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EXTENDING THE INSTRUCTION SET OF RISC-V PROCESSOR FOR 

FLOATING-POINT ARITHMETIC 

SUMMARY 

The development of the Internet and communication devices with scientific studies 

until today has enabled the speed and amount of communication between people to 

reach a different dimension compared to the past. Thanks to this increase in 

communication, the idea that solutions which used to produced separately for similar 

problems can be produced together led people to create the open-source concept. 

Open-source designs have become a concept that designers have the unconditional 

right to use, develop and change over time. Among these designs, researchers at the 

University of California, Berkeley developed a Processor Instruction Set Architecture 

called "RISC-V", which is an interface between software and hardware with no license 

requirements. Interested by researchers and companies, the RISC-V Instruction Set 

was designed by many different institutions and individuals. It emerged as open source 

after being approved by the RISC-V organization. A 32-bit RISC-V kernel was 

designed at Istanbul Technical University by senior students named Hornet. The hornet 

has an RV32I basic instruction set and M extension with detailed documentation and 

approved by RISC-V. 

The Hornet processor already includes hardware that can perform basic mathematical 

and logical operations with integers. Nevertheless, integers cannot provide an adequate 

approximation to the set of real numbers, which makes the processor's ability to 

operate with floating decimal numbers, which is a different number representation. In 

the RISC-V Instruction Set content, the F extension offers an instruction set that allows 

operations to execute with floating-point numbers. In this context, we decided to 

improve the competence of the processor by implementing F instructions on the Hornet 

core for operations with floating-point number sets. By the courtesy of, users will be 

able to use the Hornet core in applications that require operations with real numbers. 
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Before we started adding the F instruction set, we tested the features of the Hornet 

processor with simulations on Linux by writing C programs, thus verifying that the 

core is functional. Afterwards, in order to increase our knowledge in the field of 

computer architecture, we read the basic books written about computer architecture 

and design. In the light of what we have learned, we decided on the blocks that we 

think we need to add to the processor and the order in which these blocks should be 

added. Since the 'F' extension is separated as Load/Store instructions, computational 

instructions, conversion instructions and move instructions , compare instructions and 

sign injection instructions, we added the instructions to the processor under these 

headings. In particular, the circuits that perform the multiplication, division and square 

rooting instructions among the computational commands are designed to work 

together in terms of control. We designed the circuits that make the implementations 

in accordance with the IEEE 754 standard and the RISC-v manual, and tested the 

accuracy of the results at every stage of the design. After the design phase was 

completed, we tested all the commands on the processor with the codes wroted in 

assembly language and verified core’s functionality. 
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KAYAN NOKTA ARİTMETİĞİ İÇİN RISC-V İŞLEMCİSİNİN KOMUT 

SETİNİ GENİŞLETME 

ÖZET 

İnternetin ve haberleşme aygıtlarının günümüze kadar olan bilimsel çalışmalar ile 

geliştirilmesi insanlar arasındaki iletişim hızı ve miktarı eskiye göre farklı bir boyuta 

ulaşmasın sağladı. İletişimdeki bu artış sayesinde benzer problemler için ayrı ayrı 

üretilmesi gereken çözümlerin birlikte üretilebileceği fikri insanları açık kaynak 

konseptini oluşturmaya yönlendirdi. Açık kaynak tasarımlar zaman içerisinde 

tasarımcıların koşulsuz şartsız kullanma, geliştirme ve değiştirme hakkına sahip 

oldukları bir konsept halini aldı. Bu tasarımların arasında California, Berkeley 

Üniversitesi ’indeki araştırmacılar tarafından adı ‘‘RISC-V’’ olan, lisans koşulu 

olmayan yazılım ile donanım arasında ara yüz olan bir Komut Kümesi Mimarisi 

geliştirildi. Araştırmacılar ve şirketler tarafından ilgi duyulan RISC-V Komut Seti 

Kümesi birçok farklı kurum ve kişi tarafından tasarlandı. RISC-V organizasyonu 

tarafından tescillendikten sonra açık kaynak olarak ortaya çıktı. Hornet’te RISC-V 

tarafından onay almış RV32I temel komut kümesine ve M uzantısına sahip açık 

kaynaklı ayrıntılı dokümantasyonu olan bir İstanbul Teknik Üniversitesi öğrencileri 

tarafından tasarlanmış 32-bitlik bir RISC-V çekirdeği. 

 

Hornet işlemcisi temel matematiksel ve mantıksal işlemleri tam sayılar ile yapabilen 

donanımları bünyesinde hâlihazırda bulunduruyor fakat tam sayılar gerçek sayı 

kümesine yeterli yaklaşımı sağlayamıyor bu da işlemcinin daha farklı bir sayı 

gösterimi olan kayan ondalıklı sayılar ile işlem yapabilme yeteneklerini gerekli hale 

getiriyor. RISC-V Komut Kümesi içeriğinde F uzantısı adında kayan ondalıklı sayılar 

ile işlemlerin yapılabilmesi sağlayan komut kümesini sunuyor. Bu bağlamda 

işlemcinin kullanım alanını geliştirmek ve gerçek sayı kümesi ile yapılacak işlemlerde 

hassasiyeti çok daha yüksek sonuçlar elde etmek için Hornet çekirdeği üzerine F 
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komutlarının gerçeklemesiyle işlemcinin yeteneklerini geliştirmeye karar verdik. Bu 

sayede kullanıcılar gerçek sayılar ile işlem gerektiren uygulamalarında Hornet 

çekirdeğini kullanabilir hale gelecek. 

 

F komut kümesini eklemeye başlamadan önce Hornet işlemcisinin özelliklerini C 

programları yazarak Linux üzerinde simülasyonlar ile test ettik bu sayede çekirdeğin 

fonksiyonel olduğunu doğruladık. Daha sonrasında Bilgisayar mimarisi alanında olan 

bilgi birikimimizi arttırmak amacıyla bu alan yazılan temel kitaplardan faydalandık. 

Öğrendiklerimizin ışığında işlemci üzerine eklememizin gerekli olduğunu 

düşündüğümüz blokları ve bu blokların hangi sıra ile eklenmesi gerektiğine karar 

verdik. Temel olarak ‘F’ uzantısı hafıza komutları, hesaplama komutları, dönüştürme 

ve hareket ettirme komutları, karşılaştırma komutları ve işaret enjeksiyon komutları 

olarak ayrıldığı için komutları yine işlemci üzerine bu başlıklar altında ekledik. 

Özellikle hesaplamalı komutlar arasından çarpma bölme ve karekök alma 

komutlarının gerçeklemesini sağlayan devreler kontrol açısından beraber çalışacak 

şekilde tasarlandı.  Gerçeklemeleri yapan devreleri IEEE 754 standardına ve Rısc-v 

manuel’ine uygun olacak biçimde tasarlayıp sonuçların doğruluğunu tasarımın her 

aşamasında test ettik. Tasarım aşaması tamamlandıktan sonra komutların hepsini 

işlemci üzerine assembly dilinde yazılan komutlar ile test ederek işlevselliğini 

doğruladık.
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  INTRODUCTION   

Computers became important for humankind in favour of their computational and 

memorial capabilities. These capabilities are ensured with components which are 

processor and memory; while the processor computes and controls the system, 

memory keeps the data that is the processor’s input or output. Since computer systems 

are designed in the 1940’s different design architectures are introduced by academia 

and industry to optimize processors for purposes. Rısc-v is one of the open-source 

instruction set architecture that developed at the University of California Berkeley. 

This project is aiming to extend instruction set of RISC-V core with ‘F’ Single-

Precision Floating-Point instructions. ‘F’ instruction set includes load and store, 

computational, conversion and move, comparison and classify floating-point 

instructions. These instructions will be implemented with considering IEEE-754 

floating point standards for single precision (32 bit) as requested in the RISC-V 

Instruction Set Manual. It is intended to add the Floating Point Unit (FPU) block to 

the pre-designed RISCV processor named HORNET to implement the given 

instructions. A FPU is a a part of computer system designed specifically for 

manipulating floating point numbers. Even without a floating-point unit, a CPU can 

handle both integer and floating point (non-integer) calculations. However, integer 

operations use significantly different logic than floating point operations. While it is 

possible to handle floating-point operations through software emulation, the goal of 

this project is to actually add a FPU to the processor that can handle the instructions 

as part of the processor. A FPU provides a faster way to handle calculations with non-

integer numbers. The project consists of three main stages that are divided the 

instructions in the 'F' extension of the RISCV manual into 3 different groups that has 

tested on HORNET at each stage. Each student performed some of the different types 

of instruction groups and integrate them into HORNET.The first stage is to design and 

implement the data transfer instructions and adder/subtractor module.The second stage 

is design and implementation of multiplication/division, square root and comparison 

modules. The third stage is design and implementation of conversion and move 
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instructions. After design and implementations finalizied processor core tested for 

each instruction ‘F’ extension has but the fused multiply add  and min-max 

instructions. 

 About RISC-V and HORNET 

RISC-V is an open source instruction set architecture developed by researchers at the 

University of California Berkeley for use in lectures and research projects [1]. The 

areas reached by the project were later expanded and turned into an architecture 

accepted all over the world. In addition to creating a safe zone for software platforms 

and developers by freezing its basic features (frozen set), studies have also been made 

to expand it for many applications thanks to its flexible architecture. In addition, 

HORNET is a 32-bit processor with ‘Base Integer’ and ‘M’  set instructions designed 

by ITU students[2].  

 About IEEE-754 

IEEE-754 is the most used standard for arithmetic of floating-point numbers. The 

formats and methods of floating-point numbers used in computer systems are specified 

in this standard's documentation. Examples of these specifications include rounding 

methods, arithmetic operations, exception handling, and how to encode exceptions 

(such as NaN, infinity, zero)[3]. The FPU that we will design during the project will 

be designed completely in accordance with these specifications and will be integrated 

into HORNET. 

 The RISC-V ‘F’ Instruction Set 

Single-precision floating-point computational instructions of RISC-V, designated as 

"F" and conforming to the IEEE 754-2008 arithmetic standard, are briefly elaborated 

in Table 1.1[4].  
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Table 1.  1 : Instructions of ‘F’ Standard Extension. 

  

Instructions                                Executing Operations 

FLW, FSW Loads/Stores Floating-point data to/from destination. 

FMADD.S, FMSUB.S 
Multiplies source1, source2, adds source3, stores in 

destination.  

FNMADD.S, 

FNMSUB.S 

Multiplies source1, source2, negates, adds source3, stores 

in destination 

FADD.S, FSUB.S, 

FMUL.S, FDIV.S 

Adds/Subtracts/Multiplies/Divides source1, source2, 

stores in destination. 

FSQRT.S Computes square root of source1, stores in destination. 

FSGNJ.S, FSGNJN.S, 

FSGNJX.S 

Takes all bits from source1 except sign bit, which is 

determined by the sign of source2, the opposite sign of 

source2, or XOR of signs of source1 and source2, stores 

in destination. 

FMIN.S, FMAX.S 
Takes min/max of source1 and source2, stores in 

destination. 

FCVT.W.S, 

FCVT.WU.S 

Converts floating-point source1 value to signed/unsigned 

integer value, stores in destination. 

FMV.X.W, 

FMV.W.X 

Moves floating-point value from source1 to lower 32 bits 

of integer register destination, or vice versa. 

FEQ.S, FLT.S, FLE.S 
Equality/Less than/Less than or equal to of source1, 

source2, stores in destination. 

FCLASS.S 
Examines value in source1, stores 10-bit mask in 

destination that indicates class of floating-point number. 

FCVT.S.W, 

FCVT.S.WU 

Converts signed/unsigned source1 value to floating-point 

value, stores in destination. 

 

 

 There are several considerations when adding an FPU to the processor that will 

add considerable complexity. First, we will need to implement changes to the Control 

Unit to correctly interpret this extended set of instructions and store information about 

whether operations are integer or floating-point. The RISC-V floating-point extension 

uses 32 additional 32-bit registers for floating-point operations, so we’ll need to 

include a second register file for these floating-point registers.  

1.3.1 Single-precision load and store instructions 

The load and store instructions, named as FLW and FSW can be seen at Tables 

1.2 and 1.3, loads a single-precision floating-point value to floating-point register from 

memory and stores a single precision value of floating-point register to memory, 

respectively. Load and store instructions use a base address in source register and 12-

bit signed byte offset as base+offset addressing method as integer base ISA does.  In 
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the implementation of these commands, it is not much different from normal load and 

store as only the correct register bank should be selected. 

Table 1.  2 : Single precision floating-point load instruction. 

Immediate[11:0] rs width rd opcode 

12 5 3 5 7 

Offset base  W          dest LOAD-FP 

 

Table 1.  3 : Single-precision floating-point store instruction. 

Imm[11:0] rs 2         rs1 width Imm[4:0] opcode 

7 5  5 3 5 7 

Offset src2  src1       width  dest STORE-FP 

 

1.3.2 Single-precision floating-point computational instructions 

Computational instructions can be classified in 2 different categories according to the 

instruction type. The first of these groups includes the R-type commands FADD.S-

FSUB.S, FMUL.S-FDIV.S, FSQRT.S and lastly FMIN.S/FMAX.S shown in Table 

1.4. Except for FMIN.S and FMAX.S instructions, as the name implies, other 

instructions do basic four operations on floating-point numbers and FSQRT.S take 

square root of a floating-point number. FMIN.S and FMAX.S, on the other hand, saves 

the smaller or larger of the two floating-point numbers, respectively, to the destination 

register. The other group is R4-type fused instructions, FMADD.S, FMSUB.S, 

FMNADD.S and FMNSUB.S, which, unlike the previous one, use three source 

registers, instead of two. Fused multiply and add instructions make multiplication and 

addition operations together to obtain the result, which causes it to differ from other 

computational instructions. Since these commands go through similar stages while 

running, common units with small varieties are used for rounding and normalizing the 

result.  

Table 1.  4 : Single-precision floating-point computational instructions. 

funct5 fmt     rs2 rs1 rm rd opcode 

5 2  5 5 3 5 7 

FADD/FSUB S  src2     src1 RM  dest OP-FP 

FMUL/FDIV S  src2     src1 RM  dest OP-FP 

FSQRT S  src2     src1 RM  dest OP-FP 

FMIN/FMAX S  src2     src1 RM  dest OP-FP 
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1.3.3 Single-precision floating-point conversion and move instructions 

Format conversion instructions are used to convert different data formats to each other. 

These are FCVT.W.S,  FCVT.WU.S, FCVT.S.W and FCVT.S.WU are given below 

in Table 1.5 . Respectively, the functions of these commands are to convert a floating-

point number to its closest signed or unsigned integer representation, or to convert a 

signed or unsigned integer to its floating-point counterpart. Since HORNET is a 32-

bit architecture, conversions related to 64-bit integer numbers are not performed. 

Table 1.  5 : Single-precision floating-point conversion instructions. 

funct5 fmt     rs2 rs1 rm rd opcode 

5 2  5 5 3 5 7 

FCVT.int.fmt S  W[U]/L[U]     src RM  dest OP-FP 

FCVT.int.fmt S  W[U]/L[U]     src RM  dest OP-FP 

 

Floating-point sign injection instructions take interest on sign of sources rs1 and rs2 

while rd takes all bits of rs1 but sign bit, can be seen in Table 1.6. There are 3 different 

sign injection instructions which are FSGNJ.S that sets sign bit of rd as sign of rs2, 

FSGNJN.S that sets sign bit of rd as opposite of rs2, FSGNJX.S that sets sign bit of rd 

as exored signs of rs1 and rs2. 

Table 1.  6 : Single-precision floating-point sign injection Instructions. 

funct5 fmt     rs2 rs1 rm rd opcode 

5 2  5 5 3 5 7 

FSGNJ S  src2     src1 J[N]/JX  dest OP-FP 

 

The floating-point move instructions, FMV.X.W and FMV.W.X in Table 1.7,  are used 

to transfer contents of  a floating-point register  to a general purpose(integer) register 

or contents of  a general purpose  register  to a floating-point register without changing 

or converting the data, respectively. 

 

Table 1.  7 : Single Precision Floating Point move Instructions. 

funct5 fmt     rs2 rs1 rm rd opcode 

5 2  5 5 3 5 7 

FMV.X.W S  0     src 000  dest OP-FP 

FMV.W.X S  0     src 000  dest OP-FP 
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1.3.4 Single-precision floating-point compare instructions 

There are 3 different instructions for comparison in F extension that are FEQ.S, FLT.S 

and FLE.S showed in Table 1.8, stands for equal, less than, less than or equal, 

respectively. If the conditions are met, the integer destination register is written 1, 

otherwise 0. 

Table 1.  8 : : Single Precision Floating-Point Compare Instructions. 

funct5 fmt     rs2 rs1 rm rd opcode 

5 2  5 5 3 5 7 

FCMP S  src2     src1 EQ/LT/LE  dest OP-FP 

 

1.3.5 Single-precision floating-point classify instruction 

FCLASS.S is an instruction for classifying the contents of a floating-point register by 

writing a 10-bit mask to the integer register. The instruction  classifies floating-point 

numbers by setting the corresponding bit in the integer register according to the Table 

1.9 below. Classify instruction sets none of the floating-point exception flags. 

Instruction tpye and bit distrubutions given below in Table 1.10 

Table 1.  9 : Classification Mask of floating-point numbers. 

        𝑅𝑑 bit Meaning 

            0 is −∞ 

            1 is a negative normal number. 

            2 is asubnormal number. 

            3  is −0. 

            4 is +0. 

            5  is a positive subnormal number. 

            6 is positive normal number. 

            7 is is +∞ 

            8 is a signaling NaN. 

            9 is a quiet NaN. 

 

Table 1.  10 : Single-precision floating-point classify instruction. 

funct5 fmt     rs2 rs1 rm rd opcode 

5 2  5 5 3 5 7 

FCLASS S  0     src 001  dest OP-FP 
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 Multiplication 

Multiplication has main steps that are a generation of partial products and the addition 

of them [5]. Multiplication circuits are generally designed while considering the trade 

of in-between execution time and implementation cost. Multiplications for small 

operands are generally implemented with considering the implementing cost due to 

their low latency advantages. On the other hand, while implementing multipliers for 

big operands due to use latency advantages of small operands, big operands are divided 

into smaller operands to generate partial products with low latency. Generated partial 

products aligned with proper shifting operations and then aligned products are added 

to obtain the final result of multiplication.  Latency of addition operation has also been 

considered to optimize the implementation of multiplication. Varying methods are 

available to optimize the addition of partial products using Carry Save Adders, like 

Wallace Tree [5].  

 Division 

Division operation  generally considered as an infrequent operation that does not have 

to be implemented as primary. On the other hand, ignoring the implementation of 

division can acquire a decrease in system performance for various applications [6].  

Division algorithms can be categorized into five classes digit recurrence, functional 

iteration, very high radix, table lookup, and variable latency [7]. Implementing 

division algorithms generally includes variations from their classes. All these classes 

consider trade of in-between time and area constraints, concerning operational 

priorities division algorithm classes, can be chosen. 

 Square Root  

Computers architecture was not capable of doing square root operation before 

computers became capable of executing functions in hardware implementations of 

processors directly. These hardware implementations of functions ensure executions 

in less clock cycle but they increase the complexity of the total implementation of 

processors. That necessitates the designing of time/area-efficient square root 
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implementation algorithms. There are iterative approximations and recurrence 

algorithms designed to implement the square root function. These algorithms are 

mainly differing with respect to the convergence to result. Recurrence algorithms are 

mainly assuming the upcoming bit of partial square root as 1 and check whether the 

remainder is negative or positive after subtraction to adjust the partial square root and 

remainder respectively for each two-bit of operands orderly. 

 BACKGROUND INFORMATION 

 Floating-Point Numbers 

Floating-point numbers have emerged as a result of the projection of real numbers in 

the real world to computer systems with a certain precision. Since computer memory 

is limited, you cannot store numbers with infinite precision, no matter whether you use 

binary fractions or decimal ones: at some point you have to cut off. Therefore, a 

method similar to scientific notation is used to encode these numbers shown in Figure 

2.1. In this way, we maximize the range of real numbers can be represented. 

 

 

Figure 2. 1 : 32-bit representation of floating-point numbers. 

        

Floating-point numbers can be represented by the following formula (2.1): 
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 (−𝟏)𝒔  ×  𝒃𝒒  ×  𝒄 (2.1) 

Where, 

― s is sign and 0 (positive) or 1 (negative). 

 ― q is any integer exponent_min ≤ q + p −1 ≤ exponent_max.  

― c is a number represented by a digit string of the form d0 d1 d2 …dp-1 where di is an 

integer digit 0 ≤ di 

Since we will design for single precision in IEEE standards, 23 bits will be used as 

precision, 8 bits as exponent and 1 bit as sign, a total of 32 bits will be used. 

The set of representable floating-point numbers can be classified into different groups 

in which they have different special cases. These cases include ±infinity , not-a-

number(NAN) and ±0. The encoding formats of the entire set of single precision 

floating-point numbers can be viewed from Table 2.1.  

Table 2. 1 : Binary encoding for Floating-Point Datum 

Exponent Mantissa       Object Represented                      

0 0 0.0  

255 0 ∞ 

255 1.0…xx SNaN 

255 1.1…xx QNaN 

1 to 254 1.x…xx Normal Numbers 

0 0.x…xx Subnormal Numbers 

 

When binary encoded floating-point numbers are expressed using scientific notation, 

the digit value of the integral part is hidden according to the IEEE standard, since the 

digit values are always 0 or 1. In addition to this and the fractional part after the 

decimal point is kept in the mantissa segment. If the value of this hidden digit is 1, 

they are called normalized numbers, and 0 are called denormalized numbers[2]. 

 Exceptions 

Exceptions are important factors in the standard to signal the system about some 

operations and results.  
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When an exception occurs, the following action should be taken:  

 A status flag is set. 

 The implementation should provide the users with a way to read and write the 

status flags. 

 The Flags are ``sticky'' which means once a flag is set it remains until its 

explicitly cleared. 

 

Common exceptions in floating-point numbers are listed below and represented in 

Table 2.2: 

 Overflow, underflow and division by zero: As is obvious from the table 

below, the distinction between Overflow and division by zero is to give the 

ability to distinguish between the source of the infinity in the result.  

 Invalid: This exception is generated upon operations that generate NaN 

results. But this is not a reversible relation (i.e. if the output is NaN because 

one of the inputs is NaN this exception will not raise). 

 Inexact: It is raised when the result is not exact because the result can not be 

represented in the used precision and rounding cannot give the exact result. 

Table 2. 2 : Exceptions in IEEE 754 standard 

Exception Caused By       Result 

Overflow 
Operation produce large 

number 
 

Underflow Operation produce small 

number 

0 

Divide by Zero x/0  

Invalid Undefined Operations NaN 

Inexact Not exact results Round(x) 

 

 Rounding 

Rounding is the one of the major problems of floating-point arithmetic which has to 

be considered for all arithmetic operations as well as the addition and subtraction. 
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Rounding is also a necessity due to higher precision which is one of the main 

advantages of floating-point numbers. To ensure precision our calculation will be 

implemented with extra tree binary digits which are called guard, round and sticky 

bits. Rounding also has 5 different modes which packed within the instruction that 

executed in processor defined in RISC-V manuals. IEEE 754 standards have 

conventions for rounding attributes used as modes of our rounder design. These modes 

can be viewed from Table 2.3. 

 

 

 

Table 2. 3 : Rounding mode table. 

Rounding Mode Mnemonic Meaning 

            000 RNE Round to Nearest, ties to Even  

001 RTZ Round towards Zero 

010 RDN Round Down 

011 RUP Round Up 

100 RMM Roundto Nearest, ties to Max Magnitude 

101   Invalid  

110  invalid 

111 DYN In instructions’s rm field, selects dynamic 

rounding mode; In Rounding Mode register, 

Invalid. 

 

The guard, round and sticky bits processed during the preliminary normalization and 

are output as Round and Sticky after some manipulations. Then, in the rounding unit, 

the necessary rounding is done using these bits, the rounding mode and the sign of the 

output. 

 LITERATURE REVIEW 

Reduced instruction set computers are alternative to complex ones which are getting 

more complicated nowadays. Reducing the instruction sets makes computer 

architecture plain in this way designing process becomes shorter related to normal 
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computers also reducing instruction sets reduces memory and process loads which 

decreases to energy consumption and cost of core. There for in developing IoT industry 

this kind of processors will be demanding cost effective application in near feature. 

Computer instruction set architecture RISC-V is one of the upcoming topics of the last 

decade. Rısc-v processor cores can be implemented with a base integer instruction set 

however there are 16 different extensions for RISC-V ISA that were introduced by the 

rısc-v manual. Implementation of the processor varies with respect to aim of the project 

each instruction set extends the capability of cores while increasing the complexity of 

implementation. As we aim to extend the core with F extension that ensures working 

with floating-point number set to be capable to work with processes including real 

numbers. There are 10 different available Rısc-v cores that have F extension in for 

now. These cores are designed by 5 different organizations [4].  

Codasip have four different core that have F extension are A70X, H50XF, L30F, L50F 

these cores are written in Verilog. L30F and L50F are 32-bit processor which have M, 

F, C extension on RV32I base instruction sets. A70x and H50XF are 64-bit processor 

which have M, A, F, D, C, extensions on RV64I base instruction set. 

Sifive Founding have 3 different cores that have F extension are E2, E3, E7 all of these 

cores written in Verilog and have E, M, A, F, D, C extension on RV32I base instruction 

sets.  

Fraunhofer IPMS have a core that named as EMSA5-FS written in System Verilog 

and have E, M, A, F, D, C extension on RV32I base instruction sets.  

Openhw have a core that named as CV32E40P have F extension written in System 

Verilog and have M, F, C extensions on RV32I base instruction set. 

 MIT CSAIL CSG have a core that named as RiscyOO have F extension written in 

Bluespec and have M, F, C extensions on RV32I base instruction set. 
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 DESIGN AND IMPLEMENTATION OF THE ‘F’ INSTRUCTION SET 

 Implementation of Load/Store Instructions 

 In the 'F' extension of the RISC-V specification document, that there should be a 

separate register file for floating-point arithmetic and it denotes that the following 

format in Table 2.4 and 2.5, should be applied for floating-point data transfer 

instructions: 

Table 4. 1 : Single-precision floating-point store instruction.   

Immediate[11:0] rs width rd opcode 

12 5 3 5 7 

Offset base  W          dest LOAD-FP 

 

 

 

Table 4. 2 : Single-precision floating point load instruction. 

Imm[11:0] rs 2         rs1 width Imm[4:0] opcode 

7 5  5 3 5 7 

Offset src2  src1       width  dest STORE-FP 

 

Then, when we examined the load/store instruction format for integer numbers, we 

realized that these two instruction sets have same formats. In this way, we completed 

the first instructions  by making a few changes in some original design files. 

4.1.1 Reorganize control 

We made very little to no changes on the control side. Control signals for integer type 

load/store can also be applied in floating-point load/store instructions. But we added 

extra two multiplexers to the design to control which register file our outputs are taken 

from. In this, we defined two different signals for Select inputs of multiplixers that 

select data1 and data2 according to the instruction. 

For example, when fsw f15, -24(x8) instruction is executed in assembly language, 

data1 should be selected from integer bank and data2 should be selected from floating-

point register bank. In addition, when a LOAD instruction executed, which register 

bank the data will be loaded into at the WB(write back) stage is decided by the 
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registerbank_sel signal, which travels in the pipeline stage until the WB stage. Figure 

4.1 shows that this change has created a diagram.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The implementation of the extra multiplexers for selection of  data1 and data2 can be 

seen from figure 4.2. 

4.1.2 Verification of the implementation 

Before we synthesized the implementation, we ran several tests to verify its behavioral 

functionality. we wrote a one basic  C programs: a bubble sort algorithm, an integer 

               Figure 4. 2  : Code section modified in the design file for data selection 

                 Figure 4. 1 : Block diagram of reorganized design of registers 
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multiplication algorithm and a Fibonacci Sequence generator. We compiled these 

programs with RISC-V GNU C compiler, generated the opcodes and loaded them into 

the memory. We compiled and loaded these programs into the processor for 

simulation. Testing code given in figure 4.3 below. 

  

 

 

 

 

 

 

 

                        

 

 

 

As  can see from Figure 4.4 and Figure 4.5, the variables a and b that we randomly 

numbers are assigned to floating-point register bank  and then moved to memory 

correctly. 

 

 

 

 

 

 

 

Figure 4. 3 : C code of test program. 

Figure 4. 4 : Values on FP registers. 

Figure 4. 5 : Value on memory. 
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After making sure that the Load/Store instructions are working properly, we start to 

think that the remaining commands will be implemented more quickly as we learn how 

to verify our design . 

 Floating-Point Computational Instructions 

Floating-point instrucitons are generally instructions that perform mathematical 

operations for floating-point numbers. Among these instructions, the circuits that 

perform the sign, exponential and mantissa calculation of the addition and subtraction 

commands have many difference with the circuits that perform the multiplication, 

division and square root instructions. For this reason, the addition/subtraction block 

was designed and developed separately, while the other blocks were developed 

together. However the block that allow the decode of the  32-bit floating-point numbers 

into sign, exponential and mantissa, which is necessary for all mathematical 

operations, is designed to be used for all computational operations. Multiplication, 

division and square root of floating-point numbers are examined under the same 

heading as they are similar in terms of both sign and exponent handling. For the 

multiplication or division of mantissas, the same algorithm used in the existing muldiv 

module is used. For normalization, 3 different normaliser designs named sqrtNorm, 

divNorm and mulNorm are designed. 

 

4.2.1 Decoding of operands for computational instructions 

Floating point numbers are constructed as parts of privileged notation as mentioned 

before and represented in figure 2.1. This binary array includes sign, exponential and 

mantissa parts in addition to these there is a hidden one for floating numbers. This 

hidden one expands precision of floating point numbers by changing significant value 

with respect to the exponent. Significant value is stands for 24-bit binary number that 

integrate mantissa and hidden one of floating point numbers and used as binary 

operands of arithmetic operations. Floating point numbers are favourable approach to 

real numbers ergo considering infinite expansion and precision of real numbers with 

limited bits exceptions are inevitable. The exceptions which are element of real 

number set but not set element of floating point numbers . This numbers grouped as 

±infinity , not-a-number(NAN) and ±0. There is also subnormal which is also 
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considered as underflow for floating numbers. By appointment of particular 

exponential value for subnormal hidden 1 expression ignored and 23-bit mantissa used 

as precision increasing. This classification and disjunction of operands part are 

essential for all arithmetic operations that leads us to design decoder unit which 

decodes the 32-bit floating point numbers for all arithmetic operations. 

4.2.1.1 Implementation of decoder 

Decoder units used as pair due to ensure two source operands unpacked properly for 

each arithmetic operation.  Decoders are used for decoding source 1 and source 2 

respectively. These decoder units take source operands used as input; give sign, 

exponential, significant and exceptions as outputs. Decoder units also coping with 

hidden one for sources which have zero exponentials and nonzero mantissa left most 

bit of significant assigned as 0 otherwise 1, with this appointment contradiction of 

significant settled. As significant values determined exponential differences of 

subnormal exponential and minimum exponential values are settled same as minimum 

exponential value. Decoding of floating point number enables to determining of 

exception cases with respect to the sign, exponential and mantissa. Combinations of 

maximum and zero values of exponential and zero value of mantissa used as indicators 

of exceptions. Using these indicators subnormal, zero, infinity and not a number(NaN) 

signals are generated. 

 

4.2.2 Floating point addition and substraction 

First, we did research on how to implement an algorithm for adding and subtracting 

floating-point numbers. Accordingly, we reviewed the following book, Computer 

Arithmetic and Hardware Designs and we follow the following algorithm[5]. Since the 

subtraction operation is essentially an addition, it is converted into an addition 

operation after the necessary sign arrangements. Flow chart of adder/substracter can 

be seen in Figure 4.6 below. 
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Figure 4. 6 : Floating point adding algorithm.                   

 

4.2.2.1 Designing the algorithm 

The steps of the algorithm we will use are as follows: 

 Step 1:  Compare the exponent of the numbers in the entries and get the 

absolute value of the difference between them. This value will be the temporary 

exponent value of our result. 

 Step 2:  Shift the significand part of the input with the smaller exponent to the 

right by the exponent difference. 

 Step 3: Select the required signals for addition or subtraction. So for 

subtraction, take the 2's complement of original number. Then keep the result 

in your RESULT variable. 

 Step 4: Check MSB bit of RESULT during addition. If this value is 1, shift 

RESULT right by 1 and increase its exponent by 1. During subtraction, check 

RESULT for leading zeros. Shift RESULT left until the MSB of the shifted 

result is a 1. Subtract the leading zero count from tentative exponent. 
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 Step 5: Set the bits required for rounding in normalize and do the necessary 

rounding. After rounding, subject the result to the final normalize and handle 

the exceptions. 

The last two steps are done by the normalizer, which is a separate module to encode 

floating-point numbers with a certain format. We skipped the rounding operations in 

this section, as we will implement the rounding instructions later. 

4.2.2.2 Verification of the implementation 

Before integrating the module we designed into Hornet, we applied behavioral 

simulation with Vivado Design Suite to make sure it was working properly. The 

testbench in Figure 4.7 is used result aquried as Figure 4.8 illustrates. 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

Figure 4. 7 : Test bench of adder/subtracter 

Figure 4. 8 : Simulation results on Vivado. 
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As can be seen from above Figure 4.8 the simulation results, the outputs give accurate 

results without rounding. In the next stage, clock and necessary rounding operations 

must be done to synchronize the circuit.  

After completing rounding and handling of exceptions in this module, apart from this 

test, we tested 1 million different input combinations of random floating-point 

numbers that we created on matlab.Subsequently,  saving these combinations to the 

txt file, we checked it over the tcl console in vivado by doing so, we fixed many errors 

that we did not notice during the design stage. Matlab code of testing variables are 

given in Figure 4.9 below. 

 

 

 

 

 

 

 

 

 

Finally, we also tested the numbers in some edge regions. For example, cases where 

the sum of the minimum subnormal number and the maximum subnormal number is 

normal, or the result is normal with the sum of two maximum subnormal numbers. 

4.2.2.3 Verification on HORNET 

After testing the Adder/Substractor module stand-alone on vivado, the block 

needs to be combined with HORNET as the next step. To do this, new control signals 

have been added with the purpose that this process can be done properly. These control 

signals are INTorFloat,  FPU_func and FPU_roundingMode respectively can be seen 

in Figure 4.10. INTorFloat is a signal used to forward data from the correct output 

(ALU or FPU) in the pipeline. FPU_func is used to determine the addition or 

Figure 4. 9 : Matlab code of random FP number generator. 
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subtraction operation, and FPU_roundingMode as the name implies,  is used to control 

the rounding mode. 

 

 

 

 

Also, the forwarding unit and hazard detection unit modules have been revised for 

possible data forwarding and pipeline stall situations that come with the "F" instruction 

set. 

 

 

 

 

 

 

 

As seen in the waveform in Figure 4.12,that we created using gtkwave, the correct  

values were calculated in the processor and then saved in the memory respectively. 

 

 

 

4.2.3 Floating-point multiplication 

The representation of a floating-point number was like equation 4.1. Using this 

notation, the result obtained by multiplying two floating-point numbers can be 

represented as follows: 

 𝑿 ⋅ 𝒀 = 𝒁𝑴 = (−𝟏)(𝒔𝒙⊕𝒔𝒚) ⋅ 𝟐(𝒆𝒙+𝒆𝒚−𝟏𝟐𝟕) ⋅ (𝑴𝒙 ⋅ 𝑴𝒙) (4.1) 

Figure 4. 10 : Control Signals for FADD/FSUB. 

Figure 4. 11 : Example C code for FADD and FSUB instructions. 

Figure 4. 12 : Simulation results on HORNET for FADD/FSUB instructions. 

https://tureng.com/tr/turkce-ingilizce/as%20the%20name%20implies
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The sign part is pretty straightforward. The sign of the result is determined by 

EXORing the signs of the inputs. In the exponent part, it is obtained by adding two 

exponents. But the exponent we obtained from the product are biased two times, so 

127 is subtracted from the result to obtain a value which has the bias is applied once. 

4.2.3.1 Multiplication of significands 

The mantissa part of the result is obtained by directly multiplying it. In order not to 

further complicate the design while multiplying the significands, we changed the 

design codes of the 32 bit multiplier circuit to operate in 24 bits in place of 32 bits, 

instead of directly using the previous MULDIV block in the processor. Flow chart of 

multiplication operation illustrated with Figure 4.13. 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.3.2 The multiplication algorithm 

Two 24-bit significands can be written as the sum of two stage-1 partitions according 

to the following equation 4.2. 

 𝐴 = 𝐴𝐻212 + 𝐴𝐿      𝐵 =  𝐵𝐻212 + 𝐵𝐿 (4.2) 

Using this notation, the product of two significands can be represented as: 

Figure 4. 13 : Flowchart of floating-point multiplication. 
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 𝐴 × 𝐵 = (𝐴𝐻212 + 𝐴𝐿)  × (𝐵𝐻212 + 𝐵𝐿) =  𝐴𝐻𝐵𝐻224 + (𝐴𝐻𝐵𝐿 +  𝐴𝐿𝐵𝐻)212 + 𝐴𝐿𝐵𝐿 (4.3) 

Moreover, these partitions can be further split up into smaller stage-2 partitions. 

 𝐴𝐻 = 𝐴𝐻𝐻26 + 𝐴𝐻𝐿      𝐵𝐻 =  𝐵𝐻𝐻26 + 𝐵𝐻𝐿 (4.4) 

For example the expression 𝐴𝐻𝐵𝐻 can be represented as 

   𝐴𝐻  × 𝐵𝐻 = (𝐴𝐻𝐻26 + 𝐴𝐻𝐿  )  × (𝐵𝐻𝐻26 + 𝐵𝐻𝐿)                                                

   =  𝐴𝐻𝐻𝐵𝐻𝐻212 + (𝐴𝐻𝐻𝐵𝐻𝐿 +   𝐴𝐻𝐿𝐵𝐻𝐻)26 + 𝐴𝐻𝐿𝐵𝐻𝐿 

(4.5) 

With the use of equations (4.2), (4.3), (4.4) and (4.5), operands are partitioned to 𝐴𝐻𝐻, 

𝐴𝐻𝐿,  𝐴𝐿𝐻 and 𝐴𝐿𝐿 for A, and 𝐵𝐻𝐻, 𝐵𝐻𝐿, 𝐵𝐿𝐻 and 𝐵𝐿𝐿 for B. These partitions are 8-bit, 

and are multiplied in an order for generating the second level partitions 𝐴𝐻𝐵𝐻, 𝐴𝐻𝐵𝐿, 

𝐴𝐿𝐵𝐻 and 𝐴𝐿𝐵𝐿. These second level partitions are then added in an order to generate 

the final result. 

4.2.3.3 Normalization of Significands 

Normalizer For Multiplication Although the normalizer of the multiplier circuit works 

with logic similar to the adder, some changes need to be made. The pseudo code of the 

multiplication normalizer can be seen in Figure 4.14.  

For example, when we subtract bias from the sum of the exponents, if the result is 

underflow and the hidden digit is 0, it means that our number has fall into subnormal 

range. In this case, our output exponent should be set to 0. Also, exceptions that may 

occur during the normalization step, such as overflow and underflow, due to 

exponancial changes, are checked. 
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Figure 4. 14 : Pseudo code of Multiplication Normalizer. 

4.2.3.4 Rounding logic for multiplication 

After the Significands are multiplied, the Guard, Round and Sticky bits need to be 

properly determined in order to be able to round correcly. The Guard bit is a digit that 

gains importance when it is necessary to shift left only once while normalizing the 

significand. The Round bit is used to make the rounding more precise. Lastly, Sticky 

bit is used to give a general intuition about the values of the bits to be discarded from 

a certain precision. 

 𝑴𝒙𝟐𝟒 ∙ 𝑴𝒙𝟐𝟑................. 𝑴𝒙𝟏𝑴𝒙𝟎 

                           ×  𝑴𝒚𝟐𝟒  ∙ 𝑴𝒚𝟐𝟑................. 𝑴𝒚𝟏𝑴𝒚𝟎 

                             𝑴𝒛𝟒𝟕𝑴𝒛𝟒𝟔 ∙ 𝑴𝒛𝟒𝟓................. 𝑴𝒛𝟏𝑴𝒛𝟎 

(4.6) 

 

                                                     24 bits                 24 bits   

                                        (actual significand)         (used for rounding)   

G = Guard Bit =  𝑴𝒛𝟐𝟑 

R = Round Bit =  𝑴𝒛𝟐𝟐 

S = Sticky Bit = OR of less significand 22 bits of  𝒁𝑴 
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𝑴𝒛𝟒𝟕𝑴𝒛𝟒𝟔 ∙ 𝑴𝒛𝟒𝟓.................𝑴𝒛𝟐𝟒     𝒈  𝒓  𝒔 

 

 

Case a: 𝑴𝒛𝟒𝟕  =  𝟎,     𝒁𝑴 = 𝑴𝒛𝟒𝟔 ∙ 𝑴𝒛𝟒𝟓................. 𝑴𝒛𝟐𝟒    g        R = r   S = s 

Case b: 𝑴𝒛𝟒𝟕  =  𝟏,    𝒁𝑴 = 𝑴𝒛𝟒𝟕 ∙ 𝑴𝒛𝟒𝟔................. 𝑴𝒛𝟐𝟓 𝑴𝒛𝟐𝟒      R = g   S = r OR s 

Case c: 𝑴𝒛𝟒𝟕, 𝑴𝒛𝟒𝟔  =  𝟎  𝒁𝑴 is shifted until MSB is 1. Then R is equal to 23nd bit 

of shifted version of 𝒁𝑴 and S is equal to OR of less significand 22 bits of shifted 

version 𝒁𝑴. 

After the normalization step, the final Round and Sticky bit are specified using below 

cases. Then, the R and S bits are rounded according to the rounding mode used. 

Eventually, after the appropriate rounding is done, the final normalization and 

exponent adjustment processes are done, and our output is ready. 

4.2.3.5 Testing the floating-point multiplication circuit 

During the test phase, we tried the random floating-point numbers we generated with 

MATLAB, as in the previous units, with simulation over Vivado. We reviewed the 

design by analyzing incorrect results and updated it until finally no errors.  

Afterwards, we would integrate this circuit directly in Hornet, but since it will have 

common signals with the Division block, we decided to do it after designing the 

division circuit. 

4.2.4 Floating-Point Division  

In floating-point division arithmetic, the output sign is calculated by EXORing the 

input signs, as in multiplication. In floating-point division arithmetic, the exit sign is 

calculated by EXORING the input signs, as in multiplication. Since the exponents will 

be subtracted from each other in division, the resulting exponent will be unbiased.  For 

this reason, the value of 127 is added to bias the output exponent once. 

 𝑿 ÷ 𝒀 = 𝒁𝑫 = (−𝟏)(𝒔𝒙⊕𝒔𝒚) ⋅ 𝟐(𝒆𝒙−𝒆𝒚+𝟏𝟐𝟕) ⋅ (𝑴𝒙 ÷ 𝑴𝒙) (4.7) 

 



40 

 

4.2.4.1 Division of Significands 

We used same algorithm that Hornet does due to pave the way for further works. In 

addition to this the algorithm have been chosen with consideration of area and time 

coefficients. Trade of between area and time concluded with regard of frequency of 

division operations comes while processor working [2]. After determining division 

algorithm of significant part of floating point we take in to account exponential and 

sign operations. These operations are very straight forward for division as well as 

multiplication.  

Unlike integer division, for the division of 24-bit significands, the dividend and divisor 

must be must be converted to the appropriate format before starting the operation. 

First, the dividend is shifted to the left by 26 bits and 26 bits of 0 are padded to the 

beginning of the divisor. The reason for shifting 26 bits instead of 23 bits is that the 

extra 3 bits are used for rounding. Then offset is calculated to get the output correctly 

for subnormal divisors. 

 The formatting is as follows. Assume that 𝑀𝑥 is dividend, 𝑀𝑦 is divisor and 𝑀𝐷 is 

quetient. 

 𝑀𝑥

𝑀𝑦
 =   𝑀𝐷  

(4.8) 

Can be written as: 

 𝑀𝑥

𝑀𝑦
 ×  226 =   𝑀𝐷  ×   226 = 𝑀𝑠ℎ𝚤𝑓𝑡𝑒𝑑   

(4.9) 

equation 4.9 can also be written as equation 4.10. 

 𝑀𝑑  =  𝑀𝑠ℎ𝚤𝑓𝑡𝑒𝑑 × 2−26 (4.10) 

Accordingly, 𝑀𝑑is the 26-bit right shifted version of the 𝑀𝑠ℎ𝚤𝑓𝑡𝑒𝑑. For subnormal 

divisors, 𝑀𝑠ℎ𝚤𝑓𝑡𝑒𝑑 needs to be shifted to the left by 24 − 𝑜𝑓𝑓𝑠𝑒𝑡 amount. Normalizing 

and rounding is done with the similar logic as in the multiplication. 
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4.2.5 Floating point square root  

Calculating the square root of single-precision floating-point numbers is an unary 

operation unlike other computational instructions. Since the square root operation is 

valid only in the domain of positive real numbers, sign of input operand is just an 

indicator to determine whether square root operation is valid or not. The exponent is 

divided in half, as can be seen from equation 4.11. The point to consider is when the 

exponent is odd. In these cases, operations are performed by considering the 

significand shifted 1 digit to the left. 

 

√𝑋 = √𝑀𝑋 ∙ 2𝑒𝑥  = {
        √𝑀𝑋 ∙ 2(

𝑒𝑥
2

)            𝑖𝑓 𝑒𝑥 𝑖𝑠 𝑒𝑣𝑒𝑛,

√2 ∙ 𝑀𝑋 ∙ 2(
𝑒𝑥−1

2
)         𝑖𝑓 𝑒𝑥 𝑖𝑠 𝑜𝑑𝑑.

 

 

(4.11) 

Nontrivial calculation of square root operation is the computation of significand 

value’s square roots. Since the significant value is 24-bit binary array which is 

interpreted differently for floating-point arithmetic,  approximations for integer square 

root operations are also applicable to significant value.  

4.2.5.1 Square Root of Binary Numbers   

Square root operation has only one operand unlikely to other mathematical operations. 

The operand expected to be equal to the square of the final result that leads design to 

be different from analytic approaches. Therefore, in square root operation result has to 

be calculated with algorithms which are mainly divided into iterative approximations 

and recurrence methods. Since our concern is calculating square root of floating point 

numbers with binary 32-bit representation. Recurrence algorithms are chosen due to 

constant execution time which has critical significance for pipelined processor 

structure. Recurrence algorithms generate square root bit by bit, with subtracting the 

square of instant square root from related remainder. Since these operations employ 

large number of different units, square root calculation algorithms have been 

developed to reduce the number and complexity of components. By courtesy of these 

algorithms square root operation can be implemented with simple digital circuitry. ‘A 

new non-restoring square root algorithm introduced by Yamin Li and Wanming Chu 

is very efficient to implement. Many existing design are less area and time efficient 

than the implementation of new non-restoring square root algorithm [10]. 
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4.2.5.2 Mathematical expression of binary square rooting operation 

Square root operations start with calculating most significant bit of square root result 

and to be continued till least significant bit of square root calculated. While calculating 

square root of binary numbers new non-restoring algorithm investigate on remainder 

for each step of calculation.  

Suppose 𝐷  is input operand,  𝑞𝑘 is partial square root and 𝑟𝑘𝑎𝑏 is the partial remainder 

at step k where 𝑎𝑏 is the next pair of operand, 𝑎 = 𝐷2𝑘−1 and 𝑏 = 𝐷2𝑘−2 . Note that  

𝑞𝑘, 𝑟𝑘  are binary sequences and multiplying these sequence with 2 corresponds 

shifting these sequences left by one bit.  

 𝑞𝑟𝑡(𝐷) =  √ 𝐷2𝑘−1𝐷2𝑘−2𝐷2𝑘−3 ⋯ ⋯ 𝐷1𝐷0 (4.12) 

          = 𝑄𝑘−1𝑄𝑘−2𝑄𝑘−3 ⋯ ⋯ 𝑄1𝑄0 =  𝑞𝑘 

Square rooting  2 × k bit binary number  resulted with k  bit binary sequence. Initially, 

the MSB of the square root result and first partial remainder is calculated by 

subtracting 01 from the 𝐷2𝑘−1𝐷2𝑘−2 pair. Other bits of remainder and next significant 

bit pairs of 𝐷 are concenatated as 𝑟𝑘𝑎𝑏. The remaining bits of the square root result 

are obtained sequentially by subtracting or adding the current partial remainder from 

the partial square root result, according to the MSB value of the partial remainder 

calculated in the previous state. Partial tables truth table represented below Table 4.3. 

Let's assume that the initial partial square root and the partial remainder are calculated 

according to the figure A, where 𝐷2𝑘−1𝐷2𝑘−2 is first pair of binary input,  𝑄𝑘−1 is the 

MSB of square root and 𝑅𝑘+1𝑅𝑘 first pair of partial remainder . 

 

Table 4. 3 : Truth table of partial root and related square root bit. 

𝐷2𝑘−1 𝐷2𝑘−1 𝑄𝑘−1 𝑅𝑘+1 𝑅𝑘 

00 0 00 

01 1 00 

10 1 01 

11 1 10 

 

The next bit of square root and partial square root are calculated as in Equation 4.13 

and Equation 4.14. 
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 𝑄𝑘−2 = {
 1, 𝑖𝑓 𝑟𝑘−2 =  𝑟𝑘−1𝑎𝑏 − 𝑞𝑘−1

2  ≥ 0,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (4.13) 

 

 𝑞𝑘−2 = {
 𝑞𝑘−11, 𝑖𝑓 𝑄𝑘−2 = 1,
𝑞𝑘−10, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (4.14) 

    

𝑐𝑑 is the next pair of 𝐷. If the remainder 𝑟𝑘−2 is non-negative, next partial root is equal 

to following expression. 

 𝑟𝑘−3 =  𝑟𝑘−2𝑐𝑑 − 𝑞𝑘−2
2 (4.15) 

If the remainder 𝑟𝑘−2  is negative then next partial root equals to: 

 𝑟𝑘−3 =  𝑟𝑘−1𝑎𝑏𝑐𝑑 − 𝑞𝑘−2
2 (4.16) 

As can be seen from the expressions above, the new non-restoring algorithm results in 

two different expressions for negative partial remainder and positive partial 

remainder.These expressions will be implemented with digital circuitry as adder and 

shift registers. For 2 × 𝑘 bit binary number k + 2 bit adder/subtracter can be  used with 

shift registers to compute square root.  

 

4.2.5.3 Square root of significand 

Since the square root of a 24-bit significand will be 12-bit, there will be a loss of 

precision, so it needs to be extended further. For that purpose, along with the bits 

required for rounding, the significand is extended to 54 bits by shifting it to the left. In 

each clock cycle  two bits of square root are calculated and the final result is calculated 

in 27 cycle. Also, the hidden bit of the square root result can only be 0 in the subnormal 

number set, so normalization is not performed for normal inputs. Hence, normalization 

in square root aritmetic is relatively simpler than other operations. 
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Figure 4. 15 : Implementation of square root algorithm. 

 

As can be seen from above Figure 4.15 acquired result of  square root mathematical 

expressions has implemented with  29-bit Adder/Substracter block and tree shift 

registers for remainder, quantinent and input operands. 

4.2.6 Control unit  

The Control Unit is responsible for making sure that the rest of the circuit is operating 

correctly. It controls which signals will be inputted to the Square Root Block, and 

where the outputs from the Divider Block will go. The Control Unit is an Algorithmic 

State Machine (ASM), and it controls the circuit by determining the values of the 

control signals. The State Diagram of the circuit is given in Figure 4.16. 
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Figure 4. 16 : The State Diagram of the circuit. 

   

 

The circuit waits for the operation in the state IDLE. When the start signal is asserted, 

the square root operation begins and the circuit goes through 27 iterations, during 

where it calculates required results and transfers them to the next round. In the final 

iteration, which is the 27th round, it asserts a ready signal and the final result for square 

root is ready. 
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4.2.7 The Floating-Point Muldivsqrt Circuit 

4.2.7.1 Datapath 

Floating-point multiplication, division, and square root circuits are sequential circuits 

and take multiple clock periods to calculate. For this reason, after these circuits were 

designed and tested separately, they were combined in a module called MDS. mds 

contains the following submodules: 

 An exponent handler: Calculates the pre-normalization exponent according 

to the type of operation. 

 Rounders: Each operation round differently the significand according to the 

rounding mode. 

 A final normaliser: Performs possible normalization of significand after 

rounding. 

 A sign handler: Determines the sign of the floating-point output with respect 

to operation type. 

Each operation block contains submodules that do the initial normalization. Exception 

flags are also set in the relevant operation block when necessary. What is meant by 

necessity for example, division-by-zero exception is calculated only for floating-point 

division. In other operations, it is set to 0 directly. The simplified diagram of the circuit 

can be seen from Figure 4.17.
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Figure 4. 17 : Square root and division control diagram. 
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  Implementation of Conversion, Move and Compare Instructions 

As mentioned earlier, conversion instruction are used to convert a floating-point 

number to the its nearest integer equivalent, or to the floating-point equivalent of an 

integer number in the IEEE-754 standard. In computing , since all 32-bit signed or 

unsigned integer numbers have an unique floating-point representation, there are no 

restrictions or special conditions for inputs of integer-to-float conversions. However, 

in the float-to-integer conversion, there are special cases in floating-point domain, such 

as INF or NAN, or cases where the floating-point number to be converted cannot be 

represented by the signed or unsigned 32-bit integer. These particular cases can be 

viewed in the table below Table 4.4. 

 

 

Table 4. 4 : Special cases for conversion instructions 

 FCVT.W.S FCVT.WU.S FCVT.L.S FCVT.LU.S 

Minimum valid input (after 

rounding) 
−231 0 

−263 0 

Maximum valid input (after 

rounding) 
231 − 1 232 − 1 263 − 1 

   264 − 1  

Output for out-of-range negative 

input 
−231  0 −263 

0  

Output for  −231 0      −263  
0  

Output for out-of-range positive 

input 
231 − 1 232 − 1 263 − 1 

264 − 1 

Output for infinity or NaN 231 − 1 232 − 1 263 − 1 
264 − 1 

4.3.1 Conversion instructions 

4.3.1.1 Integer-To-Float Conversion 

First of all, since the MSB of the significand of normal numbers must always be 1 

according to the IEEE 754 floating-point standard, the operand integer needs to be 

converted to this format. The steps of the algorithm are as follows. 
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 Step 1: Depending on whether the operand integer is interpreted as signed or 

unsigned, the absolute value of the number is taken and the 31 bits 0, which is 

the maximum shift number, is added to the end of the absolute value obtained. 

 Step 2: Shift the temporary variable until the MSB of the significand become 

1. 

 Step 3: The exponent to be obtained will be equal to the shift amount. But this 

value is the actual value without bias added. For this reason, a bias of 127 is 

added to the final exponent for the single precision. Sign bit is equal 0 if the 

number is to be converted as unsigned, otherwise it is equal to input's original 

sign. For an illustration, the conversion of 1123412, an integer, to floating-

point can be examined as follows in Figure 4.18. 

In binary, 1123412 is represented as: 

 112341210 =  00000000000100010010010001010100 2 (4.17) 

In floating-point notation, it equals to: 

  (−1)0  × 220  × 1,00010010010001010100002 (4.18) 

 

 

 

 

 

 

 

 

 

4.3.1.2 Float-to-Integer Conversion 

In the integer conversion operation which works with a similar to the  previous 

algorithm, if the exponent of operand floating point number is less than 0, the integer 

equivalent is directly equal to 0. Otherwise, the integer equivalent is determined when 

the significand is shifted until the exponent becomes 31. The reason for this is to shift 

the decimal point of the number by 31 digits. But, as mentioned before, when operand 

Figure 4. 18 : Integer to Float conversion operation illustration. 
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exponent is higher than 31, there are special cases where we cannot represent the 

operand floating point number with an integer. In these cases, output is determined by 

the directives in the RISC-V Manual. For an illustration, the conversion of 

123423953.78845, a floating point number, to integer can be explained as follows. 

First of all, this number can be represented in single precision format as follows in 

equations and Figure 4.19: 

 123423953.7884510 =   (−1)0  × 226  × 1,110101101101001100110102  (4.18) 

After calculating the required shamt and performing the shift, the mantissa becomes: 

 (−1)0  × 231  × 0,00001110101101101001100110102  (4.19) 

When we complete the remaining bits with 0, we get the following result. 

 000001110101101101001100110100002 =  123423952 10 (4.20) 

 

Figure 4. 19 : Float to integer conversion illustration. 

 

  

4.3.2 Sign Injections  

Sign injection instructions directly copy the exponent and mantissa of the value in the 

source floating point register to the destination register. The sign is determined by the 

type of injection. For this reason, their implementation is quite straightforward. These 

instructions are used to execute some assembler presudoinstructions. These are 

FMV.S, which moves a number from a floating point register to another floating point 

register, FNEG.S, which negates a floating point datum, and FABS.S, which takes the 
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absolute value of a floating point datum. Implementation of instructions is repsented 

below Figure 4.20. 

 

Figure 4. 20 : Implementation of Sign Injection operation. 

 

4.3.3 Move instructions 

Floating-point move instructions move data between floating-point registers and 

general purpose integer registers. Since these instructions do not make any 

modifications on the data, they are not designed as a separate module. data moving on 

pipeline with control signals. The data to be transferred is moved to the desired register 

bank with appropriate control signals. 

4.3.4 Compare instructions 

floating point comparison instructions compare data in floating-point registers with 

each other. First the sign of the number, then the exponent, and finally the mantissa 

part are compared. The comparison process is relatively simple as the sign of the 

number is determined directly from the MSB of the 32-bit floating-point datum and 

exponent is also in a biased format rather than signed format. These instructions 

change the value in the condition bit, which is LSB of 32-bit output. The condition bit 

is set (made equal to one) if the condition is satisfied. Otherwise the condition bit is 

cleared (made equal to zero). The block diagram of the circuit is as in Figure 4.21. 
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Figure 4. 21 : Implementation of Compare instructions. 

 TESTING THE FPU DESIGN 

Since the designed FPU was implemented in the HORNET, the testing procedure is  

proceeded exactly the same as the process followed by the people who designed the 

HORNET. The environment is set up as described in [2].  
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 Compiling a RISC-V Program 

The command used to configure the riscv-gnu-toolchain, unlike the previous one, is as 

follows. 

 /configure –-prefix=/opt/riscv --with-multilib-

generator="rv32i-ilp32;rv32imf-ilp32f--" 

 

The first part of the command that starts with “--prefix" sets the installation directory. 

the second part that starts with “--with" configures the installer so that both RV32I and 

RV32IMF libraries are installed. 

In addition, the following command is used to compile the C programs for testing the 

FPU. 

 riscv32-unknown-elf-gcc  fpu_test.c ../crt0.s –

march=rv32imf –mabi=ilp32f –T ../linksc.ld –

nostartfiles –ffunction-sections –fdata-sections –

Wl,--gc sections –o fpu_test.elf 

Programs written in RISC-V assembly language can also be assembled using riscv-

gnu-toolchain. For this, it is sufficient to input the assembly file as an argument. In 

that case, it is necessary to pay attention to the startup routines, such as initializing the 

stack pointer, at the beginning of the program. 

 Test Program 

After the modules were tested individually on their own, a simple assembly program 

shown as in Figure 5.1 was prepared to check whether it worked properly with the 

HORNET. The purpose of this test was to check whether the desired floating-point 

instructions without any problems on HORNET. 
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Figure 5. 1 : Assembly code that executes FLW instruction. 

 

First, the address pointer is set and 2 random floating point numbers are saved in 

memory. Then, computational instructions in Figure 5.2, conversion and move 

instructions in Figure 5.3, and finally compare and classify instructions in Figure 5.4 

are processed. 

 

Figure 5. 2 : Computational instructions in assembly format. 

 

 

Figure 5. 3 : Conversion and move instructions in assembly format. 
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Figure 5. 4 : Compare and classify instructions in assembly format. 

 

As shown in Figure 5.5, correct results are stored into the memory. As you can see, 

the commands work without any problems, but our test is quite simple compared to 

more complex programs such as the digital low pass filter program. But such programs 

require more program memory. For this reason, when we tried to increase the program 

memory of HORNET, we could not do it because of the errors we encountered  due to 

Verilator tool. We managed to expand it with Vivado, but we didn't have enough time 

so we decided to do such a test. In future studies, more comprehensive tests and 

benchmarks for FPU can be made. 

 

 

Figure 5. 5 : Results in HORNET memory. 
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 REALISTIC CONSTRAINTS AND CONCLUSIONS 

The importance of purpose-built hardware designs is increasing day by day. For this 

reason, processors are designed for different purposes in different architectures. While the 

HORNET RISC-V processor that we worked on was able to perform basic mathematical 

and logical operations, it became able to operate on floating-point numbers, which is an 

approximation method to real numbers.The design is free to use and extend. It can be used 

for research purposes, educational purposes, and even for personal projects. 

 Practical Application of this Project 

Rısc-v processor are usally have some of the instruction sets as our processor does, 

since design can be used for further research for extending the instruction set by other 

instruction sets. In addition to this , it can be prepared for a chip tape-out. This could 

be an important contribution to the processor design initiative that is present in the 

country. 

 Realistic Constraints 

6.2.1 Social, environmental and economic impact  

RISC-V is a license-free ISA. This means that companies or groups do not have to pay 

for a licensing it is free to produce and/or sell RISC-V processors.  

6.2.2 Cost analysis 

The CAD tools used in this project are not free. Simulation and synthesis tools are 

quite costly. Fortunately, VLSI Lab in our faculty provided us with the necessary 

software licences. 

6.2.3 Standards  

The standard to follow in this project is the RISC-V ISA manual mainly and RISC-V 

manual considers IEEE 754 floating-point standarts for floating point numbers.‘F’ 

extesion implemented with IEEE 754 and RISC-V ISA manual  standarts.  

6.2.4 Health and safety concerns 

This project does not involve health and safety concerns. 
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 Future Work and Recommendations 

There are  different kind of opportunities for future work . To begin with, the remaining 

accumulate instructions , can be implemented. Combinational circuits that processor 

has can be optimized to ensure lower delays to achive higher clock frequencies. An 

interface can be provided for communication with peripherals. Lastly , chip tape-outs 

can also be done to test real life implementation of processor chip.
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