ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICS FACULTY

EXTENDING THE INSTRUCTION SET OF RISC-V PROCESSOR
FOR FLOATING-POINT ARITHMETIC

SENIOR DESIGN PROJECT

Salih Daysal
Mehmet Emin Tuzcu

ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT

JUNE 2022

ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICS FACULTY

EXTENDING THE INSTRUCTION SET OF RISC-V PROCESSOR
FOR FLOATING-POINT ARITHMETIC

SENIOR DESIGN PROJECT

Salih Daysal
040160256

Mehmet Emin Tuzcu
040170023

ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT

Project Advisor: Prof. Dr. Siddika Berna Ors Yal¢in

JUNE 2022

ISTANBUL TEKNIiK UNiVERSITESI
ELEKTRIK-ELEKTRONIK FAKULTESI

KAYAN NOKTA ARITMETIGI iCiN RISC-V iSLEMCIiSiNIN KOMUT
SETINI GENISLETME

BiTIRME TASARIM PROJESI

Salih Daysal
040160256

Mehmet Emin Tuzcu
040170023

ELEKTRONIK VE HABERLESME MUHENDISLiGi BOLUMU

Proje Damismam: Prof. Dr. Siddika Berna Ors Yalcin

Haziran 2022

We are submitting the Senior Design Project Report entitled as “Extending the Instruction
Set of RISC-V Processor for Floating-Point Arithmetic”. The Senior Design Project
Report has been prepared as to fulfill the relevant regulations of the Electronics and
Communication Engineering Department of Istanbul Technical University. We hereby
confirm that we have realized all stages of the Senior Design Project Interim Report by
ourselves, and we have abided by the ethical rules with respect to academic and
professional integrity .

Salih Daysal
040160256

Mehmet Emin Tuzcu
040170023

FOREWORD

We would like to express our gratitude to our advisor Prof. Dr. Siddika Berna Ors
Yalg¢in, who dedicated her time for us and provided all the help she could. We also
acknowledge the support our families gave us; without which we would not succeed.

June 2022 Salih DAYSAI
Mehmet Emin TUZCU

TABLE OF CONTENTS

Page

FOREWORD ..ottt ettt e ettt st ne e neeneeneens v
TABLE OF CONTENTS ..ot Vi
ABBREVIATIONS ..ottt viii
LIST OF TABLES ...t IX
LIST OF FIGURES ...ttt st X
SUMMARY L.ttt bbb bbbttt bbb Xi
(0.2 3 AT xiii
1. INTRODUCTIONooiiiiiiieee ettt 15
1.1 About RISC-V and HORNETcccviiiieiee e 16
1.2 ADOUL TEEE-754 ...t 16
1.3 The RISC-V ‘F’ INStruction Stc.covvevuieiieeiie e sieesie st e e sree e re e 16
1.3.1 Single-precision load and store iNStructions............ccccecevvveieeieseese e 17
1.3.2 Single-precision floating-point computational instructions...................... 18
1.3.3 Single-precision floating-point conversion and move instructions........... 19
1.3.4 Single precision floating-Point compare InStructionsccccccevveeenne. 20
1.3.5 Single-precision ploating-point classify instruction.............cc.ccccccevvenenne. 20

1.4 MUIIPIICALION ... 21
1.5 DIVISION 1ottt bbbttt bbb beene e eneas 21
1.6 SQUAIE ROOT ...ttt 21

2. BACKGROUND INFORMATION ..ottt 22
2.1 Floating-Point NUMDEISccviiiie e 22
2.2 EXCEPLIONS ..ttt nte bbbt 23
2.3 ROUNTING .ottt bbbttt 24
3. LITERATURE REVIEW.c.oiiiiiiiiee e 25
4. DESIGN AND IMPLEMENTATION OF THE ‘F’ INSTRUCTION SET....27
4.1 Implementation of Load/Store INStrUCtIONS..........cccovvieiereiene e 27
4.1.1 Re0rganize CONTIOLoiiiiiiiieieee et 27
4.1.2 Verification of the implementationcccooevviie e, 28

4.2 Floating-Point Computational INStruCtionscccevvveriveienieeneee e 30
4.2.1 Decoding of operands for computational instructionscccceeu..... 30
4.2.1.1 Implementation Of deCOUEN..........cccoriiiiiiiiieeeee e 31

4.2.2 Floating point addition and substractionccccccoveviievciicce e, 31
4.2.2.1 Designing the algorithm ..., 32
4.2.2.2 Verification of the implementationccccooeiiiiiinninceee, 33

4.2.2.3 Verification on HORNETccooiiiiiiiiierieiee e 34

4.2.3 Floating-point multipliCationccooviiiiiiiiiniee e, 35
4.2.3.1 Multiplication of Significandscccceviiiiiiiie i 36
4.2.3.2 The multiplication algorithm............ccccoooiviiiiiiii e 36
4.2.3.3 Normalization of Significandsccccovveiiiiiie i 37
4.2.3.4 Rounding logic for multiplicationccocevvieniniininisececee, 38

4.2.3.5 Testing the floating-point multiplication Circuitcccccoeveveennnnnn 39

4.2.4 Floating-Point DIVISIONccoviiiiiiiniesie e 39
4.2.4.1 Division of SignificandS..........cccccveiieiiieiiic e 40

4.2.5 Floating pOiNt SQUAIE FOOTceeeeieienieniesiesieseeieeee et 41
4.2.5.1 Square Root of Binary NUMDEISccceiiiiiiiiiiieceesec e 41

Vi

4.2.5.2 Mathematical expression of binary square rooting operation............ 42

4.2.5.3 Square root of SIgNITICANGcceiiiiiiiiiee e, 43

4.2.6 CONTIOL UNIE ..eoiiiiiiciee e 44
4.2.7 The Floating-Point Muldivsgrt CirCuitcocooveieieniiinisececeeee 46
4.2.7.1 DAtapathccvveeiiic s 46

4.3 Implementation of Conversion , Move and Compare Instructions 48
4.3.1 CONVErSION INSLTUCTIONS.oiviiiiiieiieie e e 48
4.3.1.1 Integer-To-Float CONVEISION..........cccoiiiiiiiiieieeee e, 48
4.3.1.2 Float-to-Integer CONVEISIONcccveiieiieie e e 49

4.3.2 SN INJECTIONS.civieiiiieitesteee e 50
4.3.3 MOVE INSTIUCLIONS ..ottt sttt 51
4.3.4 COmMPAre INSTIUCLIONSccvveivieiiiiesieesie e see et see e enes 51

5. TESTING THE FPU DESIGNccoiiiiiiieiies s 52
5.1 Compiling @ RISC-V Programcccooeiiiinininieieeesiese e 53
5.2 TESEPIOGIAM ...ttt ettt e e nneennee s 53
6. REALISTIC CONSTRAINTS AND CONCLUSIONS.......ccccooviiiinerrinne 56
6.1 Practical Application of this Project..........cccocvviiiiiniineie e 56
6.2 REAIISTIC CONSIAINTS.......iiieieieieeiesieee et ens 56
6.2.1 Social, environmental and economic IMPACtcccccevvveveeiieiieeseeiieennn, 56
6.2.2 COSE ANAIYSIS ...eveeieeeeieeee e 56
6.2.3 SEANTAIUSeeviiiieieie e 56
6.2.4 Health and safety CONCEIMNScccoiiiiiiiiirieeee e 56

6.3 Future Work and RecommEeNndations...........ccovviririnieniene e 57
T.REFERENGCES ...ttt 58

vii

ABBREVIATIONS

ISA : Instruction Set Architecture

ALU : Arithmetic Logic Unit

DIV : Division

CPU : Central Processing Unit

RISC : Reduced Instruction Set Computer
HDL : Hardware Description Language
SQRT: Square Root

ASM : Algorithmic State Machine

MSB : Most-significant bit

LSB : Least-significant bit

viii

LIST OF TABLES

Table 1.1 :
Table 1.2 :
Table 1.3 :
Table 1.4 :
Table 1.5:
Table 1.6 :
Table 1.7 :
Table 1.8 :
Table 1.9:
Table 1.10
Table 2.1 :
Table 2.2 :
Table 2.3 :
Table 4.1 :
Table 4.2 :
Table 4.3 :
Table 4.4 :

Page
Instructions of ‘F’ Standard Extension...................c.ccoeceeveiieinciennnn, 17
Single precison floating point load instruction............cccccoocveieiiennenn. 18
Single-precison floating-point store instruction.c.cccocoveevvenen, 18
Single-precison floating-point computational instructions. 18
Single-precison floating-point conversion instructions. 19
Single Precison Floating Point sign injection Instructions................ 19
Single Precison Floating Point move Instructions.c.ccccveuee. 19
Single Precision Floating-Point Compare Instructions. 20
Classification Mask of floanting-point numbers............c.ccccoeenenen. 20
: Single-precision floating-point classify instruction...............c..c....... 20
Binary encoding for Floating-Point Datum.............c.cccccvevevieiecneane. 23
Exceptions in IEEE 754 standard............ccccocoveienininininnnieeee, 24
Rounding mode table. ... 25
Single-precison floating-point store iNStruction.cccccvevveveennene. 27
Single precison floating point load instruction...............cccccveeveivenen, 27
Truth table of partial root and related square root bit. 42
Special cases for conversion INStructions.............cccccveveiveeieccie e, 48

LIST OF FIGURES

Figure 2.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 5.
Figure 5.
Figure 5.
Figure 5.
Figure 5.

Page
1 : 32-bit representation of floating-point numbers..............c.cccccvenen. 22
1 : Block diagram of reorganized design of registers.ccccceceeeenee. 27
2 : Code section modified in the design file for data selection 28
31 C code Of teSt PrOgramM.c.ecueeiiieiieiiesiee e 29
4 2 Values 0N FP FEQISTEIS.ccvviieiieeece e 29
51 Valug 0N MEMOTY. ...ccoiiiiiiiiee s 29
6 : Floating point adding algorithm.cccoeoiiiiii e, 32
7 : Test bench of adder/Subtractercccocvveieienininc e 33
8 : Simulation results on Vivado. ..o 33
9 : Matlab code of random FP number generator.c.ccocovvvvvennne. 34
10 : Control Signals for FADD/FSUB.cccooeviiiiiiieie e, 35
11 : Example C code for FADD and FSUB instructions. 35
12 : Simulation results on HORNET for FADD/FSUB instructions... 35
13 : Flowchart of floating-point multiplication.c.ccocooeinininnn, 36
14 : Pseudo code of Multiplication Normalizer..............c.ccccoovevieinennenn, 38
15 : Implementation of square root algorithm.ccccooiviiiininnn, 44
16 : The State Diagram of the CirCUit.c..cceviiiiiiiiiii e, 45
17 : Square root and division control diagram.c.ccccoevvvvriinininnn, 47
18 : Integer to Float conversion operation illustration........................ 49
19 : Float to integer conversion illustration............cccccoevvieiiveieseenenn, 50
20 : Implementation of Sign Injection operation.cccccveeveenennen. 51
21 : Implementation of Compare INStructions.ccocoeeevnvnereennnn, 52
1 : Assembly code that executes FLW instruction.cccccceevvenen. 54
2 : Computational instructions in assembly format...............ccccooveen. 54
3 : Conversion and move instructions in assembly format. 54
4 : Compare and classify instructions in assembly format. 55
5 : Results in HORNET MEMOIY.cccoiieiiiiieie et 55

file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981672
file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981673
file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981674
file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981675
file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981676
file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981678
file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981679
file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981680
file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981681
file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981682
file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981683
file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981684
file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981688
file:///C:/Users/Emin/Desktop/Bitirme%20teslim%20dosyaları/SalihMehmetBitirmetezi_%20.docx%23_Toc105981689

EXTENDING THE INSTRUCTION SET OF RISC-V PROCESSOR FOR
FLOATING-POINT ARITHMETIC

SUMMARY

The development of the Internet and communication devices with scientific studies
until today has enabled the speed and amount of communication between people to
reach a different dimension compared to the past. Thanks to this increase in
communication, the idea that solutions which used to produced separately for similar
problems can be produced together led people to create the open-source concept.
Open-source designs have become a concept that designers have the unconditional
right to use, develop and change over time. Among these designs, researchers at the
University of California, Berkeley developed a Processor Instruction Set Architecture
called "RISC-V", which is an interface between software and hardware with no license
requirements. Interested by researchers and companies, the RISC-V Instruction Set
was designed by many different institutions and individuals. It emerged as open source
after being approved by the RISC-V organization. A 32-bit RISC-V kernel was
designed at Istanbul Technical University by senior students named Hornet. The hornet
has an RV32I basic instruction set and M extension with detailed documentation and
approved by RISC-V.

The Hornet processor already includes hardware that can perform basic mathematical
and logical operations with integers. Nevertheless, integers cannot provide an adequate
approximation to the set of real numbers, which makes the processor's ability to
operate with floating decimal numbers, which is a different number representation. In
the RISC-V Instruction Set content, the F extension offers an instruction set that allows
operations to execute with floating-point numbers. In this context, we decided to
improve the competence of the processor by implementing F instructions on the Hornet
core for operations with floating-point number sets. By the courtesy of, users will be

able to use the Hornet core in applications that require operations with real numbers.

Xi

Before we started adding the F instruction set, we tested the features of the Hornet
processor with simulations on Linux by writing C programs, thus verifying that the
core is functional. Afterwards, in order to increase our knowledge in the field of
computer architecture, we read the basic books written about computer architecture
and design. In the light of what we have learned, we decided on the blocks that we
think we need to add to the processor and the order in which these blocks should be
added. Since the 'F' extension is separated as Load/Store instructions, computational
instructions, conversion instructions and move instructions , compare instructions and
sign injection instructions, we added the instructions to the processor under these
headings. In particular, the circuits that perform the multiplication, division and square
rooting instructions among the computational commands are designed to work
together in terms of control. We designed the circuits that make the implementations
in accordance with the IEEE 754 standard and the RISC-v manual, and tested the
accuracy of the results at every stage of the design. After the design phase was
completed, we tested all the commands on the processor with the codes wroted in

assembly language and verified core’s functionality.

Xii

KAYAN NOKTA ARITMETIGI iCIN RISC-V ISLEMCISININ KOMUT
SETINI GENISLETME

OZET

Internetin ve haberlesme aygitlarinin giiniimiize kadar olan bilimsel calismalar ile
gelistirilmesi insanlar arasindaki iletisim hizi ve miktar1 eskiye gore farkli bir boyuta
ulasmasin sagladi. Iletisimdeki bu artis sayesinde benzer problemler igin ayri ayri
tiretilmesi gereken ¢ozlimlerin birlikte iiretilebilecegi fikri insanlar1 acik kaynak
konseptini olusturmaya yonlendirdi. Acik kaynak tasarimlar zaman icerisinde
tasarimcilarin kosulsuz sartsiz kullanma, gelistirme ve degistirme hakkina sahip
olduklar1 bir konsept halini aldi. Bu tasarimlarin arasinda California, Berkeley
Universitesi ’indeki arastirmacilar tarafindan adi ‘‘RISC-V’’ olan, lisans kosulu
olmayan yazilim ile donanim arasinda ara yiiz olan bir Komut Kiimesi Mimarisi
gelistirildi. Arastirmacilar ve sirketler tarafindan ilgi duyulan RISC-V Komut Seti
Kiimesi birgok farkli kurum ve kisi tarafindan tasarlandi. RISC-V organizasyonu
tarafindan tescillendikten sonra agik kaynak olarak ortaya ¢ikti. Hornet’te RISC-V
tarafindan onay almis RV32I temel komut kiimesine ve M uzantisina sahip agik
kaynakli ayrintili dokiimantasyonu olan bir Istanbul Teknik Universitesi dgrencileri

tarafindan tasarlanmig 32-bitlik bir RISC-V ¢ekirdegi.

Hornet islemcisi temel matematiksel ve mantiksal iglemleri tam sayilar ile yapabilen
donanimlar1 biinyesinde halihazirda bulunduruyor fakat tam sayilar gergek sayi
kiimesine yeterli yaklasimi saglayamiyor bu da islemcinin daha farkli bir say1
gosterimi olan kayan ondalikli sayilar ile iglem yapabilme yeteneklerini gerekli hale
getiriyor. RISC-V Komut Kiimesi igeriginde F uzantis1 adinda kayan ondalikli sayilar
ile islemlerin yapilabilmesi saglayan komut kiimesini sunuyor. Bu baglamda
islemcinin kullanim alanin1 gelistirmek ve gercek say1 kiimesi ile yapilacak islemlerde

hassasiyeti ¢ok daha yiiksek sonuglar elde etmek i¢in Hornet ¢ekirdegi iizerine F

Xiii

komutlarinin gerceklemesiyle islemcinin yeteneklerini gelistirmeye karar verdik. Bu
sayede kullanicilar gergek sayilar ile islem gerektiren uygulamalarinda Hornet

¢ekirdegini kullanabilir hale gelecek.

F komut kiimesini eklemeye baslamadan dnce Hornet islemcisinin 6zelliklerini C
programlar1 yazarak Linux iizerinde simiilasyonlar ile test ettik bu sayede ¢ekirdegin
fonksiyonel oldugunu dogruladik. Daha sonrasinda Bilgisayar mimarisi alaninda olan
bilgi birikimimizi arttirmak amaciyla bu alan yazilan temel kitaplardan faydalandik.
Ogrendiklerimizin 1s18inda islemci iizerine eklememizin gerekli oldugunu
diistindiigiimiiz bloklar1 ve bu bloklarin hangi sira ile eklenmesi gerektigine karar
verdik. Temel olarak ‘F’ uzantis1 hafiza komutlari, hesaplama komutlari, dontistiirme
ve hareket ettirme komutlari, karsilastirma komutlar1 ve isaret enjeksiyon komutlar
olarak ayrildigi i¢in komutlar1 yine islemci iizerine bu basliklar altinda ekledik.
Ozellikle hesaplamali komutlar arasindan ¢arpma bolme ve karekdk alma
komutlarinin gergeklemesini saglayan devreler kontrol agisindan beraber calisacak
sekilde tasarlandi. Gergeklemeleri yapan devreleri IEEE 754 standardina ve Risc-v
manuel’ine uygun olacak bigimde tasarlayip sonuglarin dogrulugunu tasarimin her
asamasinda test ettik. Tasarim asamasi tamamlandiktan sonra komutlarin hepsini
islemci lizerine assembly dilinde yazilan komutlar ile test ederek islevselligini
dogruladik.

Xiv

1. INTRODUCTION

Computers became important for humankind in favour of their computational and
memorial capabilities. These capabilities are ensured with components which are
processor and memory; while the processor computes and controls the system,
memory keeps the data that is the processor’s input or output. Since computer systems
are designed in the 1940’s different design architectures are introduced by academia
and industry to optimize processors for purposes. Risc-v is one of the open-source
instruction set architecture that developed at the University of California Berkeley.
This project is aiming to extend instruction set of RISC-V core with ‘F’ Single-
Precision Floating-Point instructions. ‘F’ instruction set includes load and store,
computational, conversion and move, comparison and classify floating-point
instructions. These instructions will be implemented with considering IEEE-754
floating point standards for single precision (32 bit) as requested in the RISC-V
Instruction Set Manual. It is intended to add the Floating Point Unit (FPU) block to
the pre-designed RISCV processor named HORNET to implement the given
instructions. A FPU is a a part of computer system designed specifically for
manipulating floating point numbers. Even without a floating-point unit, a CPU can
handle both integer and floating point (non-integer) calculations. However, integer
operations use significantly different logic than floating point operations. While it is
possible to handle floating-point operations through software emulation, the goal of
this project is to actually add a FPU to the processor that can handle the instructions
as part of the processor. A FPU provides a faster way to handle calculations with non-
integer numbers. The project consists of three main stages that are divided the
instructions in the 'F' extension of the RISCV manual into 3 different groups that has
tested on HORNET at each stage. Each student performed some of the different types
of instruction groups and integrate them into HORNET.The first stage is to design and
implement the data transfer instructions and adder/subtractor module.The second stage
is design and implementation of multiplication/division, square root and comparison

modules. The third stage is design and implementation of conversion and move

15

instructions. After design and implementations finalizied processor core tested for
each instruction ‘F’ extension has but the fused multiply add and min-max

instructions.

1.1 About RISC-V and HORNET

RISC-V is an open source instruction set architecture developed by researchers at the
University of California Berkeley for use in lectures and research projects [1]. The
areas reached by the project were later expanded and turned into an architecture
accepted all over the world. In addition to creating a safe zone for software platforms
and developers by freezing its basic features (frozen set), studies have also been made
to expand it for many applications thanks to its flexible architecture. In addition,
HORNET is a 32-bit processor with ‘Base Integer’ and ‘M’ set instructions designed
by ITU students[2].

1.2 About IEEE-754

IEEE-754 is the most used standard for arithmetic of floating-point numbers. The
formats and methods of floating-point numbers used in computer systems are specified
in this standard's documentation. Examples of these specifications include rounding
methods, arithmetic operations, exception handling, and how to encode exceptions
(such as NaN, infinity, zero)[3]. The FPU that we will design during the project will
be designed completely in accordance with these specifications and will be integrated
into HORNET.

1.3 The RISC-V ‘F’ Instruction Set

Single-precision floating-point computational instructions of RISC-V, designated as
"F" and conforming to the IEEE 754-2008 arithmetic standard, are briefly elaborated
in Table 1.1[4].

16

Table 1. 1 : Instructions of ‘F’ Standard Extension.

Instructions Executing Operations
FLW, FSW Loads/Stores Floating-point data to/from destination.
FMADD.S, FMSUB.S Multiplies sourcel, sour_ce2,_ adds source3, stores in
destination.
FNMADD.S, Multiplies sourcel, source2, negates, adds source3, stores
FNMSUB.S in destination
FADD.S, FSUB.S, Adds/Subtracts/Multiplies/Divides sourcel, source2,
FMUL.S, FDIV.S stores in destination.
FSQRT.S Computes square root of sourcel, stores in destination.

Takes all bits from sourcel except sign bit, which is
FSGNJ.S, FSGNJN.S, determined by the sign of source2, the opposite sign of
FSGNJX.S source2, or XOR of signs of sourcel and source2, stores
in destination.

FMIN.S, FMAX.S Takes min/max of sourcel and source2, stores in

destination.
FCVT.W.S, Converts floating-point sourcel value to signed/unsigned
FCVT.WU.S integer value, stores in destination.
FMV.X.W, Moves floating-point value from sourcel to lower 32 bits
FMV.W.X of integer register destination, or vice versa.

Equality/Less than/Less than or equal to of sourcel,
source2, stores in destination.
Examines value in sourcel, stores 10-bit mask in

FEQ.S, FLT.S, FLE.S

FCLASS.S destination that indicates class of floating-point number.
FCVT.S.W, Converts signed/unsigned sourcel value to floating-point
FCVT.S.WU value, stores in destination.

There are several considerations when adding an FPU to the processor that will
add considerable complexity. First, we will need to implement changes to the Control
Unit to correctly interpret this extended set of instructions and store information about
whether operations are integer or floating-point. The RISC-V floating-point extension
uses 32 additional 32-bit registers for floating-point operations, so we’ll need to

include a second register file for these floating-point registers.

1.3.1 Single-precision load and store instructions

The load and store instructions, named as FLW and FSW can be seen at Tables
1.2 and 1.3, loads a single-precision floating-point value to floating-point register from
memory and stores a single precision value of floating-point register to memory,
respectively. Load and store instructions use a base address in source register and 12-

bit signed byte offset as base+offset addressing method as integer base ISA does. In

17

the implementation of these commands, it is not much different from normal load and

store as only the correct register bank should be selected.

Table 1. 2 : Single precision floating-point load instruction.

Immediate[11:0] rs width rd opcode
12 5 3 5 7
Offset base W dest LOAD-FP

Table 1. 3 : Single-precision floating-point store instruction.

Imm[11:0] rs 2 rsl width Imm[4:0] opcode
7 5 5 3 5 7
Offset src2 srcl width dest STORE-FP

1.3.2 Single-precision floating-point computational instructions

Computational instructions can be classified in 2 different categories according to the
instruction type. The first of these groups includes the R-type commands FADD.S-
FSUB.S, FMUL.S-FDIV.S, FSQRT.S and lastly FMIN.S/FMAX.S shown in Table
1.4. Except for FMIN.S and FMAX.S instructions, as the name implies, other
instructions do basic four operations on floating-point numbers and FSQRT.S take
square root of a floating-point number. FMIN.S and FMAX.S, on the other hand, saves
the smaller or larger of the two floating-point numbers, respectively, to the destination
register. The other group is R4-type fused instructions, FMADD.S, FMSUB.S,
FMNADD.S and FMNSUB.S, which, unlike the previous one, use three source
registers, instead of two. Fused multiply and add instructions make multiplication and
addition operations together to obtain the result, which causes it to differ from other
computational instructions. Since these commands go through similar stages while

running, common units with small varieties are used for rounding and normalizing the

result.
Table 1. 4 : Single-precision floating-point computational instructions.
functb fmt rs2 rsl rm rd opcode
5 2 5 5 3 5 7
FADD/FSUB S src2 srcl RM dest OP-FP
FMUL/FDIV S src2 srcl RM dest OP-FP
FSQRT S src2 srcl RM dest OP-FP
FMIN/FMAX S src2 srcl RM dest OP-FP

18

1.3.3 Single-precision floating-point conversion and move instructions

Format conversion instructions are used to convert different data formats to each other.
These are FCVT.W.S, FCVT.WU.S, FCVT.S.W and FCVT.S.WU are given below
in Table 1.5 . Respectively, the functions of these commands are to convert a floating-
point number to its closest signed or unsigned integer representation, or to convert a
signed or unsigned integer to its floating-point counterpart. Since HORNET is a 32-

bit architecture, conversions related to 64-bit integer numbers are not performed.

Table 1. 5 : Single-precision floating-point conversion instructions.

functb fmt rs2 rsl rm rd opcode

5 2 5 5 3 5 7
FCVT.int.fmt S W[UJL[VU] src RM dest OP-FP
FCVT.int.fmt S W[UJL[U] src RM dest OP-FP

Floating-point sign injection instructions take interest on sign of sources rsl and rs2
while rd takes all bits of rs1 but sign bit, can be seen in Table 1.6. There are 3 different
sign injection instructions which are FSGNJ.S that sets sign bit of rd as sign of rs2,
FSGNJN.S that sets sign bit of rd as opposite of rs2, FSGNJX.S that sets sign bit of rd

as exored signs of rs1 and rs2.

Table 1. 6 : Single-precision floating-point sign injection Instructions.

functs fmt rs2 rsl rm rd opcode
5 2 5 5 3 5 7
FSGNJ S src2 srcl JINJ/IX dest OP-FP

The floating-point move instructions, FMV.X.W and FMV.W.Xin Table 1.7, are used
to transfer contents of a floating-point register to a general purpose(integer) register
or contents of a general purpose register to a floating-point register without changing

or converting the data, respectively.

Table 1. 7 : Single Precision Floating Point move Instructions.

functb fmt rs2 rsl rm rd opcode

5 2 5 5 3 5 7
FMV.X.W S 0 src 000 dest OP-FP
FMV.W.X S 0 src 000 dest OP-FP

19

1.3.4 Single-precision floating-point compare instructions

There are 3 different instructions for comparison in F extension that are FEQ.S, FLT.S
and FLE.S showed in Table 1.8, stands for equal, less than, less than or equal,
respectively. If the conditions are met, the integer destination register is written 1,

otherwise 0.

Table 1. 8 : : Single Precision Floating-Point Compare Instructions.

functs fmt rs2 rsl rm rd opcode
5 2 5 5 3 5 7
FCMP S src2 srcl EQ/LT/LE dest OP-FP

1.3.5 Single-precision floating-point classify instruction

FCLASS.S is an instruction for classifying the contents of a floating-point register by
writing a 10-bit mask to the integer register. The instruction classifies floating-point
numbers by setting the corresponding bit in the integer register according to the Table
1.9 below. Classify instruction sets none of the floating-point exception flags.
Instruction tpye and bit distrubutions given below in Table 1.10

Table 1. 9 : Classification Mask of floating-point numbers.

R, bit Meaning
IS —o0
is a negative normal number.
is asubnormal number.
is —0.
is +0.
is a positive subnormal number.
Is positive normal number.
IS iS 400
is a signaling NaN.
is a quiet NaN.

OO ~NOYOUOIL P~ WNDE O

Table 1. 10 : Single-precision floating-point classify instruction.

funct5 fmt rs2 rsl rm rd opcode
5 2 5 5 3 5 7
FCLASS S 0 src 001 dest OP-FP

20

1.4 Multiplication

Multiplication has main steps that are a generation of partial products and the addition
of them [5]. Multiplication circuits are generally designed while considering the trade
of in-between execution time and implementation cost. Multiplications for small
operands are generally implemented with considering the implementing cost due to
their low latency advantages. On the other hand, while implementing multipliers for
big operands due to use latency advantages of small operands, big operands are divided
into smaller operands to generate partial products with low latency. Generated partial
products aligned with proper shifting operations and then aligned products are added
to obtain the final result of multiplication. Latency of addition operation has also been
considered to optimize the implementation of multiplication. Varying methods are
available to optimize the addition of partial products using Carry Save Adders, like
Wallace Tree [5].

1.5 Division

Division operation generally considered as an infrequent operation that does not have
to be implemented as primary. On the other hand, ignoring the implementation of
division can acquire a decrease in system performance for various applications [6].
Division algorithms can be categorized into five classes digit recurrence, functional
iteration, very high radix, table lookup, and variable latency [7]. Implementing
division algorithms generally includes variations from their classes. All these classes
consider trade of in-between time and area constraints, concerning operational

priorities division algorithm classes, can be chosen.

1.6 Square Root

Computers architecture was not capable of doing square root operation before
computers became capable of executing functions in hardware implementations of
processors directly. These hardware implementations of functions ensure executions
in less clock cycle but they increase the complexity of the total implementation of

processors. That necessitates the designing of time/area-efficient square root

21

implementation algorithms. There are iterative approximations and recurrence
algorithms designed to implement the square root function. These algorithms are
mainly differing with respect to the convergence to result. Recurrence algorithms are
mainly assuming the upcoming bit of partial square root as 1 and check whether the
remainder is negative or positive after subtraction to adjust the partial square root and
remainder respectively for each two-bit of operands orderly.

2. BACKGROUND INFORMATION

2.1 Floating-Point Numbers

Floating-point numbers have emerged as a result of the projection of real numbers in
the real world to computer systems with a certain precision. Since computer memory
is limited, you cannot store numbers with infinite precision, no matter whether you use
binary fractions or decimal ones: at some point you have to cut off. Therefore, a
method similar to scientific notation is used to encode these numbers shown in Figure

2.1. In this way, we maximize the range of real numbers can be represented.

FLOATING POINT FORMAT IEEE-754, 32 BITS

MSB LSB
1[1]o[oJo[o[4]1]o[1[1]1[1]o[o]o [HIIGNGNONOIONA o]o[o]o[o]o[o]o]
- IR -
v e~
EXPONENT MANTISSA
8 BITS 23 BITS
SIGN BIT
1= NEGATIVE EXAMPLE: -248.75

0=POSITIVE HEXADECIMAL: C3 78 C0 00

Figure 2. 1 : 32-bit representation of floating-point numbers.

Floating-point numbers can be represented by the following formula (2.1):

22

(-1)°* x b1 x c (2.1)

Where,
— sissign and O (positive) or 1 (negative).
— @ is any integer exponent_min < ¢ + p —1 < exponent_max.

— cis a number represented by a digit string of the form do d1 d> ...dp-1 where dj is an

integer digit 0 < d;
Since we will design for single precision in IEEE standards, 23 bits will be used as

precision, 8 bits as exponent and 1 bit as sign, a total of 32 bits will be used.

The set of representable floating-point numbers can be classified into different groups
in which they have different special cases. These cases include xinfinity , not-a-
number(NAN) and +£0. The encoding formats of the entire set of single precision

floating-point numbers can be viewed from Table 2.1.

Table 2. 1 : Binary encoding for Floating-Point Datum

Exponent Mantissa Object Represented
0 0 +0.0
255 0 +o0
255 1.0...xx SNaN
255 1.1...xx QNaN
1to 254 1.x...xx Normal Numbers
0 0.x...xx Subnormal Numbers

When binary encoded floating-point numbers are expressed using scientific notation,
the digit value of the integral part is hidden according to the IEEE standard, since the
digit values are always 0 or 1. In addition to this and the fractional part after the
decimal point is kept in the mantissa segment. If the value of this hidden digit is 1,

they are called normalized numbers, and 0 are called denormalized numbers[2].

2.2 Exceptions

Exceptions are important factors in the standard to signal the system about some

operations and results.

23

When an exception occurs, the following action should be taken:
e Astatus flag is set.

e The implementation should provide the users with a way to read and write the

status flags.

e The Flags are "“sticky" which means once a flag is set it remains until its

explicitly cleared.

Common exceptions in floating-point numbers are listed below and represented in
Table 2.2:

e Overflow, underflow and division by zero: As is obvious from the table
below, the distinction between Overflow and division by zero is to give the

ability to distinguish between the source of the infinity in the result.

e Invalid: This exception is generated upon operations that generate NaN
results. But this is not a reversible relation (i.e. if the output is NaN because

one of the inputs is NaN this exception will not raise).

e |Inexact: It is raised when the result is not exact because the result can not be

represented in the used precision and rounding cannot give the exact result.

Table 2. 2 : Exceptions in IEEE 754 standard

Exception Caused By Result
Overflow Operation produce large o
number
Underflow Operation produce small 0
number
Divide by Zero x/0 +o0
Invalid Undefined Operations NaN
Inexact Not exact results Round(x)

2.3 Rounding

Rounding is the one of the major problems of floating-point arithmetic which has to

be considered for all arithmetic operations as well as the addition and subtraction.

24

Rounding is also a necessity due to higher precision which is one of the main
advantages of floating-point numbers. To ensure precision our calculation will be
implemented with extra tree binary digits which are called guard, round and sticky
bits. Rounding also has 5 different modes which packed within the instruction that
executed in processor defined in RISC-V manuals. IEEE 754 standards have
conventions for rounding attributes used as modes of our rounder design. These modes

can be viewed from Table 2.3.

Table 2. 3 : Rounding mode table.

Rounding Mode Mnemonic Meaning
000 RNE Round to Nearest, ties to Even
001 RTZ Round towards Zero
010 RDN Round Down
011 RUP Round Up
100 RMM Roundto Nearest, ties to Max Magnitude
101 Invalid
110 invalid
111 DYN In instructions’s rm field, selects dynamic
rounding mode; In Rounding Mode register,
Invalid.

The guard, round and sticky bits processed during the preliminary normalization and
are output as Round and Sticky after some manipulations. Then, in the rounding unit,
the necessary rounding is done using these bits, the rounding mode and the sign of the

output.

3. LITERATURE REVIEW

Reduced instruction set computers are alternative to complex ones which are getting
more complicated nowadays. Reducing the instruction sets makes computer

architecture plain in this way designing process becomes shorter related to normal

25

computers also reducing instruction sets reduces memory and process loads which
decreases to energy consumption and cost of core. There for in developing l0T industry

this kind of processors will be demanding cost effective application in near feature.

Computer instruction set architecture RISC-V is one of the upcoming topics of the last
decade. Risc-v processor cores can be implemented with a base integer instruction set
however there are 16 different extensions for RISC-V ISA that were introduced by the
risc-v manual. Implementation of the processor varies with respect to aim of the project
each instruction set extends the capability of cores while increasing the complexity of
implementation. As we aim to extend the core with F extension that ensures working
with floating-point number set to be capable to work with processes including real
numbers. There are 10 different available Risc-v cores that have F extension in for

now. These cores are designed by 5 different organizations [4].

Codasip have four different core that have F extension are A70X, H50XF, L30F, L50F
these cores are written in Verilog. L30F and L50F are 32-bit processor which have M,
F, C extension on RV32I base instruction sets. A70x and H50XF are 64-bit processor

which have M, A, F, D, C, extensions on RV64I base instruction set.

Sifive Founding have 3 different cores that have F extension are E2, E3, E7 all of these
cores written in Verilog and have E, M, A, F, D, C extension on RV32I base instruction

sets.

Fraunhofer IPMS have a core that named as EMSA5-FS written in System Verilog
and have E, M, A, F, D, C extension on RV32I base instruction sets.

Openhw have a core that named as CV32E40P have F extension written in System

Verilog and have M, F, C extensions on RV32I base instruction set.

MIT CSAIL CSG have a core that named as RiscyOO have F extension written in

Bluespec and have M, F, C extensions on RV32I base instruction set.

26

4., DESIGN AND IMPLEMENTATION OF THE ‘F’ INSTRUCTION SET

4.1 Implementation of Load/Store Instructions

In the 'F' extension of the RISC-V specification document, that there should be a
separate register file for floating-point arithmetic and it denotes that the following
format in Table 2.4 and 2.5, should be applied for floating-point data transfer

instructions:

Table 4. 1 : Single-precision floating-point store instruction.

Immediate[11:0] rs width rd opcode
12 5 3 5 7
Offset base W dest LOAD-FP

Table 4. 2 : Single-precision floating point load instruction.

Imm[11:0] rs 2 rsl width Imm[4:0] opcode
7 5 5 3 5 7
Offset src2 srcl width dest STORE-FP

Then, when we examined the load/store instruction format for integer numbers, we
realized that these two instruction sets have same formats. In this way, we completed

the first instructions by making a few changes in some original design files.

4.1.1 Reorganize control

We made very little to no changes on the control side. Control signals for integer type
load/store can also be applied in floating-point load/store instructions. But we added
extra two multiplexers to the design to control which register file our outputs are taken
from. In this, we defined two different signals for Select inputs of multiplixers that

select datal and data2 according to the instruction.

For example, when fsw f15, -24(x8) instruction is executed in assembly language,
datal should be selected from integer bank and data2 should be selected from floating-
point register bank. In addition, when a LOAD instruction executed, which register
bank the data will be loaded into at the WB(write back) stage is decided by the

27

registerbank_sel signal, which travels in the pipeline stage until the WB stage. Figure
4.1 shows that this change has created a diagram.

Virlle Enable

Integer Register

=
©
> 55
File) —> 8
rs1 ID > Read Data 1 T
- Read Reg 1

data1_sel
rs2_ ID —» Read Data 2 Read Reg 2 =

rd WB —————3 Write Reg 1

J Write Data

nux_o_WB —>

Wi Enabie
FP Register File

registerbank_sel

A\ 4

rs1_ID — 3| ReadDatail
Read Reg 1 L >
rs2_ID —> Read Data 2 Read Reg 2 >

\ 4

’ Data2

rd WB — 3 Wiite Reg 1

data2_sel

> Write Data

Figure 4. 1 : Block diagram of reorganized design of registers

if(rs1_ID = 5'b0)
IDEX_preg_datal = 32 H

else

begin

if(ctrl_unit_IDEX_datal_sel)

IDEX_preg_datal < f_register_bank[rsl1_ID];
else

IDEX_preg_datal < register_bank[rs1_ID];

end

if(rs2_ID = 5'h0)
IDEX_preg_data2 < 32'h0;

else

begin

if(ectrl_unit_IDEX_data2_sel)
IDEX_preg_data2 < f_register_bank[rs2_ID];
else
IDEX_preg_data2 < register_bank[rs2_ID];
end

Figure 4. 2 : Code section modified in the design file for data selection

The implementation of the extra multiplexers for selection of datal and data2 can be
seen from figure 4.2.

4.1.2 Verification of the implementation

Before we synthesized the implementation, we ran several tests to verify its behavioral

functionality. we wrote a one basic C programs: a bubble sort algorithm, an integer

28

multiplication algorithm and a Fibonacci Sequence generator. We compiled these
programs with RISC-V GNU C compiler, generated the opcodes and loaded them into
the memory. We compiled and loaded these programs into the processor for

simulation. Testing code given in figure 4.3 below.

1 void tst()

2 {

3 volatile float a : // in hex format -> 0x4019999a
4 volatile float b = 4; fpor -> Ox40800000
5}

6

7 int main()

8 {

9 tst();

10

11 }

Figure 4. 3 : C code of test program.

Float Registers
40866666

f_register_bank(15)[31:0] =401999%9A
f_register_bank(14)[31:0] =000EEEER 90000000
f_register_bank(2)[31:0] -PEEERERE 00000000

Integer Registers
register_bank(15)[31:0] =00Q0QEEE0E [olofofofelelele]
register_bank(14)[31:0] =0000RE0R0 Jofofofofeelele]

Figure 4. 4 : Values on FP registers.

As can see from Figure 4.4 and Figure 4.5, the variables a and b that we randomly
numbers are assigned to floating-point register bank and then moved to memory

correctly.

mem(2033)[31:0] 00000000 00008800 D
mem (2034) [31:0] =0000EOHO 90080000 I
men(2035)[31:0] =0000E006 08000088 I
men(2036)[31:0] =00006000 00080008 I
men(2037)[31:0] =00000006 98080088]
mem (2038) [31:0] =0000EEHO 90080000]
mem(2039) [31:0] =00000G0E 00000000 I
men(2040) [31:0] =00000006 98080088]
mem (2041) [31:0] =40866666 00808800
mem(2042)[31:0] =4019999A 00000008 4019999A]

Figure 4. 5 : Value on memory.

29

After making sure that the Load/Store instructions are working properly, we start to
think that the remaining commands will be implemented more quickly as we learn how

to verify our design .

4.2 Floating-Point Computational Instructions

Floating-point instrucitons are generally instructions that perform mathematical
operations for floating-point numbers. Among these instructions, the circuits that
perform the sign, exponential and mantissa calculation of the addition and subtraction
commands have many difference with the circuits that perform the multiplication,
division and square root instructions. For this reason, the addition/subtraction block
was designed and developed separately, while the other blocks were developed
together. However the block that allow the decode of the 32-bit floating-point numbers
into sign, exponential and mantissa, which is necessary for all mathematical
operations, is designed to be used for all computational operations. Multiplication,
division and square root of floating-point numbers are examined under the same
heading as they are similar in terms of both sign and exponent handling. For the
multiplication or division of mantissas, the same algorithm used in the existing muldiv
module is used. For normalization, 3 different normaliser designs named sqrtNorm,

divNorm and mulNorm are designed.

4.2.1 Decoding of operands for computational instructions

Floating point numbers are constructed as parts of privileged notation as mentioned
before and represented in figure 2.1. This binary array includes sign, exponential and
mantissa parts in addition to these there is a hidden one for floating numbers. This
hidden one expands precision of floating point numbers by changing significant value
with respect to the exponent. Significant value is stands for 24-bit binary number that
integrate mantissa and hidden one of floating point numbers and used as binary
operands of arithmetic operations. Floating point numbers are favourable approach to
real numbers ergo considering infinite expansion and precision of real numbers with
limited bits exceptions are inevitable. The exceptions which are element of real
number set but not set element of floating point numbers . This numbers grouped as

+infinity , not-a-number(NAN) and +0. There is also subnormal which is also

30

considered as underflow for floating numbers. By appointment of particular
exponential value for subnormal hidden 1 expression ignored and 23-bit mantissa used
as precision increasing. This classification and disjunction of operands part are
essential for all arithmetic operations that leads us to design decoder unit which

decodes the 32-bit floating point numbers for all arithmetic operations.

4.2.1.1 Implementation of decoder

Decoder units used as pair due to ensure two source operands unpacked properly for
each arithmetic operation. Decoders are used for decoding source 1 and source 2
respectively. These decoder units take source operands used as input; give sign,
exponential, significant and exceptions as outputs. Decoder units also coping with
hidden one for sources which have zero exponentials and nonzero mantissa left most
bit of significant assigned as 0 otherwise 1, with this appointment contradiction of
significant settled. As significant values determined exponential differences of
subnormal exponential and minimum exponential values are settled same as minimum
exponential value. Decoding of floating point number enables to determining of
exception cases with respect to the sign, exponential and mantissa. Combinations of
maximum and zero values of exponential and zero value of mantissa used as indicators
of exceptions. Using these indicators subnormal, zero, infinity and not a number(NaN)

signals are generated.

4.2.2 Floating point addition and substraction

First, we did research on how to implement an algorithm for adding and subtracting
floating-point numbers. Accordingly, we reviewed the following book, Computer
Arithmetic and Hardware Designs and we follow the following algorithm[5]. Since the
subtraction operation is essentially an addition, it is converted into an addition
operation after the necessary sign arrangements. Flow chart of adder/substracter can

be seen in Figure 4.6 below.

31

Floating-point operands

v v

Unpack

¥ Selective complement
Subtract and possible swap
lexponant T I
= Align
significands

| I
Ll Sig_n J.‘_ Seut nahﬁgnad O

significands.

H & Marmalize |
jjust
. exponent |

Round and
salective complement

L
Adjust -
e::-;angm H Normalize _l

Pack - —

v

Sum/Difference

Figure 4. 6 : Floating point adding algorithm.

4.2.2.1 Designing the algorithm
The steps of the algorithm we will use are as follows:

e Step 1: Compare the exponent of the numbers in the entries and get the
absolute value of the difference between them. This value will be the temporary

exponent value of our result.

e Step 2: Shift the significand part of the input with the smaller exponent to the
right by the exponent difference.

e Step 3: Select the required signals for addition or subtraction. So for
subtraction, take the 2's complement of original number. Then keep the result
in your RESULT variable.

e Step 4. Check MSB bit of RESULT during addition. If this value is 1, shift
RESULT right by 1 and increase its exponent by 1. During subtraction, check
RESULT for leading zeros. Shift RESULT left until the MSB of the shifted

result is a 1. Subtract the leading zero count from tentative exponent.

32

e Step 5: Set the bits required for rounding in normalize and do the necessary
rounding. After rounding, subject the result to the final normalize and handle

the exceptions.

The last two steps are done by the normalizer, which is a separate module to encode
floating-point numbers with a certain format. We skipped the rounding operations in

this section, as we will implement the rounding instructions later.

4.2.2.2 Verification of the implementation

Before integrating the module we designed into Hornet, we applied behavioral
simulation with Vivado Design Suite to make sure it was working properly. The

testbench in Figure 4.7 is used result aquried as Figure 4.8 illustrates.

‘timescale Ilns / lps|

module siml_tbh();

reg clk;

reg[31:0] A,B;

wire[31:0] oOUT;

integer 1 = 0;

fpu_adder UUT(.clk(clk), -&A(x), -B(B), .OUT(OUT));

initial

begin

A = 32'h0000C
B = 32'hcZ0al H —34. 50

n o= 3z'
B = 3z2°
- oUT
g10
S§finish;

end

Figure 4. 7 : Test bench of adder/subtracter

Untitled 2*

15.522 n=s

20.000 ns 30.000 ns

3£e00000 b b 00000000 3e7020c5

> W B[31:0] / 40800000 Y 43fa2f1d W c20a0000 cladd2£2

> W QUT[21:0] 40L80000 43bc6405 ©20a0000 clabhlec)

Figure 4. 8 : Simulation results on Vivado.
33

As can be seen from above Figure 4.8 the simulation results, the outputs give accurate
results without rounding. In the next stage, clock and necessary rounding operations

must be done to synchronize the circuit.

After completing rounding and handling of exceptions in this module, apart from this
test, we tested 1 million different input combinations of random floating-point
numbers that we created on matlab.Subsequently, saving these combinations to the
txt file, we checked it over the tcl console in vivado by doing so, we fixed many errors
that we did not notice during the design stage. Matlab code of testing variables are

given in Figure 4.9 below.

5 for test = 1:1000000

6 V=['e:9,'A":"F'];

7 X1 = randi(16,1,8);

8 X2 = randi(16,1,8);

9 vV(X1);
10 V(X2);
11 N1 = typecast(uint32(hex2dec(V(X1))), 'single’);
12 N2 = typecast(uint32(hex2dec(V(X2))), 'single’);
13 hexstrl = num2hex(N1);
14 hexstr2 = numzheh(sz;
15 hexstrsum = num2hex(N1/N2);
16 fprintf(fileid, "%s %s %s \n', hexstrl, hexstr2, hexstrsum);
17 end

Figure 4. 9 : Matlab code of random FP number generator.

Finally, we also tested the numbers in some edge regions. For example, cases where
the sum of the minimum subnormal number and the maximum subnormal number is

normal, or the result is normal with the sum of two maximum subnormal numbers.

4.2.2.3 Verification on HORNET

After testing the Adder/Substractor module stand-alone on vivado, the block
needs to be combined with HORNET as the next step. To do this, new control signals
have been added with the purpose that this process can be done properly. These control
signals are INTorFloat, FPU_func and FPU_roundingMode respectively can be seen
in Figure 4.10. INTorFloat is a signal used to forward data from the correct output
(ALU or FPU) in the pipeline. FPU_func is used to determine the addition or

34

subtraction operation, and FPU_roundingMode as the name implies, is used to control
the rounding mode.

INTorFloat,

FPU_func,
[2:@] FPU_roundingMode

Figure 4. 10 : Control Signals for FADD/FSUB.

Also, the forwarding unit and hazard detection unit modules have been revised for
possible data forwarding and pipeline stall situations that come with the "F" instruction

set.

int main()

{
volatile float a = 2.4; // 0x4019999a in IEEE-754 "single" format
volatile float b = 4.2; [/ 0x40866666
volatile float ¢ = a-b; [/ 6.6 — 0xbfebbé66b
volatile float f1 = 2.345; [/ 0x4016147h
volatile float 2 = 5.344; [/ 0x40ab020c
volatile float 3 = fl+f2; [/ 7.689 — 0x40fé0csa
return 0;
¥

Figure 4. 11 : Example C code for FADD and FSUB instructions.
As seen in the waveform in Figure 4.12,that we created using gtkwave, the correct

values were calculated in the processor and then saved in the memory respectively.

f3—= mem(2037)[31:0] =40F60C4A 00000008

f2—>mem(2038)[31:8] =40AB0O2GC 00000008 48ABO26C

fl—>mem(2039)[31:0] =4016147B 40161478
C—=>mem(2040)[31:0] =BFE66664 BFE66664
h—=mem(2041)[31:0] =40866666 48866666
a—>mem(2042)[31:0] =4019999A 4019999A

Figure 4. 12 : Simulation results on HORNET for FADD/FSUB instructions.
4.2.3 Floating-point multiplication

The representation of a floating-point number was like equation 4.1. Using this
notation, the result obtained by multiplying two floating-point numbers can be

represented as follows:

XY=2Zy,= (_1)(Sx€BSy) . 2(extey—127) | (M, -M,) 4.2)

35

https://tureng.com/tr/turkce-ingilizce/as%20the%20name%20implies

The sign part is pretty straightforward. The sign of the result is determined by
EXORIng the signs of the inputs. In the exponent part, it is obtained by adding two
exponents. But the exponent we obtained from the product are biased two times, so

127 is subtracted from the result to obtain a value which has the bias is applied once.

4.2.3.1 Multiplication of significands

The mantissa part of the result is obtained by directly multiplying it. In order not to
further complicate the design while multiplying the significands, we changed the
design codes of the 32 bit multiplier circuit to operate in 24 bits in place of 32 bits,
instead of directly using the previous MULDIV block in the processor. Flow chart of

multiplication operation illustrated with Figure 4.13.

X Y

|

UNPACK OPERANDS

Se Sy Eyx Ey M, My

v v ¥
| Multiply

Significands

¥
Add
Exponents

Y Y
Preliminary Preliminary
Adjust Exponent Normalize

4

Rounding
Logic

Y
Final

| Normalize |

.
Final Adjust
Exponent

PACK FINAL RESULT

Figure 4. 13 : Flowchart of floating-point multiplication.

4.2.3.2 The multiplication algorithm

Two 24-bit significands can be written as the sum of two stage-1 partitions according

to the following equation 4.2.
A=Ay22+ 4, B= By2'?+B, (4.2)

Using this notation, the product of two significands can be represented as:

36

A XB = (Ay2¥% + A)) X (By2'2+B,) = AyBy2?* + (AyB, + A.By)2'%2+ A.B, (4.3)
Moreover, these partitions can be further split up into smaller stage-2 partitions.
Ay = Agy2®+ Ay, By = Byy2°+ By, (4.4)
For example the expression Ay By, can be represented as

Ay X By = (Agu2° + Ay,) X (Byu2®+ Byy) (4.5)

= AuuBun2" + (AyuBuy + AuBum)2° + AyBuy,

With the use of equations (4.2), (4.3), (4.4) and (4.5), operands are partitioned to Ay,
Ay, Apg and A;; for A, and Byy, By, Bry and By for B. These partitions are 8-bit,
and are multiplied in an order for generating the second level partitions Ay By, AyBi,
A; By and A; B;. These second level partitions are then added in an order to generate

the final result.

4.2.3.3 Normalization of Significands

Normalizer For Multiplication Although the normalizer of the multiplier circuit works
with logic similar to the adder, some changes need to be made. The pseudo code of the

multiplication normalizer can be seen in Figure 4.14.

For example, when we subtract bias from the sum of the exponents, if the result is
underflow and the hidden digit is 0, it means that our number has fall into subnormal
range. In this case, our output exponent should be set to 0. Also, exceptions that may
occur during the normalization step, such as overflow and underflow, due to

exponancial changes, are checked.

37

//inSignificand -»> Significand before normalization

v inExp ->» Exponent before normalization

//outSignificand -» Significand after normalization

/A OUtExp -> Exponent after normalization

// ExpUnderflow -> signal that checks if the exponent falls into the subnormal range
// zeroCount -> Variable that holds how many leading zeros in significand

if (1ExpUnderflow)

if(inSignificand ==)
outSignificand = inSignificand >>
outEXp = inExp +

else if (insSignificand ==)

outSignificand = inSignificand;

outExp = inExp;
// when input is subnormal or when input exponent is not enough to normalize)
else if (inExp == & inExp <= zeroCount)
outSignificand = insSignificand << inExp =
cutExp =0;
// when input exponent is suffient for normalization
else
outSignificand = inSignificand - zeroCount;
cutExp = inExp - zeroCount;
else
// 1f ExpUnderflow then shift the number by the absolute values of the exponent and
// check if the number is normal, if normal then set Exponent 1 otherwise set to 0
outSignificand = inSignificand »>»> inExp2C -
outExXp = |outSignificand[24:23] ?

Figure 4. 14 : Pseudo code of Multiplication Normalizer.

4.2.3.4 Rounding logic for multiplication

After the Significands are multiplied, the Guard, Round and Sticky bits need to be

properly determined in order to be able to round correcly. The Guard bit is a digit that

gains importance when it is necessary to shift left only once while normalizing the

significand. The Round bit is used to make the rounding more precise. Lastly, Sticky

bit is used to give a general intuition about the values of the bits to be discarded from

a certain precision.

ﬂ4x24 'ﬂlx23 lelﬂlxo
X My24_ My23 MylMyO
Rlz47ﬂlz46 -ﬂlz45 qulﬂdzo
\ J
Y
24 bits 24 bits
(actual significand) (used for rounding)

G = Guard Bit= M 53
R =Round Bit= M,,,

S = Sticky Bit = OR of less significand 22 bits of Z,,

38

(4.6)

MZ4-7MZ4-6 .MZ4-5 MZZ4- —grs

Case a: MZ4-7 = 0, ZM:MZ4-6.MZ4-5 MZZ4- g R=r S=s
Case b: MZ4-7 = 1, ZM:MZ4-7'MZ4-6 M225M224 R:g S=rORs

Case c: M 47, M4 = 0 Zy is shifted until MSB is 1. Then R is equal to 23nd bit
of shifted version of Z,; and S is equal to OR of less significand 22 bits of shifted

version Z .

After the normalization step, the final Round and Sticky bit are specified using below
cases. Then, the R and S bits are rounded according to the rounding mode used.
Eventually, after the appropriate rounding is done, the final normalization and

exponent adjustment processes are done, and our output is ready.

4.2.3.5 Testing the floating-point multiplication circuit

During the test phase, we tried the random floating-point numbers we generated with
MATLAB, as in the previous units, with simulation over Vivado. We reviewed the

design by analyzing incorrect results and updated it until finally no errors.

Afterwards, we would integrate this circuit directly in Hornet, but since it will have
common signals with the Division block, we decided to do it after designing the

division circuit.

4.2.4 Floating-Point Division

In floating-point division arithmetic, the output sign is calculated by EXORing the
input signs, as in multiplication. In floating-point division arithmetic, the exit sign is
calculated by EXORING the input signs, as in multiplication. Since the exponents will
be subtracted from each other in division, the resulting exponent will be unbiased. For

this reason, the value of 127 is added to bias the output exponent once.

X=Y=2p=(—1)(x®s) . 2lex—eyt127) (pp -) 4.7)

39

4.2.4.1 Division of Significands

We used same algorithm that Hornet does due to pave the way for further works. In
addition to this the algorithm have been chosen with consideration of area and time
coefficients. Trade of between area and time concluded with regard of frequency of
division operations comes while processor working [2]. After determining division
algorithm of significant part of floating point we take in to account exponential and
sign operations. These operations are very straight forward for division as well as

multiplication.

Unlike integer division, for the division of 24-bit significands, the dividend and divisor
must be must be converted to the appropriate format before starting the operation.
First, the dividend is shifted to the left by 26 bits and 26 bits of 0 are padded to the
beginning of the divisor. The reason for shifting 26 bits instead of 23 bits is that the
extra 3 bits are used for rounding. Then offset is calculated to get the output correctly

for subnormal divisors.

The formatting is as follows. Assume that M, is dividend, M, is divisor and My, is

quetient.
M, (4.8)
— =M
M, b
Can be written as:
M 4.9
M_x X 226 = Mp X 2% = shifted (4.9)
y
equation 4.9 can also be written as equation 4.10.
My = Mshlfted X 2726 (4.10)

Accordingly, Mgis the 26-bit right shifted version of the Mgy, ¢.q. For subnormal
divisors, Mgy, r¢eq Needs to be shifted to the left by 24 — of fset amount. Normalizing

and rounding is done with the similar logic as in the multiplication.

40

4.2.5 Floating point square root

Calculating the square root of single-precision floating-point numbers is an unary
operation unlike other computational instructions. Since the square root operation is
valid only in the domain of positive real numbers, sign of input operand is just an
indicator to determine whether square root operation is valid or not. The exponent is
divided in half, as can be seen from equation 4.11. The point to consider is when the
exponent is odd. In these cases, operations are performed by considering the
significand shifted 1 digit to the left.

ex
My - 2(7) if e, iseven
\/Y — (—MX . Zex — X . X)
M, - 2T) ife,isodd. (4.11)

Nontrivial calculation of square root operation is the computation of significand
value’s square roots. Since the significant value is 24-bit binary array which is
interpreted differently for floating-point arithmetic, approximations for integer square

root operations are also applicable to significant value.

4.2.5.1 Square Root of Binary Numbers

Square root operation has only one operand unlikely to other mathematical operations.
The operand expected to be equal to the square of the final result that leads design to
be different from analytic approaches. Therefore, in square root operation result has to
be calculated with algorithms which are mainly divided into iterative approximations
and recurrence methods. Since our concern is calculating square root of floating point
numbers with binary 32-bit representation. Recurrence algorithms are chosen due to
constant execution time which has critical significance for pipelined processor
structure. Recurrence algorithms generate square root bit by bit, with subtracting the
square of instant square root from related remainder. Since these operations employ
large number of different units, square root calculation algorithms have been
developed to reduce the number and complexity of components. By courtesy of these
algorithms square root operation can be implemented with simple digital circuitry. ‘A
new non-restoring square root algorithm introduced by Yamin Li and Wanming Chu
is very efficient to implement. Many existing design are less area and time efficient

than the implementation of new non-restoring square root algorithm [10].

41

4.2.5.2 Mathematical expression of binary square rooting operation

Square root operations start with calculating most significant bit of square root result
and to be continued till least significant bit of square root calculated. While calculating
square root of binary numbers new non-restoring algorithm investigate on remainder

for each step of calculation.

Suppose D is input operand, gy is partial square root and i ab is the partial remainder
at step k where ab is the next pair of operand, a = D,;_, and b = D,;_, . Note that
qr, 1, are binary sequences and multiplying these sequence with 2 corresponds

shifting these sequences left by one bit.

qrt(D) = / Da—1Dak—2Dop—z -+ DD, (4.12)

= Qx-1Qk-20Qk-3 """+ Q1Qo0 = qi

Square rooting 2 x k bit binary number resulted with k bit binary sequence. Initially,
the MSB of the square root result and first partial remainder is calculated by
subtracting 01 from the D, _,D,_- pair. Other bits of remainder and next significant
bit pairs of D are concenatated as r,ab. The remaining bits of the square root result
are obtained sequentially by subtracting or adding the current partial remainder from
the partial square root result, according to the MSB value of the partial remainder

calculated in the previous state. Partial tables truth table represented below Table 4.3.

Let's assume that the initial partial square root and the partial remainder are calculated
according to the figure A, where D, _1D,_, is first pair of binary input, Q_, is the

MSB of square root and Ry, ; Ry, first pair of partial remainder .

Table 4. 3 : Truth table of partial root and related square root bit.

D;k—1 Dag—1 Qk-1 Ryy1 Ry
00 0 00
01 1 00
10 1 01
11 1 10

The next bit of square root and partial square root are calculated as in Equation 4.13

and Equation 4.14.

42

_{1 if ez = Tk—qab — qp_4* 20, 413
Q2 {O, otherwise. (4.13)

Qr-11, if Q2 =1, 114
qk-10, otherwise. (4.14)

cd is the next pair of D. If the remainder r,_, iS non-negative, next partial root is equal

to following expression.
Tk-3 = Tk—20d — qg_2" (4.15)
If the remainder r,,_, is negative then next partial root equals to:
Ti—z = Tk_1abcd — qy_3> (4.16)

As can be seen from the expressions above, the new non-restoring algorithm results in
two different expressions for negative partial remainder and positive partial
remainder.These expressions will be implemented with digital circuitry as adder and
shift registers. For 2 X k bit binary number k + 2 bit adder/subtracter can be used with

shift registers to compute square root.

4.2.5.3 Square root of significand

Since the square root of a 24-bit significand will be 12-bit, there will be a loss of
precision, so it needs to be extended further. For that purpose, along with the bits
required for rounding, the significand is extended to 54 bits by shifting it to the left. In
each clock cycle two bits of square root are calculated and the final result is calculated
in 27 cycle. Also, the hidden bit of the square root result can only be 0 in the subnormal
number set, so normalization is not performed for normal inputs. Hence, normalization

in square root aritmetic is relatively simpler than other operations.

43

INPUT
D [s3|s2(s1|sof...l2 |1 |0

<«— shift register

«— shift register

Q |[28|25]|...|1 u(—o<]—

1
A4 v L 2 4 ¢
28 27 ... 3 2 1 0 28 27 ... 3 2 1 0
.| 0: ADD
Ll .
1: SUB 29-bit Adder/Subtractor
28 27 26 25 ... 10

YYYYYYY
] 6)25|... 0

R |28|27|2

Figure 4. 15 : Implementation of square root algorithm.

As can be seen from above Figure 4.15 acquired result of square root mathematical
expressions has implemented with 29-bit Adder/Substracter block and tree shift

registers for remainder, quantinent and input operands.

4.2.6 Control unit

The Control Unit is responsible for making sure that the rest of the circuit is operating
correctly. It controls which signals will be inputted to the Square Root Block, and
where the outputs from the Divider Block will go. The Control Unit is an Algorithmic
State Machine (ASM), and it controls the circuit by determining the values of the

control signals. The State Diagram of the circuit is given in Figure 4.16.

44

IDLE
done_b4_delay =0
load = 1'b0
shiftSig = 1'b0
shiftQ = 1'b0
incr_itr = 1'b0

|

A

A 4

start
1
LOAD
done_b4_delay =0
load = 1'b1
shiftSig = 1'b0
shiftQ = 1'b0
e S shiftSig = 1'0
shiftQ = 1'b0
incr_itr = 1'b0
done_b4_delay = 1'b1
itr=0
A 4 0
ITR
— < itrl=
load = 1'0 firi=27

shiftSig = 1'b1
shiftQ = 1'b1

incr_itr = 1'b1
done_b4_delay = 1'b0
itr = itr + 1

Figure 4. 16 : The State Diagram of the circuit.

The circuit waits for the operation in the state IDLE. When the start signal is asserted,
the square root operation begins and the circuit goes through 27 iterations, during
where it calculates required results and transfers them to the next round. In the final
iteration, which is the 27th round, it asserts a ready signal and the final result for square
root is ready.

45

4.2.7 The Floating-Point Muldivsgrt Circuit

4.2.7.1 Datapath

Floating-point multiplication, division, and square root circuits are sequential circuits
and take multiple clock periods to calculate. For this reason, after these circuits were
designed and tested separately, they were combined in a module called MDS. mds
contains the following submodules:

e An exponent handler: Calculates the pre-normalization exponent according

to the type of operation.

e Rounders: Each operation round differently the significand according to the

rounding mode.

e A final normaliser: Performs possible normalization of significand after

rounding.

e Assign handler: Determines the sign of the floating-point output with respect

to operation type.

Each operation block contains submodules that do the initial normalization. Exception
flags are also set in the relevant operation block when necessary. What is meant by
necessity for example, division-by-zero exception is calculated only for floating-point
division. In other operations, it is set to 0 directly. The simplified diagram of the circuit

can be seen from Figure 4.17.

46

div_start = 1°'b0

sqrt_start = 1'b0
reg_muldiv_sqrt_en=1'b1
mux_muldiv_sqrt_out_sel = 2'b00
muldiv_sqrt_done = 1'b1

div_start=1'b0

sqrt_start=1'b0
reg_muldiv_sqrt_en = 1b1
mux_muldiv_sqrt_out_se!l = 2'b00
muldiv_sqrt_done = 1'b0

div_start = 1'b0

sqrt_start=1'b0
reg_muldiv_sqrt_en = 1'b0
mux_muldiv_sqrt_out_sel = 2'b00
muldiv_sqrt_done = 1'b0

MUL_out

A

[|

A

MUL <

sqrt_start = 1'b0
div_start = 1'b0

mux_muldiv_sqrt_out_sel = 2'b00
muldiv_sqrt_done = 1'b0
reg_muldiv_sgrt_en = 1'b0

sqrt_start = 1'b0
div_start=1'b0
mux_muldiv_sqrt_out_sel = 2'h00

SQRT_out

mux_fastres_sel

reg_muldiv_sqrt_en = 1'b1 sqrt_rdy
muidiv_sqrt_done = 1'b1
reg_muldiv_sqrt_en = 1'b0
muldiv_sqrt_done = 1'b0
mds_sel SQRT

div_start = 1'b0

div_start = 1b0

sqrt_start = 1b0
reg_muldiv_sqrt_en = 1'b0
mux_muldiv_sqrt_out_sel = 2’610
muldiv_sqrt_done = 1'b1

sqrt_start = 1'h0
reg_muldiv_sqrt_en =1'b1

sqrt_start=1'b1
reg_muldiv_sqrt_en = 1'b0

mux_muidiv_sqrt_out_sef = 2’b00
muldiv_sqrt_done = 1'b0

DIV_out

A

Figure 4. 17 : Square root and division control diagram.

47

div_start = 1'b0

sqrt_start = 1'b0
reg_muldiv_sqrt_en=1'b0
mux_muldiv_sqrt_out_sel = 2'b01
muldiv_sqrt_done = 1'b1

div_start = 1'b0
reg_muldiv_sqrt_en = 1'b1

div_rdy
div_start=1D1
reg_muldiv_sqrt_en = 1'b0
>‘ DIV <
sqrt_start = 1'b0
mux_muldiv_sqrt_out_sel = 2'b00
muldiv_sqrt_done = 1'b0

4.3 Implementation of Conversion, Move and Compare Instructions

As mentioned earlier, conversion instruction are used to convert a floating-point
number to the its nearest integer equivalent, or to the floating-point equivalent of an
integer number in the IEEE-754 standard. In computing , since all 32-bit signed or
unsigned integer numbers have an unique floating-point representation, there are no
restrictions or special conditions for inputs of integer-to-float conversions. However,
in the float-to-integer conversion, there are special cases in floating-point domain, such
as INF or NAN, or cases where the floating-point number to be converted cannot be
represented by the signed or unsigned 32-bit integer. These particular cases can be
viewed in the table below Table 4.4.

Table 4. 4 : Special cases for conversion instructions

FCVT.W.S FCVT.WU.S FCVT.L.S FCVT.LU.S

Minimum valid input (after a1 —263 0
: -2 0
rounding)
Maximum valid input (after 231 _q 524 o 264 —1
rounding)

Output for out-of-range negative 31 63 0
) -2 0 -2
Input

Output for —231 0 —263

Output for out-of-range positive 20 -1
input

Output for infinity or NaN 231 —1 232 -1 203 —1

4.3.1 Conversion instructions

4.3.1.1 Integer-To-Float Conversion

First of all, since the MSB of the significand of normal numbers must always be 1
according to the IEEE 754 floating-point standard, the operand integer needs to be

converted to this format. The steps of the algorithm are as follows.

48

e Step 1: Depending on whether the operand integer is interpreted as signed or
unsigned, the absolute value of the number is taken and the 31 bits 0, which is

the maximum shift number, is added to the end of the absolute value obtained.

e Step 2: Shift the temporary variable until the MSB of the significand become
1.

e Step 3: The exponent to be obtained will be equal to the shift amount. But this
value is the actual value without bias added. For this reason, a bias of 127 is
added to the final exponent for the single precision. Sign bit is equal O if the
number is to be converted as unsigned, otherwise it is equal to input's original
sign. For an illustration, the conversion of 1123412, an integer, to floating-
point can be examined as follows in Figure 4.18.

In binary, 1123412 is represented as:
1123412, = 00000000000100010010010001010100 , (4.17)
In floating-point notation, it equals to:
(—1)° x 22° x 1,0001001001000101010000, (4.18)

shamt concatenated 32 bits

000000000001000100100160001010100 | 6OOEEEEEEEEEHHEEOEEEOEEEEEOOEE

060000000000000000000600000000001 | 00P1001001600101010000000060000

Shift until the first set bit in binary array
replaces the MSB of the significand 24-bit significand after bits used for
conversion rounding

Figure 4. 18 : Integer to Float conversion operation illustration.

4.3.1.2 Float-to-Integer Conversion

In the integer conversion operation which works with a similar to the previous
algorithm, if the exponent of operand floating point number is less than 0, the integer
equivalent is directly equal to 0. Otherwise, the integer equivalent is determined when
the significand is shifted until the exponent becomes 31. The reason for this is to shift

the decimal point of the number by 31 digits. But, as mentioned before, when operand

49

exponent is higher than 31, there are special cases where we cannot represent the
operand floating point number with an integer. In these cases, output is determined by
the directives in the RISC-V Manual. For an illustration, the conversion of

123423953.78845, a floating point number, to integer can be explained as follows.

First of all, this number can be represented in single precision format as follows in
equations and Figure 4.19:

123423953.78845,, = (—1)° x 22 x 1,11010110110100110011010, (4.18)
After calculating the required shamt and performing the shift, the mantissa becomes:
(-1)° x 23! x0,0000111010110110100110011010, (4.19)

When we complete the remaining bits with 0, we get the following result.

00000111010110110100110011010000, = 123423952 4, (4.20)

24-bit significand concatenated 32 bits
exponent
226 111010110110100110011010 | 00EOEEEOEEEOEEEOEEOEEEEEEOOEO00
231 000001110101101161601160 | 1101000000000000000000000000000
Shamt ->31-26=5
am 32-bit integer used for
rounding

Figure 4. 19 : Float to integer conversion illustration.

4.3.2 Sign Injections

Sign injection instructions directly copy the exponent and mantissa of the value in the
source floating point register to the destination register. The sign is determined by the
type of injection. For this reason, their implementation is quite straightforward. These
instructions are used to execute some assembler presudoinstructions. These are
FMV.S, which moves a number from a floating point register to another floating point
register, FNEG.S, which negates a floating point datum, and FABS.S, which takes the

50

absolute value of a floating point datum. Implementation of instructions is repsented
below Figure 4.20.

sign_B sign_A exponent_A mantissa_A

inj_type

I

Y A4 A 4

sign_O exponent_O mantissa_O

Figure 4. 20 : Implementation of Sign Injection operation.

4.3.3 Move instructions

Floating-point move instructions move data between floating-point registers and
general purpose integer registers. Since these instructions do not make any
modifications on the data, they are not designed as a separate module. data moving on
pipeline with control signals. The data to be transferred is moved to the desired register

bank with appropriate control signals.

4.3.4 Compare instructions

floating point comparison instructions compare data in floating-point registers with
each other. First the sign of the number, then the exponent, and finally the mantissa
part are compared. The comparison process is relatively simple as the sign of the
number is determined directly from the MSB of the 32-bit floating-point datum and
exponent is also in a biased format rather than signed format. These instructions
change the value in the condition bit, which is LSB of 32-bit output. The condition bit
is set (made equal to one) if the condition is satisfied. Otherwise the condition bit is
cleared (made equal to zero). The block diagram of the circuit is as in Figure 4.21.

o1

sign_A | exponeht_A mantissa_A ‘ sign_B | exponent_B mantissa_B

8 /i/za 8 23

comparator

comparator

L
v
is_less is_equal

T
Il

- s
comp_func

condition bit

Figure 4. 21 : Implementation of Compare instructions.

5. TESTING THE FPU DESIGN

Since the designed FPU was implemented in the HORNET, the testing procedure is
proceeded exactly the same as the process followed by the people who designed the

HORNET. The environment is set up as described in [2].

52

5.1 Compiling a RISC-V Program

The command used to configure the riscv-gnu-toolchain, unlike the previous one, is as

follows.

e /configure —--prefix=/opt/riscv -—-with-multilib-

generator="rv32i-11p32;rv32imf-ilp32£f--"

The first part of the command that starts with “--prefix™ sets the installation directory.
the second part that starts with “--with™ configures the installer so that both RV32I and
RV32IMF libraries are installed.

In addition, the following command is used to compile the C programs for testing the
FPU.

e riscv32-unknown-elf-gcc fpu test.c ../crtO0.s -
march=rv32imf -mabi=ilp32f -T ../linksc.1d -
nostartfiles -—-ffunction-sections -fdata-sections -

Wl,--gc sections -o fpu test.elf

Programs written in RISC-V assembly language can also be assembled using riscv-
gnu-toolchain. For this, it is sufficient to input the assembly file as an argument. In
that case, it is necessary to pay attention to the startup routines, such as initializing the

stack pointer, at the beginning of the program.

5.2 Test Program

After the modules were tested individually on their own, a simple assembly program
shown as in Figure 5.1 was prepared to check whether it worked properly with the
HORNET. The purpose of this test was to check whether the desired floating-point
instructions without any problems on HORNET.

53

x2,0x2
X2,x2,-4
X8, x2,x0

x15, Ox45ECF8FD
x16, OxC3983EAL
x15, 0(x8)

x16, -4(x8)a
15, 0(x8)

f16, -4(x8)

Figure 5. 1 : Assembly code that executes FLW instruction.

First, the address pointer is set and 2 random floating point numbers are saved in
memory. Then, computational instructions in Figure 5.2, conversion and move
instructions in Figure 5.3, and finally compare and classify instructions in Figure 5.4

are processed.

fadd.s 7, 15, f16
fsw 2 (x8)
fsub.s 7, 15, f16
fsw 7v 2(x8)
fmul.s

fsw

fdiv.s

fsw

fsqrt.s

fsw

fsqrt.s

fsw

fmin.s

fsw

fmax.s

fsw

Figure 5. 2 : Computational instructions in assembly format.

fsgnj.s f17, f15, flé
fsw 17, -40(x8)
fsgnjn.s 17, f15, flé
fsw f17, -44(x8)
fsgnjn.s f17, f15, flé
fsw 17, -48(x8)
fevt.w.s x17, f15

sw x17, -52(x8)
fevt.w.s x17, f1é6

sw x17, -56(x8)
fevt.wu.s x17, f15

sw x17, -68(x8)
fevt.wu.s x17, flé

sw x17, -64(x8)
fmv.x.w x20, f15
fmv.x.w x21, f1é

Figure 5. 3 : Conversion and move instructions in assembly format.

54

, 15, f16
, -68(x8)
, 15, f16
, -72(x8)
, 15, f16
, -76(x8)

felass.s x22, f15
sw %22, -80(x8)
fclass.s x22, flé
sw x22, -B4(x8)

Figure 5. 4 : Compare and classify instructions in assembly format.

As shown in Figure 5.5, correct results are stored into the memory. As you can see,
the commands work without any problems, but our test is quite simple compared to
more complex programs such as the digital low pass filter program. But such programs
require more program memory. For this reason, when we tried to increase the program
memory of HORNET, we could not do it because of the errors we encountered due to
Verilator tool. We managed to expand it with Vivado, but we didn't have enough time
so we decided to do such a test. In future studies, more comprehensive tests and

benchmarks for FPU can be made.

MEMORY

mem(2043) [31

mem(2039) [31

mem(2034) [31

mem(2030) [31

mem(2047) [31:
mem(2046) [31:
mem(2045) [31:
mem(2044) [31:

@] =45ECF8FD
0] =C3983EA1
0] =45E37513
0] =45F67CE7

:0] =CAGCEDD®
mem(2042) [31:
mem(2041) [31:
mem(2040) [31:
:0] =C3983EA1
mem(2038) [31:
mem(2037) [31:
mem(2036) [31:
mem(2035) [31:
:0] =00O01D9F
mem(2033) [31:
mem(2032) [31:
mem(2031) [31:
:0] =00000000
mem(2029) [31:
mem(2028) [31:
mem(2027) [31:
mem(2026) [31:

0] =C1C73C37
0] =42AE298A
0] =7FC0EE0O

@] =45ECF8FD
0] =CSECF8FD
0] =45ECF8FD
0] =45ECF8FD

0] =FFFFFEDO
0] =00001D9F
0] =00000130

0] =00000000
0] =00000000
0] =00000000
0] =00000000

00+ /45ECF8FD
00+ |C3983EAL
0000+ /45E37513
0088+ 45F67CET7
000000+ |CABCEDD®
€1C73C37

42AE298A
7FC0000H
C3983EAL
45ECFEFD
CSECFBFD
45ECFBFD
45EQF8FD
908R1D9F
FFFFFEDQ
0000109F
60000136

00000040
00000002

Figure 5. 5 : Results in HORNET memory.

55

6. REALISTIC CONSTRAINTS AND CONCLUSIONS

The importance of purpose-built hardware designs is increasing day by day. For this
reason, processors are designed for different purposes in different architectures. While the
HORNET RISC-V processor that we worked on was able to perform basic mathematical
and logical operations, it became able to operate on floating-point numbers, which is an
approximation method to real numbers.The design is free to use and extend. It can be used

for research purposes, educational purposes, and even for personal projects.

6.1 Practical Application of this Project

Risc-v processor are usally have some of the instruction sets as our processor does,
since design can be used for further research for extending the instruction set by other
instruction sets. In addition to this , it can be prepared for a chip tape-out. This could
be an important contribution to the processor design initiative that is present in the

country.

6.2 Realistic Constraints

6.2.1 Social, environmental and economic impact

RISC-V is a license-free ISA. This means that companies or groups do not have to pay
for a licensing it is free to produce and/or sell RISC-V processors.

6.2.2 Cost analysis

The CAD tools used in this project are not free. Simulation and synthesis tools are
quite costly. Fortunately, VLSI Lab in our faculty provided us with the necessary
software licences.

6.2.3 Standards

The standard to follow in this project is the RISC-V ISA manual mainly and RISC-V
manual considers IEEE 754 floating-point standarts for floating point numbers.‘F’
extesion implemented with IEEE 754 and RISC-V ISA manual standarts.

6.2.4 Health and safety concerns

This project does not involve health and safety concerns.

56

6.3 Future Work and Recommendations

There are different kind of opportunities for future work . To begin with, the remaining
accumulate instructions , can be implemented. Combinational circuits that processor
has can be optimized to ensure lower delays to achive higher clock frequencies. An
interface can be provided for communication with peripherals. Lastly , chip tape-outs
can also be done to test real life implementation of processor chip.

57

7. REFERENCES

[1] Url-3 <https://riscv.org/about/history/>, date retrieved 10.06.2022

[2] Y. TOZLU and Y. YILMAZ Design and Implementation Of A 32-Bit Risc-v
Core, June 2021

[3] “754-2008 - IEEE standard for floating-point arithmetic,” IEEE / Institute of
Electrical and Electronics Engineers Incorporated,2008

[4] “The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document
Version 201912137, Editors Andrew Waterman and Krste Asanovic,
RISC-V Foundation, December 2019.

[5] B. Parhami, Computer Arithmetic and Hardware Designs, Oxford University
Press, 2000.

[6] S.F., Oberman and M.J. Flynn, “Design Issues in Division and Other Floating-
Point Operations,” IEEE Trans. Computers, vol. 46, no. 2, pp. 154-161,
Feb. 1997.

[7] Oberman, S. F., & Flynn, M. J. (1997). Division algorithms and
implementations. IEEE Transactions on Computers, 46(8), 833-854.
https://doi.org/10.1109/12.609274.

[8] Yamin Li and Wanming Chu, "A new non-restoring square root algorithm and its
VLSI implementations,” Proceedings International Conference on
Computer Design. VLSI in Computers and Processors, 1996, pp. 538-
544, doi: 10.1109/ICCD.1996.563604.

[9] I. Korean Computer Arithmetic Algorithms, 2nd ed, A. K. Peters/CRC Press, 2002.

[10] Patterson D. and Hennessy John L., Computer Organization and Design
RISC-V Edition, 2nd ed. Morgan Kauffman, 2020.

58

https://riscv.org/about/history/

