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INSTRUCTION EXTENSION OF RISC-V PROCESSOR FOR DRIVER 

FATIGUE DETECTION SYSTEM AND IMPLEMENTATION 

SUMMARY 

Today, image processing applications are used in practice, playing a role in the 

solution of many problems, constantly being developed and appearing in many areas 

of life. These applications, which basically consist of algorithms that allow us to 

extract meaningful expressions from the image we have, are reliable and have a 

structure that allows to reach the goal quickly. Security and face recognition can be 

given as examples of areas where image processing applications are used the most 

today. While talking about safety, besides being protected from environmental factors 

in human life, situations arising from human negligence and needing a warning system 

should also be mentioned. At this point, driver drowsiness detection applications come 

to the fore. Today, many fatal or damaging accidents are caused by drivers driving 

when they are not able to adequately meet their sleep needs. Tiredness and fatigue are 

many indicators of drivers who are exposed to constantly changing environmental 

conditions during long journeys and suffer from insomnia; Many unfortunate accidents 

can be prevented with detection and warning systems that can be designed taking these 

indicators into account. The most current application for the design of this type of 

detection mechanism is embedded systems due to its reliability and inherent speed. 

Embedded systems are targeted personal designs that perform tasks directly assigned 

to them. They were developed by combining a special software and hardware parts for 

the application to be developed. Besides the hardware, the greatest importance of the 

software component is that this system can work in accordance with other embedded 

systems, and that it provides support for adapting and updating according to changing 

conditions. An embedded system hardware can serve different purposes with different 

algorithms by developing and modifying the accompanying software component. In 

the implementation of the driver drowsiness detection system, which is the general 

purpose of our project, it is aimed to transform an embedded system into a system for 

the desired purpose with image processing algorithms. For this reason, an open-source 

processor has been used in order to develop the desired programs and design Custom 

Intellectual Property (IP)’s. In addition, it is aimed to design a system at the optimum 

level in terms of cost, speed and usability. The most important element needed for 

usability is memory and storage space. A certain amount of data can be kept in the 

memory (RAM) that a processor can access while performing its functions. The data 

on which we will use image processing algorithms in our project consists of pictures 

of sleepy-drowsy drivers. Nexys 4 DDR FPGA, the card we use in our project, does 

not have the memory necessary to store the data set we have and the program we will 

develop. It is aimed to obtain this extra memory we need with the external memory 

Double Data Rate (DDR) on the card we use. While solving the memory problem, 

which is the main purpose of the project, several methods have been found to enable 

the communication protocol and DDR to communicate seamlessly. Wishbone 

communication protocol was used throughout the project with Ibex, the open-source 

processor used, but it turned out that the Memory Interface Generator (MIG) needed 

to access the mentioned extra memory, DDR, can only be connected to the processor 

via Advanced Extensible Interface (AXI) connection. Accordingly, the method found 

is a structure called “bridge”, which provides access to DDR by providing AXI-



 

 

Wishbone connection. In order to understand the communication protocol thoroughly, 

various simulations and implementations were made by providing General Purpose 

Input Output (GPIO) and Universal Synchronous Asynchronous Receiver Transmitter 

(UART) connections, and finally, image processing algorithms were implemented. 

With the communication protocol used, camera connection and filter applications were 

made with the captured image. Laplacian filter has been implemented with a processor 

with an extended instruction set, and in case the required memory is accessed, a system 

that works very fast and efficiently in driver drowsiness detection will be obtained. 

  

The path followed in the design of this system, which detects driver fatigue-

drowsiness, is given in order: 

 

1. Implementation of the open-source Ibex processor 

2. Making the various connections by making the Wishbone protocol compatible with    

the processor 

3. Testing GPIO, UART and camera connections 

4. Providing Wishbone-AXI-MIG-DDR connection with bridge method in order to 

access DDR  

5. Making image processing applications with the developed Laplacian filter 

 

At the end of the project, Ibex was successfully implemented and competence was 

gained in providing connections with the Wishbone protocol. At first, the Light 

Emitting Diodes (LED) were operated under the control of the Wishbone protocol with 

a simple LED activating code, and the UART connection was seen in the Register 

Transfer Level (RTL) schematics. Camera-Video Graphics Array (VGA) connections 

are also made with the Wishbone protocol. An implementation of the Laplacian filter 

with extended instruction set is made. As a result of many methods tried to access the 

extra memory DDR required by the data set, which is the main purpose of the project, 

it was decided that “bridge” application was the most useful one and simulation studies 

are continuing on it. 

 



 

 

SÜRÜCÜ YORGUNLUK TESPİT SİSTEMİ VE UYGULAMASI İÇİN RISC-

V İŞLEMCİSİ KOMUT SETİNİN GENİŞLETİLMESİ 

 

ÖZET 

Günümüzde görüntü işleme uygulamaları pratikte kullanılarak birçok sorunun 

çözümünde rol almakta, sürekli olarak geliştirilmekte ve hayatın birçok alanında 

karşımıza çıkmaktadır. Temel olarak elimizde var olan görüntüden anlamlı ifadeler 

çıkarmamıza yarayan algoritmalardan oluşan bu uygulamalar güvenilir ve amaca 

hızlıca varmayı sağlar yapıdadır. Görüntü işleme uygulamalarının günümüzde en çok 

kullanıldığı alanlara güvenlik ve yüz tanıma örnek verilebilir. Güvenlikten 

bahsederken insan hayatında çevresel faktörlerden korunmanın yanında, insanın kendi 

ihmalkarlığından doğan ve bir uyarı sistemine ihtiyaç duyulan durumlardan da 

bahsedilmelidir. Bu noktada sürücü uyku-uyanıklık tespiti uygulamaları öne çıkar. 

Günümüzde birçok ölümcül ya da büyük hasarlara yol açan kazalar, sürücülerin uyku 

ihtiyaçlarını yeterince karşılayamamış olmaları durumunda araç sürmelerinden 

kaynaklanır. Uzun yolculuklar sırasında sürekli farklılık gösteren çevresel koşullara 

maruz kalan ve uykusuzluk çeken sürücülerin yorgunluk, halsizlik durumlarının 

birçok göstergesi olup; bu göstergeler dikkate alınarak tasarlanabilecek tespit ve uyarı 

sistemleriyle birçok elim kaza önlenebilir. Bu tip tespit mekanizmalarının tasarımı için 

en güncel uygulama, güvenilirliği ve yapısal hızı nedeniyle gömülü sistemlerdir. 

Gömülü sistemler, direkt olarak kendisine atanmış görevleri yerine getiren hedefe 

yönelik kişisel tasarımlardır. Geliştirilecek olan uygulama adına özel bir yazılım ve 

donanım parçalarının birleştirilmesiyle geliştirilmişlerdir. Donanımın yanında yazılım 

bileşeninin en büyük önemi bu sistemin diğer gömülü sistemlere elverişli 

çalışabilmesi, değişen koşullara göre adapte olup güncellenebilmesi adına bir destek 

sağlamasıdır. Bir gömülü sistem donanımı, beraberindeki yazılım bileşeni geliştirilip 

değiştirilerek farklı algoritmalarla birlikte farklı amaçlara hizmet edebilir. Projemizin 

genel amacı olan sürücü uyku-uyanıklık tespiti sisteminin gerçeklemesinde de bir 

gömülü sistemi görüntü işleme algoritmalarıyla birlikte istenilen amaca yönelik bir 

sisteme dönüştürmek hedeflenmiştir. Bu sebeple, istenilen programları geliştirebilmek 

ve Custom IP’ler tasarlayabilmek adına açık kaynaklı bir işlemci ile çalışılmıştır. 

Bununla birlikte maliyet, hız ve kullanılabilirlik açısından en optimum seviyede bir 

sistem tasarlamak amaçlanmıştır. Kullanılabilirlik konusunda ihtiyaç duyulan en 

önemli unsur hafıza ve depolama alanıdır. Bir işlemcinin, işlevlerini yerine getirirken 

erişebildiği hafızada (RAM) belirli bir miktarda veri tutulabilir. Projemizde görüntü 

işleme algoritmalarını üzerinde kullanacak olduğumuz veri, uykulu-uyuşuk 

durumdaki sürücülerin resimlerinden oluşmaktadır. Projemizde kullandığımız kart 

olan Nexys 4 DDR FPGA, sahip olduğumuz veri setinin ve geliştireceğimiz 

uygulamanın saklanabilmesi adına gerekli olan hafızaya sahip değildir. İhtiyaç 

duyduğumuz bu ekstra hafızayı yine kullandığımız kartın üzerinde bulunan harici 

hafıza DDR ile elde etmek hedeflenmiştir. Projenin en temel amacı olan hafıza 

sorununu çözerken, kullanılan haberleşme protokolü ve DDR’ı sorunsuz iletişime 

sokabilmek için birkaç yöntem bulunmuştur. Kullanılan açık kaynaklı işlemci olan 

Ibex ile proje boyunca Wishbone haberleşme protokolü kullanılmış, ancak bahsedilen 

ekstra hafıza olan DDR’a erişmek için ihtiyaç duyulan MIG (Memory Interface 

Generator)’ın işlemciye yalnızca AXI bağlantısı ile bağlanabildiği ortaya çıkmıştır. 

Buna göre bulunan yöntem köprü adı verilen ve AXI-Wishbone bağlantısını 

sağlayarak DDR’a erişebilmeyi sağlayan bir yapıdır. Haberleşme protokolünün iyice 



 

 

anlaşılması için GPIO ve UART bağlantıları sağlanarak çeşitli simülasyonlar ve 

gerçeklemeler yapılmış, en sonunda da görüntü işleme algoritmaları gerçeklenmiştir. 

Kullanılan haberleşme protokolüyle birlikte kamera bağlantısı ve alınan görüntüyle 

filtre uygulamaları yapılmıştır. Komut seti genişletilmiş bir işlemci ile birlikte 

Laplacian filtresi gerçekleştirilmiştir ve ihtiyaç duyulan hafızaya erişilmesi 

durumunda sürücü uyku-uyanıklık tespiti konusunda oldukça hızlı ve verimli çalışan 

bir sistem elde edilecektir.  

Sürücü uyku-uyuşukluk tespiti yapan bu sistemin tasarımında izlenen yol sırasıyla 

verilmiştir: 

1.  Açık kaynaklı Ibex işlemcisinin gerçeklemesi 

2. Wishbone protokolünün işlemciyle uyumlu hale getirilip çeşitli bağlantıların 

yapılması 

3. GPIO, UART ve kamera bağlantılarının test edilmesi 

4. DDR’a erişebilmek adına ‘bridge’ yöntemiyle Wishbone-AXI-MIG-DDR 

bağlantısının sağlanması 

5. Geliştirilen Laplacian filtresi ile görüntü işleme uygulamalarının yapılması 

 

Projenin sonunda Ibex başarıyla gerçeklenmiş, Wishbone protokolü ile bağlantıları 

sağlama konusunda yetkinlik kazanılmıştır. En başta basit bir led çalıştırma koduyla 

Wishbone protokolü kontrolünde ledler çalıştırılmış, UART bağlantısı RTL 

şematiklerinde görülmüştür. Kamera-VGA bağlantıları da Wishbone protokolüyle 

birlikte gerçekleştirilmiştir. Laplacian filtresinin, genişletilmiş komut setiyle birlikte 

bir uygulaması yapılmıştır. Projenin temel amacı olan veri setinin ihtiyaç duyduğu 

ekstra hafıza DDR’a erişme konusunda denenen birçok yöntem sonucunda en 

kullanışlı olanın Bridge uygulaması olduğuna karar verilmiştir ve üzerinde simülasyon 

çalışmaları yapılmaya devam edilmektedir. 
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 INTRODUCTION  

 Motivation 

Using hardware systems for image processing by artificial intelligent algorithms is an 

important topic. However; the different way of representation of the numbers in 

hardware systems can result in faulty than acceptable level when it is implemented 

with RISC-V processor [1]. In this project, it is aimed to extend the instruction set of 

RISC-V processor by changing the arithmetic logic unit of the processor with using 

image processing and artificial intelligent algorithms [1]. 

 Objectives 

Main objective of the project is to implement the artificial intelligent algorithms for 

image processing to the open-source RISC-V processor [1]. We aimed to save time 

and cost and decrease the complexity in system-on-chip designs by using open-source 

processor with applying specific extensions. Our first objective was to synthesize and 

simulate a specific RISC-V core and to fully understand how it is written [1]. To be 

able to extend its instructions we aimed to clearly see how it works and applies the 

existing instructions. Our second objective was to implement a Driving Fatigue 

Detection (DFD) system [3] which had written in C programming language [2] on the 

RISC-V processor [1] using artificial intelligent algorithms. We tried to make this 

system work properly on our processor without any number representation faults. To 

determine which algorithm to use to make changes in arithmetic logic unit of our open-

source processor we found the most used function by analyzing the program. Then we 

implemented the decided function to the arithmetic logic unit. To reach a bigger 

memory capacity which makes the DFD system [3] work more properly, we used an 

external memory called DDR RAM [4]. After editing the instruction set, adding them 
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to the arithmetic logic unit and connecting a DDR RAM [4] to our system we 

connected a Video Graphics Array (VGA) [5] module lastly. 

 Thesis Contribution 

The construction phase of the project, which is the subject of this thesis, has been 

advanced with the contributions of The Scientific and Technological Research Council 

of Turkey (TUBITAK) and the Ministry of Science, Research & Technology of Iran 

(MSRT). The project had the project number ‘119N461’. 

 Organization of This Study 

Project’s stages are connected sequentially. That is why we took place in each stage 

together. First, we implemented Ibex based core [6] on Vivado [42] and on board. In 

the next stage, we prepared a documentation for to prevent mistakes in our future work. 

Afterwards, connected Direct Memory Access (DMA) to Microblaze since we wanted 

to access DDR RAM [4]. We added a Wishbone interface [7] to Ibex. Then, we started 

to integrate VGA and camera components to Ibex via. Wishbone interface. The image 

taken from camera sent to VGA screen. Then, we implemented the image processing 

algorithms needed for driver fatigue detection system as software only on Ibex 

processor [6].  
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 LITERATURE REVIEW 

 There are other studies that detect driver inattention, such as this project we carried 

out to reduce the number of accidents due to driver distraction. A wide variety of 

methodologies are used [8]. Existence of many studies can be observed that train 

artificial neural networks or use machine learning and image processing as we do. For 

example, by image processing, smoking or eating behaviors can be detected. The first 

of the two points where our project differs is the eyes where we focus from driver 

behavior and the second is choosing RISC-V to do FPGA implementation [1]. Firstly, 

distraction can be best determined from the eye movement data since other behaviors 

are not necessarily mean driver distraction. Therefore, our methodology will be giving 

the best output to determine critical situations. Secondly, in this project, we preferred 

FPGA implementation of RISC-V processor over other Instruction Set Architecture 

designs because of the advantages in complexity and cost [1]. RISC-V enables user to 

change and update versions of Instruction Set Architecture, minimize logic gates and 

energy consumption, customize their work by instruction extension as we plan to do 

in this project [9] [10]. When we need to choose a based core in RISC-V, we choose 

Ibex-based core [6]. It is fast, small, open-source processor and it supports I, E, M, C 

and B extensions. Generally, our methodology will both protect the driver in the most 

effective way and do this in the simplest and cheapest way. 
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 RISC-V  

In this project, RISC-V has been used as the main processor [1]. The implementation 

process has been done on an FPGA. RISC-V is an instruction set architecture [1]. It is 

a well-organized Instruction Set Architecture divided into categories and extensions.  

 

 Instruction Set Architecture: 

Instruction Set Architecture (ISA) [12] defines the software interface for hardware. 

ISA is a specification used to understand how to program a hardware that has to do 

implementation. A single ISA can have many implementations and is a specification 

may be for general purpose microprocessors, Digital Signal Processors (DSP’s) and 

specialized hardware operations. Because the software for an ISA can be reused, an 

ISA creates its own software ecosystem. This is the reason why x86 is dominant on 

servers and arm is more dominant in mobile. ISA defines everything visible to software 

[11]. It includes the set of instructions and how they behave the data types registers 

addressing modes and more such as how the memory model works protection levels 

that accommodates system software.  

 

 

Figure 3.1: Level of abstraction in ISA [12] 
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 RISC-V History 

In 2010 at Berkeley University Computer Architecture group, Kryste Asanovic started 

the design as a 3-month summer project to use in their next set of projects. The ones 

that the project team used were too complex and they needed a simpler one. Andrew 

Waterman, Yunsup Lee, David Patterson and Kryste Asanovic himself were the 

principal writers of the RISC-V [1]. In May 2014, the user specifications were released 

after many iterations. That way, RISC-V became the fifth ISA designed in Berkeley. 

As you can see from the graph, the usage of RISC-V is increasing every day [13].  

 

 

Figure 3.2: RISC-V membership growth [14] 

 Advantages of RISC-V  

RISC-V is seen as a disruptive innovation among Instruction Set Architecture (ISA)’s 

and is used by many individuals/companies [1]. There are many reasons why it is so 

preferred. RISC-V was designed with a clean slate and it is an open source that can be 

downloaded from git repositories easily and used to design hardware free of 

Intellectual Property (IP) and licensing restrictions. Since companies can build their 

own RISC-V easily, it created a new business model and its development became 

really fast thanks to the open-source nature of this project. Needless to say, RISC-V 

architecture is on par with modern Central Proccess Unit (CPU)s in terms of 

performance, code density and power consumption. It is also royalty-free, has a 

standard maintained by the non-profit RISC-V foundation and is suitable for all 

computing systems [15].  
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 RISC-V Assembly 

To understand RISC-V basic assembly code generation, the logic behind an Insrtuction 

Set Architecture (ISA) should be covered [1]. ISA defines how to program a machine 

with the instructions, stateful elements that define the context of a process that is the 

value of the registers in the memory for a given point in the execution of a program. 

This notion of the progress is important to the operating system. System programs 

provide a layer of abstraction and modularity between application programs and ISA. 

This helps code reuse and application portability. The stateful elements of the 

computer that program sees are program counter, register file and memory. The 

program counter is a pointer to an instruction address in RISC-V [17]. This could be 

32 or 64 bits. The register file contains the registers defined be the architecture such 

as the 32 general purpose RISC-V registers from x0 through x32 [17]. Some ISAs also 

define condition codes separately from the registers to store information about recent 

instruction results such as integer overflow, inequalities and zero valued results. 

Memory is logically viewed as an array of bytes that contain both code and data. The 

logical view is usually divided into several sections or segments. This is usually done 

at least to separate the program code usually called text read-only data, stack data and 

program heap data. The base RISC-V architecture uses a little-endian byte order which 

means the little end of the word comes first in memory [1]. So, the least significant 

byte is located at the first lowest memory address of the word containing it. A program 

is a sequence of machine instructions and data created by compiling high level source 

and assembling assembly language source into object code that is linked to create the 

program. The format of machine instructions is defined by the architecture which 

provides a one-to-one mapping to readable assembly instructions. This includes the 

opcodes and the operands of each instruction. So, a given line of assembly corresponds 

to one machine instruction and vice versa. A program is created through a sequential 

process that uses a compiler to convert source code into binary object code and then a 

link editor or linker brings together multiple object code files to create the program. 

At runtime, a loader which is usually part of the operating system brings the program 

into memory so that it can begin execution on the processor. There are 32 general 

purpose registers of the RISC-V architecture that can be seen in the Figure 3.3 with 

their Application Binary Interface (ABI) names [17]. These are the registers that a 

program uses explicitly for integer operations. There is another set of registers for 
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floating point operations. The general-purpose registers are numbered prefixed with 

an x from x0 to x31. Unlike other assembly languages, RISC-V tools do not use any 

prefixes other than the x for the register names [16]. 

 

 

Figure 3.3: Register names in RISC-V [17]  

 

 Custom Instruction Set Extensions of RISC-V Processor 

In order to increase the performance, adding custom instructions was necessary. Since 

RISC-V is an extendable instruction set architecture, we were able to add custom 

instructions [1].   

 

 

3.5.1 Multiplier and accumulator operator 

Multiplier and accumulator (MAC) operator [19] is a special digital signal processor 

hardware unit known as multiplier and accumulator. It simply calculates the product 

of two number and adds them to an accumulator. This part of the project was done on 

the MAC (Stunning Vivado Flash Scripts collector) unit used in the project. Since the 

MAC unit will be used by many structures, its performance is of critical importance 

for the whole system. It also has fine points in the design. At this point, studies were 

carried out on the parallel striking model and the aim was to decrease the operation 
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time of MAC by adding a hardware. As you can see from the figure, it has a serial 

structure. The serial structure means that each input needs the previous output [18]. 

 

 
Figure 3.4: Serial structure of MAC operator [19] 

 

3.5.2 Convolution and multiply-accumulate 

Sometimes, results that we got from hardware and software can differ from each other. 

We decided to pre-run the tests to avoid this causing a problem. According to the 

simulation results, we observed that hardware calculations are taking much more time 

than the software calculations [15].  

 

Convolution is an iterative operation repeating the instructions, allows us to observe 

the cycles and their timing [15]. An additional hardware would solve the problem by 

lowering the execution time.  

 

In the previous section, it can be seen that MAC unit has a serial structure. However, 

by adding a hardware, we got a new parallel structure. It is shown in figure. Digital 

Signal Processing (DSP) tools are used for the multipliers. In order to optimize 

convolution operators, stated operations will be added as custom instructions [18].   
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Figure 3.5: Parallel structure of MAC operator [19] 

 

3.5.3 Customization of RISC-V 

Customizations means adding a new custom instruction on top of the instruction set 

which we aimed in the previous part. Every RISC-V needs to support the basic 

instruction sets but it do not prevent us from adding our own custom instruction [1]. 

In this project, Arithmetic Logic Unit (ALU) instruction decoder unit needed to be 

customized [15]. The scope of changes needed for customizing RISC-V and 

instruction path in a processor should be known in order to add the custom IP.  To 

tame the combinations of functionality that can be applied, a nomenclature is defined 

to designate them in the currently approved privilege ISA specification.  

 

With the increase in the number of extensions, the standard now allows extensions to 

be named with a single "Z" followed by an alphabetical name and an optional version 

number. 

 



 

26 

In order for the multiplication to be added to the processor, there must be an unused 

instruction in the application. For this project, the extraction command, which was 

determined not to be used by looking at the assembly code of the filter code, was 

chosen. The subtraction command has been converted to the multiplication command, 

by changing the arithmetic logic unit [15]. After this point, the processor will perform 

multiplication instead of the instruction that comes as subtraction. The point that 

should not be missed here is that if we multiply two thirty-two-bit numbers, the result 

will be sixty-four bits, and this will cause problems since our processor is a thirty-two-

bit processor. To prevent this, the multiplied numbers were chosen to be sixteen bits. 

This is not a problem, since numbers with a size of sixty-four bits will not be used in 

practice [15]. In order to test the new state of the processor, simple multiplication 

operations were performed first. As confirmed by the results, the subtraction command 

has been changed to make the multiplication command.  

 

For the future image processing work, we decided to customize kernel value as we did 

with adding a custom instruction [15]. We repeat the same processes for each 

convolution.  

 

Shortly, in order to increase the performance, we extended the custom instructions by 

characterizing the application, developing new custom instructions, characterizing 

new application, optimizing the model in this order. 
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 IBEX CORE AND WISHBONE SYSTEM-ON-CHIP 

INTERCONNECTION ARCHITECTURE 

An Ibex core is simply a 2-stage in-order 32-bit RISC-V processor code [1]. It is 

designed to be small and efficient [6]. It has U-Mode, M-Mode, Physical Memory 

Protection (PMP) and it has been written in system Verilog. It has been initiated by 

ETH Zurich and developed by lowRISC which is a non-profit organization [20]. It has 

mostly ‘I’ but optionally ‘E’ extension and control and status register access. In the 

Figure 4.1, a basic block diagram of Ibex is shown. 

 

 

Figure 4.1: The block diagram of the small parametrization with a 2-stage pipeline 

[21] 

 Benefits of Ibex 

It is an open source which enccourage new hires, peer-to-peer help and this leads a 

quick progress towards innovative developments. LowRISC [20] the company has 

many documentations stating the progress and final results. Also, they are really open 

to communication and they share all of the tools, scripts, codes [15]. That is why, it is 

quite easy to solve problems with Ibex core [6]. Ibex core is also easy to modify and 

has understandable source codes. It supports various code structures and is very useful 

for image processing applications which we worked on. So, even though RISC-V [1] 

has many cores and System on Chips (SoCs) that can be implemented on FPGA, we 

decided to work with Ibex throughout the project.  
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 Wishbone Protocol Explanation  

Wishbone Protocol is an open standard protocol [7]. Most of the communication 

protocols enables user to communicate with a certain chosen device not like Wishbone 

for which no payment is required. It allows to have a topology; a bunch of devices talk 

to each other. It is not logical to have a bunch of custom interfaces stringed together 

to talk to different designs rather than having a guaranteed communication protocol 

like Wishbone Protocol [15]. Using a common protocol, it is possible to take and put 

a video decoder and it will be able to talk on the same bus. It gives the flexibility to 

reuse the designs without a need of reinventing them.  

 

Interfaces are important to capture these protocols rather the signals and bundle them 

into an easily expendable structure. A basic Wishbone protocol consists a Wishbone 

master and Wishbone slave [7]. They are connected as in the figure below. It has two 

common signals that both units see the reset in the clock and these come from your 

system controller. For example, to indicate that data has been captured, acknowledge 

signal is sent. 

 

 
Figure 4.2: Master and slave Wishbone's interfaces [22]  

 

These pins actually all the same but have different directions. System Verilog allows 

for the concept of an interface and the Wishbone protocol can be extended with new 
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signals so interface grows and everybody can see it [7]. In order to propagate these 

changes manually to each of the designs, we use interfaces. Interfaces are an abstract 

data type that actually act like a module that sit in between user and user’s design. 

There is a set of common signals and they usually exist withing the interface. In order 

to give them directions and to actually associate them with a particular input or output, 

we create what are called mod ports. Mod ports allow us to define the direction of data. 

So, we say that there is an address object inside the Wishbone. Interfaces have a very 

strong structure which strongly checks whether or not the assigning inputs to outputs 

correctly that Verilog do not have. A lot of people misconnect the signals therefore a 

protocol that guarantees us that we do not have problem with the misconnections in 

this project was very advantageous. Wishbone also allow us to propagate common 

signals outside of the port definitions or rather along with the mod port definition. 

 

 Wishbone Signals 

Ibex core was implemented however in order to communicate with cameras, screens 

or computer buses we needed a communication protocol [6]. Wishbone Protocol is an 

open source and logic bus that provides communication between integrated circuits 

via signals [7]. It transfers signal information (clock cycles, high/low levels) instead 

of electrical knowledge. Wishbone interface is flexible and compatible with Ibex and 

provides communication between all IP’s, masters and slaves. Portable IP cores were 

used for SoC design to provide reliability. In order to communicate, all the components 

share a bus called interconnect [16]. In the Figure 4.3, signals and signal directions of 

the Wishbone and tag types interface can be observed.      
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Figure 4.3: Tag types [23] 

 

 
Figure 4.4: Wishbone shared bus [22] 

 

Shared Bus technique is an advantageous technique since shared communication 

systems are compact systems. It requires fewer logic gates and routing resources. 

However, while being compact and less costly shared bus can be slower than other 

configurations [15]. 

 

 
Figure 4.5: Wishbone direction of data flow [22] 
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As it can be seen in the 4.5, Wishbone interconnection has a parallelism property which 

enables us to execute more than one function [7]. 

 

4.3.1 Single READ / WRITE cycles 

In order to make data transfers on Wishbone interconnect, these cycles are used [7]. 

At one time, these Single Read/Write cycles perform one data transfer.  

4.3.2 Block READ / WRITE cycles 

Multiple data transfers are performed by the BLOCK transfer cycles. They're similar 

to single READ and WRITE cycles, but with a few tweaks to accommodate multiple 

transfers. 

 

The interface basically conducts SINGLE READ/WRITE cycles throughout BLOCK 

cycles, as explained above. The BLOCK cycles, on the other hand, have been 

somewhat altered so that these distinct cycles (known as phases) are joined to produce 

a single BLOCK cycle. When many MASTERs are utilized on the connection, this 

capability is quite handy. If the SLAVE is a shared (dual port) memory, for example, 

an arbiter for that memory can determine when one MASTER is through with it so that 

another can access it [24]. 

4.3.3 RMW cycle 

For indivisible semaphore actions, the RMW (read-modify-write) cycle is employed. 

A single read data transmission is made throughout the first half of the cycle. A write 

data transmission is executed in the second half of the cycle [11]. During both half of 

the cycle, the [CYC O] signal is asserted [16]. 
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        Figure 4.6: Block read cycle [24]      Figure 4.7: Block write cycle [24] 

 

After these steps, Wishbone added Ibex core were tested with a basic LED code. The 

expected result was observed on the LEDs on the FPGA board. 
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 IMAGE PROCESSING 

 

The alteration of photographs using digital computers is known as digital image 

processing. In the previous few decades, its popularity has skyrocketed. Its uses vary 

from medicine to entertainment, with geological processing and remote sensing 

thrown in for good measure [25]. 

 

Digital image processing [25] is a broad field that includes both digital signal 

processing and picture-specific approaches. A function f (x, y) of two continuous 

variables x and y can be considered a picture. It must be sampled and turned into a 

matrix of numbers in order to be processed digitally. Because a computer can only 

represent numbers with finite precision, they must be quantized before being 

represented digitally. The handling of those finite precision numbers is what digital 

image processing is all about. 

 

There are many types that an image can be processed with. Image restoration which is 

basically reverting vitiated images is one of these types. Image enhancement is another 

type in which heuristic techniques are used to obtain beneficial information from an 

image. There is an image processing type called image compression which reduces the 

cost for storage or transmission of an image.  The most commonly used and the type 

that our project is all about is image analysis. All of these classes of image processing 

have basically similar techniques and differ according to their intended use. 

 Image Analysis 

Image analysis is a broad word that refers to procedures and strategies for interpreting 

and parametrizing data from an image or series of images. Obtaining error estimates 

for the generated parameters and assessing picture dependability are also part of these 

techniques [26]. 

 

Pixels (short for Picture Element) are used to divide an image; each pixel represents 

the smallest single point on the screen. A pixel can only be one color at a time, and the 

color of each individual pixel must be saved in binary when a picture is saved. The 
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more bits required to store each pixel, the greater the number of colors possible. Each 

pixel is represented by a set of bits. 

 

In actuality, photographs are significantly more complex than what is seen, with color 

depth and image resolution impacts. The color depth refers to the number of bits per 

pixel. It has a significant impact on the image's color quality. Since the 0 symbolizes 

black and the 1 represents white in photographs, only two colors can be utilized if each 

pixel is encoded with one bit ( ). Each pixel requires additional bits to represent more 

than two colors in an image. The minimum needed color depth from the number of 

colors in an image is determined as , in which n represents the number of bits. For 

instance, an image with 8 bits can demonstrate  colors. 

 

An image is a collection of square pixels ordered in columns and rows in a matrix. 

Each pixel in an 8-bit greyscale image has an assigned intensity that runs from 0 to 

255. A grey scale image is similar to a black and white image, but the term emphasizes 

that it will contain a variety of shades of grey [27]. 

 

 

Figure 5.1: Representation of pixels [27] 

 

When the definition of a color depth is considered, the figure above which is a 

grayscale image has 8-bit color depth and  greyscales. When a true color 

image is considered which has 24-bit color depth, by the definition it has  (more 

than sixteen million) colors. 
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5.1.1 Colors 

The goal of color spaces in image processing is to make it easier to specify colors in a 

consistent manner. Different forms of color spaces are utilized in a variety of 

professions, including hardware, animation, and other fields. The goal of the color 

model is to make color requirements more standard. Different forms of color models 

are utilized in a variety of industries, including hardware, animation, and other 

applications. 

There are different types of color spaces which are used in specify colors of images in 

processing. Red, Green, Blue (RGB), Luminance, Chorama Blue & Chorama Red 

(CMYK) and Hue, Saturation & Value (HSV) are some of those color spaces. The 

most common used one is RGB color model in digital image processing [28]. RGB is 

referred to red, green and blue colors. These three colors are main color components 

of this model. The proportional ratio of these three colors produces all other colors as 

seen in Figure 5.2. The main color space used in image processing part of this project 

is RGB model. 

 

 

Figure 5.2: RGB color model [28] 

There is another common color space called Luminance, Chrominance1 & 

Chrominance2 (YCbCr) [29] which is also named YUV in which slightly 

different spaces are taken. The luma component of the color is represented by 

Y. The color's brightness is measured in luma. This refers to the color's light 

intensity. Cb and Cr are the blue-luminance and red-luminance components of 
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the chroma component, respectively which means Cb is blue and Cr is red 

related to the green component. Since the Y component is more sensitive to the 

human eye, it must be more accurate, whereas Cb and Cr are less sensitive. 

 

Figure 5.3: The CbCr plane at constant luma Y′=0.5 [29] 

The YCbCr color scheme allows the computer to exploit these eye sensitivities to 

eliminate any unneeded features during image compression. YCbCr is useful for 

compressing images and video-type images, which need less data and demand less 

storage space [30]. 

 Image Filtering 

Image filtering is changing the appearance of an image by altering the colors of the 

pixels [31]. Digital images are enhanced and modified using filtering algorithms. They 

are also used to blurring, sharpening, edge detection and noise reduction applications 

on images. Image filtering techniques can be divided into two as in spatial and 

frequency domain. Edge detection filters are used in the low frequencies whereas 

smoothing filters are used in high frequencies. Spatial domain image filtering 
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techniques can be linear or non-linear and filters belong to these classes have the 

required characteristics.  

The more commonly used method for filtering is spatial filtering [32]. Spatial filtering 

directly applies on the pixels. A linear filter can be created using convolution, which 

is just the linear sum of data in a sliding window. In the Fourier domain, it's equal to 

multiplying the spectrum by an image. Whereas convolution or Fourier multiplication 

cannot be used to create a non-linear filter. To give an example; Laplacian, Gaussian 

and Neighborhood Average filters are linear filters. As an example of non-linear filter 

Median filters are the most used ones. 

5.2.1 Linear filters 

Linear filtering is the most basic and fastest type of filtering. It replaces each pixel 

with a linear combination of its neighbors, and the linear combination is prescribed 

using a convolution kernel [33].  

A kernel is a tiny matrix which is used for blurring, edge detection, sharpening and 

other tasks of image processing [34]. A convolution of this matrix and the digital image 

is used to achieve this. The convolution kernel in linear image processing is simply 

represented as follows: 

y(t)  = ∫ h(r) .  x(t −  r) dr
∞

−∞
          (5.1) 

where x(n) is the input signal and the h(n) is the impulse response. 

5.2.1.1 Laplacian filter 

A Laplacian filter [15] is used for edge detection in image filtering. The second 

derivatives of a digital image are computed using a Laplacian filter, which measures 

the rate at which the first derivatives change. This determines whether a change in 

neighboring pixel values is caused by an edge or is part of a continuous progression. 

Negative values in upper and lower triangles are centered within the matrix, are 

common in Laplacian filter kernels. A high value is at the kernel's center, surrounded 

by lesser and oppositely signed values. By introducing abrupt changes in the output 

pixel values, the image's edges are highlighted [35]. The corners have either a 0 or a 1 
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value. The edges of the output image have bright tones, while the rest of the image has 

black tones. Gain is avoided since the sum of the kernel coefficients is hold at zero. In 

the array below, a 3x3 kernel for a Laplacian filter is represented. 

G =  

For image processing part of our project, Laplacian filter is implemented by using 

convolution operation. Each element of the image array is a pixel and each pixel is 

placed in the middle of a new matrix. The absent values of the newly formed matrix 

are taken as zeros. The formed matrix and the kernel are subjected to a convolution 

operation. The result is the new value of that pixel. These operations are represented 

in the Figure 5.4. 

 

Figure 5.4: Convolution of an 7x7 Image and a 3x3 Kernel [36] 
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Figure 5.5: Convolution of an 4x4 Image and a 3x3 Kernel [37] 

The image in Figure 5.5 is represented by the 4x4 matrix and the kernel is represented 

by 3x3 matrix. The matrix that results represent the image size in 4x4. The convolution 

process should be conducted as shown in the equation below. 

P10 = (m5  ×  k1) +  (m6  ×  k2) +   (m7  ×  k3) +  (m9  ×  k4) +  (m10  ×  k5) +

            (m11  ×  k6) +  (m13  ×  k7) + (m14  ×  k8) +  (m15  ×  k9)                      (5.2) 

When using the Laplacian filter to identify abrupt changes in pixel values, the amount 

of the computed value in equation 5.2 increases, resulting in white pixels, as shown in 

Figure 5.6. 

 

Figure 5.6: Edge detection example [38] 
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 Image Filtering and Custom IP Design 

Image processing and other calculational focused tasks used in electronics devices 

need massive amounts of data processing and take a lot of power. As a result, 

specialized IP design can be critical in data-intensive operations [39].  

The convolution operation underlying the filters used in image processing consists of 

matrix multiplications. The power and capacity required for the number and 

functionality of these processes should be controllable by the user. The main purpose 

of Custom IP design [40] is to customize the filter design we use in the image 

processing part of our project and to manage it with commands. We aim to keep the 

multiplication operations in the convolution operation as a custom instruction set 

defined in the Arithmetic Logic Unit (ALU) of the open-core Ibex processor [6], 

instead of spending unnecessary time and power in a certain calculation cycle. In this 

way, we expect to perform the filtering we want by simply calling these commands. 

The data we have within the scope of the Driving Drowsiness Detection (DFD) [3] 

project consists of the positions and states of the mouth and eyes of the drivers in 

certain waking states. With the edge detection filter, the mouth-eye images of the 

drivers in the mentioned data will be detected with the Laplacian filter and kept in the 

Block RAM [41], so that the processor will perform the necessary operations. With 

the command set we have expanded, it is expected from Laplacian filter to perform the 

operations, to make high-accuracy detections and to realize the purpose of the project. 
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 IMPLEMENTATION OF IBEX CORE AND TESTING HARDWARE 

In this part of our thesis, first of all, the design environment we use and its installation 

are mentioned in detail. Then, the processor in our system, Ibex [6], and the reasons 

for choosing this processor are mentioned. In order to better understand Ibex and to 

understand its working mechanism, the tests and applications we have done together 

with the communication protocol we use are also included in this section. All 

processes are explained in order and the results are also shown. 

 

 Installing Vivado 

The software package, Xilinx Vivado Suite, is the platform where we performed all 

our hardware-related operations throughout the project [42]. From the ‘Xilinx Unified 

Installer’ located in the official Xilinx website shown in Figure 6.1, we downloaded 

the program by logging in to our Xilinx accounts. While downloading, it is important 

to download one with .tar.gz extension file. After completing the installation process, 

we started to create an FPGA project which we chose NEXYS 4 DDR as in the Figure 

8.2 [43]. We added sources, inputs and outputs of the project and move to the processes 

about our RISC-V [1] processor code called ‘Ibex’. 

 

 

Figure 6.1: Xilinx website  
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Figure 6.2: Vivado interface 

 Setting Up RISCV GCC Toolchain 

A complier and linker, together a toolchain, is needed for the project. The suitable 

toolchain for "RV32IMC" is available on github. The github project called ‘RISC-V 

GNU Compiler Toolchain’ [44] which includes GCC (GNU Complier Collection) is 

compiled for this part of the project [15]. It has also a C library for RISC-V and we 

were able to change the architecture regarding our project [1]. For example, the bit 

number was not compatible with our project, we could easily change an argument for 

a different bit number. We first cloned the github project and installed the required 

packages. It is a cross compiler that can convert instructions from the processor it is 

running on to machine code or low-level code for another processor. For projects with 

64-bit RISC-V core, the 32-bit RISC-V that we downloaded was not enough, and we 

repeated this process for 64-bit. A .vmem file from a C file is generated and while 

blinking LED’s on FPGA we will use this file to write a simple C code. 
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Figure 6.3: Github code for RISC-V toolchain 

 Installing, Synthesizing and Implementing Ibex Core 

The first thing that we did was to synthesize and implement the Ibex core on Vivado 

and try to understand the several configuration parameters to meet the needs of various 

application scenarios that Ibex offers [6]. We took the Ibex repository from GitHub 

and we chose the example in the directory in which the top module is top_artya7.sv 

module. Then we added all the other modules with respect to the source hierarchy as 

seen in Fgure 6.5. There is an issue in Ibex that it requires a physical ram to read 

instructions and perform read/write operations with data. With some changes in Ibex 

core modules for initializing the ram. Then we generated a memory file with a RISC-

V GNU compiler to run it in the project that we created with Ibex Core [1]. We 

generated the memory file as an elf file in the Linux system and then converted it into 

a .mem file to be able to use it in the project in Vivado. 

 

To clearly see that our core is successfully realized we compiled a C code that counts 

up to fifteen. This code is written to be run on the card, and if examined carefully, 

“usleep (1000 * z000); // 1000 ms” line can be seen. This line of code provides a 1 

second delay so that the change in LEDs can be observed on the card. If RTL is to be 

simulated, this delay time needs to be reduced because a one-second delay for the 

simulator means simulating for very long periods of time. For example, if the line in 

the code that we mentioned before is changed, the changes in the LEDs can be easily 
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observed in the simulation. The C code that we compiled is shown in Figure 6.6 and 

Figure 6.7.  

 

 

Figure 6.4: Github code of Ibex core 

 

 

Figure 6.5: Design sources of the Ibex core  

 

After the led.mem file is included to the project the simulation is performed and as 

seen in the Figure 6.8, the Ibex core [6] could read and write the instructions properly.
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Figure 6.6: The C code named led.c 

 

 

Figure 6.7: Continuation of the C code named led.c 
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Figure 6.8: Simulation screenshot with led.mem file 
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Seeing that the Ibex Core [6] is working properly from the simulation, we decided to 

move to add a related peripheral in order to provide a communication. We fetched the 

Wishbone compatible source codes to the top module. After adding the Wishbone 

protocol, we decided to move to the implementation step that would be performed in 

a FPGA board. We did not need to change anything in the top module but simply add 

an .xdc file compatible with FPGA [15]. Then, we assigned inputs and outputs 

according to the project inputs and outputs. We generated bitstream and displayed it 

on the FPGA. The results were correct on the FPGA as well as in the simulation. A 

section from the video where FPGA lights up the LEDs are in the figure below. 

 

 

Figure 6.9: FPGA results 

 

Finally, in order not to repeat the problems we will experience while performing this 

implementation, we will prepare a documentation explaining all the steps that lead us 

to a running RISC-V [1] processor on Xilinx Vivado [42]. 

 Connecting GPIO 

A simple LED code was compiled and added to the project in order to ensure that the 

Ibex processor and the innovations made in the project work correctly at every step 

[6]. Necessary tests were done by observing the LEDs on the FPGA board. While 
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doing this test, the General-Purpose Input/Output (GPIO) [73] needed to control the 

LEDs. A GPIO port handles both incoming and outgoing digital signals. GPIO added 

to the first version of the project without the Wishbone interface connections yet, and 

it worked successfully. In the following steps, a GPIO connection was also needed for 

the Ibex with the Wishbone interface connected. 

 Connecting UART 

UART, or Universal Asynchronous Receiver-Transmitter [72], is one of the most used 

device-to-device communication protocols. When properly configured, UART can 

communicate with a wide range of serial protocols. Based on the idea that boot loading 

can be done by accessing the terminal using the UART connection, it was decided to 

make a UART connection to the project. All Wishbone signal connections are made 

with the wbuart wrapper module. 

 

  

Figure 6.10: UART connections 

 

Afterwards, necessary changes were made on the Ibex_soc module. UART base 

address and size address information were added. While there were 4 masters and 2 

slaves connected to Ibex [6] before, there were 4 masters and 3 slaves. 
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Figure 6.11: UART definitions on the Ibex_soc module 

 

 

The resulting RTL schematic was as in Figure 6.12. 

 

 

 
Figure 6.12: The resulting RTL schematic 

 

 



 

50 

 APPLICATION OF IMAGE PROCESSING ALGORITHMS 

In this part of the project, we will talk about how we implement the filtering 

applications that we mentioned in the image processing part. For edge detection [38], 

we concluded that we should put the data-image we have in the convolution process 

with the Laplacian filter. We discussed how the Laplacian filter [15] we have works 

and what kind of image we expect to get as a result. The convolution operations that 

this filter we have in order to perform edge detection consisted of multiplication 

operations, and we could add these operations to the ALU of our open-source 

processor with custom instructions. We aim to show that we have implemented a 

simple edge detection filter using this processor whose instruction set is extended 

according to our/the project’s needs. 

Secondly, we explain how we have obtained the image we need in order to apply image 

processing algorithms. The camera that we will obtain the image we aim to filter is the 

ov7670 [45] camera module. After acquiring this module, we aimed to project the 

image onto the screen with a Video Graphics Array (VGA) [5] connection. Simply in 

this process: the camera sends the data to the FPGA and the FPGA receives this data 

and sends it to the screen via VGA. The necessary filtering of the instruction set added 

in the processor takes place while the data is in the FPGA. As a result, we have seen 

that we can apply the edge detection filter to the image we have. 

 Laplacian Filter and Design of its Custom IP 

In this section, it will be explained how all the blocks that make up the Laplacian filter 

that we will use for edge detection are designed and described. The data to be 

convoluted with the Laplacian filter consists of the image we will get from the camera. 

This image will be retrieved from RAM every cycle, and every pixel from the camera 

module will be convoluted. Although there is a possibility of encountering a problem 

such as insufficient memory as the size of the image and the number of data increases, 

the storage capacity of the RAM will be sufficient for the image from the camera 

module while designing the filter at this stage. 



 

51 

The communication between the processor and the designed custom IP will be 

provided by the Wishbone interface used in the project. To talk about how an entire 

communication network works [46] [15]: 

• All of the procedure starts with the master (master_arbiter) demonstrating an 

address and the data on the bus for reading process. For IP to get enabled the 

processor must assert the allocated address to the Laplacian filter register which is 

mentioned as the master. 

• To signify a read cycle, Custom IP cancels [WE_O] and asserts [CYC_O] and 

[STB_O] which begins the cycle. 

• RAM asserts [ACK_I] after decoding inputs. 

• Custom IP asserts [ACK_I] and delivers valid data on [DAT_I] regarding [STB_O] 

for specifying valid data. 

• To mark the end of the data period, Custom IP cancels [STB_O]. 

The rest of the process is about the convolution. The Kernel constant is multiplied with 

the data recived. The resultant data is kept in add_mul_register throughput the whole 

multiplication process. The calculations rest for 9 cycles since the product of all 

elements of the image and kernel occurs nine times. Finally, the final outcome is 

written back to the Random-Access Memory after the 9th cycle. The input image 

pixels which are stored in RAM is convoluted with the Kernel and the result is accrued 

with the result that is calculated and was stored in con_result register before [15]. 

As mentioned before, for communication cycle to begin the IP must be excited. This 

whole process is controlled by the Wishbone [7]. Wishbone interconnect is also used 

when the ultimate result stored in add_mul_register is sent back to the allocated 

address in RAM [7]. All of the procedures above are based on addresses which are 

created by the address generator. The block diagram of the designed Custom IP is in 

the Figure 7.1. 
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Figure 7.1: Laplacian filter [15] 

 

 Custom Instruction Added Module 

As mentioned before, the open-source processor selection is very important for this 

project. We can customize the ALU of the processor in a way by preparing the 

instruction set that will perform all the convolution operations of the designed 

Laplacian filter faster and more effectively. RISC-V [1] gives us the freedom to 

customize and expand the instruction set by adding the command we want. Adding 

new commands is done through the RISC-V GNU Toolchain [44]. The two basic files 

that need to be modified when adding new commands to RISC-V are "riscv-opc.c" and 

"riscv-opc.h". Commands should be added with the "opcodes" [47] structure in these 

two files. Opcodes are microprocessor operation codes that carry out operations such 

as addition, multiplication, and division. A command must be written in a specific 

structure. The rule for the command we chose is as follows [48]: name, isa, operands, 

match, mask, match\_func.  

 

Respectively, the name of the instruction to be added, the instruction set model it is 

from, the registers to be used, and the structure of the instruction when these elements 

are added. Only two commands are used in our project and they are Custom 0 and 

Custom 1 command. 
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The new commands created are directly related to the ALU and the instruction 

decoder. The instruction decoder reads the next instruction from memory and transmits 

the individual components to the appropriate destinations [49]. The ALU takes two 

operands and executes the corresponding operation to them after the instruction 

decoder decodes the instruction that will be processed in the beginning. Because of 

this relationship, both the ALU and the instruction decoder must be arranged as they 

appear in Figure 7.2 and Figure 7.3 respectively. 

 

 

Figure 7.2: Operands defined in ALU 

 

 

Figure 7.3: Arranges in instruction decoder 

 

The ALU only works with 32-bit operands. With this in mind, it is necessary to 

adjust the changes we will make to the ALU and the instruction decoder. The 

image we aim to get from the camera is in RGB format and 16 bits. It will be 
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necessary to convert this image to grayscale by collecting all R, G, B channels. 

When we do this, we expect to have a 7-bit grayscale image. In order to be able to 

process every 9 pixels we have in two operands; it is necessary to define the layouts 

appropriately. 

 

The custom0 should be called to define the designed Kernel, then the custom1 

function should be called to perform the necessary convolution operations as in 

Figure 7.4 and Figure 7.5 respectively. As seen in Figure 7.5, each 7-bit element 

in the image matrix is multiplied by the kernel and the result is added. The 

Laplacian filter model for which the result is calculated has been explained in detail 

in the previous section.  

 

 

Figure 7.4: Custom 0 module 
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Figure 7.5: Custom 1 module 

 

 Connecting Camera and VGA 

After installing Ibex core and making sure it works correctly, there were two main 

elements needed to be able to observe the driver behavior, which is the main purpose 

of the project. The first of these was a camera to take images from the driver inside the 

vehicle. The second component is Video Graphics Array, or VGA [5], which will 

reflect the image taken with the camera to the image screen. 

 

The OV7670 Camera Module [45] is a first in first out (FIFO) camera module that 

comes in a variety of pin configurations from various manufacturers. TheOV7670 can 

output full frame, windowed 8-bit images in a variety of formats. This camera module 

features an image array that can operate at 30 frames per second and gives the user 

complete control over image quality. Serial Camera Manage Bus (SCCB), an I2C 

interface with a maximum clock frequency of 400KHz, is used to control the OV7670 

image sensor [45]. The SCCB interface allows you to program all of the necessary 

image processing operations. Furthermore, OmniVision detectors employ patented 

sensor technology to increase quality of the image by decreasing or eliminating typical 

lighting/electrical sources of image corruption, like fixed pattern noise (FPN), 

blurring, fading, and so on, in order to generate a clean, totally consistent color image 

[15]. 
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Figure 7.6: The OV7670 camera module [45] 

 

 

Figure 7.7: Key spesifications of OV7670 camera module [50] 
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The ov7670 module was determined as the camera to be used in this project. Various 

modules were added to the project, including the definitions of VGA and the camera 

to be used, and pixel definitions.  

VGA stands for Video Graphics Array [5] and was created in 1987 by IBM [51] as a 

common screen standard. VGA color display panels have a resolution of 640 × 480 

pixels, a frame rate of 60 Hz, and can display up to 16 colors at once. 256 colors are 

displayed when the resolution is reduced to 320 x 200 [5]. The camera is connected to 

the FPGA board and the data is transferred to the screen via VGA cable. VGA is 

important because it provides the transmission between the camera module in our hand 

and the image we project onto the screen. 

In order to make the necessary Wishbone connections, wb_ov7670_erfan and 

wb_vga_erfan modules [15] were correctly added to the project as master as seen in 

Figure 7.8 [7]. All of the design source files in hierarchy can be found in Appendix A.  

In order to test that the system we created can receive and process the correct image, 

a C code to filter the image with custom instructions was compiled and added to the 

project. A part of the mentioned filter code can be seen below. The full version of the 

code can be found in the Appendix B. 

 

Figure 7.8: VGA and camera connections in the hierarchy
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Figure 7.9: Filter code
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A 32-bit memory space in stack region with 0xC010 beginning address is assigned for 

managing the IPs of the entire system as seen in Figure 7.10. Each IP is given an 

arbitrator activator, which will be handled by a C programming application. 

 

Figure 7.10: The assigned address for controlling the IPs 

As a result of the test, it was seen that the image was taken and processed as desired 

with the all-hardware equipment is supplied as well. In this way, an environment was 

created in which the image of the driver would be taken and processed. 

 

Figure 7.11: Test result 
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 ACCESSING ONBOARD DDR RAM  

In this part of our thesis, the steps we follow to access the Double Data Rate Random-

Access Memory (DDR RAM) [53], which is hardware on the board we will use, are 

explained in order to eliminate the memory deficiency, which is the main problem we 

aim to solve in our project. Before the Wishbone communication protocol, we used at 

the beginning, our methods of accessing DDR RAM by making simple tests with 

Vivado's [42] own communication protocol and processor MicroBlaze [54], and then 

our process of repeating the same operations with the Wishbone protocol [7] were 

explained. The various methods we have tried to access DDR RAM and the 

shortcomings and advantages of these methods are explained. 

The driver's image must be taken and the acquired image must be processed in order 

to create the system that detects driver fatigue, which is the project's major goal. A 

massive dataset is created by taking continuous images from the driver. Additionally, 

image data consumes a significant amount of storage space. Moreover, storing the 

artificial neural network code that will be added in order to identify the image and 

make it meaningful in future researches, requires a considerable amount of memory. 

Since the operating idea of artificial neural networks is to update the weights at each 

step, these vast and continually rising amounts of weights consume a significant 

quantity of memory. Synchronous Dynamic Random-Access Memory (SDRAM) [55] 

is insufficient to hold all of this data, instructions, and core code. As a consequence, 

the requirement to access and store data on an additional memory resource has 

emerged. This memory will be provided via onboard DDR RAM. The main reason 

why DDR RAM is preferred to store this data, which is mentioned as being too big to 

store on SDRAM, is the availability of DDR on the FPGA [56] board that will be used 

to set up the system. This prevents the need for an additional component, which would 

raise the cost and complicate the system.  

 What is DDR RAM? 

Every processor in an electronic device needs memory to store data variables and 

addresses for subsequent processes. Data and addresses are kept in Random Access 

Memory (RAM) [41], and the address and data variables can be accessed from 

anywhere in the memory. As a result, the processor is able to access the data more 
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rapidly than the ROM [41]. RAM, the most well-known type of computer memory, is 

referred to as "random access memory" since any memory cell can be accessed directly 

if the row and column that intersect at that cell are known. Different varieties of RAM 

are available to meet the demands of technology advancements. The increased speed 

of processors necessitates exceptionally fast memory accesses. Double Data Rate 

Synchronous Dynamic Random-Access Memory, superior known as DDR SDRAM 

or DDR RAM for brief, is one of the forms of RAM developed to meet this purpose 

[53]. DDR RAM differs from ordinary RAM in that it can send data on both the rising 

and falling edges of each clock signal, whereas regular RAM can only send data on 

the rising edge of each clock signal. Thus, the quantity of data that can be delivered in 

the same length of time has been doubled, implying that it now works twice as quickly 

[53]. 

 

Figure 8.1: Comparison of DDR SDRAM and SDRAM [55] 

 

DDR SDRAM sends data at 266 MHz instead of 133 MHz, to illustrate the difference 

between the two data transmission rates. Moreover, DDR is able to work with 16, 32 

and 64 bits of data widths [53]. The SDRAM accesses may be readily controlled thanks 

to the DDR SDRAM memory controller, which takes the user's commands and 

executes them on the DDR.  The data flow between the integrated processor and the 

DDR SDRAM is synchronized using the controller [41]. The memory controller 

conducts the operations such as READ, WRITE, and REFRESH and sends the data to 

memory [41]. 
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Figure 8.2: DDR controller block diagram [41] 

DDR RAM is often preferred for processes such as image processing and signal 

processing, which generally need more capacity [57]. It is also an excellent choice 

when additional memory capacity is required for any hardware application due to its 

combination of low cost and speed. Several devices, including the most recent graphics 

processing cards, currently employ DDR RAM in various forms [57]. 

 Bootloader 

As a result of making the DDR [53] a module attached to the project, the onboard DDR 

can be physically accessible by providing the proper signal connections. As a 

consequence, the system is able to save data received by the microprocessor in DDR 

RAM. However, the instruction memory, or the core instructions that run the program, 

must be saved on external memory in the following phases. Since this is not a direct 

action, an alternative approach is necessary. The procedure that must be performed 

here is known as 'booting' or 'boot loading' [59]. When a new application needs to be 

imported into the rest of program memory, a bootloader is utilized as a distinct 

program in program memory. For load the application, the bootloader will use a serial 

port or some other methods. A bootloader will constantly run every time the computer 

is restarted whether a new software is to be loaded or if the application is to be run. A 

bootloader may include primitive operations that the program can use [59]. 
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 Accessing DDR RAM with MicroBlaze 

After it was determined that an extra memory would be needed and DDR [53] was 

chosen as the component that would meet this demand, what had to be done was to 

provide access to DDR over the installed core. Due to a lack of illuminating sources 

and an inability to understand the working principle of accessing DDR signals via the 

Wishbone interface [7], this process was first accomplished using another processor. 

MicroBlaze [54] was chosen for this study since it is a processor that is widely utilized 

in a variety of applications, has a wealth of tutorials, and is simple to use. One of the 

reasons why MicroBlaze is preferred is that it is a 32-bit processor similar to the Ibex 

[6] core used in the project. By accessing DDR RAM with MicroBlaze, it was aimed 

to recognize the working mechanism of the system, its implementation steps and to 

test its work on the FPGA board. 

 

8.3.1 MicroBlaze 

There are two main types of microprocessors which can be used in Xilinx FPGAs with 

the Xilinx Embedded Development Kit (EDK) software tools [54]. Soft-core 

embedded microprocessors and hard-core embedded microprocessors are available. 

MicroBlaze is included in this classification as one of the soft-core embedded 

microprocessors. The MicroBlaze is a virtual microprocessor constructed by merging 

code units known as cores within a Xilinx FPGA [54]. The benefit of this method is 

that you only have as much microprocessor as you require. Additionally, the project 

can be customized according to particular requirements. MicroBlaze is a 32-bit 

microprocessor built with the Harvard RISC [58] architecture. It is customized for use 

in Xilinx FPGAs. MicroBlaze microprocessor has a parallel pipeline structure with 

three stages consisting of Fetch, Decode and Execute [54]. To summarize briefly, each 

stage takes one clock cycle to complete. Thus, when the given instruction is completed, 

three clock cycles have passed. Each stage is activated during each clock cycle, so 

three instructions can be transmitted at the same time from each pipeline stage. It runs 

the 32-bit instruction and data bus at full speed. Hence, the program runs and provides 

simultaneous access to both on-chip memory and externally supplied memory. Its 

general structure consists of 32 general purpose registers, a shift unit and two levels of 
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interrupt. This simple structure can be easily shaped according to the aim to be 

achieved in the established project and can be made useful. Thanks to this flexibility 

of use, the needed component area cost can be reduced while obtaining the required 

performance [54]. 

8.3.2 Steps to access DDR with MicroBlaze 

MicroBlaze is used among the soft-core embedded microprocessor models available 

in the Design Tool of the already installed Xilinx Vivado [42]. In addition, the 

Software Development Kit (SDK) and Xilinx Vitis [60], which is used to perform the 

booting process, are among the tools used. One of the points to note here was that the 

SDK and Vivado should be the same version to avoid any errors that may arise. 

Following the steps shown in [61], the processes described below were carried out. 

First of all, a new project was opened on Vivado and a block design was created. 

MicroBlaze [54], AXI [62] GPIO [63], UartLite [64], AXI QUAD SPI [65], Memory 

Interface Generator (MIG) [66] components were added to the new block design. 

As the first step, MicroBlaze IP was added to the design and configured as in the Figure 

8.3. 

 

Figure 8.3: MicroBlaze IP configuration 
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In the next step, Clocking Wizard and the AXI QUAD SPI [65] blocks were added to 

the design and configured. Reset type was chosen as active low reset. 

 

 

Figure 8.4: Clocking wizard configuration 

 

Later, UartLite [64] and the Memory Interface Generator blocks were added to the 

design. Block automation was run for the MIG block. AXI GPIO [63] IP was added to 

the design and configured. After this process is done, connection automation was run 

for the AXI GPIO block. The final view of the completed block design was as in the 

Figure 8.5. 
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Figure 8.5: Completed block design 
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Figure 8.6: Address editor screen 

 

After the synthesis and implementation steps by adding the appropriate constraint file, 

the bitstream file was created. Hardware was exported to SDK. 

 

Thus, all connections were made and DDR RAM [53], an external memory, was added 

to the MicroBlaze [54] processor. As a result, physical access to DDR RAM, which is 

currently on the FPGA board, is provided. The next step was boot loading to access 

the external memory so that the data could be stored in DDR RAM. Firstly, a new 

Xilinx Vitis [60] project was created and configured the Board Support Package (BSP) 

settings to perform the bootloader. The offset value suitable for the FPGA board used 

is written to the blconfig.h file. Since the Nexys Video FPGA board [52] is used in this 

application, the appropriate offset value is 0x00C00000. Checked if the mapping of 

the bootloader is into MicroBlaze properly by looking at the linker script.  
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Figure 8.7: Linker script screen 

 

Since the LEDs on the FPGA will be used to test the created system, a simple counter 

code was used to observe the LED outputs. The BSP settings of the simple LED 

counter code which is created using the SDK were configured. Checked if the mapping 

of the application file is into MIG memory region by looking at the new linker script. 

 

 

Figure 8.8: New linker script screen 
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Finally, .elf file was generated and the FPGA board was programmed. The program, 

which aims to provide access to DDR RAM [53] with the MicroBlaze processor [54] 

using the bootloader, worked as expected. Although this study with MicroBlaze did 

not directly contribute to the main purpose of the project, it helped to understand the 

principle of storing data on DDR by accessing external memory and bootloader 

principle. 

 

 Accessing DDR RAM via Wishbone Interface 

The Wishbone [7] interface was established in the early stages of the project to 

interconnect components in order to provide simultaneous access to several 

components over the Ibex [6] core. It was necessary to connect the relevant Wishbone 

signals to DDR [53] signals to enable physical access to DDR SDRAM. However, 

because this is a procedure that cannot be completed directly, various ways have been 

tried for this purpose. Since DDR is often connected to the processor via the Memory 

Interface Generator (MIG) [66] interface, the MIG connection must be formed first 

using Wishbone [7]. Memory Interface is a free software tool used to generate memory 

controllers and interfaces for Xilinx FPGAs. Since MIG is utilized for Xilinx products, 

it can only be connected to other modules with Advanced Extensible Interface (AXI) 

[62].  As a result, it became required to create the proper environment for adding the 

MIG module by first constructing Wishbone-AXI connections, then adding the MIG 

and connecting the DDR RAM. While working with MicroBlaze, DDR was easily 

accessible due to the large number of explanatory resources available and 

MicroBlaze's availability among Xilinx products as a block that can be directly 

connected to the AXI, however this was difficult to do when working with Ibex due to 

lack of resources. Numerous alternative approaches were considered in order to 

complete this crucial stage, which will supply the extra memory required to perform 

the project's main goal. 

8.4.1 Vector extension approach 

Vector extension of RISC-V is clearly for machine learning and the instruction used 

in this extension can really make the run time of the code smaller. The main reason is 

to use this technique is for its fetch part. Imagine you want to add 2 vectors with 64 
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elements each 8 bit. In Ibex [6] you go one by one to multiply each bit but with vector 

extension you can fetch all the vectors once and do the computation. So, at the end 

there will not be any need to add MAC instruction like we added to Ibex since we 

added V extension to the core. 

 

To apply vector extension to Ibex we need a vector coprocessor. In the GitHub source 

that is Ibex with vector extension also includes a coprocessor called Vicuna [67]. The 

block diagram of this vector coprocessor in seen in Figure 8.9. 

 

 

Figure 8.9: Vector coprocessor block diagram [68] 

 

To test and see the output on the screen if the Vicuna implementation works, the UART 

[71] is used. The UART code and the test code is seen in Figures 8.10 and 8.11 

respectively. 
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Figure 8.10: The UART code 

 

 

 

Figure 8.11: The test code 

 

As seen in Figure 8.12, from the terminal the output “Hello World” was observed. 
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Figure 8.12: FPGA implementation output 

 

Finally, with the help of the source it is succeeded to boatload the BRAM of the vector 

extended Ibex but cannot reach DDR unfortunately. 

8.4.2 Wishbone to AXI bridge 

As a result of the research performed to find solutions to solve the problem of accessing 

DDR RAM [53], a solution proposal was found that will provide the connection 

between Wishbone [7] and the AXI [62] interface. It was explained in the previous 

sections that a direct connection cannot be established with the Wishbone interface to 

transfer the data held in the processor memory to DDR SDRAM, and this process 

requires a MIG [66] module. Since the AXI interface is also required to connect with 

the MIG, the first step would be to combine the Wishbone signals with the 

corresponding AXI signals. As the Wishbone interface built on Ibex contains large and 

complex modules, attempts to do this directly did not yield any results. As a 

consequence of the problem-solving research, it was discovered that a structure known 

as a 'bridge', which connects Wishbone to AXI and AXI to Wishbone, was appropriate 

for this operation. Because re-establishing this structure would take a significant 

amount of effort and knowledge, an open source bridge was employed instead. It is 

tried to establish this connection using the module named “wb2axi” from GitHub [69]. 

As mentioned in this resource, this bridge was using Wishbone in its pipelined mode 

and was fine with our project so far, as well [7].  
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The basic concept underlying the idea of accessing DDR using the bridge was to 

achieve the result by connecting the required modules respectively. The major purpose 

was expected to be accomplished by connecting Wishbone-AXI, AXI-MIG, and MIG-

DDR, sequentially. This concept can be better understood with the help of the block 

diagram in Figure 8.13. 

 

 

Figure 8.13: Planned block diagram 

 

Since the interface used in our project was Wishbone [7], it was not possible for us to 

add a custom IP by choosing from Vivado's IP Catalog and to see all the modules that 

are created until now as a block design. It is thought that making the correct signal 

connections one by one by directly adding the selected bridge modules to the project 

will increase the possibility of making mistakes. As a result, in order to test the 

accuracy of the connections and achieve a more meaningful design image, design was 

packaged piece by piece and combined it into a new project. For this purpose, the 

project used so far in Vivado was packaged with the 'Create and Package New IP' 

option under the 'Tools' tab and obtained as a single block as seen in Figure 8.14. 

Likewise, the Wishbone-AXI bridge code [69] from Github was installed in a newly 

opened project in Vivado and packaged into a block. Later, a new project was opened 

on Vivado and a new block design was created. These blocks must be selectable over 

the IP Catalog in order to add the packaged projects to this design. For this reason, 

each one was added as a separate IP Repository as seen in Figure 8.16, allowing it to 

be added to the project through the IP catalog. 
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Figure 8.14: Package IP of Ibex with Wishbone project 

 

 

Figure 8.15: Package IP of Wishbone-AXI bridge 

 

 

 

Figure 8.16: Adding repositories to the IP catalog 
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After the blocks obtained by packaging were added to the block design, the AXI 

Interconnect [62] block selected from the IP catalog was added. Before adding the 

MIG [66] block, it was decided to test whether the system works as desired with the 

LEDs on the FPGA by obtaining LED output over GPIO [72]. Additionally, in order 

to obtain LED data as output, the connections of the LED module defined as wbs[1] 

on the original project as slave were matched with the new output signals defined on 

the top module. These connections can be seen in Figure 8.17. The project was 

repackaged with the changed top module and the new package was added to the block 

design, thus the LED outputs were obtained directly. 

 

 

Figure 8.17: New LED output signals 

 

The AXI GPIO [63] block was also added to the design and the necessary connections 

were made one by one. The final block design was as in Figure 8.18. 
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Figure 8.18: Final block design 
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Afterwards, the wrapper file was automatically created by right-clicking on the block 

design and selecting 'Create HDL Wrapper' option. Lastly, the recompiled C code that 

is used to test the GPIOs in the first version of Ibex project with Wishbone and it is 

expected to obtain the same results in the AXI GPIO [63] output this time. The C code 

written for the LEDs is in Figure 8.19. 

 

 

Figure 8.19: The C code for the LEDs 
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After performing the synthesis and implementation steps on Vivado, a .bit file was 

created and the FPGA board was programmed. Unfortunately, the desired result was 

not observed on the FPGA board. In this application made to test the system, if the 

project created with the bridge could be observed to work correctly, the next step 

would be to provide access to DDR by adding MIG IP instead of AXI GPIO 

connection. The block diagram planned for this stage is as in Figure 8.20. 

Unfortunately, this target could not be achieved due to an incomprehensible error in 

the generated design. 
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Figure 8.20: Block design with MIG  
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 CONCLUSION  

The RISC-V [1] open-source core implementation and custom instruction are 

discussed in this paper. One of the most significant transforms for edge detection 

Laplacian Filter has been reviewed. To solve one of the biggest problems in the project, 

the memory problem, we aimed to access DDR RAM and worked on it. We tested the 

extended instructions and included to our project in order to increase performance.  

 

 Results 

In the final version of the project, necessary connections such as camera, VGA [51], 

GPIO, UART between Ibex [6], the processor we chose, and the communication 

protocol Wishbone [7] have been made and tested to work. Custom IP, designed for 

the filtering process where image processing algorithms are applied, was transferred 

to our system and it was seen that this filtering process was successful with the image 

taken from the camera.  During this test, the extended instruction set of the RISC-V 

processor and the operations performed by the Custom IP were expressed in the ALU 

of the processor, thus bringing speed and efficiency to the system. In order to solve the 

memory problem, which is the main problem of our project, various connections were 

made with the bridge [69] method in between AXI-Wishbone. We are currently 

working on proving that this connection is successfully established and that DDR can 

be accessed with this method, together with a simulation. 

 

 Progress of the Project 

We reached all the results we got throughout the project step by step. We aimed to use 

our time efficiently by proceeding in a systematic and programmed manner. At the 

beginning of the project, we examined the applications and implementations of driver 

fatigue detection systems with a detailed literature review. We aimed to design a 
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system in which we can use the artificial neural network code that can detect driver 

fatigue in the most effective way with the image processing system we have. The 

biggest problem we encountered in this process was the memory problem. The size of 

our dataset, which we will apply the image processing algorithms to, consists of the 

photos taken from the in-car camera, was not suitable for keeping in Block RAM. For 

this reason, we decided to use the DDR external memory, which is already on the 

board, Nexys 4 DDR FPGA [43], we chose. Since the communication protocol and 

open-source processor we use did not ensure that it would be suitable for us to access 

DDR, we sought different methods. In this process, as we explained in our thesis, we 

turned to methods such as accessing DDR without MIG and dealing with the Vector 

Extension project. Since we couldn't get the efficiency, we wanted from any of them, 

we made research about the bridge structure, which is a new method that we have not 

tried before. We predicted that this structure would give us the efficiency we wanted 

in terms of accessing MIG and therefore DDR, thanks to its ability to interconnect 

communication protocols. We focused on making all connections and addresses. We 

argue that this method is the solution to the memory problem that wastes us time, and 

we continue our attempts to make simulation studies on this structure. 

 

 

 Cost Analysis 

Within the scope of the whole project, the time we allocate for the progress of the 

project and the achievement of certain results consists of two semesters, the fall and 

spring semesters. The FPGA card we use throughout the process we are working on 

our project is Nexys 4 DDR [43]. Access to this card, which is the first product that 

we can show as an expense within the scope of our project, has been quite easy since 

we already had the card. Xilinx Vivado [42], the implementation and design 

environment we use, gives a free right to anyone who wants to use it, so there was no 

cost in this part. The camera ov7670 [50], which we acquired in order to create a 

simulation of the driver detection system, was purchased to facilitate our work. In 

addition, the screen on which the image will be projected and the VGA [51] cable, 

which plays a role in the image transmission between the FPGA-camera-screen, were 

accessed from the GSTL Lab [70] in Istanbul Technical University. 
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 Future Work and Recommendations 

The first future work that can be done is extending the instruction set of the processor 

used for the implementation of detection filter even more in order to increase filter’s 

performance. Secondly, for the accessing DDR RAM [53], ‘bridge’ structure can be 

further investigated and implemented. To connect two interfaces and use the benefits 

DDR RAM offers ‘bridge’ structure seems to be the best solution.   

 

The most useful recommendation we can give is to concentrate on addressing and 

fixing missing connections while working on the bridge structure. When the correct 

structure is established, a system whose accuracy can be tested with a simple 

simulation code will be obtained and access to DDR RAM, which is the problem of 

the project, will be provided. Finally, the system should be developed and made 

suitable for in-vehicle use. 
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APPENDIX A: Design Source Files in Hierarchy 
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Figure A.1: Design Source Files in Hierarchy 
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Figure B.1: Filter Code 
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