

ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICS FACULTY

SENIOR DESIGN PROJECT

JANUARY 2022

EXTENDING THE INSTRUCTION SET
OF RISC-V PROCESSOR FOR ASCON ALGORITHM

Yunus Emre ERYILMAZ

ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT

ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT

JANUARY 2022

ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICS FACULTY

EXTENDING THE INSTRUCTION SET
OF RISC-V PROCESSOR FOR ASCON ALGORITHM

SENIOR DESIGN PROJECT

Yunus Emre ERYILMAZ
 (040180704)

Project Advisor: Prof. Dr. Sıddıka Berna ÖRS YALÇIN

RISC-V İŞLEMCİSİNİN KOMUT SETİNİN
ASCON ALGORİTMASI İÇİN GENİŞLETİLMESİ

LİSANS BİTİRME TASARIM PROJESİ

Yunus Emre ERYILMAZ
(040180704)

Proje Danışmanı: Prof. Dr. Sıddıka Berna ÖRS YALÇIN

OCAK, 2022

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

İSTANBUL TEKNİK ÜNİVERSİTESİ
 ELEKTRİK-ELEKTRONİK FAKÜLTESİ

iv

Yunus Emre ERYILMAZ
(040180704)

We are submitting the Senior Design Project Report entitled as “EXTENDING THE
INSTRUCTION SET OF RISC-V PROCESSOR FOR ASCON ALGORITHM”. The
Senior Design Project Report has been prepared as to fulfill the relevant regulations of
the Electronics and Communication Engineering Department of Istanbul Technical
University. We hereby confirm that we have realized all stages of the Senior Design
Project work by ourselves and we have abided by the ethical rules with respect to
academic and professional integrity .

v

FOREWORD

I would like to thank my mentor Prof. Dr Sıddıka Berna Örs Yalçın who helped me
to find this project and who shared her experiences and guided me in every step of
the project.

Also, I would like to thank my family and friends for their endless support of my
thesis and the other studies.

January 2022

Yunus Emre ERYILMAZ

vi

vii

TABLE OF CONTENTS

Page

 RISC-V ... 16
1.1.1 RISC and CISC .. 16
1.1.2 RISC-V ISA .. 16
 Ibex Core .. 18
 Ascon Algorithms .. 19
1.3.1 Encryption algorithm .. 20

1.3.1.1 Initialization.. 20
1.3.1.2 Processing of associated data ... 20
1.3.1.3 Processing plaintext .. 21
1.3.1.4 Finalization ... 22

1.3.2 Decryption algorithm .. 22
1.3.2.1 Processing plaintext ... 23
1.3.2.2 Finalization ... 23
1.3.3 Permutation ... 23

1.3.2.1 Addition of constants.. 23
1.3.2.2 Substitution layer .. 24
1.3.2.3 Linear diffusion layer ... 25

 RISC-V GNU Compiler Installation .. 26
 Running A Sample Program .. 26

 Running ASCON Encryption Algorithm ... 28
 Running ASCON Decryption Algorithm ... 29
 Deciding the Most Frequent Function .. 29
3.3.1 Round function .. 30
3.3.2 S-box function ... 30

 Changes in Software ... 32
 Changes in Hardware ... 34

 Area Comparison .. 36
 Instruction Memory Size Comparison ... 37
 Execution time comparison .. 37
 Average energy consumption ... 38

viii

 Practical Application of this Project ... 39
 Realistic Constraints ... 39
 Social, environmental, and economic impact ... 39
 Cost analysis ... 40
 Standards .. 40
 Health and safety concerns ... 40
 Future Work and Recommendations .. 40

APPENDIX A ... 44
APPENDIX B .. 45
APPENDIX C .. 46

 APPENDIX D ……………………………………………………………………53
APPENDIX E .. 48
APPENDIX F .. 57

ix

ABBREVIATIONS

ALU : Arithmetic Logic Unit

CISC : Complex Instruction Set Computer

EX : Execute

FF : Flip Flop

ID : Instruction Decode

LUT : Lookup Table

LWC : Lightweight Cryptography

NIST : National Institute of Standards and Technology

RAM : Random Access Memory

RFID : Radio-frequency Identification

RISC : Reduced Instruction Set Computer

SAIF : Switching Activity Interchange Format

x

LIST OF TABLES

Page

xi

LIST OF FIGURES

Page

Figure F.1 : RTL schematic of the round module………………………………….57
Figure F.2 : RTL schematic of the s-box module…………………………………..58
Figure F.3 : RTL schematic of the ALU.…………………………………………..58
Figure F.4 : RTL schematic of the EX block…..…………………………………..58
Figure F.5 : RTL schematic of the core………..…………………………………..58
Figure F.6 : RTL schematic of the top module……………………………………..58

xii

xiii

EXTENDING THE INSTRUCTION SET
OF RISC-V PROCESSOR FOR ASCON ALGORITHM

SUMMARY

These days where technology is developing at a rapid pace, the amount of personal
data we store in the digital environment increasing. Therefore, data security is
important and personal data must be encrypted well. Many asymmetric and
symmetric encryption algorithms have been proposed to ensure security but current
algorithms are suitable for devices with higher processing power. When these
algorithms are applied to constrained devices as RFID tags, smart cards, and low
power sensors, the performance of the devices is insufficient. For this reason, the
field of lightweight cryptography has emerged to ensure confidentiality in devices
with low processing performance and many studies are being conducted on it. One of
these studies is the standardization of lightweight cryptography algorithms that were
initiated by the National Institute of Standards and Technology (NIST) in 2013.
Among the 57 algorithms sent to the study, the ASCON algorithm was chosen in this
project due to its speed, simplicity of the operations and small footprint in hardware
implementations.
High performance is one of the most anticipated attributes of lightweight cryptology
algorithms. One of the ways to improve performance is to design a processor with
higher processing power, but this way is very costly and time-consuming. Another
way is to expand the instruction sets of an existing processor. This way was aimed at
the project. Ibex core, the RISC-V processor designed by lowRISC, was chosen as
the processor to expand its instruction set. Then, the C program in ASCON's Github
repository was run over Ibex, the energy consumed, the execution time of the
program, the size of the program and the area covered by the processor were
measured. After that, the most used operation in the program was determined with
the SPIKE RISC-V simulator. It was observed that the s-box and rotation operations
were mostly used. These two operations are designed in the Verilog hardware
description language and included in the arithmetic logic unit of Ibex. In addition, the
compiler was modified to call the added commands, and the ASCON program was
rewritten with the inline assembly method. Finally, the program was compiled again
and the instruction set was run on the modified processor and the energy consumed,
the execution time of the program, the size of the program and the area covered by
the processor were measured and compared with the previous measurements.
As a result, the blocks we have added have significantly increased the performance
of the program, the area covered by the processor has increased, the energy
consumed, the program size and the encryption time have decreased.

xiv

RISC-V İŞLEMCİSİNİN KOMUT SETİNİN
ASCON ALGORİTMASI İÇİN GENİŞLETİLMESİ

ÖZET

Teknolojinin büyük bir hızla geliştiği bu çağda dijital ortamda sakladığımız kişisel
veri miktarı artmaktadır. Bu yüzden veri güvenliği büyük önem arz etmekte, veriler
iyi bir şekilde gizlenmek zorundadır. Veri güvenliğini sağlamak için birçok asimetrik
ve simetrik şifreleme algoritması ortaya atılmıştır ancak güncel algoritmalar işlem
gücü daha yüksek cihazlar için uygundur; RFID etiketleri, akıllı kartlar, düşük güçlü
sensörler gibi kısıtlı cihazlarda uygulandığında performansı yetersiz kalmakta. Bu
nedenle işlem gücü düşük cihazlarda gizliliğin sağlanması için hafif kriptoloji alanı
ortaya çıkmış ve hakkında birçok çalışma yapılmaktadır. Bu çalışmalardan biri
Ulusal Standartlar ve Teknoloji Enstitüsü (NIST)’nün 2013’te başlattığı
standardizasyon çalışmasıdır. Çalışmaya gönderilen 57 algoritma arasından hızı,
yapılan işlemlerin basitliği ve donanım gerçeklemelerinde az yer kaplaması sebebiyle
bu projede ASCON algoritması seçilmiştir.
Yüksek performans, hafif kriptoloji algoritmalarından en çok beklenen niteliklerden
biridir. Performansı arttırmanın yollarından biri daha yüksek işlem gücüne sahip bir
işlemci tasarlamaktır ancak bu yol epey maliyetlidir ve zaman gerektirir. Bir diğer
yol ise var olan işlemcilerin komut setlerini genişletmektir. Projede de bu
hedeflenmiştir. Komut seti genişletilecek işlemci olarak lowRISC’in tasarladığı
RISC-V işlemcisi Ibex core seçilmiştir. Ardından ASCON’ın Github reposundaki C
programı Ibex üzerinden çalıştırılmış, harcadığı enerji, kaç saat darbesinde şifreleme
yapıldığı, programın boyutu ve işlemcinin kapladığı alan ölçülmüştür. Bundan sonra
program SPIKE RISC-V simülatörü ile hangi operasyonun en çok kullanıldığı tespit
edilmiştir. Simülasyon sonucunda en çok s-box ve döndürme operasyonlarının
kullanıldığı gözlenmiştir. Bu iki operasyon Verilog donanım tanımlama dilinde
tasarlanıp Ibex’in aritmetik lojik birimine dahil edilmiştir. Bunun yanında eklenen
komutları çağırmak için derleyici düzenlenmiş, ASCON programı inline assembly
yöntemiyle tekrar yazılmıştır. Son olarak, program tekrar derlenip komut seti
genişletilmiş işlemcide çalıştırıldı; harcadığı enerji, kaç saat darbesinde şifreleme
yapıldığı, programın boyutu ve işlemcinin kapladığı alan ölçüldü ve daha önceden
alınan ölçümlerle karşılaştırıldı.
Sonuç olarak, eklediğimiz bloklar sayesinde programın performansında gözle görülür
derecede artış gerçeklemiş, işlemcinin kapladığı alan artmış, harcadığı enerji,
program boyutu ve şifreleme süresinde azalma gözlenmiştir.

15

 INTRODUCTION

Usage of constrained devices such as RFID (Radio-Frequency Identification) tags,

sensors, microcontrollers, and smart cards is increasing every year. This situation

brings new security concerns. However, applying cryptographic algorithms is

challenging because conventional cryptographic algorithms are not suitable for

constrained devices. The algorithms are optimized for systems with high computing

power like desktop and server environments. If the conventional algorithms run on

constrained devices, they work in low performance. So, lightweight cryptography has

emerged [1]. NIST (National Institute of Standards and Technology) started to

research standardization of lightweight cryptographic algorithms in 2013 due to the

insufficiency of current NIST-approved cryptographic standards. In 2018, they

opened a competition for adding a public comment to the standardization process [2].

ASCON is one of the competitor algorithms and finalists. ASCON is chosen for the

project because most of its operations can be implemented on FPGA easily due to the

behaviour of the operations [3]. Speed is the most important thing about lightweight

cryptography. There are several ways to speed up the process. The first of them is the

optimization of the algorithm, but it’s not feasible and an easy way to do it. Another

of them is using a more powerful processor. However, the processor requires a wider

area and more power consumption if its computing power gets higher. For this

environment, an application-specific processor is a more appropriate way. A RISC-V

16

based core, Ibex is selected to implement the algorithm because Ibex is a fast and

small open-source processor and supports I, M and C extensions[7].

The project aims to increase the performance of the algorithm by extending the

instruction set architecture of Ibex core.

 RISC-V

RISC-V is an open-source Instruction Set Architecture (ISA) that uses RISC

principles. It is configured as a small base ISA with various optional extensions. The

basic ISA is very simple, making RISC-V suitable for research and education, yet

complete enough to be an ISA suitable for inexpensive, low-power embedded

devices [4]. To understand RISC-V ISA, first of all, it is necessary to examine and

explain the RISC and CISC principles and the concept of ISA.

1.1.1 RISC and CISC

The Reduced Instruction Set Computer (RISC) is a type of processor architecture with

a small, highly optimized instruction set rather than the more specialized sets often

found in other types of architecture such as the Complex Instruction Set Computer

(CISC). To briefly consider the difference between them, CISC processors may use

more than one clock cycle to execute an instruction. On the other hand, in RISC, all

commands are finished in 1 cycle. If we consider the multiplication process to better

explain this difference, in CISC this process is completed in 1 clock cycle, while in

RISC, 4 clock cycles are required to perform this operation.

1.1.2 RISC-V ISA

RISC-V includes 6 different base instruction formats. These are R-type, I-type, S-

type, B-type, U-type, and J-type instruction formats. In this notation, rs1 and rs2 are

the addresses of the source registers, and rd is the destination register address, which

is 5 bits long for a 32-bit base ISA. The instruction formats are shown in Figure 1.1.

17

Figure 1.1: Base instruction formats of 32-bit RISC-V ISA[5]

RISC-V ISA contains some special and some general-purpose registers. The naming

and usage purposes of these registers are given in Figure 1.2.

Figure 1.2: Registers of RISC-V ISA[6]

x0 (zero) - Hardwired zero: A zero register refers to a special-purpose register that

is hardwired to the integer constant 0.

x1 (ra) - Return address: ra holds the return address. This is a memory value in the

code region.

18

x2 (sp) - Stack pointer: The register that holds the address for the stack is called a

stack pointer (SP) because its value always points to the top of the stack. Push and pop

operations are implemented by decrementing or incrementing the stack pointer.

x3 (gp) - Global pointer: Enables fast access to global (static) data structures. gp is

initialized early in the program and never changed.

x4 (tp) - Thread pointer: Enables access to thread-specific data in multi-threaded

applications. tp is typically initialized early in the execution of a new thread and never

changed.

x8 (s0/fp) - Frame pointer: The frame pointer points to the base of the stack frame.

x5-x7 and x28-x31(t0-t6) - Temporary registers: Holds temporary values that do not

persist after function calls.

x9 and x18-x27 (s1-s11) - Saved registers: Holds values that persist after function

calls.

x10-x11 (a0-a1) - Function arguments/Return values: Holds the first two arguments

to the function or the return values.

x12-17 (a2-a7) - Function arguments: Holds any remaining arguments.

 Ibex Core

Ibex is an open-source 32-bit RISC-V core that supports I, M, and C extensions. It is

written in SystemVerilog and consists of parametrizable blocks. Also, it is suitable for

embedded control applications[7]. The architecture of Ibex core is shown in Figure

1.3.

19

Figure 1.3: Architecture of Ibex with a 2-stage pipeline.

 Ascon Algorithms

ASCON is a family of cryptographic algorithms which consist of authenticated

encryption and hashing. It is designed to be lightweight and easy to implement on

constraint devices with countermeasures for side-channel attacks. Also, it is selected

for the final portfolio of the CAESAR competition, and a finalist competitor in the

ongoing NIST Lightweight Cryptography competition. [3]

In authenticated encryption, there are encryption and decryption algorithms. The

encryption algorithm gets a maximum 160-bit key (K), 128-bit nonce (N), and

associated data (A) of arbitrary length to encrypt plaintext (P) of arbitrary length and

produce ciphertext (C) of the same length as plaintext and 128-bit tag (T). Decryption

algorithm gets key, nonce, associated data, ciphertext, and tag, which are the same

length as that used in encryption, to decrypt the ciphertext and produce plaintext or a

verification tag (⊥) if the verification of tag fails. Encryption and decryption

algorithms can be seen in Figure 1a and 1b, respectively. In Figure 1, k is the length

of the key, r is data block size, and a and b are internal round numbers. [3]

20

Figure 1.4: ASCON authenticated encryption and decryption algorithms

The hashing algorithm will not be mentioned in the report, because it will not be

implemented to Ibex.

1.3.1 Encryption algorithm

ASCON encryption algorithm consists of four stages: Initialization, processing

associated data, processing plaintext, and finalization. [3]

Initialization

In this stage, the initialization vector (IV) and 320-bit state of the sponge construction

(S) are created. IV is created with the concatenation of k, r, a, b and zeroes:

𝐼𝑉 ← 𝑘 || 𝑟 || 𝑎 || 𝑏 || 0() [3]

S is created by concatenating the key (K) and the nonce (N) with IV:

𝑆 ← 𝐼𝑉 || 𝐾 || 𝑁 [3]

Finally, a rounds of the round transformation p are applied to the initial state (S), S is

XORed with the key (K) and the result is assigned to S:

𝑆 ← 𝑝 (𝑆) ⊕ (0 || 𝐾) [3]

Processing of associated data

21

Firstly, padding is applied to associated data by separating it into blocks of r bits. A

single 1 and zeroes are appended to data to obtain a multiple of r bits, and the data are

split to s blocks of r bits:

𝐴 , . . . , 𝐴 ← 𝑟 − 𝑏𝑖𝑡𝑏𝑙𝑜𝑐𝑘𝑠𝑜𝑓𝐴 || 1 || 0 (| |) [3]

Each block of Ai (i = 1, …, s), are XORed with the most significant r-bits of state (S),

and are applied b rounds of round permutation pb:

𝑆 ← 𝑝 (𝑆 ⊕ 𝐴)|| 𝑆 [3]

Also, padding is optional. If associated data is zero, nothing will be appended to the

data and the data will not be split.

Finally, state (S) is XORed with a single 1 and 319 zeros, and assigned to the S:

𝑆 ← 𝑆 ⊕ (0 || 1) [3]

Processing plaintext

Firstly, padding is applied to plaintext in the same steps as did while processing

associated data and the result is split t blocks of r bits:

𝑃 , . . . , 𝑃 ← 𝑟 − 𝑏𝑖𝑡𝑏𝑙𝑜𝑐𝑘𝑠𝑜𝑓𝑃|| 1 || 0 (| |) [3]

In every iteration, one Pi block (i = 1, .., t) is XORed with the most significant r bits

of state (Sr) and the result is assigned to ciphertext block Ci. After that, the least

22

significant c bits of S (Sc) are appended to Ci, and b rounds of round permutation are

applied to them. The result is assigned to S:

𝐶 ← 𝑆 ⊕ 𝑃 [3]

𝑆 ← 𝑝 (𝐶 || 𝑆) [3]

However, in the last iteration, after appending Ci to Sc, the result will be assigned to

S without applying the round permutation:

𝑆 ← 𝐶 ||𝑆 [3]

Finally, the last ciphertext block Ct shortened to the length of the unpadded last

plaintext block by eliminating its the most significant |Ct|-r+1 bits:

𝐶 ← 𝐶 (𝑟 − 1)𝐶 (𝑟 − 2). . . 𝐶 [3]

Finalization

In the last stage, the key (K) is XORed with the state (S) and a rounds of round

permutation is applied to the result:

𝑆 ← 𝑝 𝑆 ⊕ (0 || 𝐾 || 0) [3]

The tag T is the result of XORing the least significant 128 bits of the state (S) and the

last 128 bits of the key (K):

𝑇 ← 𝑆 ⊕ 𝐾 [3]

1.3.2 Decryption algorithm

The decryption algorithm consists of four stages: Initialization, processing of

associated data, processing ciphertext, and finalization. The first two stages are the

same as the first two stages in the encryption, but the last two steps are different.

23

1.3.2.1 Processing plaintext

Firstly, the ciphertext is split t blocks of r bits:

𝐶 , . . . , 𝐶 ← 𝑟 − 𝑏𝑖𝑡 𝑏𝑙𝑜𝑐𝑘𝑠 𝑜𝑓 𝐶 [3]

In every iteration, one Ci block (i = 1, .., t) is XORed with the most significant r bits

of state (Sr) and the result is assigned to ciphertext block Pi. After that, the least

significant c bits of S (Sc) appended to Ci and b rounds of round permutation are

applied to them. The result is assigned to S:

𝑃 ← 𝑆 ⊕ 𝐶 [3]

𝑆 ← 𝑝 (𝐶 ||𝑆) [3]

In the last iteration, shortened the last ciphertext block with l (0 ≤ l < r) is XORed

with the most significant r bits of Sr, the result assigned to Pt and state (S) is updated:

𝑃 ← 𝑆 ⊕ 𝐶 [3]

𝑆 ← 𝑆 ⊕ (𝑃 || 1 || 0) || 𝑆 [3]

1.3.2.2 Finalization

The steps of the final stage are the same as encryption. However, plaintext is only

produced when the received tag value is equal to the produced tag value.

1.3.3 Permutation

The round permutation is a function that is used in the algorithms multiple times. It

gets 320-bit state (S) as input parameter and splits five equal 64-bit registers:

𝑆 = 𝑥 || 𝑥 || 𝑥 || 𝑥 || 𝑥 [3]

It consists of three stages: Addition of constants, substitution layer, linear diffusion

layer.

1.3.2.1 Addition of constants

24

In this stage, a constant value is XORed with the x2 register and assigned to the x2.

The constant value gets different values in different a and b values. [3] The values can

be seen in Figure 1.5.

𝑥 ← 𝑥 ⊕ 𝑐 [3]

Figure 1.5: Constant values. [3]

1.3.2.2 Substitution layer

In this stage, state (S) splits into 64 pieces that are 5 bits long, and the pieces are

updated with the s-box function [3]. The slicing of the five registers can be seen in

Figure 1.6.

Figure 1.6: Slicing of the five registers in the substitution layer. [3]

S-box function can be seen in Table 3. However, implementing the layer in

processors can be hard due to parallel operations. An alternative way to implement

the layer can be seen in Figure 1.8.

Figure 1.7: Inputs and outputs of S-box function [3]

25

Figure 1.8: Alternative way to implement substitution layer [3]

1.3.2.3 Linear diffusion layer

The linear diffusion layer updates every register xi differently. Operations of the layers

can be seen in Figure 1.9.

Figure 1.9: Operations of linear diffusion layer [3]

26

 SETTING UP AND TESTING THE TOOLS

 RISC-V GNU Compiler Installation

To run the ASCON algorithm on the Ibex, the C code of the algorithm had to be

compiled and the memory file that contains instructions machine code had to be

created. Therefore, firstly the RISC-V GNU Compiler was installed.

For installation, it is necessary to download some packages to the computer first and

if not, git must be installed for download from Github. After doing this, the RISC-V

GNU Toolchain is installed by following the commands below:

 git clone https://github.com/riscv/riscv-gnu-toolchain

 sudo apt-get install autoconf automake autotools-dev curl python3

libmpc-dev libmpfr-dev libgmp-dev gawk build-essential bison flex

texinfo gperf libtool patchutils bc zlib1g-dev libexpat-dev

 ./configure --prefix=/opt/riscv

 make

By default, the build targets the RV64GC. To create the RV32GC toolchain, use the

commands below:

 ./configure --prefix=/opt/riscv --with-arch=rv32gc --with-abi=ilp32d

 make linux

The 32-bit RISC-V GNU Toolchain is installed, thus moving on to the next stage and

a sample C program is run and the Compiler and Ibex are tested for it is working

correctly.

 Running A Sample Program

 Before trying to run the ASCON algorithm, we wanted to make sure everything was

working correctly by compiling a simple C code and running it on Ibex. For this, a

code in the form of a + b = c was written, and it was run on Ibex by making

necessary operations.

27

Figure 2.1: Simple C Program

To create the memory file and other necessary files, Makefile should be used by

typing the following basic command in the terminal:

 make

To make a new compilation process, it is necessary to delete the previously created

and unnecessary files. For this, the following command should be used:

 make distclean

From the simulation results, the result of the summation was seen as correct and thus

it was concluded that the conditions were ready to move on to the next stage.

Figure 2.2: Simulation Results of Simple C Program

28

 RUNNING AND PROFILING ASCON ALGORITHMS ON IBEX

 Running ASCON Encryption Algorithm

After running a sample program on Ibex, software implementation of the ASCON

encryption algorithm is run on Ibex. The source files can be found in the official

Github repository of ASCON. Main.c, round.c and encrypt.c compiled in RV32I

instruction set by using RISC-V GNU Toolchain to run on Ibex.

The software implementation is done according to recommended ASCON128a

parameters. The parameters can be seen in Figure 3.1.

Figure 3.1: Recommended parameters for the implementation of ASCON [3]

Input parameters of the encryption function can be seen in Figure 3.2.

Figure 3.2: Input parameters of the encryption function

Outputs of the encryption function, ciphertext and tag can be seen in Figure 3.3. The

outputs are written in hexadecimal radix to identify in simulation easily.

Figure 3.3: Outputs of the encryption function

The simulation results can be seen in Appendicies. Figure A.1a and A.1b show

ciphertext which was written to the memory, Figure A.1c and A.1d show the tag

which was written to the memory. LED1 signal shows the data which is written to

29

memory or read from memory. The tag and the ciphertext are produced and written

to memory successfully in 66952 clock cycles.

 Running ASCON Decryption Algorithm

After running an encryption algorithm on Ibex, software implementation of ASCON

decryption algorithm is run on Ibex. The compilation was done similarly to

encryption and main.c and decrypt.c compiled to run on Ibex. Their codes can be

found in Appendices.

Output of the decryption function, plaintext can be seen in Figure 3.4. The output is

written in hexadecimal radix to identify in simulation easily.

Figure 3.4: Output of the decryption function

Figure B.1a and b shows that the plaintext were produced and written to memory

successfully in 66198 clock cycles.

 Deciding the Most Frequent Function

C code of the encryption algorithm is profiled by using SPIKE RISC-V ISA

Simulator and RV32I instruction set. The decryption algorithm did not profile

because it is mostly the same as the encryption algorithm.

Five optimization flags are used in profiling and they are named -O0, -O1, -O2, -O3,

and -Os. The compiler makes no optimization on the code with the -O0 flag. -O1 flag

makes optimization on code size and execution time for small functions. -O2 makes

all supported optimization for the code but does not change the space-speed balance.

-O3 does the same optimizations as -O2 and does more optimizations than it. -Os

optimizes to only reduce the code size. [8]

30

Profiling results about the round permutation block which is the most used can be

seen in Figure 3.5. Figure 3.5 states that the linear layer and the substitution layer are

the most time-consuming functions. [8]

Figure 3.5: Profiling results of the round permutation in all optimization flags. [8]

So, s-box and round functions must be designed as a custom module for the ALU.

3.3.1 Round function

One of the most frequent functions is the ROTR32 function. It gets two parameters:

32-bit shifting amount and 32-bit number to shift. It shifts all bits of the number right

as shifting amount and fills vacant bits with the least significant bits. In the

testbench, 3 different numbers shifted 3 different amounts. Simulation results can be

seen in Figure 3.6.

Figure 3.6: Simulation results of the testbench.

RTL schematic of the module, the Verilog implementation and testbench for the

implementation can be found in Appendix.

3.3.2 S-box function

The other most frequent function is the s-box function. The custom module for the S-

box function can be seen in Figure 3.7.

31

Figure 3.7: The custom module for the s-box [8]

Two arrays are named even and odd states in the software implementation of the

ASCON algorithm. The custom module takes one of them as the first operand. The

second operand is not used and the output is always zero. The module takes the

address of the first element of the input array and holds it. After that, it loads all

elements of the array to the module by using the direct memory access to the block

RAM and makes the s-box computations that are shown in Figure 1.8. Finally, it

loads the outputs of the function to the input array. Verilog implementation of s-box

module is given in Appendicies.

32

 INSTRUCTION SET EXTENSION OF IBEX

 Changes in Software

While adding the instructions, the compiler is modified to detect them. The functions

are named cust0 and cust2 in the compiler for simplicity.

There are two files named risc-v-opc.c and risc-v-opc.h that contain instruction

templates in the riscv-gnu-compiler folder. Risc-v-opc.c and risc-v-opc.h files must

be modified to add instructions. risc-v-opc.c file contains the list of opcodes and their

properties. The template and properties of new instructions will be written into the

riscv_opcodes array in the file.

risc-v-opc.h contains definitions for risc-v-opc.c file. The MATCH and MASK

values are defined and associated with the instruction in the file. Association of

MATCH and MASK values with the instruction is done with the DECLARE_INS

function. After the modifications, generated compiler files must be deleted and the

compiler must be reinstalled. The template of cust0 instruction can be seen in Figure

4.1.

Figure 4.1: The cust1 instruction template in risc-v-opc.c

There are 8 arguments to define instructions in the compiler. The first one is the

instruction name. The second one is the requirement of XLEN (width of the integer

register size in bits) for the instruction, cust0 is 32-bit, so it is declared as zero. The

third one is the class of the instruction, it can be I, M, or C. Cust0 is an instruction

in the I class. The fourth one describes the arguments of the instruction, the new

instruction is R-type instructions, so their operands are “d,s,t” in which d is for

destination register, and s and t are for source operands. The fifth, sixth and seventh

arguments are for decoding the instruction. If ANDing of the incoming instruction

word and the MASK_CUST0 is matched with MATCH_CUST0, the compiler will

recognize the instruction as cust0. So, the MATCH value must be unique to

differentiate from the other instructions.

risc-v-opc.h contains definitions for risc-v-opc.c file. The MATCH and MASK

values are defined and associated with the instruction in the file. Association of

33

MATCH and MASK values with the instruction is done with the DECLARE_INSN

function. Added lines in risc-v-opc.h can be seen in Figure 4.2 and 4.3.

Figure 4.2: MATCH and MASK values for custom instruction.

Figure 4.3: Added DECLARE_INS lines.

After the modifications, generated compiler files must be deleted, and the compiler

must be reinstalled:

 sudo make distclean

 ./configure --prefix=/opt/riscv --with-arch=rv32imc

 sudo make

Also, inline assembly statements are added to the ASCON source files to call added

custom instructions. Inline assembly is a method to call low-level language

statements in a script that is written in a high-level language [9]. Using inline

assembly increases optimization, decreases function-call overhead, and allows to use

of CPU-specific instructions. However, inline assembly makes the maintenance and

the readability of the code harder. The code with inline assembly cannot be cross-

platform because the used instructions can be CPU-specific, and they cannot run on

the other platforms. Any compiler can handle the inline assembly differently and this

can cause a decrease in performance.

The inline assembly statement to call cust2 is shown in Figure 4.4. asm means

“assembly” and volatile indicates that optimization will not be applied to this

statement. “"cust2 %[result0], %[value1], %[value2]\n\t": [result0] "=r" (r0) :

[value1] "r" (&s_e[0]) , [value2] "r" (1)” is the assembly code to call cust2. result0

34

is the placeholder for the destination register, value1 and value2 are placeholders for

the operands. r indicates the operand is a register, = in =r indicates the result will be

overwritten to an existing value. The contents inside of the parentheses are operands

of the instruction.

Figure 4.4: The inline assembly statement to call cust2.

 Changes in Hardware

Modifications in processor architecture are done in the decoder and the ALU while

adding the round module. The round function is a single cycle operation, so it can

be instantiated in parallel to the other ALU operations as AND, OR, and XOR. The

decoder must be modified to recognize the round instruction. So, a new case was

added to the case structure in the OPCODE_OP case. The new case is shown in

Figure 4.5.

Figure 4.5: Modified case structure of ALU operations.

The round function is instantiated in the ALU module. operand_a_i and

operand_b_i are the inputs, cust0_result is the output of the custom module. Also,

the result mux is modified to conduct the result of the custom module. Modified

result mux can be seen in Figure 4.6.

35

Figure 4.6: Modified result mux.

The s-box module is instantiated in the execution stage, in parallel to the

multiplication module because it does a multi-cycle operation. Appropriate input

and output signals are created to operate the module in the execution. The inputs

and outputs of the stage are changed to control the block RAM and get data from

the other modules. The decoder and controller in the instruction decode stage are

also modified. A new case for the custom instruction is added to the decoder to

enable the custom module and the register file. The new case is shown in Figure

4.7. An output signal is added to the controller to stall the processor while waiting

to finish multi-cycle operations.

36

Figure 4.7: Newly added case for opcode case structure.

The core will continue to operate when the operation of the custom module is

finished. If the core did not enter a waiting state, it can produce wrong results. The

source operand and enable output signals from the ID stage are connected to

source operands and enable input signals of the EX stage in the ibex_core module.

The RAM data, the RAM address and the enable signals are added as inputs and

outputs of the core module to communicate with the RAM. The new core signals

are connected to the block RAM in the top module.

 TIMING AND PERFORMANCE ANALYSIS

After modifying the core, the compiler and the source codes, the encryption and the

decryption algorithms are run on the core and the operations are validated by

comparing each other. In this section, the implementation of ASCON algorithms

with and without custom instruction are compared.

 Area Comparison

The area measurement is made by implementing unmodified and modified Ibex core

and comparing the utilization reports of them. Areas covered by unmodified and

modified Ibex is shown in Table 5.1. The amount of FFs and LUTs are increased by

37

1.94% and 18.97% respectively because s-box and ROTR32 modules are added to

the processor.

Table 5.1: The area comparison

 Unmodified Modified Change
LUT 2977 3542 +18.97%
FF 1955 1993 +1.94

 Instruction Memory Size Comparison

Instruction memory sizes are compared by examining the number of lines in the

generated vmem files. The comparison is shown in Table 5.2. The program with

custom instruction has a smaller number of lines than the other one since the round

function without custom instruction is 216 instructions and the same function with

custom instruction is 59 instructions.

Table 5.2: The instruction memory size comparison

 Unmodified Modified Change
Lines 4251 4153 -2.3%

 Execution time comparison

Execution times of the programs are measured by measuring the execution of the

main function takes how many clock cycles in the behavioural simulation of XSim.

The comparison between the two programs is shown in Table 5.3. The program with

custom instructions takes less time to complete because the instruction memory size

of the program with custom instructions is smaller and the custom module operations

take less time than the ALU operations.

Table 5.3: Execution time comparison

 Unmodified Modified Change
Clock cycle 133150 92830 -30.2%

38

 Average energy consumption

SAIF file is needed to measure the average energy consumption in the processor, and

it is generated after running a post-implementation timing simulation. SAIF

(Switching Activity Interchange Format) contains information about static

probability and toggle rates of the nets [10]. Static probability is the fraction of time

that the signal is HIGH on the net through the system operation [11]. The power

report for the processor is generated by using the SAIF file in Vivado and dynamic

power can be learned with power reports. Average energy consumption is the

multiplication of the execution time, the clock frequency, and the dynamic power of

the processor. The average energy consumption comparison of the program with and

without custom instructions is shown in Table 5.4. The program with custom

instructions consumes less energy than the program without custom instructions

because the execution time is shorter than the other program. So, switching activity

and the energy consumption is lesser too.

Table 5.4: Average energy consumption comparison

 Unmodified Modified Change
Average

dynamic power
[W]

0.228 0.196 -14.03%

Minimum clock
period [ns]

7.859 7.645 -2,72%

Average energy
consumption

[mJ]
0.239 0.139 -41.84%

39

 REALISTIC CONSTRAINTS AND CONCLUSIONS

Lightweight cryptography is an important field for security at a time when the usage

of constrained devices is increasing. ASCON is one of the lightweight cryptography

algorithms and is close to being a standard for LWC. It is a fast and efficient

algorithm even in its software implementation and it can be more resourceful with

instruction set extension. To show it, the C program for ASCON is firstly compiled

and run on Ibex core. After observing the whole program running on the core,

profiling of the program is made, and the most frequent operations are decided.

Then, equivalent modules are designed in Verilog language and instantiated into the

core. Finally, the execution time, the average energy consumption, the instruction

memory size, and the area usage are measured and compared. According to the

results, the area usage increased but the execution time, the average energy

consumption, and the instruction memory size is decreased. Therefore, the ISA

extension has increased the performance of the algorithm.

 Practical Application of this Project

The project is appliable for fields where security is important and constrained

devices are used like healthcare, IoT, and cyber-physical systems.

 Realistic Constraints

The used sources and tools are open-source and free. So, examining, designing, and

debugging with the sources makes the projects cost-effective but these sources are

new, there is not enough documentation for them. Using them sometimes can be

time-consuming.

 Social, environmental, and economic impact

In the 21st century, more information is shared than ever in history. Information

security is more important, and leakage of data is more vital. So, every secret must

40

be encrypted and protected properly. It is of utmost importance to design equipment

that will ensure this healthy and secure sharing environment and implement crypto

protocols. The fast and efficient design of this equipment will make information

sharing safer.

 Cost analysis

Personal computers, open-source tools, open-source designs and Vivado WebPACK

are used during the project. So, there is no cost in the project.

 Standards

The modified core itself will be following RISC-V ISA standards and hardware

implementation will be following IEEE standards. ASCON algorithm is under

development of standardization.

 Health and safety concerns

There are no health and safety concerns about the project because the project is

designed and tested on simulation programs.

 Future Work and Recommendations

The aim for future projects can be implementing a communication module for

communication with different cores and testing the core easily. Another project can

be modifying the GCC for custom functions without the need for inline assembly

because using inline assembly decreases the readability of the code and inhibits the

optimization of assembly code. Thus, the instruction memory size and the execution

time would be decreased.

41

REFERENCES

[1] K. McKay, L. Bassham, M. Turan Sönmez, and N. Mouha. “Report on
lightweight cryptography”, National Institute of Standards and
Technology, Maryland, Washington, D.C., USA, NIST Internal or
Interagency Report (NISTIR) no. 8114, Mar. 2017.

[2] M. Sonmez Turan, K. A. McKay, C. Calik, D. H. Chang and L. E. Bassham,
“Status Report on the First Round of the NIST Lightweight
Cryptography Standardization Process”, National Institute of Standards
and Technology, Maryland, Washington, D.C., USA, NIST
Interagency/Internal Report (NISTIR) no. 8268, Oct. 7, 2019.

[3] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, “Ascon v1.2
Submission to NIST”, 2019. Accessed: Jun 14. 2022. [Online].
Available: https://ascon.iaik.tugraz.at/files/asconv12-nist.pdf

[4] A.S. Waterman (2016). “Design of the RISC-V instruction set architecture” Ph.D.
dissertation, Dept. Elect. Eng. and Comp. Sci. Univ. of California,
Berkeley, CA, USA, 2016.

[5] A. Waterman, Y. Lee, D.A. Patterson, and K. Asanović, “The RISC-V
Instruction Set Manual, Volume I: User-Level ISA, Document Version
20191213”, 2019. Accessed: Jun 10. 2022. [Online]. Available:
https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf

[6] A. Waterman, Y. Lee, D.A. Patterson, and K. Asanović, “The RISC-V
Instruction Set Manual, Volume I: User-Level ISA, Document Version
2.1”, 2016. Accessed: Jun 9. 2022. [Online]. Available:
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-
118.pdf

[7] Ibex Documentation, lowRISC, Jun. 14 2022, https://ibexcore.readthedocs.io/

/downloads/en/latest/pdf/.

[8] Ö. Altınay and B. Örs, "Instruction Extension of RV32I and GCC Back End for
Ascon Lightweight Cryptography Algorithm," 2021 IEEE
International Conference on Omni-Layer Intelligent Systems (COINS),
2021, pp. 1-6, doi: 10.1109/COINS51742.2021.9524190.

[9] Gcc.gnu.org. 2022. DontUseInlineAsm - GCC Wiki. [online] Available at:
<https://gcc.gnu.org/wiki/DontUseInlineAsm> [Accessed 14 January
2022].

[10] Synopsys.com. 2022. Power Profile from RTL to Gate-level Implementation |IP|
Synopsys. [online] Available at:
<https://www.synopsys.com/designware-ip/technical-
bulletin/understanding-power-profile.html> [Accessed 10 January
2022].

42

[11] Intel® Quartus® Prime Pro Edition User Guide: Power Analysis and
Optimization (2021). Accessed: Jan. 11, 2022. [Online]. Available:
https://d2pgu9s4sfmw1s.cloudfront.net/DITA-technical-
publications/PROD/PSG/ug-qpp-power-683174-709286.pdf

43

APPENDICES

APPENDIX A: Simulation results of the encryption algorithm that run on Ibex
APPENDIX B: Simulation results of the decryption algorithm that run on Ibex
APPENDIX C: Verilog implementation of ROTR32 function
APPENDIX D: Testbench for Verilog implementation of ROTR32 function
APPENDIX E: Verilog implementation of s-box operation
APPENDIX F: RTL schematics of the modified processor

44

APPENDIX A

(a)

(b)

(c)

(d)

Figure A.1: Simulation results of the encryption algorithm that run on Ibex

45

APPENDIX B

(a)

(b)

Figure B.1: Simulation results of the decryption algorithm that run on Ibex

46

APPENDIX C

module ROTR32(

input [31:0] x, n,

output [31:0] result

);

 assign result = (((x) >> (n)) | ((x) << (32 - (n))));

endmodule

47

APPENDIX D

module tb_rotr32;

reg [31:0] x,n;

wire [31:0] result;

ROTR32 dut (x,n,result);

initial begin

 x = 32'hcf655448;

 n = 32'h4;

 #10;

 x = 32'hfbc6a7d2;

 n = 32'h3;

 #10;

 x = 32'he2e6add7;

 n = 32'h8;

 #10;

end

endmodule

48

APPENDIX E

module sboxExtension(

 input logic enable, clock,

 input logic [31:0] op_a_i, op_b_i, ram_data_i,

 output logic write_enable, done,

 output logic [31:0] ram_addr_o, ram_data_o, result

);

 logic [31:0] sbox_in [5:0];

 logic [31:0] sbox_out [4:0];

 logic [3:0] state;

 logic [3:0] nextState;

 logic [31:0] address = 0;

 integer count = 0;

 sbox_primitive sp01 (.x0(sbox_in[1]),.x1(sbox_in[2]),

.x2(sbox_in[3]),.x3(sbox_in[4]),.x4(sbox_in[5]),.x0_o(sbox_out

49

[0]),.x1_o(sbox_out[1]),.x2_o(sbox_out[2]),.x3_o(sbox_out[3]),

.x4_o(sbox_out[4]));

 always @(posedge clock) begin

 state <= nextState;

 case (state)

 1,3: begin

 count <= count + 1;

 end

 default: begin

 count <= 0;

 end

 endcase

 end

 always @(*) begin

 case (state)

 0: begin

 address <= op_a_i;

50

 write_enable <= 0;

 ram_addr_o <= 0;

 ram_data_o <= 0;

 result <= 0;

 done <= 0;

 if (enable)

 nextState <= 1;

 else

 nextState <= 0;

 end

 1: begin

 write_enable <= 0;

 ram_data_o <= 0;

 result <= 0;

 done <= 0;

51

 if (count < 2) begin

 ram_addr_o <= 0;

 nextState <= 1;

 end

 else if (count < 8) begin

 ram_addr_o <= address + (count-2)*4;

 sbox_in[count-2] <= ram_data_i;

 nextState <= 1;

 end

 else begin

 nextState <= 2;

 end

 end

 2:begin

 write_enable <= 0;

 ram_addr_o <= 0;

52

 ram_data_o <= 0;

 result <= 0;

 done <= 0;

 nextState <= 3;

 end

 3: begin

 write_enable <= 1;

 result <= 0;

 if (count < 5) begin

 ram_addr_o <= address + count*4;

 ram_data_o <= sbox_out[count];

 nextState <= 3;

 end

 else begin

 done <= 1;

 nextState <= 4;

53

 end

 end

 4: begin

 write_enable <= 0;

 ram_addr_o <= 0;

 ram_data_o <= 0;

 result <= 0;

 nextState <= 5;

 end

 default: begin

 done <= 0;

 write_enable <= 0;

 ram_addr_o <= 0;

 ram_data_o <= 0;

 result <= 0;

 nextState <= 0;

54

 end

 endcase

 end

endmodule

module sbox_primitive

(

 input logic [31:0] x0,x1,x2,x3,x4,

 output logic [31:0] x0_o,x1_o, x2_o, x3_o, x4_o

);

logic [31:0] t0, t1, t2, t3, t4;

logic [31:0] x0_temp, x1_temp, x2_temp, x3_temp, x4_temp;

always @(*) begin

 x0_temp = x0;

 x1_temp = x1;

55

 x2_temp = x2;

 x3_temp = x3;

 x4_temp = x4;

 x0_temp ^= x4_temp;

 x4_temp ^= x3_temp;

 x2_temp ^= x1_temp;

 t0 = x0_temp;

 t1 = x1_temp;

 t2 = x2_temp;

 t3 = x3_temp;

 t4 = x4_temp;

 x0_temp = t0 ^ (~t1 & t2);

 x2_temp = t2 ^ (~t3 & t4);

 x4_temp = t4 ^ (~t0 & t1);

 x1_temp = t1 ^ (~t2 & t3);

56

 x3_temp = t3 ^ (~t4 & t0);

 x1_temp ^= x0_temp;

 x3_temp ^= x2_temp;

 x0_temp ^= x4_temp;

 x0_o = x0_temp;

 x1_o = x1_temp;

 x2_o = x2_temp;

 x3_o = x3_temp;

 x4_o = x4_temp;

end //Always end

endmodule

57

APPENDIX F

u_core

ibex_core

Figure F.1: RTL schematic of the round module.

ibex_ex_block

58

u_core

Figure F.2: RTL schematic of the s-box module.

 result_o0_i

>>>

shift_op_a_320_i

cmp_result0_i

59

u _ c o r e

u_core

Figure F.3: RTL schematic of the ALU.

60

 ibex_core

Figure F.4: RTL schematic of the EX block.

61

Figure F.5: RTL schematic of the core.

62

Figure F.6: RTL schematic of the top module.

mem_write_i

mem_write_i

mem_be_i

mem_be_i

mem_wdata_i

mem_wdata_i

mem_wdata_i

mem_req0_i

data_gnt0_i

mem_req_i

mem_addr_i

mem_addr_i

IO_CLK
IO_RST_N

LED[31:0]

63

CURRICULUM VITAE

Name Surname : Yunus Emre ERYILMAZ

Place and Date of Birth : Kadıköy / 18.09.1999

E-Mail : eryilmazy18@itu.edu.tr

Yunus Emre ERYILMAZ is currently a senior year student at Electronics and
Communication Engineering in Istanbul Technical University. His primary research
areas are digital design, computer architecture, cryptology, and embedded systems.
He completed his internships at Penta Elektronik A.Ş, TÜBİTAK BİLGEM, and
PAVOTEK. He also completed his long-term internship at TÜBİTAK BİLGEM.

