

ISTANBUL TECHNICAL UNIVERSITY

ELECTRICAL-ELECTRONICS FACULTY

SENIOR DESIGN PROJECT

JUNE 2022

EXTENDING THE INSTRUCTION SET OF RISC-V PROCESSOR

 FOR FLOATING-POINT ARITHMETIC

Salih Daysal

Mehmet Emin Tuzcu

ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT

ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT

JUNE 2022

ISTANBUL TECHNICAL UNIVERSITY

ELECTRICAL-ELECTRONICS FACULTY

EXTENDING THE INSTRUCTION SET OF RISC-V PROCESSOR

 FOR FLOATING-POINT ARITHMETIC

SENIOR DESIGN PROJECT

Salih Daysal

 040160256

Mehmet Emin Tuzcu

040170023

Project Advisor: Prof. Dr. Sıddıka Berna Örs Yalçın

İSTANBUL TEKNİK ÜNİVERSİTESİ

ELEKTRİK-ELEKTRONİK FAKÜLTESİ

KAYAN NOKTA ARİTMETİĞİ İÇİN RISC-V İŞLEMCİSİNİN KOMUT

SETİNİ GENİŞLETME

BİTİRME TASARIM PROJESİ

Salih Daysal

 040160256

Mehmet Emin Tuzcu

040170023

 ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

Proje Danışmanı: Prof. Dr. Sıddıka Berna Örs Yalçın

Haziran 2022

iv

Salih Daysal

040160256

We are submitting the Senior Design Project Report entitled as “Extending the Instruction

Set of RISC-V Processor for Floating-Point Arithmetic”. The Senior Design Project

Report has been prepared as to fulfill the relevant regulations of the Electronics and

Communication Engineering Department of Istanbul Technical University. We hereby

confirm that we have realized all stages of the Senior Design Project Interim Report by

ourselves, and we have abided by the ethical rules with respect to academic and

professional integrity .

Mehmet Emin Tuzcu

040170023

v

FOREWORD

We would like to express our gratitude to our advisor Prof. Dr. Sıddıka Berna Örs

Yalçın, who dedicated her time for us and provided all the help she could. We also

acknowledge the support our families gave us; without which we would not succeed.

June 2022 Salih DAYSAl

 Mehmet Emin TUZCU

vi

TABLE OF CONTENTS

 Page

FOREWORD .. v
TABLE OF CONTENTS .. vi
ABBREVIATIONS ... viii
LIST OF TABLES .. ix
LIST OF FIGURES ... x

SUMMARY .. xi
ÖZET .. xiii

 INTRODUCTION .. 15
 About RISC-V and HORNET .. 16

 About IEEE-754 ... 16
 The RISC-V ‘F’ Instruction Set ... 16
1.3.1 Single-precision load and store instructions.. 17
1.3.2 Single-precision floating-point computational instructions 18

1.3.3 Single-precision floating-point conversion and move instructions 19
1.3.4 Single precision floating-Point compare instructions 20
1.3.5 Single-precision ploating-point classify instruction 20
 Multiplication ... 21

 Division .. 21
 Square Root .. 21

 BACKGROUND INFORMATION .. 22
 Floating-Point Numbers ... 22
 Exceptions .. 23

 Rounding .. 24

 LITERATURE REVIEW .. 25
 DESIGN AND IMPLEMENTATION OF THE ‘F’ INSTRUCTION SET 27

 Implementation of Load/Store Instructions .. 27

4.1.1 Reorganize control .. 27
4.1.2 Verification of the implementation ... 28
 Floating-Point Computational Instructions .. 30

4.2.1 Decoding of operands for computational instructions 30
4.2.1.1 Implementation of decoder ... 31

4.2.2 Floating point addition and substraction ... 31
4.2.2.1 Designing the algorithm ... 32
4.2.2.2 Verification of the implementation .. 33

4.2.2.3 Verification on HORNET .. 34

4.2.3 Floating-point multiplication .. 35
4.2.3.1 Multiplication of significands .. 36
4.2.3.2 The multiplication algorithm .. 36

4.2.3.3 Normalization of Significands ... 37
4.2.3.4 Rounding logic for multiplication .. 38
4.2.3.5 Testing the floating-point multiplication circuit 39

4.2.4 Floating-Point Division ... 39
4.2.4.1 Division of Significands ... 40

4.2.5 Floating point square root ... 41
4.2.5.1 Square Root of Binary Numbers .. 41

vii

4.2.5.2 Mathematical expression of binary square rooting operation 42

4.2.5.3 Square root of significand .. 43
4.2.6 Control unit ... 44
4.2.7 The Floating-Point Muldivsqrt Circuit ... 46

4.2.7.1 Datapath ... 46
 Implementation of Conversion , Move and Compare Instructions 48
4.3.1 Conversion instructions ... 48

4.3.1.1 Integer-To-Float Conversion .. 48
4.3.1.2 Float-to-Integer Conversion ... 49

4.3.2 Sign Injections ... 50
4.3.3 Move instructions .. 51
4.3.4 Compare instructions .. 51

 TESTING THE FPU DESIGN ... 52
 Compiling a RISC-V Program ... 53

 Test Program .. 53

 REALISTIC CONSTRAINTS AND CONCLUSIONS 56
 Practical Application of this Project ... 56
 Realistic Constraints ... 56
6.2.1 Social, environmental and economic impact .. 56
6.2.2 Cost analysis ... 56

6.2.3 Standards ... 56
6.2.4 Health and safety concerns ... 56

 Future Work and Recommendations .. 57

 REFERENCES ... 58

viii

ABBREVIATIONS

ISA : Instruction Set Architecture

ALU : Arithmetic Logic Unit

DIV : Division

CPU : Central Processing Unit

RISC : Reduced Instruction Set Computer

HDL : Hardware Description Language

SQRT: Square Root

ASM : Algorithmic State Machine

MSB : Most-significant bit

LSB : Least-significant bit

ix

LIST OF TABLES

Page

Table 1.1 : Instructions of ‘F’ Standard Extension. .. 17
Table 1.2 : Single precison floating point load instruction. 18

Table 1.3 : Single-precison floating-point store instruction. 18
Table 1.4 : Single-precison floating-point computational instructions. 18
Table 1.5 : Single-precison floating-point conversion instructions. 19
Table 1.6 : Single Precison Floating Point sign injection Instructions. 19

Table 1.7 : Single Precison Floating Point move Instructions. 19
Table 1.8 : Single Precision Floating-Point Compare Instructions. 20
Table 1.9 : Classification Mask of floanting-point numbers. 20
Table 1.10 : Single-precision floating-point classify instruction. 20

Table 2.1 : Binary encoding for Floating-Point Datum .. 23
Table 2.2 : Exceptions in IEEE 754 standard .. 24

Table 2.3 : Rounding mode table. ... 25

Table 4.1 : Single-precison floating-point store instruction. 27
Table 4.2 : Single precison floating point load instruction. 27

Table 4.3 : Truth table of partial root and related square root bit. 42
Table 4.4 : Special cases for conversion instructions .. 48

x

LIST OF FIGURES

 Page

Figure 2. 1 : 32-bit representation of floating-point numbers. 22

Figure 4. 1 : Block diagram of reorganized design of registers. 27
Figure 4. 2 : Code section modified in the design file for data selection 28
Figure 4. 3 : C code of test program. .. 29

Figure 4. 4 : Values on FP registers. ... 29
Figure 4. 5 : Value on memory. ... 29
Figure 4. 6 : Floating point adding algorithm. .. 32
Figure 4. 7 : Test bench of adder/subtracter ... 33

Figure 4. 8 : Simulation results on Vivado. .. 33
Figure 4. 9 : Matlab code of random FP number generator. 34

Figure 4. 10 : Control Signals for FADD/FSUB. ... 35
Figure 4. 11 : Example C code for FADD and FSUB instructions. 35
Figure 4. 12 : Simulation results on HORNET for FADD/FSUB instructions. .. 35

Figure 4. 13 : Flowchart of floating-point multiplication. 36

Figure 4. 14 : Pseudo code of Multiplication Normalizer. 38

Figure 4. 15 : Implementation of square root algorithm. 44
Figure 4. 16 : The State Diagram of the circuit. .. 45

Figure 4. 17 : Square root and division control diagram. 47
Figure 4. 18 : Integer to Float conversion operation illustration. 49
Figure 4. 19 : Float to integer conversion illustration. .. 50
Figure 4. 20 : Implementation of Sign Injection operation. 51

Figure 4. 21 : Implementation of Compare instructions. 52

Figure 5. 1 : Assembly code that executes FLW instruction. 54
Figure 5. 2 : Computational instructions in assembly format.............................. 54
Figure 5. 3 : Conversion and move instructions in assembly format. 54
Figure 5. 4 : Compare and classify instructions in assembly format. 55

Figure 5. 5 : Results in HORNET memory. ... 55

file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981672
file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981673
file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981674
file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981675
file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981676
file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981678
file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981679
file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981680
file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981681
file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981682
file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981683
file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981684
file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981688
file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981689

xi

EXTENDING THE INSTRUCTION SET OF RISC-V PROCESSOR FOR

FLOATING-POINT ARITHMETIC

SUMMARY

The development of the Internet and communication devices with scientific studies

until today has enabled the speed and amount of communication between people to

reach a different dimension compared to the past. Thanks to this increase in

communication, the idea that solutions which used to produced separately for similar

problems can be produced together led people to create the open-source concept.

Open-source designs have become a concept that designers have the unconditional

right to use, develop and change over time. Among these designs, researchers at the

University of California, Berkeley developed a Processor Instruction Set Architecture

called "RISC-V", which is an interface between software and hardware with no license

requirements. Interested by researchers and companies, the RISC-V Instruction Set

was designed by many different institutions and individuals. It emerged as open source

after being approved by the RISC-V organization. A 32-bit RISC-V kernel was

designed at Istanbul Technical University by senior students named Hornet. The hornet

has an RV32I basic instruction set and M extension with detailed documentation and

approved by RISC-V.

The Hornet processor already includes hardware that can perform basic mathematical

and logical operations with integers. Nevertheless, integers cannot provide an adequate

approximation to the set of real numbers, which makes the processor's ability to

operate with floating decimal numbers, which is a different number representation. In

the RISC-V Instruction Set content, the F extension offers an instruction set that allows

operations to execute with floating-point numbers. In this context, we decided to

improve the competence of the processor by implementing F instructions on the Hornet

core for operations with floating-point number sets. By the courtesy of, users will be

able to use the Hornet core in applications that require operations with real numbers.

xii

Before we started adding the F instruction set, we tested the features of the Hornet

processor with simulations on Linux by writing C programs, thus verifying that the

core is functional. Afterwards, in order to increase our knowledge in the field of

computer architecture, we read the basic books written about computer architecture

and design. In the light of what we have learned, we decided on the blocks that we

think we need to add to the processor and the order in which these blocks should be

added. Since the 'F' extension is separated as Load/Store instructions, computational

instructions, conversion instructions and move instructions , compare instructions and

sign injection instructions, we added the instructions to the processor under these

headings. In particular, the circuits that perform the multiplication, division and square

rooting instructions among the computational commands are designed to work

together in terms of control. We designed the circuits that make the implementations

in accordance with the IEEE 754 standard and the RISC-v manual, and tested the

accuracy of the results at every stage of the design. After the design phase was

completed, we tested all the commands on the processor with the codes wroted in

assembly language and verified core’s functionality.

xiii

KAYAN NOKTA ARİTMETİĞİ İÇİN RISC-V İŞLEMCİSİNİN KOMUT

SETİNİ GENİŞLETME

ÖZET

İnternetin ve haberleşme aygıtlarının günümüze kadar olan bilimsel çalışmalar ile

geliştirilmesi insanlar arasındaki iletişim hızı ve miktarı eskiye göre farklı bir boyuta

ulaşmasın sağladı. İletişimdeki bu artış sayesinde benzer problemler için ayrı ayrı

üretilmesi gereken çözümlerin birlikte üretilebileceği fikri insanları açık kaynak

konseptini oluşturmaya yönlendirdi. Açık kaynak tasarımlar zaman içerisinde

tasarımcıların koşulsuz şartsız kullanma, geliştirme ve değiştirme hakkına sahip

oldukları bir konsept halini aldı. Bu tasarımların arasında California, Berkeley

Üniversitesi ’indeki araştırmacılar tarafından adı ‘‘RISC-V’’ olan, lisans koşulu

olmayan yazılım ile donanım arasında ara yüz olan bir Komut Kümesi Mimarisi

geliştirildi. Araştırmacılar ve şirketler tarafından ilgi duyulan RISC-V Komut Seti

Kümesi birçok farklı kurum ve kişi tarafından tasarlandı. RISC-V organizasyonu

tarafından tescillendikten sonra açık kaynak olarak ortaya çıktı. Hornet’te RISC-V

tarafından onay almış RV32I temel komut kümesine ve M uzantısına sahip açık

kaynaklı ayrıntılı dokümantasyonu olan bir İstanbul Teknik Üniversitesi öğrencileri

tarafından tasarlanmış 32-bitlik bir RISC-V çekirdeği.

Hornet işlemcisi temel matematiksel ve mantıksal işlemleri tam sayılar ile yapabilen

donanımları bünyesinde hâlihazırda bulunduruyor fakat tam sayılar gerçek sayı

kümesine yeterli yaklaşımı sağlayamıyor bu da işlemcinin daha farklı bir sayı

gösterimi olan kayan ondalıklı sayılar ile işlem yapabilme yeteneklerini gerekli hale

getiriyor. RISC-V Komut Kümesi içeriğinde F uzantısı adında kayan ondalıklı sayılar

ile işlemlerin yapılabilmesi sağlayan komut kümesini sunuyor. Bu bağlamda

işlemcinin kullanım alanını geliştirmek ve gerçek sayı kümesi ile yapılacak işlemlerde

hassasiyeti çok daha yüksek sonuçlar elde etmek için Hornet çekirdeği üzerine F

xiv

komutlarının gerçeklemesiyle işlemcinin yeteneklerini geliştirmeye karar verdik. Bu

sayede kullanıcılar gerçek sayılar ile işlem gerektiren uygulamalarında Hornet

çekirdeğini kullanabilir hale gelecek.

F komut kümesini eklemeye başlamadan önce Hornet işlemcisinin özelliklerini C

programları yazarak Linux üzerinde simülasyonlar ile test ettik bu sayede çekirdeğin

fonksiyonel olduğunu doğruladık. Daha sonrasında Bilgisayar mimarisi alanında olan

bilgi birikimimizi arttırmak amacıyla bu alan yazılan temel kitaplardan faydalandık.

Öğrendiklerimizin ışığında işlemci üzerine eklememizin gerekli olduğunu

düşündüğümüz blokları ve bu blokların hangi sıra ile eklenmesi gerektiğine karar

verdik. Temel olarak ‘F’ uzantısı hafıza komutları, hesaplama komutları, dönüştürme

ve hareket ettirme komutları, karşılaştırma komutları ve işaret enjeksiyon komutları

olarak ayrıldığı için komutları yine işlemci üzerine bu başlıklar altında ekledik.

Özellikle hesaplamalı komutlar arasından çarpma bölme ve karekök alma

komutlarının gerçeklemesini sağlayan devreler kontrol açısından beraber çalışacak

şekilde tasarlandı. Gerçeklemeleri yapan devreleri IEEE 754 standardına ve Rısc-v

manuel’ine uygun olacak biçimde tasarlayıp sonuçların doğruluğunu tasarımın her

aşamasında test ettik. Tasarım aşaması tamamlandıktan sonra komutların hepsini

işlemci üzerine assembly dilinde yazılan komutlar ile test ederek işlevselliğini

doğruladık.

15

 INTRODUCTION

Computers became important for humankind in favour of their computational and

memorial capabilities. These capabilities are ensured with components which are

processor and memory; while the processor computes and controls the system,

memory keeps the data that is the processor’s input or output. Since computer systems

are designed in the 1940’s different design architectures are introduced by academia

and industry to optimize processors for purposes. Rısc-v is one of the open-source

instruction set architecture that developed at the University of California Berkeley.

This project is aiming to extend instruction set of RISC-V core with ‘F’ Single-

Precision Floating-Point instructions. ‘F’ instruction set includes load and store,

computational, conversion and move, comparison and classify floating-point

instructions. These instructions will be implemented with considering IEEE-754

floating point standards for single precision (32 bit) as requested in the RISC-V

Instruction Set Manual. It is intended to add the Floating Point Unit (FPU) block to

the pre-designed RISCV processor named HORNET to implement the given

instructions. A FPU is a a part of computer system designed specifically for

manipulating floating point numbers. Even without a floating-point unit, a CPU can

handle both integer and floating point (non-integer) calculations. However, integer

operations use significantly different logic than floating point operations. While it is

possible to handle floating-point operations through software emulation, the goal of

this project is to actually add a FPU to the processor that can handle the instructions

as part of the processor. A FPU provides a faster way to handle calculations with non-

integer numbers. The project consists of three main stages that are divided the

instructions in the 'F' extension of the RISCV manual into 3 different groups that has

tested on HORNET at each stage. Each student performed some of the different types

of instruction groups and integrate them into HORNET.The first stage is to design and

implement the data transfer instructions and adder/subtractor module.The second stage

is design and implementation of multiplication/division, square root and comparison

modules. The third stage is design and implementation of conversion and move

16

instructions. After design and implementations finalizied processor core tested for

each instruction ‘F’ extension has but the fused multiply add and min-max

instructions.

 About RISC-V and HORNET

RISC-V is an open source instruction set architecture developed by researchers at the

University of California Berkeley for use in lectures and research projects [1]. The

areas reached by the project were later expanded and turned into an architecture

accepted all over the world. In addition to creating a safe zone for software platforms

and developers by freezing its basic features (frozen set), studies have also been made

to expand it for many applications thanks to its flexible architecture. In addition,

HORNET is a 32-bit processor with ‘Base Integer’ and ‘M’ set instructions designed

by ITU students[2].

 About IEEE-754

IEEE-754 is the most used standard for arithmetic of floating-point numbers. The

formats and methods of floating-point numbers used in computer systems are specified

in this standard's documentation. Examples of these specifications include rounding

methods, arithmetic operations, exception handling, and how to encode exceptions

(such as NaN, infinity, zero)[3]. The FPU that we will design during the project will

be designed completely in accordance with these specifications and will be integrated

into HORNET.

 The RISC-V ‘F’ Instruction Set

Single-precision floating-point computational instructions of RISC-V, designated as

"F" and conforming to the IEEE 754-2008 arithmetic standard, are briefly elaborated

in Table 1.1[4].

17

Table 1. 1 : Instructions of ‘F’ Standard Extension.

Instructions Executing Operations

FLW, FSW Loads/Stores Floating-point data to/from destination.

FMADD.S, FMSUB.S
Multiplies source1, source2, adds source3, stores in

destination.

FNMADD.S,

FNMSUB.S

Multiplies source1, source2, negates, adds source3, stores

in destination

FADD.S, FSUB.S,

FMUL.S, FDIV.S

Adds/Subtracts/Multiplies/Divides source1, source2,

stores in destination.

FSQRT.S Computes square root of source1, stores in destination.

FSGNJ.S, FSGNJN.S,

FSGNJX.S

Takes all bits from source1 except sign bit, which is

determined by the sign of source2, the opposite sign of

source2, or XOR of signs of source1 and source2, stores

in destination.

FMIN.S, FMAX.S
Takes min/max of source1 and source2, stores in

destination.

FCVT.W.S,

FCVT.WU.S

Converts floating-point source1 value to signed/unsigned

integer value, stores in destination.

FMV.X.W,

FMV.W.X

Moves floating-point value from source1 to lower 32 bits

of integer register destination, or vice versa.

FEQ.S, FLT.S, FLE.S
Equality/Less than/Less than or equal to of source1,

source2, stores in destination.

FCLASS.S
Examines value in source1, stores 10-bit mask in

destination that indicates class of floating-point number.

FCVT.S.W,

FCVT.S.WU

Converts signed/unsigned source1 value to floating-point

value, stores in destination.

 There are several considerations when adding an FPU to the processor that will

add considerable complexity. First, we will need to implement changes to the Control

Unit to correctly interpret this extended set of instructions and store information about

whether operations are integer or floating-point. The RISC-V floating-point extension

uses 32 additional 32-bit registers for floating-point operations, so we’ll need to

include a second register file for these floating-point registers.

1.3.1 Single-precision load and store instructions

The load and store instructions, named as FLW and FSW can be seen at Tables

1.2 and 1.3, loads a single-precision floating-point value to floating-point register from

memory and stores a single precision value of floating-point register to memory,

respectively. Load and store instructions use a base address in source register and 12-

bit signed byte offset as base+offset addressing method as integer base ISA does. In

18

the implementation of these commands, it is not much different from normal load and

store as only the correct register bank should be selected.

Table 1. 2 : Single precision floating-point load instruction.

Immediate[11:0] rs width rd opcode

12 5 3 5 7

Offset base W dest LOAD-FP

Table 1. 3 : Single-precision floating-point store instruction.

Imm[11:0] rs 2 rs1 width Imm[4:0] opcode

7 5 5 3 5 7

Offset src2 src1 width dest STORE-FP

1.3.2 Single-precision floating-point computational instructions

Computational instructions can be classified in 2 different categories according to the

instruction type. The first of these groups includes the R-type commands FADD.S-

FSUB.S, FMUL.S-FDIV.S, FSQRT.S and lastly FMIN.S/FMAX.S shown in Table

1.4. Except for FMIN.S and FMAX.S instructions, as the name implies, other

instructions do basic four operations on floating-point numbers and FSQRT.S take

square root of a floating-point number. FMIN.S and FMAX.S, on the other hand, saves

the smaller or larger of the two floating-point numbers, respectively, to the destination

register. The other group is R4-type fused instructions, FMADD.S, FMSUB.S,

FMNADD.S and FMNSUB.S, which, unlike the previous one, use three source

registers, instead of two. Fused multiply and add instructions make multiplication and

addition operations together to obtain the result, which causes it to differ from other

computational instructions. Since these commands go through similar stages while

running, common units with small varieties are used for rounding and normalizing the

result.

Table 1. 4 : Single-precision floating-point computational instructions.

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7

FADD/FSUB S src2 src1 RM dest OP-FP

FMUL/FDIV S src2 src1 RM dest OP-FP

FSQRT S src2 src1 RM dest OP-FP

FMIN/FMAX S src2 src1 RM dest OP-FP

19

1.3.3 Single-precision floating-point conversion and move instructions

Format conversion instructions are used to convert different data formats to each other.

These are FCVT.W.S, FCVT.WU.S, FCVT.S.W and FCVT.S.WU are given below

in Table 1.5 . Respectively, the functions of these commands are to convert a floating-

point number to its closest signed or unsigned integer representation, or to convert a

signed or unsigned integer to its floating-point counterpart. Since HORNET is a 32-

bit architecture, conversions related to 64-bit integer numbers are not performed.

Table 1. 5 : Single-precision floating-point conversion instructions.

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7

FCVT.int.fmt S W[U]/L[U] src RM dest OP-FP

FCVT.int.fmt S W[U]/L[U] src RM dest OP-FP

Floating-point sign injection instructions take interest on sign of sources rs1 and rs2

while rd takes all bits of rs1 but sign bit, can be seen in Table 1.6. There are 3 different

sign injection instructions which are FSGNJ.S that sets sign bit of rd as sign of rs2,

FSGNJN.S that sets sign bit of rd as opposite of rs2, FSGNJX.S that sets sign bit of rd

as exored signs of rs1 and rs2.

Table 1. 6 : Single-precision floating-point sign injection Instructions.

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7

FSGNJ S src2 src1 J[N]/JX dest OP-FP

The floating-point move instructions, FMV.X.W and FMV.W.X in Table 1.7, are used

to transfer contents of a floating-point register to a general purpose(integer) register

or contents of a general purpose register to a floating-point register without changing

or converting the data, respectively.

Table 1. 7 : Single Precision Floating Point move Instructions.

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7

FMV.X.W S 0 src 000 dest OP-FP

FMV.W.X S 0 src 000 dest OP-FP

20

1.3.4 Single-precision floating-point compare instructions

There are 3 different instructions for comparison in F extension that are FEQ.S, FLT.S

and FLE.S showed in Table 1.8, stands for equal, less than, less than or equal,

respectively. If the conditions are met, the integer destination register is written 1,

otherwise 0.

Table 1. 8 : : Single Precision Floating-Point Compare Instructions.

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7

FCMP S src2 src1 EQ/LT/LE dest OP-FP

1.3.5 Single-precision floating-point classify instruction

FCLASS.S is an instruction for classifying the contents of a floating-point register by

writing a 10-bit mask to the integer register. The instruction classifies floating-point

numbers by setting the corresponding bit in the integer register according to the Table

1.9 below. Classify instruction sets none of the floating-point exception flags.

Instruction tpye and bit distrubutions given below in Table 1.10

Table 1. 9 : Classification Mask of floating-point numbers.

 𝑅𝑑 bit Meaning

 0 is −∞

 1 is a negative normal number.

 2 is asubnormal number.

 3 is −0.

 4 is +0.

 5 is a positive subnormal number.

 6 is positive normal number.

 7 is is +∞

 8 is a signaling NaN.

 9 is a quiet NaN.

Table 1. 10 : Single-precision floating-point classify instruction.

funct5 fmt rs2 rs1 rm rd opcode

5 2 5 5 3 5 7

FCLASS S 0 src 001 dest OP-FP

21

 Multiplication

Multiplication has main steps that are a generation of partial products and the addition

of them [5]. Multiplication circuits are generally designed while considering the trade

of in-between execution time and implementation cost. Multiplications for small

operands are generally implemented with considering the implementing cost due to

their low latency advantages. On the other hand, while implementing multipliers for

big operands due to use latency advantages of small operands, big operands are divided

into smaller operands to generate partial products with low latency. Generated partial

products aligned with proper shifting operations and then aligned products are added

to obtain the final result of multiplication. Latency of addition operation has also been

considered to optimize the implementation of multiplication. Varying methods are

available to optimize the addition of partial products using Carry Save Adders, like

Wallace Tree [5].

 Division

Division operation generally considered as an infrequent operation that does not have

to be implemented as primary. On the other hand, ignoring the implementation of

division can acquire a decrease in system performance for various applications [6].

Division algorithms can be categorized into five classes digit recurrence, functional

iteration, very high radix, table lookup, and variable latency [7]. Implementing

division algorithms generally includes variations from their classes. All these classes

consider trade of in-between time and area constraints, concerning operational

priorities division algorithm classes, can be chosen.

 Square Root

Computers architecture was not capable of doing square root operation before

computers became capable of executing functions in hardware implementations of

processors directly. These hardware implementations of functions ensure executions

in less clock cycle but they increase the complexity of the total implementation of

processors. That necessitates the designing of time/area-efficient square root

22

implementation algorithms. There are iterative approximations and recurrence

algorithms designed to implement the square root function. These algorithms are

mainly differing with respect to the convergence to result. Recurrence algorithms are

mainly assuming the upcoming bit of partial square root as 1 and check whether the

remainder is negative or positive after subtraction to adjust the partial square root and

remainder respectively for each two-bit of operands orderly.

 BACKGROUND INFORMATION

 Floating-Point Numbers

Floating-point numbers have emerged as a result of the projection of real numbers in

the real world to computer systems with a certain precision. Since computer memory

is limited, you cannot store numbers with infinite precision, no matter whether you use

binary fractions or decimal ones: at some point you have to cut off. Therefore, a

method similar to scientific notation is used to encode these numbers shown in Figure

2.1. In this way, we maximize the range of real numbers can be represented.

Figure 2. 1 : 32-bit representation of floating-point numbers.

Floating-point numbers can be represented by the following formula (2.1):

23

 (−𝟏)𝒔 × 𝒃𝒒 × 𝒄 (2.1)

Where,

― s is sign and 0 (positive) or 1 (negative).

 ― q is any integer exponent_min ≤ q + p −1 ≤ exponent_max.

― c is a number represented by a digit string of the form d0 d1 d2 …dp-1 where di is an

integer digit 0 ≤ di

Since we will design for single precision in IEEE standards, 23 bits will be used as

precision, 8 bits as exponent and 1 bit as sign, a total of 32 bits will be used.

The set of representable floating-point numbers can be classified into different groups

in which they have different special cases. These cases include ±infinity , not-a-

number(NAN) and ±0. The encoding formats of the entire set of single precision

floating-point numbers can be viewed from Table 2.1.

Table 2. 1 : Binary encoding for Floating-Point Datum

Exponent Mantissa Object Represented

0 0 0.0

255 0 ∞

255 1.0…xx SNaN

255 1.1…xx QNaN

1 to 254 1.x…xx Normal Numbers

0 0.x…xx Subnormal Numbers

When binary encoded floating-point numbers are expressed using scientific notation,

the digit value of the integral part is hidden according to the IEEE standard, since the

digit values are always 0 or 1. In addition to this and the fractional part after the

decimal point is kept in the mantissa segment. If the value of this hidden digit is 1,

they are called normalized numbers, and 0 are called denormalized numbers[2].

 Exceptions

Exceptions are important factors in the standard to signal the system about some

operations and results.

24

When an exception occurs, the following action should be taken:

 A status flag is set.

 The implementation should provide the users with a way to read and write the

status flags.

 The Flags are ``sticky'' which means once a flag is set it remains until its

explicitly cleared.

Common exceptions in floating-point numbers are listed below and represented in

Table 2.2:

 Overflow, underflow and division by zero: As is obvious from the table

below, the distinction between Overflow and division by zero is to give the

ability to distinguish between the source of the infinity in the result.

 Invalid: This exception is generated upon operations that generate NaN

results. But this is not a reversible relation (i.e. if the output is NaN because

one of the inputs is NaN this exception will not raise).

 Inexact: It is raised when the result is not exact because the result can not be

represented in the used precision and rounding cannot give the exact result.

Table 2. 2 : Exceptions in IEEE 754 standard

Exception Caused By Result

Overflow
Operation produce large

number

Underflow Operation produce small

number

0

Divide by Zero x/0

Invalid Undefined Operations NaN

Inexact Not exact results Round(x)

 Rounding

Rounding is the one of the major problems of floating-point arithmetic which has to

be considered for all arithmetic operations as well as the addition and subtraction.

25

Rounding is also a necessity due to higher precision which is one of the main

advantages of floating-point numbers. To ensure precision our calculation will be

implemented with extra tree binary digits which are called guard, round and sticky

bits. Rounding also has 5 different modes which packed within the instruction that

executed in processor defined in RISC-V manuals. IEEE 754 standards have

conventions for rounding attributes used as modes of our rounder design. These modes

can be viewed from Table 2.3.

Table 2. 3 : Rounding mode table.

Rounding Mode Mnemonic Meaning

 000 RNE Round to Nearest, ties to Even

001 RTZ Round towards Zero

010 RDN Round Down

011 RUP Round Up

100 RMM Roundto Nearest, ties to Max Magnitude

101 Invalid

110 invalid

111 DYN In instructions’s rm field, selects dynamic

rounding mode; In Rounding Mode register,

Invalid.

The guard, round and sticky bits processed during the preliminary normalization and

are output as Round and Sticky after some manipulations. Then, in the rounding unit,

the necessary rounding is done using these bits, the rounding mode and the sign of the

output.

 LITERATURE REVIEW

Reduced instruction set computers are alternative to complex ones which are getting

more complicated nowadays. Reducing the instruction sets makes computer

architecture plain in this way designing process becomes shorter related to normal

26

computers also reducing instruction sets reduces memory and process loads which

decreases to energy consumption and cost of core. There for in developing IoT industry

this kind of processors will be demanding cost effective application in near feature.

Computer instruction set architecture RISC-V is one of the upcoming topics of the last

decade. Rısc-v processor cores can be implemented with a base integer instruction set

however there are 16 different extensions for RISC-V ISA that were introduced by the

rısc-v manual. Implementation of the processor varies with respect to aim of the project

each instruction set extends the capability of cores while increasing the complexity of

implementation. As we aim to extend the core with F extension that ensures working

with floating-point number set to be capable to work with processes including real

numbers. There are 10 different available Rısc-v cores that have F extension in for

now. These cores are designed by 5 different organizations [4].

Codasip have four different core that have F extension are A70X, H50XF, L30F, L50F

these cores are written in Verilog. L30F and L50F are 32-bit processor which have M,

F, C extension on RV32I base instruction sets. A70x and H50XF are 64-bit processor

which have M, A, F, D, C, extensions on RV64I base instruction set.

Sifive Founding have 3 different cores that have F extension are E2, E3, E7 all of these

cores written in Verilog and have E, M, A, F, D, C extension on RV32I base instruction

sets.

Fraunhofer IPMS have a core that named as EMSA5-FS written in System Verilog

and have E, M, A, F, D, C extension on RV32I base instruction sets.

Openhw have a core that named as CV32E40P have F extension written in System

Verilog and have M, F, C extensions on RV32I base instruction set.

 MIT CSAIL CSG have a core that named as RiscyOO have F extension written in

Bluespec and have M, F, C extensions on RV32I base instruction set.

27

 DESIGN AND IMPLEMENTATION OF THE ‘F’ INSTRUCTION SET

 Implementation of Load/Store Instructions

 In the 'F' extension of the RISC-V specification document, that there should be a

separate register file for floating-point arithmetic and it denotes that the following

format in Table 2.4 and 2.5, should be applied for floating-point data transfer

instructions:

Table 4. 1 : Single-precision floating-point store instruction.

Immediate[11:0] rs width rd opcode

12 5 3 5 7

Offset base W dest LOAD-FP

Table 4. 2 : Single-precision floating point load instruction.

Imm[11:0] rs 2 rs1 width Imm[4:0] opcode

7 5 5 3 5 7

Offset src2 src1 width dest STORE-FP

Then, when we examined the load/store instruction format for integer numbers, we

realized that these two instruction sets have same formats. In this way, we completed

the first instructions by making a few changes in some original design files.

4.1.1 Reorganize control

We made very little to no changes on the control side. Control signals for integer type

load/store can also be applied in floating-point load/store instructions. But we added

extra two multiplexers to the design to control which register file our outputs are taken

from. In this, we defined two different signals for Select inputs of multiplixers that

select data1 and data2 according to the instruction.

For example, when fsw f15, -24(x8) instruction is executed in assembly language,

data1 should be selected from integer bank and data2 should be selected from floating-

point register bank. In addition, when a LOAD instruction executed, which register

bank the data will be loaded into at the WB(write back) stage is decided by the

28

registerbank_sel signal, which travels in the pipeline stage until the WB stage. Figure

4.1 shows that this change has created a diagram.

The implementation of the extra multiplexers for selection of data1 and data2 can be

seen from figure 4.2.

4.1.2 Verification of the implementation

Before we synthesized the implementation, we ran several tests to verify its behavioral

functionality. we wrote a one basic C programs: a bubble sort algorithm, an integer

 Figure 4. 2 : Code section modified in the design file for data selection

 Figure 4. 1 : Block diagram of reorganized design of registers

29

multiplication algorithm and a Fibonacci Sequence generator. We compiled these

programs with RISC-V GNU C compiler, generated the opcodes and loaded them into

the memory. We compiled and loaded these programs into the processor for

simulation. Testing code given in figure 4.3 below.

As can see from Figure 4.4 and Figure 4.5, the variables a and b that we randomly

numbers are assigned to floating-point register bank and then moved to memory

correctly.

Figure 4. 3 : C code of test program.

Figure 4. 4 : Values on FP registers.

Figure 4. 5 : Value on memory.

30

After making sure that the Load/Store instructions are working properly, we start to

think that the remaining commands will be implemented more quickly as we learn how

to verify our design .

 Floating-Point Computational Instructions

Floating-point instrucitons are generally instructions that perform mathematical

operations for floating-point numbers. Among these instructions, the circuits that

perform the sign, exponential and mantissa calculation of the addition and subtraction

commands have many difference with the circuits that perform the multiplication,

division and square root instructions. For this reason, the addition/subtraction block

was designed and developed separately, while the other blocks were developed

together. However the block that allow the decode of the 32-bit floating-point numbers

into sign, exponential and mantissa, which is necessary for all mathematical

operations, is designed to be used for all computational operations. Multiplication,

division and square root of floating-point numbers are examined under the same

heading as they are similar in terms of both sign and exponent handling. For the

multiplication or division of mantissas, the same algorithm used in the existing muldiv

module is used. For normalization, 3 different normaliser designs named sqrtNorm,

divNorm and mulNorm are designed.

4.2.1 Decoding of operands for computational instructions

Floating point numbers are constructed as parts of privileged notation as mentioned

before and represented in figure 2.1. This binary array includes sign, exponential and

mantissa parts in addition to these there is a hidden one for floating numbers. This

hidden one expands precision of floating point numbers by changing significant value

with respect to the exponent. Significant value is stands for 24-bit binary number that

integrate mantissa and hidden one of floating point numbers and used as binary

operands of arithmetic operations. Floating point numbers are favourable approach to

real numbers ergo considering infinite expansion and precision of real numbers with

limited bits exceptions are inevitable. The exceptions which are element of real

number set but not set element of floating point numbers . This numbers grouped as

±infinity , not-a-number(NAN) and ±0. There is also subnormal which is also

31

considered as underflow for floating numbers. By appointment of particular

exponential value for subnormal hidden 1 expression ignored and 23-bit mantissa used

as precision increasing. This classification and disjunction of operands part are

essential for all arithmetic operations that leads us to design decoder unit which

decodes the 32-bit floating point numbers for all arithmetic operations.

4.2.1.1 Implementation of decoder

Decoder units used as pair due to ensure two source operands unpacked properly for

each arithmetic operation. Decoders are used for decoding source 1 and source 2

respectively. These decoder units take source operands used as input; give sign,

exponential, significant and exceptions as outputs. Decoder units also coping with

hidden one for sources which have zero exponentials and nonzero mantissa left most

bit of significant assigned as 0 otherwise 1, with this appointment contradiction of

significant settled. As significant values determined exponential differences of

subnormal exponential and minimum exponential values are settled same as minimum

exponential value. Decoding of floating point number enables to determining of

exception cases with respect to the sign, exponential and mantissa. Combinations of

maximum and zero values of exponential and zero value of mantissa used as indicators

of exceptions. Using these indicators subnormal, zero, infinity and not a number(NaN)

signals are generated.

4.2.2 Floating point addition and substraction

First, we did research on how to implement an algorithm for adding and subtracting

floating-point numbers. Accordingly, we reviewed the following book, Computer

Arithmetic and Hardware Designs and we follow the following algorithm[5]. Since the

subtraction operation is essentially an addition, it is converted into an addition

operation after the necessary sign arrangements. Flow chart of adder/substracter can

be seen in Figure 4.6 below.

32

Figure 4. 6 : Floating point adding algorithm.

4.2.2.1 Designing the algorithm

The steps of the algorithm we will use are as follows:

 Step 1: Compare the exponent of the numbers in the entries and get the

absolute value of the difference between them. This value will be the temporary

exponent value of our result.

 Step 2: Shift the significand part of the input with the smaller exponent to the

right by the exponent difference.

 Step 3: Select the required signals for addition or subtraction. So for

subtraction, take the 2's complement of original number. Then keep the result

in your RESULT variable.

 Step 4: Check MSB bit of RESULT during addition. If this value is 1, shift

RESULT right by 1 and increase its exponent by 1. During subtraction, check

RESULT for leading zeros. Shift RESULT left until the MSB of the shifted

result is a 1. Subtract the leading zero count from tentative exponent.

33

 Step 5: Set the bits required for rounding in normalize and do the necessary

rounding. After rounding, subject the result to the final normalize and handle

the exceptions.

The last two steps are done by the normalizer, which is a separate module to encode

floating-point numbers with a certain format. We skipped the rounding operations in

this section, as we will implement the rounding instructions later.

4.2.2.2 Verification of the implementation

Before integrating the module we designed into Hornet, we applied behavioral

simulation with Vivado Design Suite to make sure it was working properly. The

testbench in Figure 4.7 is used result aquried as Figure 4.8 illustrates.

Figure 4. 7 : Test bench of adder/subtracter

Figure 4. 8 : Simulation results on Vivado.

34

As can be seen from above Figure 4.8 the simulation results, the outputs give accurate

results without rounding. In the next stage, clock and necessary rounding operations

must be done to synchronize the circuit.

After completing rounding and handling of exceptions in this module, apart from this

test, we tested 1 million different input combinations of random floating-point

numbers that we created on matlab.Subsequently, saving these combinations to the

txt file, we checked it over the tcl console in vivado by doing so, we fixed many errors

that we did not notice during the design stage. Matlab code of testing variables are

given in Figure 4.9 below.

Finally, we also tested the numbers in some edge regions. For example, cases where

the sum of the minimum subnormal number and the maximum subnormal number is

normal, or the result is normal with the sum of two maximum subnormal numbers.

4.2.2.3 Verification on HORNET

After testing the Adder/Substractor module stand-alone on vivado, the block

needs to be combined with HORNET as the next step. To do this, new control signals

have been added with the purpose that this process can be done properly. These control

signals are INTorFloat, FPU_func and FPU_roundingMode respectively can be seen

in Figure 4.10. INTorFloat is a signal used to forward data from the correct output

(ALU or FPU) in the pipeline. FPU_func is used to determine the addition or

Figure 4. 9 : Matlab code of random FP number generator.

35

subtraction operation, and FPU_roundingMode as the name implies, is used to control

the rounding mode.

Also, the forwarding unit and hazard detection unit modules have been revised for

possible data forwarding and pipeline stall situations that come with the "F" instruction

set.

As seen in the waveform in Figure 4.12,that we created using gtkwave, the correct

values were calculated in the processor and then saved in the memory respectively.

4.2.3 Floating-point multiplication

The representation of a floating-point number was like equation 4.1. Using this

notation, the result obtained by multiplying two floating-point numbers can be

represented as follows:

 𝑿 ⋅ 𝒀 = 𝒁𝑴 = (−𝟏)(𝒔𝒙⊕𝒔𝒚) ⋅ 𝟐(𝒆𝒙+𝒆𝒚−𝟏𝟐𝟕) ⋅ (𝑴𝒙 ⋅ 𝑴𝒙) (4.1)

Figure 4. 10 : Control Signals for FADD/FSUB.

Figure 4. 11 : Example C code for FADD and FSUB instructions.

Figure 4. 12 : Simulation results on HORNET for FADD/FSUB instructions.

https://tureng.com/tr/turkce-ingilizce/as%20the%20name%20implies

36

The sign part is pretty straightforward. The sign of the result is determined by

EXORing the signs of the inputs. In the exponent part, it is obtained by adding two

exponents. But the exponent we obtained from the product are biased two times, so

127 is subtracted from the result to obtain a value which has the bias is applied once.

4.2.3.1 Multiplication of significands

The mantissa part of the result is obtained by directly multiplying it. In order not to

further complicate the design while multiplying the significands, we changed the

design codes of the 32 bit multiplier circuit to operate in 24 bits in place of 32 bits,

instead of directly using the previous MULDIV block in the processor. Flow chart of

multiplication operation illustrated with Figure 4.13.

4.2.3.2 The multiplication algorithm

Two 24-bit significands can be written as the sum of two stage-1 partitions according

to the following equation 4.2.

 𝐴 = 𝐴𝐻212 + 𝐴𝐿 𝐵 = 𝐵𝐻212 + 𝐵𝐿 (4.2)

Using this notation, the product of two significands can be represented as:

Figure 4. 13 : Flowchart of floating-point multiplication.

37

 𝐴 × 𝐵 = (𝐴𝐻212 + 𝐴𝐿) × (𝐵𝐻212 + 𝐵𝐿) = 𝐴𝐻𝐵𝐻224 + (𝐴𝐻𝐵𝐿 + 𝐴𝐿𝐵𝐻)212 + 𝐴𝐿𝐵𝐿 (4.3)

Moreover, these partitions can be further split up into smaller stage-2 partitions.

 𝐴𝐻 = 𝐴𝐻𝐻26 + 𝐴𝐻𝐿 𝐵𝐻 = 𝐵𝐻𝐻26 + 𝐵𝐻𝐿 (4.4)

For example the expression 𝐴𝐻𝐵𝐻 can be represented as

 𝐴𝐻 × 𝐵𝐻 = (𝐴𝐻𝐻26 + 𝐴𝐻𝐿) × (𝐵𝐻𝐻26 + 𝐵𝐻𝐿)

 = 𝐴𝐻𝐻𝐵𝐻𝐻212 + (𝐴𝐻𝐻𝐵𝐻𝐿 + 𝐴𝐻𝐿𝐵𝐻𝐻)26 + 𝐴𝐻𝐿𝐵𝐻𝐿

(4.5)

With the use of equations (4.2), (4.3), (4.4) and (4.5), operands are partitioned to 𝐴𝐻𝐻,

𝐴𝐻𝐿, 𝐴𝐿𝐻 and 𝐴𝐿𝐿 for A, and 𝐵𝐻𝐻, 𝐵𝐻𝐿, 𝐵𝐿𝐻 and 𝐵𝐿𝐿 for B. These partitions are 8-bit,

and are multiplied in an order for generating the second level partitions 𝐴𝐻𝐵𝐻, 𝐴𝐻𝐵𝐿,

𝐴𝐿𝐵𝐻 and 𝐴𝐿𝐵𝐿. These second level partitions are then added in an order to generate

the final result.

4.2.3.3 Normalization of Significands

Normalizer For Multiplication Although the normalizer of the multiplier circuit works

with logic similar to the adder, some changes need to be made. The pseudo code of the

multiplication normalizer can be seen in Figure 4.14.

For example, when we subtract bias from the sum of the exponents, if the result is

underflow and the hidden digit is 0, it means that our number has fall into subnormal

range. In this case, our output exponent should be set to 0. Also, exceptions that may

occur during the normalization step, such as overflow and underflow, due to

exponancial changes, are checked.

38

Figure 4. 14 : Pseudo code of Multiplication Normalizer.

4.2.3.4 Rounding logic for multiplication

After the Significands are multiplied, the Guard, Round and Sticky bits need to be

properly determined in order to be able to round correcly. The Guard bit is a digit that

gains importance when it is necessary to shift left only once while normalizing the

significand. The Round bit is used to make the rounding more precise. Lastly, Sticky

bit is used to give a general intuition about the values of the bits to be discarded from

a certain precision.

 𝑴𝒙𝟐𝟒 ∙ 𝑴𝒙𝟐𝟑................. 𝑴𝒙𝟏𝑴𝒙𝟎

 × 𝑴𝒚𝟐𝟒 ∙ 𝑴𝒚𝟐𝟑................. 𝑴𝒚𝟏𝑴𝒚𝟎

 𝑴𝒛𝟒𝟕𝑴𝒛𝟒𝟔 ∙ 𝑴𝒛𝟒𝟓................. 𝑴𝒛𝟏𝑴𝒛𝟎

(4.6)

 24 bits 24 bits

 (actual significand) (used for rounding)

G = Guard Bit = 𝑴𝒛𝟐𝟑

R = Round Bit = 𝑴𝒛𝟐𝟐

S = Sticky Bit = OR of less significand 22 bits of 𝒁𝑴

39

𝑴𝒛𝟒𝟕𝑴𝒛𝟒𝟔 ∙ 𝑴𝒛𝟒𝟓.................𝑴𝒛𝟐𝟒 𝒈 𝒓 𝒔

Case a: 𝑴𝒛𝟒𝟕 = 𝟎, 𝒁𝑴 = 𝑴𝒛𝟒𝟔 ∙ 𝑴𝒛𝟒𝟓................. 𝑴𝒛𝟐𝟒 g R = r S = s

Case b: 𝑴𝒛𝟒𝟕 = 𝟏, 𝒁𝑴 = 𝑴𝒛𝟒𝟕 ∙ 𝑴𝒛𝟒𝟔................. 𝑴𝒛𝟐𝟓 𝑴𝒛𝟐𝟒 R = g S = r OR s

Case c: 𝑴𝒛𝟒𝟕, 𝑴𝒛𝟒𝟔 = 𝟎 𝒁𝑴 is shifted until MSB is 1. Then R is equal to 23nd bit

of shifted version of 𝒁𝑴 and S is equal to OR of less significand 22 bits of shifted

version 𝒁𝑴.

After the normalization step, the final Round and Sticky bit are specified using below

cases. Then, the R and S bits are rounded according to the rounding mode used.

Eventually, after the appropriate rounding is done, the final normalization and

exponent adjustment processes are done, and our output is ready.

4.2.3.5 Testing the floating-point multiplication circuit

During the test phase, we tried the random floating-point numbers we generated with

MATLAB, as in the previous units, with simulation over Vivado. We reviewed the

design by analyzing incorrect results and updated it until finally no errors.

Afterwards, we would integrate this circuit directly in Hornet, but since it will have

common signals with the Division block, we decided to do it after designing the

division circuit.

4.2.4 Floating-Point Division

In floating-point division arithmetic, the output sign is calculated by EXORing the

input signs, as in multiplication. In floating-point division arithmetic, the exit sign is

calculated by EXORING the input signs, as in multiplication. Since the exponents will

be subtracted from each other in division, the resulting exponent will be unbiased. For

this reason, the value of 127 is added to bias the output exponent once.

 𝑿 ÷ 𝒀 = 𝒁𝑫 = (−𝟏)(𝒔𝒙⊕𝒔𝒚) ⋅ 𝟐(𝒆𝒙−𝒆𝒚+𝟏𝟐𝟕) ⋅ (𝑴𝒙 ÷ 𝑴𝒙) (4.7)

40

4.2.4.1 Division of Significands

We used same algorithm that Hornet does due to pave the way for further works. In

addition to this the algorithm have been chosen with consideration of area and time

coefficients. Trade of between area and time concluded with regard of frequency of

division operations comes while processor working [2]. After determining division

algorithm of significant part of floating point we take in to account exponential and

sign operations. These operations are very straight forward for division as well as

multiplication.

Unlike integer division, for the division of 24-bit significands, the dividend and divisor

must be must be converted to the appropriate format before starting the operation.

First, the dividend is shifted to the left by 26 bits and 26 bits of 0 are padded to the

beginning of the divisor. The reason for shifting 26 bits instead of 23 bits is that the

extra 3 bits are used for rounding. Then offset is calculated to get the output correctly

for subnormal divisors.

 The formatting is as follows. Assume that 𝑀𝑥 is dividend, 𝑀𝑦 is divisor and 𝑀𝐷 is

quetient.

 𝑀𝑥

𝑀𝑦
 = 𝑀𝐷

(4.8)

Can be written as:

 𝑀𝑥

𝑀𝑦
 × 226 = 𝑀𝐷 × 226 = 𝑀𝑠ℎ𝚤𝑓𝑡𝑒𝑑

(4.9)

equation 4.9 can also be written as equation 4.10.

 𝑀𝑑 = 𝑀𝑠ℎ𝚤𝑓𝑡𝑒𝑑 × 2−26 (4.10)

Accordingly, 𝑀𝑑is the 26-bit right shifted version of the 𝑀𝑠ℎ𝚤𝑓𝑡𝑒𝑑. For subnormal

divisors, 𝑀𝑠ℎ𝚤𝑓𝑡𝑒𝑑 needs to be shifted to the left by 24 − 𝑜𝑓𝑓𝑠𝑒𝑡 amount. Normalizing

and rounding is done with the similar logic as in the multiplication.

41

4.2.5 Floating point square root

Calculating the square root of single-precision floating-point numbers is an unary

operation unlike other computational instructions. Since the square root operation is

valid only in the domain of positive real numbers, sign of input operand is just an

indicator to determine whether square root operation is valid or not. The exponent is

divided in half, as can be seen from equation 4.11. The point to consider is when the

exponent is odd. In these cases, operations are performed by considering the

significand shifted 1 digit to the left.

√𝑋 = √𝑀𝑋 ∙ 2𝑒𝑥 = {
 √𝑀𝑋 ∙ 2(

𝑒𝑥
2

) 𝑖𝑓 𝑒𝑥 𝑖𝑠 𝑒𝑣𝑒𝑛,

√2 ∙ 𝑀𝑋 ∙ 2(
𝑒𝑥−1

2
) 𝑖𝑓 𝑒𝑥 𝑖𝑠 𝑜𝑑𝑑.

(4.11)

Nontrivial calculation of square root operation is the computation of significand

value’s square roots. Since the significant value is 24-bit binary array which is

interpreted differently for floating-point arithmetic, approximations for integer square

root operations are also applicable to significant value.

4.2.5.1 Square Root of Binary Numbers

Square root operation has only one operand unlikely to other mathematical operations.

The operand expected to be equal to the square of the final result that leads design to

be different from analytic approaches. Therefore, in square root operation result has to

be calculated with algorithms which are mainly divided into iterative approximations

and recurrence methods. Since our concern is calculating square root of floating point

numbers with binary 32-bit representation. Recurrence algorithms are chosen due to

constant execution time which has critical significance for pipelined processor

structure. Recurrence algorithms generate square root bit by bit, with subtracting the

square of instant square root from related remainder. Since these operations employ

large number of different units, square root calculation algorithms have been

developed to reduce the number and complexity of components. By courtesy of these

algorithms square root operation can be implemented with simple digital circuitry. ‘A

new non-restoring square root algorithm introduced by Yamin Li and Wanming Chu

is very efficient to implement. Many existing design are less area and time efficient

than the implementation of new non-restoring square root algorithm [10].

42

4.2.5.2 Mathematical expression of binary square rooting operation

Square root operations start with calculating most significant bit of square root result

and to be continued till least significant bit of square root calculated. While calculating

square root of binary numbers new non-restoring algorithm investigate on remainder

for each step of calculation.

Suppose 𝐷 is input operand, 𝑞𝑘 is partial square root and 𝑟𝑘𝑎𝑏 is the partial remainder

at step k where 𝑎𝑏 is the next pair of operand, 𝑎 = 𝐷2𝑘−1 and 𝑏 = 𝐷2𝑘−2 . Note that

𝑞𝑘, 𝑟𝑘 are binary sequences and multiplying these sequence with 2 corresponds

shifting these sequences left by one bit.

 𝑞𝑟𝑡(𝐷) = √ 𝐷2𝑘−1𝐷2𝑘−2𝐷2𝑘−3 ⋯ ⋯ 𝐷1𝐷0 (4.12)

 = 𝑄𝑘−1𝑄𝑘−2𝑄𝑘−3 ⋯ ⋯ 𝑄1𝑄0 = 𝑞𝑘

Square rooting 2 × k bit binary number resulted with k bit binary sequence. Initially,

the MSB of the square root result and first partial remainder is calculated by

subtracting 01 from the 𝐷2𝑘−1𝐷2𝑘−2 pair. Other bits of remainder and next significant

bit pairs of 𝐷 are concenatated as 𝑟𝑘𝑎𝑏. The remaining bits of the square root result

are obtained sequentially by subtracting or adding the current partial remainder from

the partial square root result, according to the MSB value of the partial remainder

calculated in the previous state. Partial tables truth table represented below Table 4.3.

Let's assume that the initial partial square root and the partial remainder are calculated

according to the figure A, where 𝐷2𝑘−1𝐷2𝑘−2 is first pair of binary input, 𝑄𝑘−1 is the

MSB of square root and 𝑅𝑘+1𝑅𝑘 first pair of partial remainder .

Table 4. 3 : Truth table of partial root and related square root bit.

𝐷2𝑘−1 𝐷2𝑘−1 𝑄𝑘−1 𝑅𝑘+1 𝑅𝑘

00 0 00

01 1 00

10 1 01

11 1 10

The next bit of square root and partial square root are calculated as in Equation 4.13

and Equation 4.14.

43

 𝑄𝑘−2 = {
 1, 𝑖𝑓 𝑟𝑘−2 = 𝑟𝑘−1𝑎𝑏 − 𝑞𝑘−1

2 ≥ 0,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (4.13)

 𝑞𝑘−2 = {
 𝑞𝑘−11, 𝑖𝑓 𝑄𝑘−2 = 1,
𝑞𝑘−10, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (4.14)

𝑐𝑑 is the next pair of 𝐷. If the remainder 𝑟𝑘−2 is non-negative, next partial root is equal

to following expression.

 𝑟𝑘−3 = 𝑟𝑘−2𝑐𝑑 − 𝑞𝑘−2
2 (4.15)

If the remainder 𝑟𝑘−2 is negative then next partial root equals to:

 𝑟𝑘−3 = 𝑟𝑘−1𝑎𝑏𝑐𝑑 − 𝑞𝑘−2
2 (4.16)

As can be seen from the expressions above, the new non-restoring algorithm results in

two different expressions for negative partial remainder and positive partial

remainder.These expressions will be implemented with digital circuitry as adder and

shift registers. For 2 × 𝑘 bit binary number k + 2 bit adder/subtracter can be used with

shift registers to compute square root.

4.2.5.3 Square root of significand

Since the square root of a 24-bit significand will be 12-bit, there will be a loss of

precision, so it needs to be extended further. For that purpose, along with the bits

required for rounding, the significand is extended to 54 bits by shifting it to the left. In

each clock cycle two bits of square root are calculated and the final result is calculated

in 27 cycle. Also, the hidden bit of the square root result can only be 0 in the subnormal

number set, so normalization is not performed for normal inputs. Hence, normalization

in square root aritmetic is relatively simpler than other operations.

44

Figure 4. 15 : Implementation of square root algorithm.

As can be seen from above Figure 4.15 acquired result of square root mathematical

expressions has implemented with 29-bit Adder/Substracter block and tree shift

registers for remainder, quantinent and input operands.

4.2.6 Control unit

The Control Unit is responsible for making sure that the rest of the circuit is operating

correctly. It controls which signals will be inputted to the Square Root Block, and

where the outputs from the Divider Block will go. The Control Unit is an Algorithmic

State Machine (ASM), and it controls the circuit by determining the values of the

control signals. The State Diagram of the circuit is given in Figure 4.16.

45

Figure 4. 16 : The State Diagram of the circuit.

The circuit waits for the operation in the state IDLE. When the start signal is asserted,

the square root operation begins and the circuit goes through 27 iterations, during

where it calculates required results and transfers them to the next round. In the final

iteration, which is the 27th round, it asserts a ready signal and the final result for square

root is ready.

46

4.2.7 The Floating-Point Muldivsqrt Circuit

4.2.7.1 Datapath

Floating-point multiplication, division, and square root circuits are sequential circuits

and take multiple clock periods to calculate. For this reason, after these circuits were

designed and tested separately, they were combined in a module called MDS. mds

contains the following submodules:

 An exponent handler: Calculates the pre-normalization exponent according

to the type of operation.

 Rounders: Each operation round differently the significand according to the

rounding mode.

 A final normaliser: Performs possible normalization of significand after

rounding.

 A sign handler: Determines the sign of the floating-point output with respect

to operation type.

Each operation block contains submodules that do the initial normalization. Exception

flags are also set in the relevant operation block when necessary. What is meant by

necessity for example, division-by-zero exception is calculated only for floating-point

division. In other operations, it is set to 0 directly. The simplified diagram of the circuit

can be seen from Figure 4.17.

47

Figure 4. 17 : Square root and division control diagram.

48

 Implementation of Conversion, Move and Compare Instructions

As mentioned earlier, conversion instruction are used to convert a floating-point

number to the its nearest integer equivalent, or to the floating-point equivalent of an

integer number in the IEEE-754 standard. In computing , since all 32-bit signed or

unsigned integer numbers have an unique floating-point representation, there are no

restrictions or special conditions for inputs of integer-to-float conversions. However,

in the float-to-integer conversion, there are special cases in floating-point domain, such

as INF or NAN, or cases where the floating-point number to be converted cannot be

represented by the signed or unsigned 32-bit integer. These particular cases can be

viewed in the table below Table 4.4.

Table 4. 4 : Special cases for conversion instructions

 FCVT.W.S FCVT.WU.S FCVT.L.S FCVT.LU.S

Minimum valid input (after

rounding)
−231 0

−263 0

Maximum valid input (after

rounding)
231 − 1 232 − 1 263 − 1

 264 − 1

Output for out-of-range negative

input
−231 0 −263

0

Output for −231 0 −263
0

Output for out-of-range positive

input
231 − 1 232 − 1 263 − 1

264 − 1

Output for infinity or NaN 231 − 1 232 − 1 263 − 1
264 − 1

4.3.1 Conversion instructions

4.3.1.1 Integer-To-Float Conversion

First of all, since the MSB of the significand of normal numbers must always be 1

according to the IEEE 754 floating-point standard, the operand integer needs to be

converted to this format. The steps of the algorithm are as follows.

49

 Step 1: Depending on whether the operand integer is interpreted as signed or

unsigned, the absolute value of the number is taken and the 31 bits 0, which is

the maximum shift number, is added to the end of the absolute value obtained.

 Step 2: Shift the temporary variable until the MSB of the significand become

1.

 Step 3: The exponent to be obtained will be equal to the shift amount. But this

value is the actual value without bias added. For this reason, a bias of 127 is

added to the final exponent for the single precision. Sign bit is equal 0 if the

number is to be converted as unsigned, otherwise it is equal to input's original

sign. For an illustration, the conversion of 1123412, an integer, to floating-

point can be examined as follows in Figure 4.18.

In binary, 1123412 is represented as:

 112341210 = 00000000000100010010010001010100 2 (4.17)

In floating-point notation, it equals to:

 (−1)0 × 220 × 1,00010010010001010100002 (4.18)

4.3.1.2 Float-to-Integer Conversion

In the integer conversion operation which works with a similar to the previous

algorithm, if the exponent of operand floating point number is less than 0, the integer

equivalent is directly equal to 0. Otherwise, the integer equivalent is determined when

the significand is shifted until the exponent becomes 31. The reason for this is to shift

the decimal point of the number by 31 digits. But, as mentioned before, when operand

Figure 4. 18 : Integer to Float conversion operation illustration.

50

exponent is higher than 31, there are special cases where we cannot represent the

operand floating point number with an integer. In these cases, output is determined by

the directives in the RISC-V Manual. For an illustration, the conversion of

123423953.78845, a floating point number, to integer can be explained as follows.

First of all, this number can be represented in single precision format as follows in

equations and Figure 4.19:

 123423953.7884510 = (−1)0 × 226 × 1,110101101101001100110102 (4.18)

After calculating the required shamt and performing the shift, the mantissa becomes:

 (−1)0 × 231 × 0,00001110101101101001100110102 (4.19)

When we complete the remaining bits with 0, we get the following result.

 000001110101101101001100110100002 = 123423952 10 (4.20)

Figure 4. 19 : Float to integer conversion illustration.

4.3.2 Sign Injections

Sign injection instructions directly copy the exponent and mantissa of the value in the

source floating point register to the destination register. The sign is determined by the

type of injection. For this reason, their implementation is quite straightforward. These

instructions are used to execute some assembler presudoinstructions. These are

FMV.S, which moves a number from a floating point register to another floating point

register, FNEG.S, which negates a floating point datum, and FABS.S, which takes the

51

absolute value of a floating point datum. Implementation of instructions is repsented

below Figure 4.20.

Figure 4. 20 : Implementation of Sign Injection operation.

4.3.3 Move instructions

Floating-point move instructions move data between floating-point registers and

general purpose integer registers. Since these instructions do not make any

modifications on the data, they are not designed as a separate module. data moving on

pipeline with control signals. The data to be transferred is moved to the desired register

bank with appropriate control signals.

4.3.4 Compare instructions

floating point comparison instructions compare data in floating-point registers with

each other. First the sign of the number, then the exponent, and finally the mantissa

part are compared. The comparison process is relatively simple as the sign of the

number is determined directly from the MSB of the 32-bit floating-point datum and

exponent is also in a biased format rather than signed format. These instructions

change the value in the condition bit, which is LSB of 32-bit output. The condition bit

is set (made equal to one) if the condition is satisfied. Otherwise the condition bit is

cleared (made equal to zero). The block diagram of the circuit is as in Figure 4.21.

52

Figure 4. 21 : Implementation of Compare instructions.

 TESTING THE FPU DESIGN

Since the designed FPU was implemented in the HORNET, the testing procedure is

proceeded exactly the same as the process followed by the people who designed the

HORNET. The environment is set up as described in [2].

53

 Compiling a RISC-V Program

The command used to configure the riscv-gnu-toolchain, unlike the previous one, is as

follows.

 /configure –-prefix=/opt/riscv --with-multilib-

generator="rv32i-ilp32;rv32imf-ilp32f--"

The first part of the command that starts with “--prefix" sets the installation directory.

the second part that starts with “--with" configures the installer so that both RV32I and

RV32IMF libraries are installed.

In addition, the following command is used to compile the C programs for testing the

FPU.

 riscv32-unknown-elf-gcc fpu_test.c ../crt0.s –

march=rv32imf –mabi=ilp32f –T ../linksc.ld –

nostartfiles –ffunction-sections –fdata-sections –

Wl,--gc sections –o fpu_test.elf

Programs written in RISC-V assembly language can also be assembled using riscv-

gnu-toolchain. For this, it is sufficient to input the assembly file as an argument. In

that case, it is necessary to pay attention to the startup routines, such as initializing the

stack pointer, at the beginning of the program.

 Test Program

After the modules were tested individually on their own, a simple assembly program

shown as in Figure 5.1 was prepared to check whether it worked properly with the

HORNET. The purpose of this test was to check whether the desired floating-point

instructions without any problems on HORNET.

54

Figure 5. 1 : Assembly code that executes FLW instruction.

First, the address pointer is set and 2 random floating point numbers are saved in

memory. Then, computational instructions in Figure 5.2, conversion and move

instructions in Figure 5.3, and finally compare and classify instructions in Figure 5.4

are processed.

Figure 5. 2 : Computational instructions in assembly format.

Figure 5. 3 : Conversion and move instructions in assembly format.

55

Figure 5. 4 : Compare and classify instructions in assembly format.

As shown in Figure 5.5, correct results are stored into the memory. As you can see,

the commands work without any problems, but our test is quite simple compared to

more complex programs such as the digital low pass filter program. But such programs

require more program memory. For this reason, when we tried to increase the program

memory of HORNET, we could not do it because of the errors we encountered due to

Verilator tool. We managed to expand it with Vivado, but we didn't have enough time

so we decided to do such a test. In future studies, more comprehensive tests and

benchmarks for FPU can be made.

Figure 5. 5 : Results in HORNET memory.

56

 REALISTIC CONSTRAINTS AND CONCLUSIONS

The importance of purpose-built hardware designs is increasing day by day. For this

reason, processors are designed for different purposes in different architectures. While the

HORNET RISC-V processor that we worked on was able to perform basic mathematical

and logical operations, it became able to operate on floating-point numbers, which is an

approximation method to real numbers.The design is free to use and extend. It can be used

for research purposes, educational purposes, and even for personal projects.

 Practical Application of this Project

Rısc-v processor are usally have some of the instruction sets as our processor does,

since design can be used for further research for extending the instruction set by other

instruction sets. In addition to this , it can be prepared for a chip tape-out. This could

be an important contribution to the processor design initiative that is present in the

country.

 Realistic Constraints

6.2.1 Social, environmental and economic impact

RISC-V is a license-free ISA. This means that companies or groups do not have to pay

for a licensing it is free to produce and/or sell RISC-V processors.

6.2.2 Cost analysis

The CAD tools used in this project are not free. Simulation and synthesis tools are

quite costly. Fortunately, VLSI Lab in our faculty provided us with the necessary

software licences.

6.2.3 Standards

The standard to follow in this project is the RISC-V ISA manual mainly and RISC-V

manual considers IEEE 754 floating-point standarts for floating point numbers.‘F’

extesion implemented with IEEE 754 and RISC-V ISA manual standarts.

6.2.4 Health and safety concerns

This project does not involve health and safety concerns.

57

 Future Work and Recommendations

There are different kind of opportunities for future work . To begin with, the remaining

accumulate instructions , can be implemented. Combinational circuits that processor

has can be optimized to ensure lower delays to achive higher clock frequencies. An

interface can be provided for communication with peripherals. Lastly , chip tape-outs

can also be done to test real life implementation of processor chip.

58

 REFERENCES

[1] Url-3 <https://riscv.org/about/history/>, date retrieved 10.06.2022

[2] Y. TOZLU and Y. YILMAZ Design and Implementation Of A 32-Bit Rısc-v

Core, June 2021

[3] “754-2008 - IEEE standard for floating-point arithmetic,” IEEE / Institute of

Electrical and Electronics Engineers Incorporated,2008

[4] “The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document

Version 20191213”, Editors Andrew Waterman and Krste Asanovic,

RISC-V Foundation, December 2019.

[5] B. Parhami, Computer Arithmetic and Hardware Designs, Oxford University

Press, 2000.

[6] S.F., Oberman and M.J. Flynn, “Design Issues in Division and Other Floating-

Point Operations,” IEEE Trans. Computers, vol. 46, no. 2, pp. 154-161,

Feb. 1997.

[7] Oberman, S. F., & Flynn, M. J. (1997). Division algorithms and

implementations. IEEE Transactions on Computers, 46(8), 833–854.

https://doi.org/10.1109/12.609274.

[8] Yamin Li and Wanming Chu, "A new non-restoring square root algorithm and its

VLSI implementations," Proceedings International Conference on

Computer Design. VLSI in Computers and Processors, 1996, pp. 538-

544, doi: 10.1109/ICCD.1996.563604.

[9] I. Korean Computer Arithmetic Algorithms, 2nd ed, A. K. Peters/CRC Press, 2002.

[10] Patterson D. and Hennessy John L., Computer Organization and Design

RISC-V Edition, 2nd ed. Morgan Kauffman, 2020.

https://riscv.org/about/history/

