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INSTRUCTION EXTENSION OF RISC-V PROCESSOR FOR DRIVER
FATIGUE DETECTION SYSTEM AND IMPLEMENTATION

SUMMARY

Today, image processing applications are used in practice, playing a role in the
solution of many problems, constantly being developed and appearing in many areas
of life. These applications, which basically consist of algorithms that allow us to
extract meaningful expressions from the image we have, are reliable and have a
structure that allows to reach the goal quickly. Security and face recognition can be
given as examples of areas where image processing applications are used the most
today. While talking about safety, besides being protected from environmental factors
in human life, situations arising from human negligence and needing a warning system
should also be mentioned. At this point, driver drowsiness detection applications come
to the fore. Today, many fatal or damaging accidents are caused by drivers driving
when they are not able to adequately meet their sleep needs. Tiredness and fatigue are
many indicators of drivers who are exposed to constantly changing environmental
conditions during long journeys and suffer from insomnia; Many unfortunate accidents
can be prevented with detection and warning systems that can be designed taking these
indicators into account. The most current application for the design of this type of
detection mechanism is embedded systems due to its reliability and inherent speed.
Embedded systems are targeted personal designs that perform tasks directly assigned
to them. They were developed by combining a special software and hardware parts for
the application to be developed. Besides the hardware, the greatest importance of the
software component is that this system can work in accordance with other embedded
systems, and that it provides support for adapting and updating according to changing
conditions. An embedded system hardware can serve different purposes with different
algorithms by developing and modifying the accompanying software component. In
the implementation of the driver drowsiness detection system, which is the general
purpose of our project, it is aimed to transform an embedded system into a system for
the desired purpose with image processing algorithms. For this reason, an open-source
processor has been used in order to develop the desired programs and design Custom
Intellectual Property (IP)’s. In addition, it is aimed to design a system at the optimum
level in terms of cost, speed and usability. The most important element needed for
usability is memory and storage space. A certain amount of data can be kept in the
memory (RAM) that a processor can access while performing its functions. The data
on which we will use image processing algorithms in our project consists of pictures
of sleepy-drowsy drivers. Nexys 4 DDR FPGA, the card we use in our project, does
not have the memory necessary to store the data set we have and the program we will
develop. It is aimed to obtain this extra memory we need with the external memory
Double Data Rate (DDR) on the card we use. While solving the memory problem,
which is the main purpose of the project, several methods have been found to enable
the communication protocol and DDR to communicate seamlessly. Wishbone
communication protocol was used throughout the project with Ibex, the open-source
processor used, but it turned out that the Memory Interface Generator (MIG) needed
to access the mentioned extra memory, DDR, can only be connected to the processor
via Advanced Extensible Interface (AXI) connection. Accordingly, the method found
is a structure called “bridge”, which provides access to DDR by providing AXI-



Wishbone connection. In order to understand the communication protocol thoroughly,
various simulations and implementations were made by providing General Purpose
Input Output (GP10) and Universal Synchronous Asynchronous Receiver Transmitter
(UART) connections, and finally, image processing algorithms were implemented.
With the communication protocol used, camera connection and filter applications were
made with the captured image. Laplacian filter has been implemented with a processor
with an extended instruction set, and in case the required memory is accessed, a system
that works very fast and efficiently in driver drowsiness detection will be obtained.

The path followed in the design of this system, which detects driver fatigue-
drowsiness, is given in order:

1. Implementation of the open-source Ibex processor

2. Making the various connections by making the Wishbone protocol compatible with
the processor

3. Testing GPIO, UART and camera connections

4. Providing Wishbone-AXI-MIG-DDR connection with bridge method in order to
access DDR

5. Making image processing applications with the developed Laplacian filter

At the end of the project, Ibex was successfully implemented and competence was
gained in providing connections with the Wishbone protocol. At first, the Light
Emitting Diodes (LED) were operated under the control of the Wishbone protocol with
a simple LED activating code, and the UART connection was seen in the Register
Transfer Level (RTL) schematics. Camera-Video Graphics Array (VGA) connections
are also made with the Wishbone protocol. An implementation of the Laplacian filter
with extended instruction set is made. As a result of many methods tried to access the
extra memory DDR required by the data set, which is the main purpose of the project,
it was decided that “bridge” application was the most useful one and simulation studies
are continuing on it.



SURUCU YORGUNLUK TESPIT SiISTEMI VE UYGULAMASI iCIN RISC-
V ISLEMCIiSi KOMUT SETIiNiN GENISLETILMESI

OZET

Gliniimiizde goriintii isleme uygulamalar pratikte kullanilarak birgok sorunun
¢oziimiinde rol almakta, siirekli olarak gelistirilmekte ve hayatin bir¢ok alaninda
karsimiza ¢ikmaktadir. Temel olarak elimizde var olan goriintiiden anlamli ifadeler
¢ikarmamiza yarayan algoritmalardan olusan bu uygulamalar giivenilir ve amaca
hizlica varmayi1 saglar yapidadir. Goriintli isleme uygulamalarinin gliniimiizde en ¢ok
kullanildig1 alanlara gilivenlik ve yiiz tanima Ornek verilebilir. Giivenlikten
bahsederken insan hayatinda ¢evresel faktorlerden korunmanin yaninda, insanin kendi
ihmalkarligindan dogan ve bir uyar1 sistemine ihtiya¢ duyulan durumlardan da
bahsedilmelidir. Bu noktada siiriicli uyku-uyaniklik tespiti uygulamalar1 6ne c¢ikar.
Gilintimiizde birgok 6liimciil ya da biiyiik hasarlara yol agan kazalar, siiriiciilerin uyku
ihtiyaglarin1 yeterince karsilayamamis olmalar1 durumunda ara¢ silirmelerinden
kaynaklanir. Uzun yolculuklar sirasinda siirekli farklilik gosteren ¢evresel kosullara
maruz kalan ve uykusuzluk c¢eken siiriiciilerin yorgunluk, halsizlik durumlarinin
bir¢ok gostergesi olup; bu gostergeler dikkate alinarak tasarlanabilecek tespit ve uyari
sistemleriyle bir¢ok elim kaza dnlenebilir. Bu tip tespit mekanizmalarinin tasarimi i¢in
en giincel uygulama, giivenilirligi ve yapisal hiz1 nedeniyle gomiili sistemlerdir.
Gomiili sistemler, direkt olarak kendisine atanmis gorevleri yerine getiren hedefe
yonelik kisisel tasarimlardir. Gelistirilecek olan uygulama adina 6zel bir yazilim ve
donanim pargalarinin birlestirilmesiyle gelistirilmislerdir. Donanimin yaninda yazilim
bileseninin en biiyilkk Onemi bu sistemin diger gomiilii sistemlere elverisli
calisabilmesi, degisen kosullara gore adapte olup giincellenebilmesi adina bir destek
saglamasidir. Bir gomiilii sistem donanimi, beraberindeki yazilim bileseni gelistirilip
degistirilerek farkli algoritmalarla birlikte farkli amaglara hizmet edebilir. Projemizin
genel amaci olan siiriicii uyku-uyaniklik tespiti sisteminin gergeklemesinde de bir
goémiili sistemi goriintii isleme algoritmalartyla birlikte istenilen amaca yonelik bir
sisteme doniistiirmek hedeflenmistir. Bu sebeple, istenilen programlar: gelistirebilmek
ve Custom IP’ler tasarlayabilmek adina acik kaynakli bir islemci ile ¢aligilmustir.
Bununla birlikte maliyet, hiz ve kullanilabilirlik agisindan en optimum seviyede bir
sistem tasarlamak amaclanmistir. Kullanilabilirlik konusunda ihtiya¢ duyulan en
onemli unsur hafiza ve depolama alanidir. Bir islemcinin, iglevlerini yerine getirirken
erisebildigi hafizada (RAM) belirli bir miktarda veri tutulabilir. Projemizde goriintii
isleme algoritmalarim1  {izerinde kullanacak oldugumuz veri, uykulu-uyusuk
durumdaki siiriiclilerin resimlerinden olugmaktadir. Projemizde kullandigimiz kart
olan Nexys 4 DDR FPGA, sahip oldugumuz veri setinin ve gelistirecegimiz
uygulamanin saklanabilmesi adina gerekli olan hafizaya sahip degildir. Ihtiyac
duydugumuz bu ekstra hafizay1 yine kullandigimiz kartin {izerinde bulunan harici
hafiza DDR ile elde etmek hedeflenmistir. Projenin en temel amaci olan hafiza
sorununu ¢ozerken, kullanilan haberlesme protokolii ve DDR’1 sorunsuz iletisime
sokabilmek i¢in birka¢ yontem bulunmustur. Kullanilan acik kaynakli islemci olan
Ibex ile proje boyunca Wishbone haberlesme protokolii kullanilmis, ancak bahsedilen
ekstra hafiza olan DDR’a erismek igin ihtiya¢ duyulan MIG (Memory Interface
Generator)’1n islemciye yalnizca AXI baglantisi ile baglanabildigi ortaya ¢ikmustir.
Buna gore bulunan yontem koprii adi verilen ve AXI-Wishbone baglantisini
saglayarak DDR’a erisebilmeyi saglayan bir yapidir. Haberlesme protokoliiniin iyice



anlasilmasi i¢in GPIO ve UART baglantilar1 saglanarak ¢esitli simiilasyonlar ve
gerceklemeler yapilmis, en sonunda da goriintii isleme algoritmalar1 ger¢ceklenmistir.
Kullanilan haberlesme protokoliiyle birlikte kamera baglantisi ve alinan goriintiiyle
filtre uygulamalar1 yapilmistir. Komut seti genisletilmis bir islemci ile birlikte
Laplacian filtresi gerceklestirilmistir ve ihtiyag duyulan hafizaya erisilmesi
durumunda siiriicii uyku-uyaniklik tespiti konusunda oldukg¢a hizli ve verimli ¢alisan
bir sistem elde edilecektir.

Stiriicti uyku-uyusukluk tespiti yapan bu sistemin tasariminda izlenen yol sirasiyla
verilmistir:

1. Acik kaynakli Ibex islemcisinin ger¢eklemesi

2. Wishbone protokoliiniin islemciyle uyumlu hale getirilip ¢esitli baglantilarin
yapilmasi

3. GPIO, UART ve kamera baglantilarinin test edilmesi

4. DDR’a erisebilmek adma ‘bridge’ yontemiyle Wishbone-AXI-MIG-DDR
baglantisinin saglanmasi

5. Gelistirilen Laplacian filtresi ile goriintii isleme uygulamalarinin yapilmasi

Projenin sonunda Ibex basariyla gergeklenmis, Wishbone protokolii ile baglantilari
saglama konusunda yetkinlik kazanilmistir. En basta basit bir led ¢alistirma koduyla
Wishbone protokolii kontroliinde ledler ¢alistirilmis, UART baglantist RTL
sematiklerinde goriilmistiir. Kamera-VGA baglantilar1 da Wishbone protokoliiyle
birlikte gerceklestirilmistir. Laplacian filtresinin, genisletilmis komut setiyle birlikte
bir uygulamasi yapilmistir. Projenin temel amaci olan veri setinin ihtiya¢ duydugu
ekstra hafiza DDR’a erisme konusunda denenen bircok yontem sonucunda en
kullanigl olanin Bridge uygulamasi olduguna karar verilmistir ve iizerinde simiilasyon
calismalar1 yapilmaya devam edilmektedir.



1. INTRODUCTION

1.1 Motivation

Using hardware systems for image processing by artificial intelligent algorithms is an
important topic. However; the different way of representation of the numbers in
hardware systems can result in faulty than acceptable level when it is implemented
with RISC-V processor [1]. In this project, it is aimed to extend the instruction set of
RISC-V processor by changing the arithmetic logic unit of the processor with using

image processing and artificial intelligent algorithms [1].

1.2 Objectives

Main objective of the project is to implement the artificial intelligent algorithms for
image processing to the open-source RISC-V processor [1]. We aimed to save time
and cost and decrease the complexity in system-on-chip designs by using open-source
processor with applying specific extensions. Our first objective was to synthesize and
simulate a specific RISC-V core and to fully understand how it is written [1]. To be
able to extend its instructions we aimed to clearly see how it works and applies the
existing instructions. Our second objective was to implement a Driving Fatigue
Detection (DFD) system [3] which had written in C programming language [2] on the
RISC-V processor [1] using artificial intelligent algorithms. We tried to make this
system work properly on our processor without any number representation faults. To
determine which algorithm to use to make changes in arithmetic logic unit of our open-
source processor we found the most used function by analyzing the program. Then we
implemented the decided function to the arithmetic logic unit. To reach a bigger
memory capacity which makes the DFD system [3] work more properly, we used an

external memory called DDR RAM [4]. After editing the instruction set, adding them
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to the arithmetic logic unit and connecting a DDR RAM [4] to our system we
connected a Video Graphics Array (VGA) [5] module lastly.

1.3 Thesis Contribution

The construction phase of the project, which is the subject of this thesis, has been
advanced with the contributions of The Scientific and Technological Research Council
of Turkey (TUBITAK) and the Ministry of Science, Research & Technology of Iran
(MSRT). The project had the project number ‘119N461°.

1.4 Organization of This Study

Project’s stages are connected sequentially. That is why we took place in each stage
together. First, we implemented Ibex based core [6] on Vivado [42] and on board. In
the next stage, we prepared a documentation for to prevent mistakes in our future work.
Afterwards, connected Direct Memory Access (DMA) to Microblaze since we wanted
to access DDR RAM [4]. We added a Wishbone interface [7] to Ibex. Then, we started
to integrate VGA and camera components to Ibex via. Wishbone interface. The image
taken from camera sent to VGA screen. Then, we implemented the image processing
algorithms needed for driver fatigue detection system as software only on lbex

processor [6].
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2. LITERATURE REVIEW

There are other studies that detect driver inattention, such as this project we carried
out to reduce the number of accidents due to driver distraction. A wide variety of
methodologies are used [8]. Existence of many studies can be observed that train
artificial neural networks or use machine learning and image processing as we do. For
example, by image processing, smoking or eating behaviors can be detected. The first
of the two points where our project differs is the eyes where we focus from driver
behavior and the second is choosing RISC-V to do FPGA implementation [1]. Firstly,
distraction can be best determined from the eye movement data since other behaviors
are not necessarily mean driver distraction. Therefore, our methodology will be giving
the best output to determine critical situations. Secondly, in this project, we preferred
FPGA implementation of RISC-V processor over other Instruction Set Architecture
designs because of the advantages in complexity and cost [1]. RISC-V enables user to
change and update versions of Instruction Set Architecture, minimize logic gates and
energy consumption, customize their work by instruction extension as we plan to do
in this project [9] [10]. When we need to choose a based core in RISC-V, we choose
Ibex-based core [6]. It is fast, small, open-source processor and it supports I, E, M, C
and B extensions. Generally, our methodology will both protect the driver in the most

effective way and do this in the simplest and cheapest way.
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3. RISC-V

In this project, RISC-V has been used as the main processor [1]. The implementation
process has been done on an FPGA. RISC-V is an instruction set architecture [1]. It is

a well-organized Instruction Set Architecture divided into categories and extensions.

3.1 Instruction Set Architecture:

Instruction Set Architecture (ISA) [12] defines the software interface for hardware.
ISA is a specification used to understand how to program a hardware that has to do
implementation. A single ISA can have many implementations and is a specification
may be for general purpose microprocessors, Digital Signal Processors (DSP’s) and
specialized hardware operations. Because the software for an ISA can be reused, an
ISA creates its own software ecosystem. This is the reason why x86 is dominant on
servers and arm is more dominant in mobile. ISA defines everything visible to software
[11]. It includes the set of instructions and how they behave the data types registers
addressing modes and more such as how the memory model works protection levels

that accommodates system software.

Instruction Set Architecture

Microarchitecture

Registers & Counters

Level of Abstraction

F
Combmational
& Sequential Circuits

Figure 3.1: Level of abstraction in ISA [12]
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3.2 RISC-V History

In 2010 at Berkeley University Computer Architecture group, Kryste Asanovic started
the design as a 3-month summer project to use in their next set of projects. The ones
that the project team used were too complex and they needed a simpler one. Andrew
Waterman, Yunsup Lee, David Patterson and Kryste Asanovic himself were the
principal writers of the RISC-V [1]. In May 2014, the user specifications were released
after many iterations. That way, RISC-V became the fifth ISA designed in Berkeley.
As you can see from the graph, the usage of RISC-V is increasing every day [13].

RISC-V Foundation Membership Growth
September 2015 to February 2019

’jj.:lllliul BRR

Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1
2015 2015 2016 2016 2016 2016 2017 2017 2017 2017 2018 2018 2018 2018 2019

=a

H Platinum ® Gold m Silver m Auditor ® Individual

Figure 3.2: RISC-V membership growth [14]

3.3 Advantages of RISC-V

RISC-V is seen as a disruptive innovation among Instruction Set Architecture (ISA)’s
and is used by many individuals/companies [1]. There are many reasons why it is so
preferred. RISC-V was designed with a clean slate and it is an open source that can be
downloaded from git repositories easily and used to design hardware free of
Intellectual Property (IP) and licensing restrictions. Since companies can build their
own RISC-V easily, it created a new business model and its development became
really fast thanks to the open-source nature of this project. Needless to say, RISC-V
architecture is on par with modern Central Proccess Unit (CPU)s in terms of
performance, code density and power consumption. It is also royalty-free, has a
standard maintained by the non-profit RISC-V foundation and is suitable for all

computing systems [15].
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3.4 RISC-V Assembly

To understand RISC-V basic assembly code generation, the logic behind an Insrtuction
Set Architecture (ISA) should be covered [1]. ISA defines how to program a machine
with the instructions, stateful elements that define the context of a process that is the
value of the registers in the memory for a given point in the execution of a program.
This notion of the progress is important to the operating system. System programs
provide a layer of abstraction and modularity between application programs and ISA.
This helps code reuse and application portability. The stateful elements of the
computer that program sees are program counter, register file and memory. The
program counter is a pointer to an instruction address in RISC-V [17]. This could be
32 or 64 bits. The register file contains the registers defined be the architecture such
as the 32 general purpose RISC-V registers from x0 through x32 [17]. Some ISAs also
define condition codes separately from the registers to store information about recent
instruction results such as integer overflow, inequalities and zero valued results.
Memory is logically viewed as an array of bytes that contain both code and data. The
logical view is usually divided into several sections or segments. This is usually done
at least to separate the program code usually called text read-only data, stack data and
program heap data. The base RISC-V architecture uses a little-endian byte order which
means the little end of the word comes first in memory [1]. So, the least significant
byte is located at the first lowest memory address of the word containing it. A program
IS a sequence of machine instructions and data created by compiling high level source
and assembling assembly language source into object code that is linked to create the
program. The format of machine instructions is defined by the architecture which
provides a one-to-one mapping to readable assembly instructions. This includes the
opcodes and the operands of each instruction. So, a given line of assembly corresponds
to one machine instruction and vice versa. A program is created through a sequential
process that uses a compiler to convert source code into binary object code and then a
link editor or linker brings together multiple object code files to create the program.
At runtime, a loader which is usually part of the operating system brings the program
into memory so that it can begin execution on the processor. There are 32 general
purpose registers of the RISC-V architecture that can be seen in the Figure 3.3 with
their Application Binary Interface (ABI) names [17]. These are the registers that a

program uses explicitly for integer operations. There is another set of registers for
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floating point operations. The general-purpose registers are numbered prefixed with
an x from x0 to x31. Unlike other assembly languages, RISC-V tools do not use any

prefixes other than the x for the register names [16].

Register | ABI Name | Description Saver
x0 Zero Hard-wired zero

xi ra Return address Caller
x2 sp Stack pointer Callee
x3 Ep Global pointer

x4 tp Thread pointer

x5 t0 Temporary/alternate link register | Caller
x6-T ti1-2 Temporaries Caller
x8 s0/fp Saved register/frame pointer Callee
%9 si Saved register Callee
x10-11 a0-1 Funetion arguments,/return values | Caller
x12-17 | a2-7 Function arguments Caller
x18-27 s2-11 Saved registers Callee
x28-31 | t3-6 Temporaries Caller
f0-7 ft0-7 FP temporaries Caller
f8-9 fs0-1 FP saved registers Callee
f10-11 fald-1 FP arguments,/return values Caller
£12-17 | fa2-7 FP arguments Caller
£18-27 | fs2-11 FP saved registers Callee
£28-31 fte-11 FP temporaries Caller

Figure 3.3: Register names in RISC-V [17]

3.5 Custom Instruction Set Extensions of RISC-V Processor

In order to increase the performance, adding custom instructions was necessary. Since
RISC-V is an extendable instruction set architecture, we were able to add custom

instructions [1].

3.5.1 Multiplier and accumulator operator

Multiplier and accumulator (MAC) operator [19] is a special digital signal processor
hardware unit known as multiplier and accumulator. It simply calculates the product
of two number and adds them to an accumulator. This part of the project was done on
the MAC (Stunning Vivado Flash Scripts collector) unit used in the project. Since the
MAC unit will be used by many structures, its performance is of critical importance
for the whole system. It also has fine points in the design. At this point, studies were

carried out on the parallel striking model and the aim was to decrease the operation
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time of MAC by adding a hardware. As you can see from the figure, it has a serial
structure. The serial structure means that each input needs the previous output [18].

.‘,.-
= [

Multiplier

3 4

Adder

!

Accumulator

Figure 3.4: Serial structure of MAC operator [19]

3.5.2 Convolution and multiply-accumulate

Sometimes, results that we got from hardware and software can differ from each other.
We decided to pre-run the tests to avoid this causing a problem. According to the
simulation results, we observed that hardware calculations are taking much more time

than the software calculations [15].

Convolution is an iterative operation repeating the instructions, allows us to observe
the cycles and their timing [15]. An additional hardware would solve the problem by

lowering the execution time.

In the previous section, it can be seen that MAC unit has a serial structure. However,
by adding a hardware, we got a new parallel structure. It is shown in figure. Digital
Signal Processing (DSP) tools are used for the multipliers. In order to optimize

convolution operators, stated operations will be added as custom instructions [18].
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Figure 3.5: Parallel structure of MAC operator [19]

3.5.3 Customization of RISC-V

Customizations means adding a new custom instruction on top of the instruction set
which we aimed in the previous part. Every RISC-V needs to support the basic
instruction sets but it do not prevent us from adding our own custom instruction [1].
In this project, Arithmetic Logic Unit (ALU) instruction decoder unit needed to be
customized [15]. The scope of changes needed for customizing RISC-V and
instruction path in a processor should be known in order to add the custom IP. To
tame the combinations of functionality that can be applied, a nomenclature is defined

to designate them in the currently approved privilege ISA specification.
With the increase in the number of extensions, the standard now allows extensions to

be named with a single "Z" followed by an alphabetical name and an optional version

number.
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In order for the multiplication to be added to the processor, there must be an unused
instruction in the application. For this project, the extraction command, which was
determined not to be used by looking at the assembly code of the filter code, was
chosen. The subtraction command has been converted to the multiplication command,
by changing the arithmetic logic unit [15]. After this point, the processor will perform
multiplication instead of the instruction that comes as subtraction. The point that
should not be missed here is that if we multiply two thirty-two-bit numbers, the result
will be sixty-four bits, and this will cause problems since our processor is a thirty-two-
bit processor. To prevent this, the multiplied numbers were chosen to be sixteen bits.
This is not a problem, since numbers with a size of sixty-four bits will not be used in
practice [15]. In order to test the new state of the processor, simple multiplication
operations were performed first. As confirmed by the results, the subtraction command

has been changed to make the multiplication command.

For the future image processing work, we decided to customize kernel value as we did
with adding a custom instruction [15]. We repeat the same processes for each

convolution.
Shortly, in order to increase the performance, we extended the custom instructions by

characterizing the application, developing new custom instructions, characterizing

new application, optimizing the model in this order.
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4. IBEX CORE AND WISHBONE SYSTEM-ON-CHIP
INTERCONNECTION ARCHITECTURE

An lbex core is simply a 2-stage in-order 32-bit RISC-V processor code [1]. It is
designed to be small and efficient [6]. It has U-Mode, M-Mode, Physical Memory
Protection (PMP) and it has been written in system Verilog. It has been initiated by
ETH Zurich and developed by lowRISC which is a non-profit organization [20]. It has
mostly ‘I’ but optionally ‘E’ extension and control and status register access. In the

Figure 4.1, a basic block diagram of Ibex is shown.

]

In struction Mam

@ lowrisc I

Figure 4.1: The block diagram of the small parametrization with a 2-stage pipeline
[21]

4.1 Benefits of Ibex

It is an open source which enccourage new hires, peer-to-peer help and this leads a
quick progress towards innovative developments. LowRISC [20] the company has
many documentations stating the progress and final results. Also, they are really open
to communication and they share all of the tools, scripts, codes [15]. That is why, it is
quite easy to solve problems with Ibex core [6]. Ibex core is also easy to modify and
has understandable source codes. It supports various code structures and is very useful
for image processing applications which we worked on. So, even though RISC-V [1]
has many cores and System on Chips (SoCs) that can be implemented on FPGA, we

decided to work with Ibex throughout the project.
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4.2 Wishbone Protocol Explanation

Wishbone Protocol is an open standard protocol [7]. Most of the communication
protocols enables user to communicate with a certain chosen device not like Wishbone
for which no payment is required. It allows to have a topology; a bunch of devices talk
to each other. It is not logical to have a bunch of custom interfaces stringed together
to talk to different designs rather than having a guaranteed communication protocol
like Wishbone Protocol [15]. Using a common protocol, it is possible to take and put
a video decoder and it will be able to talk on the same bus. It gives the flexibility to

reuse the designs without a need of reinventing them.

Interfaces are important to capture these protocols rather the signals and bundle them
into an easily expendable structure. A basic Wishbone protocol consists a Wishbone
master and Wishbone slave [7]. They are connected as in the figure below. It has two
common signals that both units see the reset in the clock and these come from your
system controller. For example, to indicate that data has been captured, acknowledge

signal is sent.

SysCon
RST I |« ~ RST_I
CLK _1|= - CLK_I
ADR_0O() » ADR_I()
b DAT_I( ) DC DAT _I( ) ®
= DAT_O() DAT O() @
¥  WELO - WE_I £
é SEL_O() = SEL_1() =
Z  STB.O =~ STB I =
£ ACK Il ACK_O
CYC_ O = CYC_I
TAGN_OF+ User | TAGN_I
TAGN_I |« Defined — TAGN_O

Figure 4.2: Master and slave Wishbone's interfaces [22]

These pins actually all the same but have different directions. System Verilog allows
for the concept of an interface and the Wishbone protocol can be extended with new
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signals so interface grows and everybody can see it [7]. In order to propagate these
changes manually to each of the designs, we use interfaces. Interfaces are an abstract
data type that actually act like a module that sit in between user and user’s design.
There is a set of common signals and they usually exist withing the interface. In order
to give them directions and to actually associate them with a particular input or output,
we create what are called mod ports. Mod ports allow us to define the direction of data.
So, we say that there is an address object inside the Wishbone. Interfaces have a very
strong structure which strongly checks whether or not the assigning inputs to outputs
correctly that Verilog do not have. A lot of people misconnect the signals therefore a
protocol that guarantees us that we do not have problem with the misconnections in
this project was very advantageous. Wishbone also allow us to propagate common

signals outside of the port definitions or rather along with the mod port definition.

4.3 Wishbone Signals

Ibex core was implemented however in order to communicate with cameras, screens
or computer buses we needed a communication protocol [6]. Wishbone Protocol is an
open source and logic bus that provides communication between integrated circuits
via signals [7]. It transfers signal information (clock cycles, high/low levels) instead
of electrical knowledge. Wishbone interface is flexible and compatible with Ibex and
provides communication between all IP’s, masters and slaves. Portable IP cores were
used for SoC design to provide reliability. In order to communicate, all the components
share a bus called interconnect [16]. In the Figure 4.3, signals and signal directions of

the Wishbone and tag types interface can be observed.
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Tag Types

Master Slave

Description TAG TYPE Associated TAG TYPE Associated
with with

Addresstag | TGA_O() ADR_O TGA_I() ADR_I()
Data tag TGD_I() DAT_I) TGD_I() DAT_I()
input
Data tag TGD_O() DAT_O() TGD_0O() DAT_O)
output
Cycle tag TGC_0Of) Bus Cycle TGC_I() Bus Cycle

Figure 4.3: Tag types [23]

WISHBCHE WISHBONE WISHEONE WISHBONE WISHEQNE WISHEQHE
SLAVE SLAVE SLAVE SLAVE MRSTER MRSTER
IP CRE IP GORE IP @ORE IP GORE IP ©ORE IP ©ORE

L[ JTewe] [ ]

Figure 4.4: Wishbone shared bus [22]

Shared Bus technique is an advantageous technique since shared communication
systems are compact systems. It requires fewer logic gates and routing resources.
However, while being compact and less costly shared bus can be slower than other
configurations [15].

WISHBONE MASTER
WISHBONE MASTER
WISHBONE SLAVE

WISHBONE SLAVE
IP CORE C

WISHBONE SLAVE
IP CORE B

IP CORE A

WISHBONE MASTER

DIRECTION OF FLOW

Figure 4.5: Wishbone direction of data flow [22]
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As it can be seen in the 4.5, Wishbone interconnection has a parallelism property which

enables us to execute more than one function [7].

4.3.1 Single READ / WRITE cycles

In order to make data transfers on Wishbone interconnect, these cycles are used [7].
At one time, these Single Read/Write cycles perform one data transfer.

4.3.2 Block READ / WRITE cycles

Multiple data transfers are performed by the BLOCK transfer cycles. They're similar
to single READ and WRITE cycles, but with a few tweaks to accommodate multiple

transfers.

The interface basically conducts SINGLE READ/WRITE cycles throughout BLOCK
cycles, as explained above. The BLOCK cycles, on the other hand, have been
somewhat altered so that these distinct cycles (known as phases) are joined to produce
a single BLOCK cycle. When many MASTERSs are utilized on the connection, this
capability is quite handy. If the SLAVE is a shared (dual port) memory, for example,
an arbiter for that memory can determine when one MASTER is through with it so that
another can access it [24].

4.3.3 RMW cycle

For indivisible semaphore actions, the RMW (read-modify-write) cycle is employed.
A single read data transmission is made throughout the first half of the cycle. A write
data transmission is executed in the second half of the cycle [11]. During both half of
the cycle, the [CYC O] signal is asserted [16].
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I aster Signals

Tag Types (M)

After these steps, Wishbone added Ibex core were tested with a basic LED code. The

cu FLF LA L LA LR
DR 00 7 XA XN
DAT_I) 27 XX X NN
DAT 0\ 77777777

WE_O ZZZ7A / I 77
SEL 00 ZZZ_ A XTTO77
cxco |/ i /A
stBo __ / \J/ .
ACK_I / Y N\

T6A_00 ZZZH__ X XA NN
T6D_I) N NN A NN
T60_0()
T6C_0) 72 /] I 7z
Figure 4.6: Block read cycle [24]

IMaster Signals

Tag Types (M)

e LA L LR L LR
ADR_O0 7 XA Tl
AT )
DAT_0\) 7 X__ YA 7,
WE_O 77 Ji Iz
seL_00 72 XA X7

sBo [ \JJ /-
ACK | / \J M
cyco  f Ji )/

Tea 00 70 X XA XTI,
T60_10 7777777777
TeD_00 7 X WA N
T6C_0) 72 i I X7
Figure 4.7: Block write cycle [24]

expected result was observed on the LEDs on the FPGA board.

32



5. IMAGE PROCESSING

The alteration of photographs using digital computers is known as digital image
processing. In the previous few decades, its popularity has skyrocketed. Its uses vary
from medicine to entertainment, with geological processing and remote sensing

thrown in for good measure [25].

Digital image processing [25] is a broad field that includes both digital signal
processing and picture-specific approaches. A function f (X, y) of two continuous
variables x and y can be considered a picture. It must be sampled and turned into a
matrix of numbers in order to be processed digitally. Because a computer can only
represent numbers with finite precision, they must be quantized before being
represented digitally. The handling of those finite precision numbers is what digital

image processing is all about.

There are many types that an image can be processed with. Image restoration which is
basically reverting vitiated images is one of these types. Image enhancement is another
type in which heuristic techniques are used to obtain beneficial information from an
image. There is an image processing type called image compression which reduces the
cost for storage or transmission of an image. The most commonly used and the type
that our project is all about is image analysis. All of these classes of image processing
have basically similar techniques and differ according to their intended use.

5.1 Image Analysis

Image analysis is a broad word that refers to procedures and strategies for interpreting
and parametrizing data from an image or series of images. Obtaining error estimates
for the generated parameters and assessing picture dependability are also part of these
techniques [26].

Pixels (short for Picture Element) are used to divide an image; each pixel represents

the smallest single point on the screen. A pixel can only be one color at a time, and the
color of each individual pixel must be saved in binary when a picture is saved. The
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more bits required to store each pixel, the greater the number of colors possible. Each

pixel is represented by a set of bits.

In actuality, photographs are significantly more complex than what is seen, with color
depth and image resolution impacts. The color depth refers to the number of bits per
pixel. It has a significant impact on the image's color quality. Since the 0 symbolizes
black and the 1 represents white in photographs, only two colors can be utilized if each
pixel is encoded with one bit (21). Each pixel requires additional bits to represent more
than two colors in an image. The minimum needed color depth from the number of
colors in an image is determined as 2™, in which n represents the number of bits. For

instance, an image with 8 bits can demonstrate 2 colors.

An image is a collection of square pixels ordered in columns and rows in a matrix.
Each pixel in an 8-bit greyscale image has an assigned intensity that runs from 0 to
255. A grey scale image is similar to a black and white image, but the term emphasizes

that it will contain a variety of shades of grey [27].

254

255 165

Figure 5.1: Representation of pixels [27]

When the definition of a color depth is considered, the figure above which is a
grayscale image has 8-bit color depth and 2% = 256 greyscales. When a true color
image is considered which has 24-bit color depth, by the definition it has 2** (more

than sixteen million) colors.
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5.1.1 Colors

The goal of color spaces in image processing is to make it easier to specify colors in a
consistent manner. Different forms of color spaces are utilized in a variety of
professions, including hardware, animation, and other fields. The goal of the color
model is to make color requirements more standard. Different forms of color models
are utilized in a variety of industries, including hardware, animation, and other

applications.

There are different types of color spaces which are used in specify colors of images in
processing. Red, Green, Blue (RGB), Luminance, Chorama Blue & Chorama Red
(CMYK) and Hue, Saturation & Value (HSV) are some of those color spaces. The
most common used one is RGB color model in digital image processing [28]. RGB is
referred to red, green and blue colors. These three colors are main color components
of this model. The proportional ratio of these three colors produces all other colors as
seen in Figure 5.2. The main color space used in image processing part of this project
is RGB model.

YELLOW

RED GREEN

MAGENTA CYAN

BLUE

Figure 5.2: RGB color model [28]

There is another common color space called Luminance, Chrominancel &
Chrominance2 (YCbCr) [29] which is also named YUV in which slightly
different spaces are taken. The luma component of the color is represented by
Y. The color's brightness is measured in luma. This refers to the color's light

intensity. Cb and Cr are the blue-luminance and red-luminance components of
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the chroma component, respectively which means Cb is blue and Cr is red
related to the green component. Since the Y component is more sensitive to the

human eye, it must be more accurate, whereas Cb and Cr are less sensitive.

0.1 0.2 0.3 0.4 0.50.6 0.7 0.8 0.9

Figure 5.3: The CbCr plane at constant luma Y'=0.5 [29]

The YCbCr color scheme allows the computer to exploit these eye sensitivities to
eliminate any unneeded features during image compression. YCbCr is useful for
compressing images and video-type images, which need less data and demand less

storage space [30].

5.2 Image Filtering

Image filtering is changing the appearance of an image by altering the colors of the
pixels [31]. Digital images are enhanced and modified using filtering algorithms. They
are also used to blurring, sharpening, edge detection and noise reduction applications
on images. Image filtering techniques can be divided into two as in spatial and
frequency domain. Edge detection filters are used in the low frequencies whereas
smoothing filters are used in high frequencies. Spatial domain image filtering
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techniques can be linear or non-linear and filters belong to these classes have the
required characteristics.

The more commonly used method for filtering is spatial filtering [32]. Spatial filtering
directly applies on the pixels. A linear filter can be created using convolution, which
IS just the linear sum of data in a sliding window. In the Fourier domain, it's equal to
multiplying the spectrum by an image. Whereas convolution or Fourier multiplication
cannot be used to create a non-linear filter. To give an example; Laplacian, Gaussian
and Neighborhood Average filters are linear filters. As an example of non-linear filter

Median filters are the most used ones.

5.2.1 Linear filters

Linear filtering is the most basic and fastest type of filtering. It replaces each pixel
with a linear combination of its neighbors, and the linear combination is prescribed
using a convolution kernel [33].

A kernel is a tiny matrix which is used for blurring, edge detection, sharpening and
other tasks of image processing [34]. A convolution of this matrix and the digital image
Is used to achieve this. The convolution kernel in linear image processing is simply

represented as follows:

y(® = h@). x(t — r)dr (5.1)
where x(n) is the input signal and the h(n) is the impulse response.

5.2.1.1 Laplacian filter

A Laplacian filter [15] is used for edge detection in image filtering. The second
derivatives of a digital image are computed using a Laplacian filter, which measures
the rate at which the first derivatives change. This determines whether a change in
neighboring pixel values is caused by an edge or is part of a continuous progression.
Negative values in upper and lower triangles are centered within the matrix, are
common in Laplacian filter kernels. A high value is at the kernel's center, surrounded
by lesser and oppositely signed values. By introducing abrupt changes in the output

pixel values, the image's edges are highlighted [35]. The corners have eitheraOoral
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value. The edges of the output image have bright tones, while the rest of the image has
black tones. Gain is avoided since the sum of the kernel coefficients is hold at zero. In

the array below, a 3x3 kernel for a Laplacian filter is represented.

0 -1 0
e-|-1 4 -1
0 -1 0

For image processing part of our project, Laplacian filter is implemented by using
convolution operation. Each element of the image array is a pixel and each pixel is
placed in the middle of a new matrix. The absent values of the newly formed matrix
are taken as zeros. The formed matrix and the kernel are subjected to a convolution
operation. The result is the new value of that pixel. These operations are represented

in the Figure 5.4.
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Figure 5.4: Convolution of an 7x7 Image and a 3x3 Kernel [36]
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Figure 5.5: Convolution of an 4x4 Image and a 3x3 Kernel [37]

The image in Figure 5.5 is represented by the 4x4 matrix and the kernel is represented
by 3x3 matrix. The matrix that results represent the image size in 4x4. The convolution
process should be conducted as shown in the equation below.

Pip = (ms X ky) + (mg X k) + (m; X k3) + (mg X Kks) + (mye X ks) +
(my; X kg) + (my3 X k;) + (myy X Kg) + (my5 X Ko) (5.2)

When using the Laplacian filter to identify abrupt changes in pixel values, the amount
of the computed value in equation 5.2 increases, resulting in white pixels, as shown in

Figure 5.6.

Figure 5.6: Edge detection example [38]
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5.3 Image Filtering and Custom IP Design

Image processing and other calculational focused tasks used in electronics devices
need massive amounts of data processing and take a lot of power. As a result,

specialized IP design can be critical in data-intensive operations [39].

The convolution operation underlying the filters used in image processing consists of
matrix multiplications. The power and capacity required for the number and
functionality of these processes should be controllable by the user. The main purpose
of Custom IP design [40] is to customize the filter design we use in the image
processing part of our project and to manage it with commands. We aim to keep the
multiplication operations in the convolution operation as a custom instruction set
defined in the Arithmetic Logic Unit (ALU) of the open-core Ibex processor [6],
instead of spending unnecessary time and power in a certain calculation cycle. In this

way, we expect to perform the filtering we want by simply calling these commands.

The data we have within the scope of the Driving Drowsiness Detection (DFD) [3]
project consists of the positions and states of the mouth and eyes of the drivers in
certain waking states. With the edge detection filter, the mouth-eye images of the
drivers in the mentioned data will be detected with the Laplacian filter and kept in the
Block RAM [41], so that the processor will perform the necessary operations. With
the command set we have expanded, it is expected from Laplacian filter to perform the

operations, to make high-accuracy detections and to realize the purpose of the project.
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6. IMPLEMENTATION OF IBEX CORE AND TESTING HARDWARE

In this part of our thesis, first of all, the design environment we use and its installation
are mentioned in detail. Then, the processor in our system, Ibex [6], and the reasons
for choosing this processor are mentioned. In order to better understand Ibex and to
understand its working mechanism, the tests and applications we have done together
with the communication protocol we use are also included in this section. All

processes are explained in order and the results are also shown.

6.1 Installing Vivado

The software package, Xilinx Vivado Suite, is the platform where we performed all
our hardware-related operations throughout the project [42]. From the ‘Xilinx Unified
Installer’ located in the official Xilinx website shown in Figure 6.1, we downloaded
the program by logging in to our Xilinx accounts. While downloading, it is important
to download one with .tar.gz extension file. After completing the installation process,
we started to create an FPGA project which we chose NEXYS 4 DDR as in the Figure
8.2 [43]. We added sources, inputs and outputs of the project and move to the processes

about our RISC-V [1] processor code called lbex’.

AMDQ\
XILINX

Solutions Products Company

3 Xilinx Unified Installer 2022.1: Windows Self Extracting Web Installer
(EXE - 205.92 MB)

MD5 SUM Value : 76a6221ea8eed8c635¢654cc100a1cae

Download Verification @

Figure 6.1: Xilinx website
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VIVADO' £ XILINX

Quick Start

Tasks

Manage 1P >
Open Hardware Manager >
Xilinx Tcl Store 3

[ s IR -
Learning Center
Documentation and Tutarials > d
Quick Take Videos >

Iz propeat

Release Nates Guide > &

Figure 6.2: Vivado interface

6.2 Setting Up RISCV GCC Toolchain

A complier and linker, together a toolchain, is needed for the project. The suitable
toolchain for "RV32IMC" is available on github. The github project called ‘RISC-V
GNU Compiler Toolchain’ [44] which includes GCC (GNU Complier Collection) is
compiled for this part of the project [15]. It has also a C library for RISC-V and we
were able to change the architecture regarding our project [1]. For example, the bit
number was not compatible with our project, we could easily change an argument for
a different bit number. We first cloned the github project and installed the required
packages. It is a cross compiler that can convert instructions from the processor it is
running on to machine code or low-level code for another processor. For projects with
64-bit RISC-V core, the 32-bit RISC-V that we downloaded was not enough, and we
repeated this process for 64-bit. A .vmem file from a C file is generated and while

blinking LED’s on FPGA we will use this file to write a simple C code.

42



o Product ~ Team Enterprise Explore -~ Marketplace Pricing Signin | Signup

& riscv-collab / riscv-gnu-toolchain  Public L Notifications % Fork 687 T Star 17k

<> Code @ Issues 197 Il Pull requests 3 @ Actions ﬂﬂ Projects M wiki @ Security [~ Insights

¥ master ~ P 8 branches ) 34 tags Go to file m About

GNU toolchain for RISC-V, including GCC

& kito-cheng Merge pull request #1073 from palmer-dabbelt/qgemu-system ... + 1342cd7? 7 days ago @977 commits e
Readme
github Prevent musl riscv32 builds 3 months ago &8 View license
1.7k stars
contrib Vagrant plugin check so it will not fail in the middle of provisioning years ago w !
& 18 watching
libc @ 9826b03 Update glibc and newlib paths 3 months ago
R ‘ — - ¥ 687 forks
inux-headersfinclude Update linux header to 5.10.5 14 months ago
musl @ 85e0e35 Add musl libc submodule 3 months ago
Releases
newlib @ 415fdd4 Update glibc and newlib paths 3 months ago © 34 tags
gemu @ 553032d Bump gemu to 5.2.0

regression Delete accidental regression/output file 3 years ago Dackanac

Figure 6.3: Github code for RISC-V toolchain

6.3 Installing, Synthesizing and Implementing Ibex Core

The first thing that we did was to synthesize and implement the Ibex core on Vivado
and try to understand the several configuration parameters to meet the needs of various
application scenarios that Ibex offers [6]. We took the Ibex repository from GitHub
and we chose the example in the directory in which the top module is top_artya7.sv
module. Then we added all the other modules with respect to the source hierarchy as
seen in Fgure 6.5. There is an issue in Ibex that it requires a physical ram to read
instructions and perform read/write operations with data. With some changes in Ibex
core modules for initializing the ram. Then we generated a memory file with a RISC-
V GNU compiler to run it in the project that we created with lbex Core [1]. We
generated the memory file as an elf file in the Linux system and then converted it into
a.mem file to be able to use it in the project in Vivado.

To clearly see that our core is successfully realized we compiled a C code that counts
up to fifteen. This code is written to be run on the card, and if examined carefully,
“usleep (1000 * z000); / 1000 ms” line can be seen. This line of code provides a 1
second delay so that the change in LEDs can be observed on the card. If RTL is to be
simulated, this delay time needs to be reduced because a one-second delay for the
simulator means simulating for very long periods of time. For example, if the line in

the code that we mentioned before is changed, the changes in the LEDs can be easily
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observed in the simulation. The C code that we compiled is shown in Figure 6.6 and
Figure 6.7.

O Product -~ Team Enterprise Explore ~ Marketplace Pricing Searc Signin | Signup

B lowRISC /ibex Public 0 Notifcations % Fork 326 ¢ Star 728

<> Code () Issues 99 1 Pull requests 19 ® Actions [ Projects. 0] Security [+ Insights

¥ master ~ P 9branches T8 tags Gotofile m About

Ibex is a small 32 bit RISC-V CPU core,

ﬂ nedguthrie and rswarbrick Fix formatting if IcacheScramble Description X fe1s76a yesterday {2,301 commits previously known as zero-riscy.

2

github set verible action version to ‘main 8 months ago ¢ wwwlowrisc.org

ci [dv] Simplify instructions for how to use Spike with cosim 22 days ago sy 0 GO Gl

doc Fix formatting if IcacheScramble Description yesterday [ Readme

) . Apache-2.0 licens

dv Dump riscv-dv generation messages to a log file 2 days ago 5 Apache-20 license
Y 728 stars

examples Update ISA strings from Xbitmanip to Xzb* 9 days ago .
® 80 watching

formal Change use of blocking assignment to non-blocking inside always_ff 7 months ago % 326 forks

lint [lint] Lint fix for RndCntLfsrX parameters 4 months ago

rtl Update ibex_top.sv 17 days ago Releases

Figure 6.4: Github code of Ibex core

Sources
g = (=B

Design Sources (6)
Verilog Header (4
@ - top_artya7 (top_artya7.sv)

@ u_top : ibex_top (ibex_top.sv) (8)

> @ core_clock gate_i : prim_clock_gating (prim_clock_ga

> @ u_ibex_core : ibex_core (ibex_core.sv) (9)

@ gen_regfile_fpga.register_file_i : ibex_register_file_fpga (ibex_reg

+ @ u_ram:ram_2p (ra

v @ u_ram : prim_ram_2p (prim_ram_2

@ gen_generic.u_impl_generic : prim_generic_ram_2p (prim_generic

@ clkgen : clkgen_xil7series (clkgen_xil7

Memory File (1

| led.mem

Figure 6.5: Design sources of the Ibex core

After the led.mem file is included to the project the simulation is performed and as
seen in the Figure 6.8, the Ibex core [6] could read and write the instructions properly.
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C led.c X

Users > gulcebaysal > Downloads > led > C led.c
1 P/ Copyright lowRISC contributors.

2 // Licensed under the Apache License, Version 2.0, see LICENSE for details.
3 // SPDX-License-Identifier: Apache-2.0
4
5 #include <stdint.h>
6 #define CLK_FIXED_FREQ_HZ (50ULL * 1000 * 1000)
7
8 VESS
9 * Delay loop executing within 8 cycles on ibex
10 */
11 static void delay_loop_ibex(unsigned long loops) {
12 int out; /* only to notify compiler of modifications to |loops| */
13 asm volatile(
14 "1: nop \n" // 1 cycle
15 " nop \n" // 1 cycle
16 " nop \n" // 1 cycle
17 " nop \n" // 1 cycle
18 " addi %1, %1, -1 \n" // 1 cycle
19 " bnez %1, 1b \n" // 3 cycles
20 "=&r" (out)
21 ¢ "0" (loops)
22 );
23 }

Figure 6.6: The C code named led.c

25 static int usleep_ibex(unsigned long usec) {

26 unsigned long usec_cycles;

27 usec_cycles = CLK_FIXED_FREQ_HZ % usec / 1000 / 1000 / 8;
28

29 delay_loop_ibex(usec_cycles);

30 return 0;

31 }

32

33 static int usleep(unsigned long usec) {

34 return usleep_ibex(usec);

35 }

36

37 int main(int argc, char x*argv) {

38 // The lowest four bits of the highest byte written to the memory region named
39 // "stack" are connected to the LEDs of the board.

40 volatile uint8_t *var = (volatile uint8_t *) 0x0000c010;
41 volatile uint8_t xadd = (volatile uint8_t %) 0xB000c011;
42 int i;

43 i=20;

44 *xadd = 0x01;

45 xvar = 0@x0@a;

46

47 while (1) {

48

49 if(i<=15){

50 kvar = kvar + xadd;

51 i=1i+1;

52 usleep(10 * 1@); // 1000 ms

53 }else

54 i=209;

55

56 }

57 }

58

59 // usleep(1000 x 1000); // 1000 ms

60 // *var = ~(kvar);

Figure 6.7: Continuation of the C code named led.c
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Figure 6.8: Simulation screenshot with led.mem file
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Seeing that the Ibex Core [6] is working properly from the simulation, we decided to
move to add a related peripheral in order to provide a communication. We fetched the
Wishbone compatible source codes to the top module. After adding the Wishbone
protocol, we decided to move to the implementation step that would be performed in
a FPGA board. We did not need to change anything in the top module but simply add
an .xdc file compatible with FPGA [15]. Then, we assigned inputs and outputs
according to the project inputs and outputs. We generated bitstream and displayed it
on the FPGA. The results were correct on the FPGA as well as in the simulation. A

section from the video where FPGA lights up the LEDs are in the figure below.

Figure 6.9: FPGA results

Finally, in order not to repeat the problems we will experience while performing this
implementation, we will prepare a documentation explaining all the steps that lead us
to a running RISC-V [1] processor on Xilinx Vivado [42].

6.4 Connecting GPIO

A simple LED code was compiled and added to the project in order to ensure that the
Ibex processor and the innovations made in the project work correctly at every step
[6]. Necessary tests were done by observing the LEDs on the FPGA board. While
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doing this test, the General-Purpose Input/Output (GPIO) [73] needed to control the
LEDs. A GPIO port handles both incoming and outgoing digital signals. GP10 added
to the first version of the project without the Wishbone interface connections yet, and
it worked successfully. In the following steps, a GPIO connection was also needed for

the Ibex with the Wishbone interface connected.

6.5 Connecting UART

UART, or Universal Asynchronous Receiver-Transmitter [72], is one of the most used
device-to-device communication protocols. When properly configured, UART can

communicate with a wide range of serial protocols. Based on the idea that boot loading
can be done by accessing the terminal using the UART connection, it was decided to
make a UART connection to the project. All Wishbone signal connections are made

with the wbuart wrapper module.

wbuart #(
-INITIAL SETUP (INITIAL SETUP),
.LGFLEN (LGFLEN) ,
32 -HARDWARE FLOW_CONTROL_PRESENT (HARDWARE_FLOW_CONTROL PRESENT)
)wbuart (

.i_clk (wb.clk),
i rst (wb.rst),
7 .i_wb_cyc (wb.cyc),
.i_wb_we (wb.we),
.i_wb_addr (addrx),
40 .i_wb_data (wb.dat_i),
.i_wb_sel (wb.sel),
.i_wb_stb (wb.stb),
.o_wb_ack (wb.ack),
44 .o_wb_stall (wb.stall),
45 .o_wb_data (wb.dat_o),
.0_uart_tx (o_uart_tx),
.o_rts n (o_rts_n),
.o_uart_tx int (o_uart_tx_int),
.0o_uart_rx int (o_uart_rx int),
52 .o_uart_txfifo_int (o_uart_txfifo_int),
.o_uart_rxfifo_int (o_uart_rxfifo_int)
4 )i
assign wb.err = 1'b0;

endmodule

Figure 6.10: UART connections

Afterwards, necessary changes were made on the Ibex_soc module. UART base
address and size address information were added. While there were 4 masters and 2

slaves connected to Ibex [6] before, there were 4 masters and 3 slaves.
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A wb_interconnect_sharedbus
(4),
(3),

; .base_addr ('{ram base_addr, led base_addr,uart base_ addr}),

£ (. numm

. nums

F
O S R

o,

i .size ('{ram_size, led_size,uart_size }))
wb_intercon

(-*);

wb_spramx32 f(ram size) wb_spram(.wb(wbs[0]),.*);

111 . wb_led

wb_led
F12 (.wb(wbs[1]),
1 -*);

115 ¢

117 wb_ov7670_erfan wb_ov7670_erfan
118 : (.wb (wbm[0]),

19, *);

129 . wb_wbuart_wrap wb_wbuart_wrap
130 ! (.wb(wbs[2]),
1] -*)i

Figure 6.11: UART definitions on the Ibex_soc module

The resulting RTL schematic was as in Figure 6.12.

wb_wbuart_wrap

whbh.adi31:0]
whi.clk
whh.cyc

whbh.dat i[31:0]

whh.ack

whb\.dat_m[31:0]

wh'.dat_o[31:0]

whbi\.dat_s[31:0]

wh.em

whi.rst

whh, stall

whbi.sel[3:0]

wh'.sth

wh'.we

wh_wbuart_wrap

Figure 6.12:

The resulting RTL schematic
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7. APPLICATION OF IMAGE PROCESSING ALGORITHMS

In this part of the project, we will talk about how we implement the filtering
applications that we mentioned in the image processing part. For edge detection [38],
we concluded that we should put the data-image we have in the convolution process
with the Laplacian filter. We discussed how the Laplacian filter [15] we have works
and what kind of image we expect to get as a result. The convolution operations that
this filter we have in order to perform edge detection consisted of multiplication
operations, and we could add these operations to the ALU of our open-source
processor with custom instructions. We aim to show that we have implemented a
simple edge detection filter using this processor whose instruction set is extended

according to our/the project’s needs.

Secondly, we explain how we have obtained the image we need in order to apply image
processing algorithms. The camera that we will obtain the image we aim to filter is the
ov7670 [45] camera module. After acquiring this module, we aimed to project the
image onto the screen with a Video Graphics Array (VGA) [5] connection. Simply in
this process: the camera sends the data to the FPGA and the FPGA receives this data
and sends it to the screen via VGA. The necessary filtering of the instruction set added
in the processor takes place while the data is in the FPGA. As a result, we have seen

that we can apply the edge detection filter to the image we have.

7.1 Laplacian Filter and Design of its Custom IP

In this section, it will be explained how all the blocks that make up the Laplacian filter
that we will use for edge detection are designed and described. The data to be
convoluted with the Laplacian filter consists of the image we will get from the camera.
This image will be retrieved from RAM every cycle, and every pixel from the camera
module will be convoluted. Although there is a possibility of encountering a problem
such as insufficient memory as the size of the image and the number of data increases,
the storage capacity of the RAM will be sufficient for the image from the camera

module while designing the filter at this stage.
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The communication between the processor and the designed custom IP will be
provided by the Wishbone interface used in the project. To talk about how an entire

communication network works [46] [15]:

e All of the procedure starts with the master (master_arbiter) demonstrating an
address and the data on the bus for reading process. For IP to get enabled the
processor must assert the allocated address to the Laplacian filter register which is
mentioned as the master.

e To signify a read cycle, Custom IP cancels [WE_O] and asserts [CYC_O] and
[STB_O] which begins the cycle.

e RAM asserts [ACK _I] after decoding inputs.

e Custom IP asserts [ACK _I] and delivers valid data on [DAT _I] regarding [STB_O]
for specifying valid data.

e To mark the end of the data period, Custom IP cancels [STB_O].

The rest of the process is about the convolution. The Kernel constant is multiplied with
the data recived. The resultant data is kept in add_mul_register throughput the whole
multiplication process. The calculations rest for 9 cycles since the product of all
elements of the image and kernel occurs nine times. Finally, the final outcome is
written back to the Random-Access Memory after the 9th cycle. The input image
pixels which are stored in RAM is convoluted with the Kernel and the result is accrued

with the result that is calculated and was stored in con_result register before [15].

As mentioned before, for communication cycle to begin the IP must be excited. This
whole process is controlled by the Wishbone [7]. Wishbone interconnect is also used
when the ultimate result stored in add_mul_register is sent back to the allocated
address in RAM [7]. All of the procedures above are based on addresses which are
created by the address generator. The block diagram of the designed Custom IP is in
the Figure 7.1.
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wh.adr 32 Address kernell_add_counter 17

- Generator -

wh.adr = address_result

Figure 7.1: Laplacian filter [15]

7.2 Custom Instruction Added Module

As mentioned before, the open-source processor selection is very important for this
project. We can customize the ALU of the processor in a way by preparing the
instruction set that will perform all the convolution operations of the designed
Laplacian filter faster and more effectively. RISC-V [1] gives us the freedom to
customize and expand the instruction set by adding the command we want. Adding
new commands is done through the RISC-V GNU Toolchain [44]. The two basic files
that need to be modified when adding new commands to RISC-V are "riscv-opc.c™ and
"riscv-opc.h". Commands should be added with the "opcodes™ [47] structure in these
two files. Opcodes are microprocessor operation codes that carry out operations such
as addition, multiplication, and division. A command must be written in a specific
structure. The rule for the command we chose is as follows [48]: name, isa, operands,

match, mask, match\_func.

Respectively, the name of the instruction to be added, the instruction set model it is
from, the registers to be used, and the structure of the instruction when these elements
are added. Only two commands are used in our project and they are Custom 0 and

Custom 1 command.
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The new commands created are directly related to the ALU and the instruction
decoder. The instruction decoder reads the next instruction from memory and transmits
the individual components to the appropriate destinations [49]. The ALU takes two
operands and executes the corresponding operation to them after the instruction
decoder decodes the instruction that will be processed in the beginning. Because of
this relationship, both the ALU and the instruction decoder must be arranged as they

appear in Figure 7.2 and Figure 7.3 respectively.

module ibex alu (

1C input ibex pkg::alu op_e operator_i,

TE input logic [31:0] operand_a_i,

12 input logic [31:0] operand b i,

14 | input logic [32:0] multdiv_operand a i,

15 | input logic [32:0] multdiv_operand b i,

7 . input logic multdiv_en i,

19 | output logic [31:0] adder_result o,
output logic [33:0] adder result_ext o,

22 output logic [31:0] result o,

2 output logic comparison_result_o,

24 output logic is_equal_result_o

Figure 7.2: Operands defined in ALU

unique case ({instr[30:25], instr[14:12]})

{6'b00_0000, 3'b000}: alu operator o = ALU ADD; Add

{6'1l0_0000, 3'b000}: alu operator_ o = ALU_SUB;

{6'b00_0000, 3'b010}: alu operator_o = ALU_SLT; Set Lower Than
{6'b00_0000, 3'b011l}: alu operator o = ALU_ SLTU; Set Lower Tha si
{6'b0O0_0000, 3'b100}: alu operator_ o = ALU XOR;

{6'b0O_0000, 3'bll0}: alu operator_o = ALU OR; Oor

{6'00_0000, 3'blll}: alu operator o = ALU AND; And

{6'b00_0000, 3'b001l}: alu operator_o = ALU_SLL; Shift Left Logical
{6'b00_0000, 3'b10l}: alu operator_o = ALU_SRL; Shift Ri t Lot
{6'bl0_0000, 3'bl0l}: alu operator o = ALU SRA; Shift Right Arithmetic

Figure 7.3: Arranges in instruction decoder
The ALU only works with 32-bit operands. With this in mind, it is necessary to

adjust the changes we will make to the ALU and the instruction decoder. The

image we aim to get from the camera is in RGB format and 16 bits. It will be
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necessary to convert this image to grayscale by collecting all R, G, B channels.
When we do this, we expect to have a 7-bit grayscale image. In order to be able to
process every 9 pixels we have in two operands; it is necessary to define the layouts

appropriately.

The customO should be called to define the designed Kernel, then the customl
function should be called to perform the necessary convolution operations as in
Figure 7.4 and Figure 7.5 respectively. As seen in Figure 7.5, each 7-bit element
in the image matrix is multiplied by the kernel and the result is added. The
Laplacian filter model for which the result is calculated has been explained in detail

in the previous section.

ibex_custom_reg.sv

C:/custom_filter yavuz/custom_filter/project_20.srcs/sources_1/newlibex_custom_reg.sv

Q E B Q

2 ‘default nettype wire
4 | dimport ibex pkg::*;

module ibex custom reg (

7 input 1logic clk: i;
: input 1logic rst_ni,
9 input ibex pkg::alu op_e cust_operator_i,
1 input logic [31:0] cust_operand a_i e
11 input logic [31:0] cust_operand b i ,
cutput logic [0:8][31:0] cust_kernel vwval

15 |
17 + 1logic [3:0] kernel_id ;
19 ' assign

kernel_id = cust_operand a_i[3:0];

21 always @( posedge clk_i)

22 ¢ begin

23 if (cust_operator_i == ALU_CUSTO)

24 - cust_kernel val[kernel_ id] = cust_operand b i;
2 end

27 endmodule

Figure 7.4: Custom 0 module
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logic [31:0] custl result;

assign custl_result =
(operand a i[6:0] . load kernel[0] )
(operand_a_1i[13:7] % load _kernel[l] )
% load kernel[2] )
% load_kernel[3] )

(operand_a i[20:14]

+ o+ + o+

(operand _a i[27:21]
({operand b _i[2:0],operand a_i[31:28]} * load kernel[4] )+
(operand_b_i[S:B] % load kernel[5] )
(Dperand_b_i[lG:lD] " load kernel[€] )

% )

¥ )

(operand_b_i[23:17] load kernel[7]
(operand_b_i[30:24] load kernel[8]

Figure 7.5: Custom 1 module

7.3 Connecting Camera and VGA

After installing lbex core and making sure it works correctly, there were two main
elements needed to be able to observe the driver behavior, which is the main purpose
of the project. The first of these was a camera to take images from the driver inside the
vehicle. The second component is Video Graphics Array, or VGA [5], which will

reflect the image taken with the camera to the image screen.

The OV7670 Camera Module [45] is a first in first out (FIFO) camera module that
comes in a variety of pin configurations from various manufacturers. TheOV7670 can
output full frame, windowed 8-bit images in a variety of formats. This camera module
features an image array that can operate at 30 frames per second and gives the user
complete control over image quality. Serial Camera Manage Bus (SCCB), an 12C
interface with a maximum clock frequency of 400KHz, is used to control the OV7670
image sensor [45]. The SCCB interface allows you to program all of the necessary
image processing operations. Furthermore, OmniVision detectors employ patented
sensor technology to increase quality of the image by decreasing or eliminating typical
lighting/electrical sources of image corruption, like fixed pattern noise (FPN),
blurring, fading, and so on, in order to generate a clean, totally consistent color image
[15].
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Figure 7.6: The OV7670 camera module [45]

Active Array Size

640 x 480

Digital Core

1.8VDC +10%

Power Supply Analog

2.45V to 3.0V

[[e]

1.7Vio 3.0V

Power Active

60 mW typical
(15fps VGA YUV format)

Requirements Standby

<20 pA

Temperature Operation

-30°C to 70°C

Range | Stable Image

0°C to 50°C

Output Formats (8-bit)

YUVIYCbCr 4:2:2
+ RGB565/555/444
GRB 4:2:2

+ Raw RGB Data

Lens Size

1/6"

Chief Ray Angle

25°

Maximum Image
Transfer Rate

30 fps for VGA

Sensitivity

1.3 VI{Lux « sec)

S/N Ratio

46 dB

Dynamic Range

52 dB

Scan Mode

Progressive

Electronics Exposure

Up to 510:1 (for selected fps)

Pixel Size

36 umx 3.6 um

Dark Current

12 mV/s at 60°C

Well Capacity

1T7Ke

Image Area

2.36 mm x 1.76 mm

Package Dimensions

3785 pm x 4235 pm

Figure 7.7: Key spesifications of OV7670 camera module [50]
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The ov7670 module was determined as the camera to be used in this project. Various
modules were added to the project, including the definitions of VGA and the camera

to be used, and pixel definitions.

VGA stands for Video Graphics Array [5] and was created in 1987 by IBM [51] as a
common screen standard. VGA color display panels have a resolution of 640 x 480
pixels, a frame rate of 60 Hz, and can display up to 16 colors at once. 256 colors are
displayed when the resolution is reduced to 320 x 200 [5]. The camera is connected to
the FPGA board and the data is transferred to the screen via VGA cable. VGA is
important because it provides the transmission between the camera module in our hand

and the image we project onto the screen.

In order to make the necessary Wishbone connections, wb_ov7670 erfan and
wb_vga_erfan modules [15] were correctly added to the project as master as seen in
Figure 7.8 [7]. All of the design source files in hierarchy can be found in Appendix A.
In order to test that the system we created can receive and process the correct image,
a C code to filter the image with custom instructions was compiled and added to the
project. A part of the mentioned filter code can be seen below. The full version of the

code can be found in the Appendix B.

@® ibex_soc (ibex_soc.s
@® crg:crg (crg.sv
® wb_ibex_core : wb_ibex_core (wb_ibex_cores
@ wb_intercon : wb_interconnect_sharedbus (wb_interconnect_sharedbus.sv)
® wb_spram : wb_spramx32 (wb_spramx32.s\

@® wb_led : wb_led (wb_led.sy
® wb_ov7670_erfan : wb_ov7670_erfan (wb_ov7670 _erfan.sv) (2

@® wb_vga_erfan: wb_vga_erfan (wb_vga_erfan.sv

Figure 7.8: VGA and camera connections in the hierarchy

57



76 // Load Kernel Data - 1st
77 /xfor (j =0 ; j<3; j =j +1)

78 for (i=0; i<3; i =1+ 1)

79 customd( j*3+i , kernellil[j] );*/

80 customd( @ , -1);

81 customd( 1 , 0 );

82 customd( 2 , 1);

83 customd( 3 , -2 );

84 customd( 4 , 0 );

85 customd( 5 , <)

86 customd( 6 , -1);

87 customd( 7 , 0);

88 customd( 8 , 1);

89

90

91 pixel[@] = 0x00000001; // Activate camera module to initialize RAM with data
92 usleep(1000 x 15); // 15 ms

93 pixel[@] = 0x00000000;

94

95 pixel[@] = 0x00000100;

96

97 for (j =0 ; j<240; j = j + 1)

98 {

99 for (i =1; i<321; i=1i+ 1)

100 {

101 pixel_val = 0 ;

102 datal=(pixel[320%(j+1)+i+1]<<28) | (pixel[320%(j+1)+i]<<21) | (pixel[320%j+i+2]<<14) | (pixel[320%j+i+1]<<7)|(pixel[320%j+i]) ;
103 data2=(pixel[320%(j+2)+i+2])<<24) | (pixel[320%(j+2)+i+1]1<<17) | (pixel[320%(j+2)+i]<<10) | (pixel[320%(j+1)+i+2]<<3) | (pixel[320x(j+1)+i+1]>>4) ;
104

105 pixel_val = customl(datal,data2);

106

107 tester = pixel[i+j*320];

108 if (pixel_val>255) pixel_val = 255;

109 if (pixel_val<@) pixel_val = 0;

110 pixel[i+j#320] = ((pixel_val)<<16) | (tester&dxFFFF) ;
111

Figure 7.9: Filter code
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A 32-bit memory space in stack region with 0xC010 beginning address is assigned for

managing the IPs of the entire system as seen in Figure 7.10. Each IP is given an

arbitrator activator, which will be handled by a C programming application.

-

57
58
59
60
61
62
63
64
65
66

volatile uint32_t *pixel = (volatile uint32_t %) @xC@10;
int main() {

volatile uint32_t xvar = (volatile uint32_t %) 0x10000000;
volatile int32_t datal=0;

volatile int32_t data2=0;

volatile int32_t tester = 0Q;

volatile int32_t i=0,j=0,x=0,y=0,pixel_val=0;

Figure 7.10: The assigned address for controlling the IPs

As a result of the test, it was seen that the image was taken and processed as desired

with the all-hardware equipment is supplied as well. In this way, an environment was

created in which the image of the driver would be taken and processed.

Figure 7.11: Test result
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8. ACCESSING ONBOARD DDR RAM

In this part of our thesis, the steps we follow to access the Double Data Rate Random-
Access Memory (DDR RAM) [53], which is hardware on the board we will use, are
explained in order to eliminate the memory deficiency, which is the main problem we
aim to solve in our project. Before the Wishbone communication protocol, we used at
the beginning, our methods of accessing DDR RAM by making simple tests with
Vivado's [42] own communication protocol and processor MicroBlaze [54], and then
our process of repeating the same operations with the Wishbone protocol [7] were
explained. The various methods we have tried to access DDR RAM and the
shortcomings and advantages of these methods are explained.

The driver's image must be taken and the acquired image must be processed in order
to create the system that detects driver fatigue, which is the project's major goal. A
massive dataset is created by taking continuous images from the driver. Additionally,
image data consumes a significant amount of storage space. Moreover, storing the
artificial neural network code that will be added in order to identify the image and
make it meaningful in future researches, requires a considerable amount of memory.
Since the operating idea of artificial neural networks is to update the weights at each
step, these vast and continually rising amounts of weights consume a significant
quantity of memory. Synchronous Dynamic Random-Access Memory (SDRAM) [55]
is insufficient to hold all of this data, instructions, and core code. As a consequence,
the requirement to access and store data on an additional memory resource has
emerged. This memory will be provided via onboard DDR RAM. The main reason
why DDR RAM is preferred to store this data, which is mentioned as being too big to
store on SDRAM, is the availability of DDR on the FPGA [56] board that will be used
to set up the system. This prevents the need for an additional component, which would

raise the cost and complicate the system.

8.1 What is DDR RAM?

Every processor in an electronic device needs memory to store data variables and
addresses for subsequent processes. Data and addresses are kept in Random Access
Memory (RAM) [41], and the address and data variables can be accessed from

anywhere in the memory. As a result, the processor is able to access the data more
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rapidly than the ROM [41]. RAM, the most well-known type of computer memory, is
referred to as ""random access memory" since any memory cell can be accessed directly
if the row and column that intersect at that cell are known. Different varieties of RAM
are available to meet the demands of technology advancements. The increased speed
of processors necessitates exceptionally fast memory accesses. Double Data Rate
Synchronous Dynamic Random-Access Memory, superior known as DDR SDRAM
or DDR RAM for brief, is one of the forms of RAM developed to meet this purpose
[53]. DDR RAM differs from ordinary RAM in that it can send data on both the rising
and falling edges of each clock signal, whereas regular RAM can only send data on
the rising edge of each clock signal. Thus, the quantity of data that can be delivered in
the same length of time has been doubled, implying that it now works twice as quickly
[53].

ow g

Clock Cycle

oorsoran [ [ O O

Figure 8.1: Comparison of DDR SDRAM and SDRAM [55]

DDR SDRAM sends data at 266 MHz instead of 133 MHz, to illustrate the difference
between the two data transmission rates. Moreover, DDR is able to work with 16, 32
and 64 bits of data widths [53]. The SDRAM accesses may be readily controlled thanks
to the DDR SDRAM memory controller, which takes the user's commands and
executes them on the DDR. The data flow between the integrated processor and the
DDR SDRAM is synchronized using the controller [41]. The memory controller
conducts the operations such as READ, WRITE, and REFRESH and sends the data to
memory [41].
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Sys_addr | u_addr ddr_ad |
Sys_data_i » u_data_i » ddr_ba »
Sys_emd | u_cmd ddr_dq |
—_— —————
Sys resetn | u_reset n ddr_das |
—'—F— =
Sys_clk . u_clk
- user_int ———= ddr_ctrl |
Sys_clk_b - u_clk_fb - ddr dm ! DDR SDRAM
I fpga_clk ddr_rasb I
Sys_data_out | u_data_o ddr_casb
| T ] ddr_web
Sys_data_walid | u_data_wvalid ddr_csb
Sys ref ack [ u_ref ack ddr_cke
[ ddr clkb |
I ddr ck |
|
| FPGA |
- 4

Figure 8.2: DDR controller block diagram [41]

DDR RAM is often preferred for processes such as image processing and signal
processing, which generally need more capacity [57]. It is also an excellent choice
when additional memory capacity is required for any hardware application due to its
combination of low cost and speed. Several devices, including the most recent graphics

processing cards, currently employ DDR RAM in various forms [57].

8.2 Bootloader

As aresult of making the DDR [53] a module attached to the project, the onboard DDR
can be physically accessible by providing the proper signal connections. As a
consequence, the system is able to save data received by the microprocessor in DDR
RAM. However, the instruction memory, or the core instructions that run the program,
must be saved on external memory in the following phases. Since this is not a direct
action, an alternative approach is necessary. The procedure that must be performed
here is known as 'booting' or 'boot loading' [59]. When a new application needs to be
imported into the rest of program memory, a bootloader is utilized as a distinct
program in program memory. For load the application, the bootloader will use a serial
port or some other methods. A bootloader will constantly run every time the computer
is restarted whether a new software is to be loaded or if the application is to be run. A
bootloader may include primitive operations that the program can use [59].
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8.3 Accessing DDR RAM with MicroBlaze

After it was determined that an extra memory would be needed and DDR [53] was
chosen as the component that would meet this demand, what had to be done was to
provide access to DDR over the installed core. Due to a lack of illuminating sources
and an inability to understand the working principle of accessing DDR signals via the
Wishbone interface [7], this process was first accomplished using another processor.
MicroBlaze [54] was chosen for this study since it is a processor that is widely utilized
in a variety of applications, has a wealth of tutorials, and is simple to use. One of the
reasons why MicroBlaze is preferred is that it is a 32-bit processor similar to the Ibex
[6] core used in the project. By accessing DDR RAM with MicroBlaze, it was aimed
to recognize the working mechanism of the system, its implementation steps and to
test its work on the FPGA board.

8.3.1 MicroBlaze

There are two main types of microprocessors which can be used in Xilinx FPGAs with
the Xilinx Embedded Development Kit (EDK) software tools [54]. Soft-core
embedded microprocessors and hard-core embedded microprocessors are available.
MicroBlaze is included in this classification as one of the soft-core embedded
microprocessors. The MicroBlaze is a virtual microprocessor constructed by merging
code units known as cores within a Xilinx FPGA [54]. The benefit of this method is
that you only have as much microprocessor as you require. Additionally, the project
can be customized according to particular requirements. MicroBlaze is a 32-bit
microprocessor built with the Harvard RISC [58] architecture. It is customized for use
in Xilinx FPGAs. MicroBlaze microprocessor has a parallel pipeline structure with
three stages consisting of Fetch, Decode and Execute [54]. To summarize briefly, each
stage takes one clock cycle to complete. Thus, when the given instruction is completed,
three clock cycles have passed. Each stage is activated during each clock cycle, so
three instructions can be transmitted at the same time from each pipeline stage. It runs
the 32-bit instruction and data bus at full speed. Hence, the program runs and provides
simultaneous access to both on-chip memory and externally supplied memory. Its

general structure consists of 32 general purpose registers, a shift unit and two levels of
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interrupt. This simple structure can be easily shaped according to the aim to be
achieved in the established project and can be made useful. Thanks to this flexibility
of use, the needed component area cost can be reduced while obtaining the required

performance [54].

8.3.2 Steps to access DDR with MicroBlaze

MicroBlaze is used among the soft-core embedded microprocessor models available
in the Design Tool of the already installed Xilinx Vivado [42]. In addition, the
Software Development Kit (SDK) and Xilinx Vitis [60], which is used to perform the
booting process, are among the tools used. One of the points to note here was that the
SDK and Vivado should be the same version to avoid any errors that may arise.
Following the steps shown in [61], the processes described below were carried out.
First of all, a new project was opened on Vivado and a block design was created.
MicroBlaze [54], AXI [62] GPIO [63], UartLite [64], AXI QUAD SPI [65], Memory

Interface Generator (MIG) [66] components were added to the new block design.

As the first step, MicroBlaze IP was added to the design and configured as in the Figure
8.3.

¢ Run Block Automation X
Automatically make connections in your design by checking the boxes of the blocks to connect. Select a block on the left to display its
configuration options on the right. '
Qlz| e
= ¥
Description
+| All Automation (2 out of 1 selected) . . N .
- MicroBlaze connection automation generates local memory of selected size, and caches
¥ ¥ microblaze 0 can be configured. MicroBlaze Debug Madule, Peripheral AXI Interconnect, Interrupt
Controller, a clock source, Processor System Reset are added and connected as needed. A
preset MicroBlaze configuration can also be selected.
Information about the options can be found in the tooltips.
Options
Local Memory 32KB v
Local Memory ECC None v
Cache Configuration 16KB v
Debug Module Debug Only v
Peripheral AXI Port Enabled v
Interrupt Controller
Clock Connection New Clocking Wizard (100 MHz v
o

Figure 8.3: MicroBlaze IP configuration
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In the next step, Clocking Wizard and the AXI QUAD SPI [65] blocks were added to
the design and configured. Reset type was chosen as active low reset.

4 Re-customize IP x
Clocking Wizard (6.0) s
©® Documentation IP Location
1P Symbol Resource Component Name clk_wiz_1
) Show disabled ports
Board Clocking Options Qutput Clocks MMCM Settings Summary
-~
The phase is calculated relative to the active input clock.
Output Fi (MH: Phi d D le (%:
Output Clock | Port Name 0 tPut Freq (MHz) ase (degrees) uty Cycle (%)
Requested Actual Requested Actual Requested
| clk_out1 clk_out1 100,000 100.000 0.000 0.000 50.000
¥ clk_out2 clk_out2 100.000 100.000 0.000 0.000 50.000
4
I+ | clk_out3 clk_out3 100.000 100.000 0.000 0.000 50.000
H I +I cheoutd | clk_out 100000 0000 50000
clk_outs 100.000 0.000 50.000
clk_outb 100.000 0.000 50.000
| =D dkoutt clk_out? 100000 0000 50000
dk_out2 =
dk_outs = .
locked Clocking Feedback
o Output Clock  Sequence Number Source Signaling
= ckin
1
®) Automatic Control On-Chip
1
Automatic Control Off-Chip
1
User-Controlled On-Chip
1
User-Controlled Off-Chip
1 v
< >

Figure 8.4: Clocking wizard configuration

Later, UartLite [64] and the Memory Interface Generator blocks were added to the
design. Block automation was run for the MIG block. AX1 GPIO [63] IP was added to
the design and configured. After this process is done, connection automation was run
for the AXI GPIO block. The final view of the completed block design was as in the
Figure 8.5.
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Figure 8.5: Completed block design
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Diagram *  Address Editor X

Q = 2
Cell Slave Interface  Base Name  Offset Address  Range High Address
microblaze 0
Data (32 address bits : 4G
axi_gpio_0 S_AXI Reg 0=4000_0000 64K ~ 0x4000_FFFF
axi_guad_spi_0 AXI_LITE Reg 0x44n0_ 0000 64K v 0Ox44n0_FFFF
axi_uartlite_0 S_AXI Reg 0x4060_0000 64K ~  0x4060_FFFF
microblaze_0_local_memory/dimb_bram_if_cntlr - SLMB Mem 0x0000 0000 32K * 0x0000_7FFF
mig_Tseries_0 S_AXI memaddr 0x8000_0000 512M v  0xSFFF_FFFF
Instruction (32 address bits : 4G
microblaze_0_local_memory/ilmb_bram_if_cntlr ~ SLMB Mem 0x0000_0000 32K ~  0x0000_7FFF
mig_7series_( S_AXI memaddr 0=8000_0000 512M v 0xSFFF_FFFF

Figure 8.6: Address editor screen

After the synthesis and implementation steps by adding the appropriate constraint file,
the bitstream file was created. Hardware was exported to SDK.

Thus, all connections were made and DDR RAM [53], an external memory, was added
to the MicroBlaze [54] processor. As a result, physical access to DDR RAM, which is
currently on the FPGA board, is provided. The next step was boot loading to access
the external memory so that the data could be stored in DDR RAM. Firstly, a new
Xilinx Vitis [60] project was created and configured the Board Support Package (BSP)
settings to perform the bootloader. The offset value suitable for the FPGA board used
is written to the blconfig.h file. Since the Nexys Video FPGA board [52] is used in this
application, the appropriate offset value is 0x00C00000. Checked if the mapping of

the bootloader is into MicroBlaze properly by looking at the linker script.
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Linker Script: Iscript.ld

Section Name Memory Region

text microblaze_0_local_memory_ilmb_bram_if_cntlr_Mem_micro...
.init microblaze_0_local_memory_ilmb_bram_if_cntlr_Mem_micro...
fini microblaze_0_local_memory_ilmb_bram_if_cntlr_Mem_micro...
.ctors microblaze_0_local_memory_ilmb_bram_if_cntlr_Mem_micro...
.dtors microblaze_0_local_memory_ilmb_bram_if_cntlr_Mem_micro...
[rodata microblaze_0_local_memory_ilmb_bram_if_cntlr_Mem_micro...
sdata2 microblaze_0_local_memory_ilmb_bram_if_cntlr_Mem_micro...
.sbss2 microblaze_0_local_memory_ilmb_bram_if_cntlr_Mem_micro...
.data microblaze_0_local_memory_ilmb_bram_if_cntlr_Mem_micro...
.got microblaze_0_local_memory_ilmb_bram_if_cntlr_Mem_micro...
.got1 microblaze_0_local_memory_ilmb_bram_if_cntlr_Mem_micro...
.got2 microblaze_0_local_memory_ilmb_bram_if_cntlr_Mem_micro...
.eh_frame microblaze_0_local_memory_ilmb_bram_if_cntlr_Mem_micro...
Jer microblaze_0_local_memory_ilmb_bram_if_cntlr_Mem_micro...
.acc_except_table microblaze_0_local_memory_ilmb_bram_if_cntlr Mem_micro...
sdata microblaze_0_local_memory_ilmb_bram_if_cntlr_Mem_micro...
.sbss microblaze_0_local_memory_ilmb_bram_if_cntlr_Mem_micro...
tdata microblaze_0_local_memory_ilmb_bram_if_cntlr_Mem_micro...
thss microblaze_0_local_memory_ilmb_bram_if_cntlr_Mem_micro...
.bss microblaze_0_local_memory_ilmb_bram_if_cntlr_Mem_micro...
heap microblaze_0_local_memory_ilmb_bram_if_cntlr_Mem_micro...
stack microblaze_0_local_memory_ilmb_bram_if_cntlr_Mem_micro...

Figure 8.7: Linker script screen

Since the LEDs on the FPGA will be used to test the created system, a simple counter
code was used to observe the LED outputs. The BSP settings of the simple LED
counter code which is created using the SDK were configured. Checked if the mapping

of the application file is into MIG memory region by looking at the new linker script.

Section Name

Memory Region

text mig_7series_0_memaddr
init mig_7series_0_memaddr
fini mig_7series_0_memaddr
.ctors mig_7series_0_memaddr
.dtors mig_7series_0_memaddr
rodata mig_7series_0_memaddr
sdata2 mig_7series_0_memaddr
shss2 mig_7series_0_memaddr
data mig_7series_0_memaddr
.got mig_7series_0_memaddr
.gotl mig_7series_0_memaddr
.got2 mig_7series_0_memaddr
.eh_frame mig_7series_0_memaddr
Jer mig_7series_0_memaddr

.gcc_except_table

mig_7series_0_memaddr

sdata mig_7series_0_memaddr
.shss mig_7series_0_memaddr
tdata mig_7series_0_memaddr
thss mig_7series_0_memaddr
bss mig_7series_0_memaddr
.heap mig_7series_0_memaddr
stack mig_7series_0_memaddr

Figure 8.8: New linker script screen
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Finally, .elf file was generated and the FPGA board was programmed. The program,
which aims to provide access to DDR RAM [53] with the MicroBlaze processor [54]
using the bootloader, worked as expected. Although this study with MicroBlaze did
not directly contribute to the main purpose of the project, it helped to understand the
principle of storing data on DDR by accessing external memory and bootloader

principle.

8.4 Accessing DDR RAM via Wishbone Interface

The Wishbone [7] interface was established in the early stages of the project to
interconnect components in order to provide simultaneous access to several
components over the Ibex [6] core. It was necessary to connect the relevant Wishbone
signals to DDR [53] signals to enable physical access to DDR SDRAM. However,
because this is a procedure that cannot be completed directly, various ways have been
tried for this purpose. Since DDR is often connected to the processor via the Memory
Interface Generator (MIG) [66] interface, the MIG connection must be formed first
using Wishbone [7]. Memory Interface is a free software tool used to generate memory
controllers and interfaces for Xilinx FPGAs. Since MIG is utilized for Xilinx products,
it can only be connected to other modules with Advanced Extensible Interface (AXI)
[62]. As a result, it became required to create the proper environment for adding the
MIG module by first constructing Wishbone-AXI connections, then adding the MIG
and connecting the DDR RAM. While working with MicroBlaze, DDR was easily
accessible due to the large number of explanatory resources available and
MicroBlaze's availability among Xilinx products as a block that can be directly
connected to the AXI, however this was difficult to do when working with Ibex due to
lack of resources. Numerous alternative approaches were considered in order to
complete this crucial stage, which will supply the extra memory required to perform
the project's main goal.

8.4.1 Vector extension approach

Vector extension of RISC-V is clearly for machine learning and the instruction used
in this extension can really make the run time of the code smaller. The main reason is

to use this technique is for its fetch part. Imagine you want to add 2 vectors with 64
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elements each 8 bit. In Ibex [6] you go one by one to multiply each bit but with vector
extension you can fetch all the vectors once and do the computation. So, at the end
there will not be any need to add MAC instruction like we added to Ibex since we

added V extension to the core.

To apply vector extension to Ibex we need a vector coprocessor. In the GitHub source
that is lIbex with vector extension also includes a coprocessor called Vicuna [67]. The

block diagram of this vector coprocessor in seen in Figure 8.9.

1
i IF Stage ID + EX Stage
1
I 1 Prefeich W-inst
e | s 15 ' buffer Decoder ﬂc“__ St
E ! = Wait
'] ! =
E : = az sl
= > D$ |+ LSu —{ Reg File
gl 1 |8 Ibex ]
g | T RV32IMC
1
w : E Pending vector load / store
| |
1 - |
| Vicuna , _
1 | p—
| e | VReg Fllel | [ v-Decoder [ =|
| [E—=
1 .
1
; ==
: W VLSU VALU VMUL VSLDU VIDXU
1 T
! | — [ T

Figure 8.9: Vector coprocessor block diagram [68]
To test and see the output on the screen if the Vicuna implementation works, the UART

[71] is used. The UART code and the test code is seen in Figures 8.10 and 8.11

respectively.
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uart.c (~/Desktop/vicuna/sw/lib) - gedit

#include "uart.h

static volatile long *const vart_data = (volatile long *const) @xFF@GE008;
static volatile long *const uart_status = (volatile long *const) OxFFO80004;

void uart_putc(char c)

// wailt until transmitter ready:
while (((*uvart_status) & 1))

*uart_data = c;
1
char uart_getc({void)
int data;
/1 wait until a character was received:
while ((data = *uvart_data) < @)

return data;

}
void vart_write(int n, const char *buf)

for ( ; n>8; n--)
uart_putc(*(buf++));

vold uart_read(int n, char *buf)
b B
for { : n>8: n--)

- C~ Tabwidth:8 ~ Ln1,Col1 - INS

Figure 8.10: The UART code

test.vmem x test.c x vart.h x

int main(void) {
vart_puts("Hello world!\n");
b return 0;

C~ TabWwidth:8 ~ Ln 6, Col 2 v INS

To direct input to this VM, move the mouse pointer inside or press Ctrl+G. D9 ¥

Figure 8.11: The test code

As seen in Figure 8.12, from the terminal the output “Hello World” was observed.
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W COMT - Tera Term VT

File Edit Setup Control Window Help

Figure 8.12: FPGA implementation output

Finally, with the help of the source it is succeeded to boatload the BRAM of the vector

extended Ibex but cannot reach DDR unfortunately.

8.4.2 Wishbone to AXI bridge

As aresult of the research performed to find solutions to solve the problem of accessing
DDR RAM [53], a solution proposal was found that will provide the connection
between Wishbone [7] and the AXI [62] interface. It was explained in the previous
sections that a direct connection cannot be established with the Wishbone interface to
transfer the data held in the processor memory to DDR SDRAM, and this process
requires a MIG [66] module. Since the AXI interface is also required to connect with
the MIG, the first step would be to combine the Wishbone signals with the
corresponding AXI signals. As the Wishbone interface built on Ibex contains large and
complex modules, attempts to do this directly did not yield any results. As a
consequence of the problem-solving research, it was discovered that a structure known
as a 'bridge’, which connects Wishbone to AXI and AXI to Wishbone, was appropriate
for this operation. Because re-establishing this structure would take a significant
amount of effort and knowledge, an open source bridge was employed instead. It is
tried to establish this connection using the module named “wb2axi” from GitHub [69].
As mentioned in this resource, this bridge was using Wishbone in its pipelined mode

and was fine with our project so far, as well [7].
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The basic concept underlying the idea of accessing DDR using the bridge was to
achieve the result by connecting the required modules respectively. The major purpose
was expected to be accomplished by connecting Wishbone-AXI, AXI-MIG, and MIG-
DDR, sequentially. This concept can be better understood with the help of the block
diagram in Figure 8.13.

IBEX |. | Wishbone |, .| Wishbone to| , \ AXI . ,
CORE Interface | ¥| AX| Bridge ¥ ¥| Interconnect | ¥ Y

MG (—=

SDRAM

Figure 8.13: Planned block diagram

Since the interface used in our project was Wishbone [7], it was not possible for us to
add a custom IP by choosing from Vivado's IP Catalog and to see all the modules that
are created until now as a block design. It is thought that making the correct signal
connections one by one by directly adding the selected bridge modules to the project
will increase the possibility of making mistakes. As a result, in order to test the
accuracy of the connections and achieve a more meaningful design image, design was
packaged piece by piece and combined it into a new project. For this purpose, the
project used so far in Vivado was packaged with the 'Create and Package New IP'
option under the "Tools' tab and obtained as a single block as seen in Figure 8.14.
Likewise, the Wishbone-AXI bridge code [69] from Github was installed in a newly
opened project in Vivado and packaged into a block. Later, a new project was opened
on Vivado and a new block design was created. These blocks must be selectable over
the IP Catalog in order to add the packaged projects to this design. For this reason,
each one was added as a separate IP Repository as seen in Figure 8.16, allowing it to

be added to the project through the IP catalog.
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After the blocks obtained by packaging were added to the block design, the AXI
Interconnect [62] block selected from the IP catalog was added. Before adding the
MIG [66] block, it was decided to test whether the system works as desired with the
LEDs on the FPGA by obtaining LED output over GPIO [72]. Additionally, in order
to obtain LED data as output, the connections of the LED module defined as wbs[1]
on the original project as slave were matched with the new output signals defined on
the top module. These connections can be seen in Figure 8.17. The project was
repackaged with the changed top module and the new package was added to the block
design, thus the LED outputs were obtained directly.

assign clk b = clk;

assign r3t_b = rat_m;
a3s3ign ack b = wba[l].ack;
assign adr b = wbhs[l].adr;
a3sign cyc_b whs([l].cyo:
a33ign stall b = wbs[l].3tall;
assign stb_b = whs[l].sth;
a3sign we_b = wba[l].we;
g33ign 3el_b = wha[l].32l;
assign err_b = wbs[l].err;
a3sign dat i b = whk3s[l].dat m;
assign dat_o b = whs[l].dat_s;

Figure 8.17: New LED output signals

The AXI GPIO [63] block was also added to the design and the necessary connections

were made one by one. The final block design was as in Figure 8.18.
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Afterwards, the wrapper file was automatically created by right-clicking on the block
design and selecting 'Create HDL Wrapper' option. Lastly, the recompiled C code that
is used to test the GPIOs in the first version of Ibex project with Wishbone and it is
expected to obtain the same results in the AXI GPIO [63] output this time. The C code
written for the LEDs is in Figure 8.19.

Users > gulcebaysal > Downloads > led > C led.c

1 y/ Copyright lowRISC contributors.

2 // Licensed under the Apache License, Version 2.0, see LICENSE for details.
3 // SPDX-License-Identifier: Apache-2.0

4

5 #include <stdint.h>

6  #define CLK_FIXED_FREQ_HZ (50ULL * 1000 * 1000)

7

8 /%%

9 * Delay loop executing within 8 cycles on ibex

10 */

11 static void delay_loop_ibex(unsigned long loops) {
12 int out; /% only to notify compiler of modifications to |loops| */
13 asm volatile(

14 "1: nop \n" // 1 cycle

15 " nop \n" // 1 cycle

16 " nop \n" // 1 cycle

17 " nop \n" // 1 cycle

18 " addi %1, %1, -1 \n" // 1 cycle

19 " bnez %1, 1b \n" // 3 cycles

20 : "=&r" (out)

21 : 0" (loops)

22 )

23 }

24

25 static int usleep_ibex(unsigned long usec) {

26 unsigned long usec_cycles;

27 usec_cycles = CLK_FIXED_FREQ_HZ * usec / 1000 / 1000 / 8;
28

29 delay_loop_ibex(usec_cycles);

30 return 0;

31 }

32

33  static int usleep(unsigned long usec) {

34 return usleep_ibex(usec);

35 }

Figure 8.19: The C code for the LEDs
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After performing the synthesis and implementation steps on Vivado, a .bit file was
created and the FPGA board was programmed. Unfortunately, the desired result was
not observed on the FPGA board. In this application made to test the system, if the
project created with the bridge could be observed to work correctly, the next step
would be to provide access to DDR by adding MIG IP instead of AXI GPIO
connection. The block diagram planned for this stage is as in Figure 8.20.
Unfortunately, this target could not be achieved due to an incomprehensible error in

the generated design.
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9. CONCLUSION

The RISC-V [1] open-source core implementation and custom instruction are
discussed in this paper. One of the most significant transforms for edge detection
Laplacian Filter has been reviewed. To solve one of the biggest problems in the project,
the memory problem, we aimed to access DDR RAM and worked on it. We tested the

extended instructions and included to our project in order to increase performance.

9.1 Results

In the final version of the project, necessary connections such as camera, VGA [51],
GPIO, UART between Ibex [6], the processor we chose, and the communication
protocol Wishbone [7] have been made and tested to work. Custom IP, designed for
the filtering process where image processing algorithms are applied, was transferred
to our system and it was seen that this filtering process was successful with the image
taken from the camera. During this test, the extended instruction set of the RISC-V
processor and the operations performed by the Custom IP were expressed in the ALU
of the processor, thus bringing speed and efficiency to the system. In order to solve the
memory problem, which is the main problem of our project, various connections were
made with the bridge [69] method in between AXI-Wishbone. We are currently
working on proving that this connection is successfully established and that DDR can

be accessed with this method, together with a simulation.

9.2 Progress of the Project

We reached all the results we got throughout the project step by step. We aimed to use
our time efficiently by proceeding in a systematic and programmed manner. At the
beginning of the project, we examined the applications and implementations of driver

fatigue detection systems with a detailed literature review. We aimed to design a
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system in which we can use the artificial neural network code that can detect driver
fatigue in the most effective way with the image processing system we have. The
biggest problem we encountered in this process was the memory problem. The size of
our dataset, which we will apply the image processing algorithms to, consists of the
photos taken from the in-car camera, was not suitable for keeping in Block RAM. For
this reason, we decided to use the DDR external memory, which is already on the
board, Nexys 4 DDR FPGA [43], we chose. Since the communication protocol and
open-source processor we use did not ensure that it would be suitable for us to access
DDR, we sought different methods. In this process, as we explained in our thesis, we
turned to methods such as accessing DDR without MIG and dealing with the Vector
Extension project. Since we couldn't get the efficiency, we wanted from any of them,
we made research about the bridge structure, which is a new method that we have not
tried before. We predicted that this structure would give us the efficiency we wanted
in terms of accessing MIG and therefore DDR, thanks to its ability to interconnect
communication protocols. We focused on making all connections and addresses. We
argue that this method is the solution to the memory problem that wastes us time, and

we continue our attempts to make simulation studies on this structure.

9.3 Cost Analysis

Within the scope of the whole project, the time we allocate for the progress of the
project and the achievement of certain results consists of two semesters, the fall and
spring semesters. The FPGA card we use throughout the process we are working on
our project is Nexys 4 DDR [43]. Access to this card, which is the first product that
we can show as an expense within the scope of our project, has been quite easy since
we already had the card. Xilinx Vivado [42], the implementation and design
environment we use, gives a free right to anyone who wants to use it, so there was no
cost in this part. The camera ov7670 [50], which we acquired in order to create a
simulation of the driver detection system, was purchased to facilitate our work. In
addition, the screen on which the image will be projected and the VGA [51] cable,
which plays a role in the image transmission between the FPGA-camera-screen, were

accessed from the GSTL Lab [70] in Istanbul Technical University.
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9.4 Future Work and Recommendations

The first future work that can be done is extending the instruction set of the processor
used for the implementation of detection filter even more in order to increase filter’s
performance. Secondly, for the accessing DDR RAM [53], ‘bridge’ structure can be
further investigated and implemented. To connect two interfaces and use the benefits
DDR RAM offers ‘bridge’ structure seems to be the best solution.

The most useful recommendation we can give is to concentrate on addressing and
fixing missing connections while working on the bridge structure. When the correct
structure is established, a system whose accuracy can be tested with a simple
simulation code will be obtained and access to DDR RAM, which is the problem of
the project, will be provided. Finally, the system should be developed and made

suitable for in-vehicle use.
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APPENDIX A

v Design Sources (19)
v @ & ibex_soc (ibex_soc.sv) (5)
v @ wb_ibex_core : wb_ibex_core (wb_ibex_core.sv) (2)
v @ inst_ibex_core : ibex_core (ibex_core.sv) (7)
@ core_clock_gate_i : prim_clock_gating (prim_clock_gating.sv)
v @ if_stage_i: ibex_if_stage (ibex_if_stage.sv) (2)
v @ prefetch_buffer_i : ibex_prefetch_buffer (ibex_prefetch_buffer.sv) (1)
@ fifo_i : ibex_fetch_fifo (ibex_fetch_fifo.sv)
@ compressed_decoder_i : ibex_compressed_decoder (ibex_compressed_decoder.sv
v @ id_stage_i: ibex_id_stage (ibex_id_stage.sv) (3)
@ registers_i: ibex_register_file (ibex_register_file.sv)
@ decoder_i: ibex_decoder (ibex_decoder.sv)
@ controller_i : ibex_controller (ibex_controller.sv)
v @ ex_block_i: ibex_ex_block (ibex_ex_block.sv) (3)
@ alu_i:ibex_alu (ibex_alu.sv)
@ gen_multdiv_fast multdiv_i : ibex_multdiv_fast (ibex_multdiv_fast.sv)
@ ibex_multdiv_slow (ibex_multdiv_slow.sv)
® load_store_unit_i: ibex_load_store_unit (ibex_load_store_unit.sv)
@ cs_registers_i: ibex_cs_registers (ibex_cs_registers.sv)
@ ibex_pmp (ibex_pmp.sv)

s

@ ibex_pmp (ibex_pmp.sv) =
@ instr_core2wb : core2wb (core2wb.sv)
@ data_core2wb : core2wb (core2wb.sv)
@® wb_intercon : wb_interconnect_sharedbus (wb_interconnect_sharedbus sv)
v @ wb_spram : wb_spramx32 (wb_spramx32.sv) (1)
@ spram: spramx32 (spramx32.sv)
v @ wb_ov7670_erfan : wb_ov7670_erfan (wb_ov7670_erfan.sv) (2)
v @ u_ov7670_init: ov7670_init (ov7670_initv) (2)
® u_I12C_0V7670_RGB565_Config : 12C_0OV7670_RGB565_Config2 (12C_0OV7670_RGBSE
@ u_I2C_Controller : 12C_Controller2 (12C_Controller2.v)
@ u_ov7670_capture : ov7670_capture (ov7670_capture.v)
v @ wb_vga_erfan : wb_vga_erfan (wb_vga_erfan.sv) (1)
@ u_vga:vga (vgav)
v @ wbuart (wbuart.v) (4)
@ < nwart (rxuarty)
@® ndifo ; ufifo (ufifo.v)
@ tfifo : ufifo (ufifo.v)
@ tx: txuart (xuarty)
v @ dm_top (dm_top.sv) (3)

v @ i_dm_csrs : dm_csrs (dm_csrs.sv) (1)
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v @ dm_top (dm_top.sv) (3)
v @ i_dm_csrs : dm_csrs (dm_csrs.sv) (1)
v @ i_fifo : fifo_v2 (fifo_v2.sv) (1)
@ i_fifo_v3: fifo_v3 (fifo_v3.sv)
@ i_dm_sba: dm_sba (dm_sba.sv)
v @ i_dm_mem :dm_mem (dm_mem.sv) (1)
@ i_debug_rom : debug_rom (debug_rom.sv)
v @ clk_gen_wrapper (clk_gen_wrapper.v) (1)
v (8 clk_gen_i: clk_gen (clk_gen.bd) (1)
& @ clk_gen_clk_wiz_0_0 (clk_gen_clk_wiz_0_0.xci)
v @ vram_wrapper (vram_wrapper.v) (1)
v o8 yram_i :vram (vram.bd) (1)
18 5 vram_blk_mem_gen_0_0 (vram_blk_mem_gen_0_0.xci)
v @ wb_vga (wb_vga.sv) (1)
@ u_vga:vga(vgav)
@ crg (crg.sv)
@ slave2wb (slave2wb sv)
@ sync_reset (sync_reset.sv)
@ wb_enable (wb_enable_signal.sv)
@ wb_gpio (wb_gpio.sv)
@ wb led (wb led.sv)

@ wb_led (wb_led.sv)

@ wb_led_master (wb_led_master.sv)

@ wb_ov7670 (ov7670_ibexsv)

@ wb_pixel (wb_send_pixel.sv)

@ wb_sharpen_erfan (wb_sharpen_erfan.sv)
@ wbuart_ibex (wbuart_ibex.sv)

Figure A.1: Design Source Files in Hierarchy
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APPENDIX B
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39
49
a1
42
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47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

70
71
72
73
74

Jrinclude <stdint.h>
#define CLK_FIXED_FREQ_HZ (50ULL * 1000 x 1000)

/%

* Delay loop executing within 8 cycles on ibex

*/

static void delay_loop_ibex(unsigned long loops) {

int out; /* only to notify compiler of modifications to |loops| */

asm volatile(

“1: nop An" // 1 cycle
“  nop \n" // 1 cycle
" nop \n" // 1 cycle
" nop \n" // 1 cycle
" addi %1, %1, -1 \n" // 1 cycle
"  bnez %1, 1b \n" // 3 cycles

@ "=&r" (out)
: 0" (loops)

)i
}
static int usleep_ibex(unsigned long usec) {
unsigned long usec_cycles;
usec_cycles = CLK_FIXED_FREQ_HZ * usec / 1000 / 1000 / 8;

delay_loop_ibex(usec_cycles);
return 9;

}

static int usleep(unsigned long usec) {
return usleep_ibex(usec);

}

static int custom@(unsigned int a, signed int b) {
static int result;
asm volatile( "cust® %[resultl], %[valuell, %[value2]\n\t"

i [resultl] "=r" (result) : [valuell "r" (a), [value2]l "r" (b));

return result;
¥

static int customl(unsigned int a, unsigned int b) {
static int result;
asm volatile( "custl %[resultl], %[valuell, %[value2]\n\t"
:[resultl] "=r" (result) : [valuel] "r" (a), [value2] "r"
return result;
}

static int custom2(unsigned int a, unsigned int b) {
static int result;
asm volatile( "cust2 s[resultl], %[valuel], %[value2]\n\t"
t[resultl] "=r" (result) : [valuel] "r" (a), [value2] "r"
return result;

}

volatile uint32_t #pixel = (volatile uint32_t *) 0xC019;
int main() {

volatile uint32_t %var = (volatile uint32_t %) 0x10000000;
volatile int32_t datal=0;

volatile int32_t data2=0;

volatile int32_t tester = 0;

volatile int32_t i=0,j=0,x=0,y=0,pixel_val=0;

int kernel[3][3] =

{
{ e, -1, 0}'
{-1, 4 , -1},
{e, -1 , @}
Y
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76 // Load Kernel Data - 1st

77 /xfor (3 =0 ; j<3; § =3 +1)

78 for (i =0 ; i<3; i =i+ 1)

79 custom@( j*3+i , kernel[il[j] );*/

80 customé( @ , -1);

81 customd{ 1 , @ );

82 custome( 2 , 1);

83 customd( 3 , -2 );

84 custome( 4 , @ );

85 customé( 5 , P H

86 customé( 6 , -1 );

87 customd{ 7 , @ );

88 custome( 8 , 1);

89

9@

91 pixel[0] = 0x00000001; // Activate camera module to initialize RAM with data
92 usleep(1000 * 15); // 15 ms

93 pixel[0] = 0x80000000;

94

95 pixel[@] = 0x00000100;

96

97 for (j =0 ; j<248; j = j + 1)

98 {

99 for (1 =1 ; i<321; 1 =i + 1)

108 {

101 pixel_val = @ ;

102 datal=(pixel[320%(j+1)+i+1]1<<28) | (pixel[320%(j+1)+i]<<21) | (pixel[320%j+i+2]<<14) | (pixel[320%j+i+1]1<<7) | (pixel[320xj+i])
103 data2=(pixel[320%(j+2)+i+2]<<24) | (pixel[320%(j+2)+i+1]<<17) | (pixel[320%(j+2)+1]<<10) [(pixel[320%(j+1)+i+2]<<3) | (pixel[320%(j+1)+i+1]>=4)
104

105 pixel_val = customl(datal,data2);

106

107 tester = pixel[i+j*320];

108 if (pixel_val>255) pixel_val = 255;

109 if (pixel_val<d) pixel_val = 0;

118 pixel[i+j*320] = ((pixel_val)<<16) | (tester&@xFFFF) ;
111

112 }

113 }

114

115

116 pixel[@] = 0x0020010000; // Activate VGA module to read pixels from RAM
117 while(1);

118

Figure B.1: Filter Code
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