş, ASCON programı inline assembly 
yöntemiyle tekrar yazılmıştır. Son olarak, program tekrar derlenip komut seti 
genişletilmiş işlemcide çalıştırıldı; harcadığı enerji, kaç saat darbesinde şifreleme 
yapıldığı, programın boyutu ve işlemcinin kapladığı alan ölçüldü ve daha önceden 
alınan ölçümlerle karşılaştırıldı. 
Sonuç olarak, eklediğimiz bloklar sayesinde programın performansında gözle görülür 
derecede artış gerçeklemiş, işlemcinin kapladığı alan artmış, harcadığı enerji, 
program boyutu ve şifreleme süresinde azalma gözlenmiştir. 
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 INTRODUCTION 

 

Usage of constrained devices such as RFID (Radio-Frequency Identification) tags, 

sensors, microcontrollers, and smart cards is increasing every year. This situation 

brings new security concerns. However, applying cryptographic algorithms is 

challenging because conventional cryptographic algorithms are not suitable for 

constrained devices. The algorithms are optimized for systems with high computing 

power like desktop and server environments. If the conventional algorithms run on 

constrained devices, they work in low performance. So, lightweight cryptography has 

emerged [1]. NIST (National Institute of Standards and Technology) started to 

research standardization of lightweight cryptographic algorithms in 2013 due to the 

insufficiency of current NIST-approved cryptographic standards. In 2018, they 

opened a competition for adding a public comment to the standardization process [2]. 

ASCON is one of the competitor algorithms and finalists. ASCON is chosen for the 

project because most of its operations can be implemented on FPGA easily due to the 

behaviour of the operations [3]. Speed is the most important thing about lightweight 

cryptography. There are several ways to speed up the process. The first of them is the 

optimization of the algorithm, but it’s not feasible and an easy way to do it. Another 

of them is using a more powerful processor. However, the processor requires a wider 

area and more power consumption if its computing power gets higher. For this 

environment, an application-specific processor is a more appropriate way. A RISC-V 
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based core, Ibex is selected to implement the algorithm because Ibex is a fast and 

small open-source processor and supports I, M and C extensions[7]. 

The project aims to increase the performance of the algorithm by extending the 

instruction set architecture of Ibex core. 

 RISC-V 

RISC-V is an open-source Instruction Set Architecture (ISA) that uses RISC 

principles. It is configured as a small base ISA with various optional extensions. The 

basic ISA is very simple, making RISC-V suitable for research and education, yet 

complete enough to be an ISA suitable for inexpensive, low-power embedded 

devices [4]. To understand RISC-V ISA, first of all, it is necessary to examine and 

explain the RISC and CISC principles and the concept of ISA. 

1.1.1  RISC and CISC 

The Reduced Instruction Set Computer (RISC) is a type of processor architecture with 

a small, highly optimized instruction set rather than the more specialized sets often 

found in other types of architecture such as the Complex Instruction Set Computer 

(CISC). To briefly consider the difference between them, CISC processors may use 

more than one clock cycle to execute an instruction. On the other hand, in RISC, all 

commands are finished in 1 cycle. If we consider the multiplication process to better 

explain this difference, in CISC this process is completed in 1 clock cycle, while in 

RISC, 4 clock cycles are required to perform this operation. 

1.1.2 RISC-V ISA 

RISC-V includes 6 different base instruction formats. These are R-type, I-type, S-

type, B-type, U-type, and J-type instruction formats. In this notation, rs1 and rs2 are 

the addresses of the source registers, and rd is the destination register address, which 

is 5 bits long for a 32-bit base ISA. The instruction formats are shown in Figure 1.1. 
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Figure 1.1: Base instruction formats of 32-bit RISC-V ISA[5] 

RISC-V ISA contains some special and some general-purpose registers. The naming 

and usage purposes of these registers are given in Figure 1.2. 

 

Figure 1.2: Registers of RISC-V ISA[6] 

x0 (zero) - Hardwired zero: A zero register refers to a special-purpose register that 

is hardwired to the integer constant 0. 

x1 (ra) - Return address: ra holds the return address. This is a memory value in the 

code region.  
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x2 (sp) - Stack pointer: The register that holds the address for the stack is called a 

stack pointer (SP) because its value always points to the top of the stack. Push and pop 

operations are implemented by decrementing or incrementing the stack pointer. 

x3 (gp) - Global pointer: Enables fast access to global (static) data structures. gp is 

initialized early in the program and never changed. 

x4 (tp) - Thread pointer: Enables access to thread-specific data in multi-threaded 

applications. tp is typically initialized early in the execution of a new thread and never 

changed.  

x8 (s0/fp) - Frame pointer: The frame pointer points to the base of the stack frame.  

x5-x7 and x28-x31(t0-t6) - Temporary registers: Holds temporary values that do not 

persist after function calls.  

x9 and x18-x27 (s1-s11) - Saved registers: Holds values that persist after function 

calls. 

x10-x11 (a0-a1) - Function arguments/Return values: Holds the first two arguments 

to the function or the return values.  

x12-17 (a2-a7) - Function arguments: Holds any remaining arguments. 

 Ibex Core 

Ibex is an open-source 32-bit RISC-V core that supports I, M, and C extensions. It is 

written in SystemVerilog and consists of parametrizable blocks. Also, it is suitable for 

embedded control applications[7]. The architecture of Ibex core is shown in Figure 

1.3. 
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Figure 1.3: Architecture of Ibex with a 2-stage pipeline. 

 Ascon Algorithms 

ASCON is a family of cryptographic algorithms which consist of authenticated 

encryption and hashing. It is designed to be lightweight and easy to implement on 

constraint devices with countermeasures for side-channel attacks. Also, it is selected 

for the final portfolio of the CAESAR competition, and a finalist competitor in the 

ongoing NIST Lightweight Cryptography competition. [3] 

In authenticated encryption, there are encryption and decryption algorithms. The 

encryption algorithm gets a maximum 160-bit key (K), 128-bit  nonce (N), and 

associated data (A) of arbitrary length to encrypt plaintext (P) of arbitrary length and 

produce ciphertext (C) of the same length as plaintext and 128-bit tag (T). Decryption 

algorithm gets key, nonce, associated data, ciphertext, and tag, which are the same 

length as that used in encryption, to decrypt the ciphertext and produce plaintext or a 

verification tag (⊥) if the verification of tag fails. Encryption and decryption 

algorithms can be seen in Figure 1a and 1b, respectively. In Figure 1, k is the length 

of the key, r is data block size, and a and b are internal round numbers. [3] 
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Figure 1.4: ASCON authenticated encryption and decryption algorithms 

The hashing algorithm will not be mentioned in the report, because it will not be 

implemented to Ibex. 

1.3.1 Encryption algorithm 

ASCON encryption algorithm consists of four stages: Initialization, processing 

associated data, processing plaintext, and finalization. [3]  

Initialization 

In this stage, the initialization vector (IV) and 320-bit state of the sponge construction 

(S) are created. IV is created with the concatenation of k, r, a, b and zeroes: 

𝐼𝑉 ← 𝑘 || 𝑟 || 𝑎 || 𝑏 || 0( )      [3] 

S is created by concatenating the key (K) and the nonce (N) with IV: 

𝑆 ← 𝐼𝑉 || 𝐾 || 𝑁        [3] 

Finally, a rounds of the round transformation p are applied to the initial state (S), S is 

XORed with the key (K) and the result is assigned to S: 

𝑆 ← 𝑝 (𝑆) ⊕ (0 || 𝐾)       [3] 

Processing of associated data 
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Firstly, padding is applied to associated data by separating it into blocks of r bits. A 

single 1 and zeroes are appended to data to obtain a multiple of r bits, and the data are 

split to s blocks of r bits: 

𝐴 , . . . , 𝐴 ← 𝑟 − 𝑏𝑖𝑡𝑏𝑙𝑜𝑐𝑘𝑠𝑜𝑓𝐴 || 1 || 0 (| | )   [3] 

Each block of Ai (i = 1, …, s), are XORed with the most significant r-bits of state (S), 

and are applied b rounds of round permutation pb: 

𝑆 ← 𝑝 (𝑆 ⊕ 𝐴 )|| 𝑆        [3] 

Also, padding is optional. If associated data is zero, nothing will be appended to the 

data and the data will not be split. 

Finally, state (S) is XORed with a single 1 and 319 zeros, and assigned to the S: 

𝑆 ← 𝑆 ⊕ (0 || 1)        [3] 

Processing plaintext 

Firstly, padding is applied to plaintext in the same steps as did while processing 

associated data and the result is split t blocks of r bits: 

𝑃 , . . . , 𝑃 ← 𝑟 − 𝑏𝑖𝑡𝑏𝑙𝑜𝑐𝑘𝑠𝑜𝑓𝑃|| 1 || 0 (| | )   [3] 

In every iteration, one Pi block (i = 1, .., t) is XORed with the most significant r bits 

of state (Sr) and the result is assigned to ciphertext block Ci. After that, the least 
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significant c bits of S (Sc) are appended to Ci, and b rounds of round permutation are 

applied to them. The result is assigned to S: 

𝐶 ← 𝑆 ⊕ 𝑃         [3] 

𝑆 ← 𝑝 (𝐶  || 𝑆 )        [3] 

However, in the last iteration, after appending Ci to Sc, the result will be assigned to 

S without applying the round permutation: 

𝑆 ← 𝐶 ||𝑆          [3] 

Finally, the last ciphertext block Ct shortened to the length of the unpadded last 

plaintext block by eliminating its the most significant |Ct|-r+1 bits: 

𝐶 ← 𝐶 (𝑟 − 1)𝐶 (𝑟 − 2). . . 𝐶       [3] 

Finalization 

In the last stage, the key (K) is XORed with the state (S) and a rounds of round 

permutation is applied to the result: 

𝑆 ← 𝑝 𝑆 ⊕ (0  || 𝐾 || 0 )        [3] 

The tag T is the result of XORing the least significant 128 bits of the state (S) and the 

last 128 bits of the key (K): 

𝑇 ← 𝑆 ⊕ 𝐾         [3] 

1.3.2 Decryption algorithm 

The decryption algorithm consists of four stages: Initialization, processing of 

associated data, processing ciphertext, and finalization. The first two stages are the 

same as the first two stages in the encryption, but the last two steps are different. 
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1.3.2.1 Processing plaintext 

Firstly, the ciphertext is split t blocks of r bits: 

𝐶 , . . . , 𝐶 ← 𝑟 − 𝑏𝑖𝑡 𝑏𝑙𝑜𝑐𝑘𝑠 𝑜𝑓 𝐶      [3] 

In every iteration, one Ci block (i = 1, .., t) is XORed with the most significant r bits 

of state (Sr) and the result is assigned to ciphertext block Pi. After that, the least 

significant c bits of S (Sc) appended to Ci and b rounds of round permutation are 

applied to them. The result is assigned to S: 

𝑃 ← 𝑆 ⊕ 𝐶         [3] 

𝑆 ← 𝑝 (𝐶 ||𝑆 )        [3] 

In the last iteration, shortened the last ciphertext block with l (0 ≤ l < r) is  XORed 

with the most significant r bits of Sr, the result assigned to Pt and state (S) is updated: 

𝑃 ← 𝑆 ⊕ 𝐶         [3] 

𝑆 ← 𝑆 ⊕ (𝑃 || 1 || 0 ) || 𝑆       [3] 

1.3.2.2 Finalization 

The steps of the final stage are the same as encryption. However, plaintext is only 

produced when the received tag value is equal to the produced tag value. 

1.3.3 Permutation 

The round permutation is a function that is used in the algorithms multiple times. It 

gets 320-bit state (S) as input parameter and splits five equal 64-bit registers: 

𝑆 = 𝑥 || 𝑥 || 𝑥 || 𝑥  || 𝑥        [3] 

It consists of three stages: Addition of constants, substitution layer, linear diffusion 

layer. 

1.3.2.1 Addition of constants 
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In this stage, a constant value is XORed with the x2 register and assigned to the x2.  

The constant value gets different values in different a and b values. [3] The values can 

be seen in Figure 1.5. 

𝑥 ← 𝑥 ⊕ 𝑐          [3] 

Figure 1.5: Constant values. [3] 

1.3.2.2 Substitution layer 

In this stage, state (S) splits into 64 pieces that are 5 bits long, and the pieces are 

updated with the s-box function [3]. The slicing of the five registers can be seen in 

Figure 1.6.  

 

Figure 1.6: Slicing of the five registers in the substitution layer. [3] 

S-box function can be seen in Table 3. However, implementing the layer in 

processors can be hard due to parallel operations. An alternative way to implement 

the layer can be seen in Figure 1.8. 

 

Figure 1.7: Inputs and outputs of S-box function [3] 
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Figure 1.8: Alternative way to implement substitution layer [3] 

 

1.3.2.3 Linear diffusion layer 

The linear diffusion layer updates every register xi differently. Operations of the layers 

can be seen in Figure 1.9. 

 

Figure 1.9: Operations of linear diffusion layer [3] 
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 SETTING UP AND TESTING THE TOOLS 

 RISC-V GNU Compiler Installation 

To run the ASCON algorithm on the Ibex, the C code of the algorithm had to be 

compiled and the memory file that contains instructions machine code had to be 

created. Therefore, firstly the RISC-V GNU Compiler was installed.  

For installation, it is necessary to download some packages to the computer first and 

if not, git must be installed for download from Github. After doing this, the RISC-V 

GNU Toolchain is installed by following the commands below: 

 git clone https://github.com/riscv/riscv-gnu-toolchain 

 sudo apt-get install autoconf automake autotools-dev curl python3 

libmpc-dev libmpfr-dev libgmp-dev gawk build-essential bison flex 

texinfo gperf libtool patchutils bc zlib1g-dev libexpat-dev 

 ./configure --prefix=/opt/riscv 

 make 

By default, the build targets the RV64GC. To create the RV32GC toolchain, use the 

commands below: 

 ./configure --prefix=/opt/riscv --with-arch=rv32gc --with-abi=ilp32d 

 make linux 

The 32-bit RISC-V GNU Toolchain is installed, thus moving on to the next stage and 

a sample C program is run and the Compiler and Ibex are tested for it is working 

correctly. 

 Running A Sample Program 

 Before trying to run the ASCON algorithm, we wanted to make sure everything was 

working correctly by compiling a simple C code and running it on Ibex. For this, a 

code in the form of a + b = c was written, and it was run on Ibex by making 

necessary operations.  
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Figure 2.1: Simple C Program 

To create the memory file and other necessary files, Makefile should be used by 

typing the following basic command in the terminal: 

 make  

To make a new compilation process, it is necessary to delete the previously created 

and unnecessary files. For this, the following command should be used: 

 make distclean 

From the simulation results, the result of the summation was seen as correct and thus 

it was concluded that the conditions were ready to move on to the next stage. 

 

Figure 2.2: Simulation Results of Simple C Program 
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 RUNNING AND PROFILING ASCON  ALGORITHMS ON IBEX 

 Running ASCON Encryption Algorithm 

After running a sample program on Ibex, software implementation of the ASCON 

encryption algorithm is run on Ibex. The source files can be found in the official 

Github repository of ASCON. Main.c, round.c and encrypt.c compiled in RV32I 

instruction set by using RISC-V GNU Toolchain to run on Ibex.  

The software implementation is done according to recommended ASCON128a 

parameters. The parameters can be seen in Figure 3.1.  

 

Figure 3.1: Recommended parameters for the implementation of ASCON [3] 

Input parameters of the encryption function can be seen in Figure 3.2. 

 

Figure 3.2: Input parameters of the encryption function 

Outputs of the encryption function, ciphertext and tag can be seen in Figure 3.3. The 

outputs are written in hexadecimal radix to identify in simulation easily.  

 

Figure 3.3: Outputs of the encryption function 

The simulation results can be seen in Appendicies. Figure A.1a and A.1b show 

ciphertext which was written to the memory, Figure A.1c and A.1d show the tag 

which was written to the memory. LED1 signal shows the data which is written to 
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memory or read from memory. The tag and the ciphertext are produced and written 

to memory successfully in 66952 clock cycles. 

 Running ASCON Decryption Algorithm 

After running an encryption algorithm on Ibex, software implementation of ASCON 

decryption algorithm is run on Ibex. The compilation was done similarly to 

encryption and main.c and decrypt.c compiled to run on Ibex. Their codes can be 

found in Appendices.  

Output of the decryption function, plaintext can be seen in Figure 3.4. The output is 

written in hexadecimal radix to identify in simulation easily. 

 

Figure 3.4: Output of the decryption function 

Figure B.1a and b shows that the plaintext were produced and written to memory 

successfully in 66198 clock cycles. 

 Deciding the Most Frequent Function  

C code of the encryption algorithm is profiled by using SPIKE RISC-V ISA 

Simulator and RV32I instruction set. The decryption algorithm did not profile 

because it is mostly the same as the encryption algorithm. 

Five optimization flags are used in profiling and they are named -O0, -O1, -O2, -O3, 

and -Os. The compiler makes no optimization on the code with the -O0 flag. -O1 flag 

makes optimization on code size and execution time for small functions. -O2 makes 

all supported optimization for the code but does not change the space-speed balance. 

-O3 does the same optimizations as -O2 and does more optimizations than it. -Os 

optimizes to only reduce the code size. [8] 
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Profiling results about the round permutation block which is the most used can be 

seen in Figure 3.5. Figure 3.5 states that the linear layer and the substitution layer are 

the most time-consuming functions. [8] 

Figure 3.5: Profiling results of the round permutation in all optimization flags. [8] 

So, s-box and round functions must be designed as a custom module for the ALU. 

3.3.1 Round function 

One of the most frequent functions is the ROTR32 function. It gets two parameters: 

32-bit shifting amount and 32-bit number to shift. It shifts all bits of the number right 

as shifting amount and fills vacant bits with the least significant bits. In the 

testbench, 3 different numbers shifted 3 different amounts. Simulation results can be 

seen in Figure 3.6. 

 

Figure 3.6: Simulation results of the testbench. 

RTL schematic of the module, the Verilog implementation and testbench for the 

implementation can be found in Appendix. 

3.3.2 S-box function 

The other most frequent function is the s-box function. The custom module for the S-

box function can be seen in Figure 3.7. 
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Figure 3.7: The custom module for the s-box [8] 

Two arrays are named even and odd states in the software implementation of the 

ASCON algorithm. The custom module takes one of them as the first operand. The 

second operand is not used and the output is always zero. The module takes the 

address of the first element of the input array and holds it. After that, it loads all 

elements of the array to the module by using the direct memory access to the block 

RAM and makes the s-box computations that are shown in Figure 1.8. Finally, it 

loads the outputs of the function to the input array. Verilog implementation of s-box 

module is given in Appendicies. 
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 INSTRUCTION SET EXTENSION OF IBEX 

 Changes in Software 

While adding the instructions, the compiler is modified to detect them. The functions 

are named cust0 and cust2 in the compiler for simplicity. 

There are two files named risc-v-opc.c and risc-v-opc.h that contain instruction 

templates in the riscv-gnu-compiler folder. Risc-v-opc.c and risc-v-opc.h files must 

be modified to add instructions. risc-v-opc.c file contains the list of opcodes and their 

properties. The template and properties of new instructions will be written into the 

riscv_opcodes array in the file. 

risc-v-opc.h contains definitions for risc-v-opc.c file. The MATCH and MASK 

values are defined and associated with the instruction in the file. Association of 

MATCH and MASK values with the instruction is done with the DECLARE_INS 

function. After the modifications, generated compiler files must be deleted and the 

compiler must be reinstalled. The template of cust0 instruction can be seen in Figure 

4.1. 

 

Figure 4.1: The cust1 instruction template in risc-v-opc.c 

There are 8 arguments to define instructions in the compiler. The first one is the 

instruction name. The second one is the requirement of XLEN (width of the integer 

register size in bits) for the instruction, cust0 is 32-bit, so it is declared as zero. The 

third one is the class of the instruction, it can be I, M, or C. Cust0 is an instruction 

in the I class. The fourth one describes the arguments of the instruction, the new 

instruction is R-type instructions, so their operands are “d,s,t” in which d is for 

destination register, and s and t are for source operands. The fifth, sixth and seventh 

arguments are for decoding the instruction. If ANDing of the incoming instruction 

word and the MASK_CUST0 is matched with MATCH_CUST0, the compiler will 

recognize the instruction as cust0. So, the MATCH value must be unique to 

differentiate from the other instructions. 

risc-v-opc.h contains definitions for risc-v-opc.c file. The MATCH and MASK 

values are defined and associated with the instruction in the file. Association of 
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MATCH and MASK values with the instruction is done with the DECLARE_INSN 

function. Added lines in risc-v-opc.h can be seen in Figure 4.2 and 4.3. 

 

Figure 4.2: MATCH and MASK values for custom instruction. 

 

Figure 4.3: Added DECLARE_INS lines. 

After the modifications, generated compiler files must be deleted, and the compiler 

must be reinstalled: 

 sudo make distclean 

 ./configure --prefix=/opt/riscv --with-arch=rv32imc 

 sudo make 

Also, inline assembly statements are added to the ASCON source files to call added 

custom instructions. Inline assembly is a method to call low-level language 

statements in a script that is written in a high-level language [9]. Using inline 

assembly increases optimization, decreases function-call overhead, and allows to use 

of CPU-specific instructions. However, inline assembly makes the maintenance and 

the readability of the code harder. The code with inline assembly cannot be cross-

platform because the used instructions can be CPU-specific, and they cannot run on 

the other platforms. Any compiler can handle the inline assembly differently and this 

can cause a decrease in performance. 

The inline assembly statement to call cust2 is shown in Figure 4.4. asm means 

“assembly” and volatile indicates that optimization will not be applied to this 

statement. “"cust2 %[result0], %[value1], %[value2]\n\t": [result0] "=r" (r0) : 

[value1] "r" (&s_e[0]) , [value2] "r" (1)” is the assembly code to call cust2. result0 
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is the placeholder for the destination register, value1 and value2 are placeholders for 

the operands. r indicates the operand is a register, = in =r indicates the result will be 

overwritten to an existing value. The contents inside of the parentheses are operands 

of the instruction. 

 

Figure 4.4: The inline assembly statement to call cust2. 

 Changes in Hardware 

Modifications in processor architecture are done in the decoder and the ALU while 

adding the round module. The round function is a single cycle operation, so it can 

be instantiated in parallel to the other ALU operations as AND, OR, and XOR. The 

decoder must be modified to recognize the round instruction. So, a new case was 

added to the case structure in the OPCODE_OP case. The new case is shown in 

Figure 4.5. 

 

Figure 4.5: Modified case structure of ALU operations. 

The round function is instantiated in the ALU module. operand_a_i and 

operand_b_i are the inputs, cust0_result is the output of the custom module. Also, 

the result mux is modified to conduct the result of the custom module. Modified 

result mux can be seen in Figure 4.6. 
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Figure 4.6: Modified result mux. 

The s-box module is instantiated in the execution stage, in parallel to the 

multiplication module because it does a multi-cycle operation. Appropriate input 

and output signals are created to operate the module in the execution. The inputs 

and outputs of the stage are changed to control the block RAM and get data from 

the other modules. The decoder and controller in the instruction decode stage are 

also modified. A new case for the custom instruction is added to the decoder to 

enable the custom module and the register file. The new case is shown in Figure 

4.7. An output signal is added to the controller to stall the processor while waiting 

to finish multi-cycle operations. 
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Figure 4.7: Newly added case for opcode case structure. 

The core will continue to operate when the operation of the custom module is 

finished. If the core did not enter a waiting state, it can produce wrong results. The 

source operand and enable output signals from the ID stage are connected to 

source operands and enable input signals of the EX stage in the ibex_core module. 

The RAM data, the RAM address and the enable signals are added as inputs and 

outputs of the core module to communicate with the RAM. The new core signals 

are connected to the block RAM in the top module. 

 TIMING AND PERFORMANCE ANALYSIS 

After modifying the core, the compiler and the source codes, the encryption and the 

decryption algorithms are run on the core and the operations are validated by 

comparing each other. In this section, the implementation of ASCON algorithms 

with and without custom instruction are compared. 

 Area Comparison 

The area measurement is made by implementing unmodified and modified Ibex core 

and comparing the utilization reports of them. Areas covered by unmodified and 

modified Ibex is shown in Table 5.1. The amount of FFs and LUTs are increased by 
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1.94% and 18.97% respectively because s-box and ROTR32 modules are added to 

the processor. 

 

Table 5.1: The area comparison 

 Unmodified Modified Change 
LUT 2977 3542 +18.97% 
FF 1955 1993 +1.94 

 Instruction Memory Size Comparison 

Instruction memory sizes are compared by examining the number of lines in the 

generated vmem files. The comparison is shown in Table 5.2. The program with 

custom instruction has a smaller number of lines than the other one since the round 

function without custom instruction is 216 instructions and the same function with 

custom instruction is 59 instructions. 

Table 5.2: The instruction memory size comparison 

 Unmodified Modified Change 
Lines 4251 4153 -2.3% 

 Execution time comparison 

Execution times of the programs are measured by measuring the execution of the 

main function takes how many clock cycles in the behavioural simulation of XSim. 

The comparison between the two programs is shown in Table 5.3. The program with 

custom instructions takes less time to complete because the instruction memory size 

of the program with custom instructions is smaller and the custom module operations 

take less time than the ALU operations. 

Table 5.3: Execution time comparison 

 Unmodified Modified Change 
Clock cycle 133150 92830 -30.2% 
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 Average energy consumption 

SAIF file is needed to measure the average energy consumption in the processor, and 

it is generated after running a post-implementation timing simulation. SAIF 

(Switching Activity Interchange Format) contains information about static 

probability and toggle rates of the nets [10]. Static probability is the fraction of time 

that the signal is HIGH on the net through the system operation [11]. The power 

report for the processor is generated by using the SAIF file in Vivado and dynamic 

power can be learned with power reports. Average energy consumption is the 

multiplication of the execution time, the clock frequency, and the dynamic power of 

the processor. The average energy consumption comparison of the program with and 

without custom instructions is shown in Table 5.4. The program with custom 

instructions consumes less energy than the program without custom instructions 

because the execution time is shorter than the other program. So, switching activity 

and the energy consumption is lesser too. 

Table 5.4: Average energy consumption comparison 

 

 

 

 

 

  

 Unmodified Modified Change 
Average 

dynamic power 
[W] 

0.228 0.196 -14.03% 

Minimum clock 
period [ns] 

7.859 7.645 -2,72% 

Average energy 
consumption 

[mJ] 
0.239 0.139 -41.84% 
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 REALISTIC CONSTRAINTS AND CONCLUSIONS 

Lightweight cryptography is an important field for security at a time when the usage 

of constrained devices is increasing. ASCON is one of the lightweight cryptography 

algorithms and is close to being a standard for LWC. It is a fast and efficient 

algorithm even in its software implementation and it can be more resourceful with 

instruction set extension. To show it, the C program for ASCON is firstly compiled 

and run on Ibex core. After observing the whole program running on the core, 

profiling of the program is made, and the most frequent operations are decided. 

Then, equivalent modules are designed in Verilog language and instantiated into the 

core. Finally, the execution time, the average energy consumption, the instruction 

memory size, and the area usage are measured and compared. According to the 

results, the area usage increased but the execution time, the average energy 

consumption, and the instruction memory size is decreased. Therefore, the ISA 

extension has increased the performance of the algorithm. 

 Practical Application of this Project 

The project is appliable for fields where security is important and constrained 

devices are used like healthcare, IoT, and cyber-physical systems. 

 Realistic Constraints 

The used sources and tools are open-source and free. So, examining, designing, and 

debugging with the sources makes the projects cost-effective but these sources are 

new, there is not enough documentation for them. Using them sometimes can be 

time-consuming. 

 Social, environmental, and economic impact 

In the 21st century, more information is shared than ever in history. Information 

security is more important, and leakage of data is more vital. So, every secret must 
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be encrypted and protected properly. It is of utmost importance to design equipment 

that will ensure this healthy and secure sharing environment and implement crypto 

protocols. The fast and efficient design of this equipment will make information 

sharing safer. 

 Cost analysis 

Personal computers, open-source tools, open-source designs and Vivado WebPACK 

are used during the project. So, there is no cost in the project. 

 Standards 

The modified core itself will be following RISC-V ISA standards and hardware 

implementation will be following IEEE standards. ASCON algorithm is under 

development of standardization. 

 Health and safety concerns 

There are no health and safety concerns about the project because the project is 

designed and tested on simulation programs. 

 Future Work and Recommendations 

The aim for future projects can be implementing a communication module for 

communication with different cores and testing the core easily. Another project can 

be modifying the GCC for custom functions without the need for inline assembly 

because using inline assembly decreases the readability of the code and inhibits the 

optimization of assembly code. Thus, the instruction memory size and the execution 

time would be decreased.  
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APPENDIX A  

 

(a) 

(b) 

(c) 

(d) 

Figure A.1: Simulation results of the encryption algorithm that run on Ibex 
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APPENDIX B  

 

(a) 

 

(b) 

Figure B.1: Simulation results of the decryption algorithm that run on Ibex 
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APPENDIX C  

module ROTR32( 

input [31:0] x, n, 

output [31:0] result 

 ); 

    assign result = (((x) >> (n)) | ((x) << (32 - (n)))); 

endmodule 
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APPENDIX D  

module tb_rotr32; 

 

reg [31:0] x,n; 

wire [31:0] result; 

ROTR32 dut (x,n,result); 

 

initial begin 

    x = 32'hcf655448; 

    n = 32'h4; 

    #10; 

    x = 32'hfbc6a7d2; 

    n = 32'h3; 

    #10; 

    x = 32'he2e6add7; 

    n = 32'h8; 

    #10; 

end 

endmodule 
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APPENDIX E  

module sboxExtension( 

    input logic enable, clock, 

    input logic [31:0] op_a_i, op_b_i, ram_data_i, 

    output logic write_enable,  done, 

    output logic [31:0] ram_addr_o, ram_data_o, result 

    ); 

     

    logic [31:0] sbox_in [5:0]; 

    logic [31:0] sbox_out [4:0]; 

    logic [3:0] state; 

    logic [3:0] nextState; 

    logic [31:0] address = 0; 

    integer count = 0; 

     

    sbox_primitive sp01 (.x0(sbox_in[1]),.x1(sbox_in[2]), 

.x2(sbox_in[3]),.x3(sbox_in[4]),.x4(sbox_in[5]),.x0_o(sbox_out
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[0]),.x1_o(sbox_out[1]),.x2_o(sbox_out[2]),.x3_o(sbox_out[3]),

.x4_o(sbox_out[4]) ); 

     

    always @(posedge clock) begin 

        state <= nextState; 

        case (state) 

            1,3: begin 

                count <= count + 1; 

            end 

            default: begin 

                count <= 0; 

            end 

        endcase 

    end 

 

    always @(*) begin 

        case (state) 

            0: begin 

                address <= op_a_i; 
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                write_enable <= 0; 

                ram_addr_o <= 0; 

                ram_data_o <= 0; 

                result <= 0; 

                done <= 0; 

                 

                if (enable) 

                    nextState <= 1; 

                else 

                    nextState <= 0; 

            end 

             

            1: begin 

               write_enable <= 0; 

               ram_data_o <= 0; 

               result <= 0; 

               done <= 0; 
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               if (count < 2) begin 

                ram_addr_o <= 0; 

                nextState <= 1; 

               end 

               else if (count < 8) begin 

                ram_addr_o <= address + (count-2)*4; 

                sbox_in[count-2] <= ram_data_i; 

                nextState <= 1; 

               end 

               else begin 

                nextState <= 2; 

               end 

            end 

             

            2:begin 

               write_enable <= 0; 

               ram_addr_o <= 0; 
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               ram_data_o <= 0; 

               result <= 0; 

               done <= 0; 

               nextState <= 3; 

            end 

             

            3: begin 

                

               write_enable <= 1; 

               result <= 0; 

               if (count < 5) begin 

                ram_addr_o <= address + count*4; 

                ram_data_o <= sbox_out[count]; 

                nextState <= 3; 

               end 

               else begin 

                done <= 1; 

                nextState <= 4; 
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               end 

            end 

             

            4: begin 

                write_enable <= 0; 

                ram_addr_o <= 0; 

                ram_data_o <= 0; 

                result <= 0; 

                nextState <= 5; 

            end 

             

            default: begin 

               done <= 0; 

               write_enable <= 0; 

               ram_addr_o <= 0; 

               ram_data_o <= 0; 

               result <= 0; 

               nextState <= 0; 
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            end 

        endcase 

    end 

     

endmodule 

 

module sbox_primitive 

( 

    input logic [31:0] x0,x1,x2,x3,x4, 

    output logic [31:0] x0_o,x1_o, x2_o, x3_o, x4_o 

); 

 

logic [31:0] t0, t1, t2, t3, t4; 

logic [31:0] x0_temp, x1_temp, x2_temp, x3_temp, x4_temp; 

 

always @(*) begin 

    x0_temp = x0; 

    x1_temp = x1; 
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    x2_temp = x2; 

    x3_temp = x3; 

    x4_temp = x4; 

     

    x0_temp ^= x4_temp; 

    x4_temp ^= x3_temp; 

    x2_temp ^= x1_temp; 

     

    t0 = x0_temp; 

    t1 = x1_temp; 

    t2 = x2_temp; 

    t3 = x3_temp; 

    t4 = x4_temp; 

     

    x0_temp = t0 ^ (~t1 & t2); 

    x2_temp = t2 ^ (~t3 & t4); 

    x4_temp = t4 ^ (~t0 & t1); 

    x1_temp = t1 ^ (~t2 & t3); 
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    x3_temp = t3 ^ (~t4 & t0); 

     

    x1_temp ^= x0_temp; 

    x3_temp ^= x2_temp; 

    x0_temp ^= x4_temp; 

     

    x0_o = x0_temp; 

    x1_o = x1_temp; 

    x2_o = x2_temp; 

    x3_o = x3_temp; 

    x4_o = x4_temp; 

     

end //Always end 

 

endmodule 
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APPENDIX F  

u_core 

 
ibex_core 

Figure F.1: RTL schematic of the round module. 
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Figure F.2: RTL schematic of the s-box module. 
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Figure F.3: RTL schematic of the ALU. 
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 ibex_core 

Figure F.4: RTL schematic of the EX block. 
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Figure F.5: RTL schematic of the core. 
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Figure F.6: RTL schematic of the top module. 
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