ISTANBUL TECHNICAL UNIVERSITY ELECTRICAL-ELECTRONICS FACULTY

CUSTOM DIRECT MEMORY ACCESS MODULE DESIGN AND IMPLEMENTATION

SENIOR DESIGN PROJECT

Asya TURHAL Meyra ALPASLAN

ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT

JUNE 2022

ISTANBUL TECHNICAL UNIVERSITY ELECTRICAL-ELECTRONICS FACULTY

CUSTOM DIRECT MEMORY ACCESS MODULE DESIGN AND IMPLEMENTATION

SENIOR DESIGN PROJECT

Asya TURHAL (040180730)

Meyra ALPASLAN (040170006)

ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT

Project Advisor: Prof. Dr. Berna Örs Yalçın

JUNE 2022

İSTANBUL TEKNİK ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK FAKÜLTESİ

ÖZEL DOĞRUDAN BELLEK ERİŞİMİ MODÜL TASARIMI VE UYGULAMASI

LİSANS BİTİRME TASARIM PROJESİ

Asya TURHAL (040180730)

Meyra ALPASLAN (040170006)

Proje Danışmanı: Prof. Dr. Berna Örs Yalçın

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

HAZİRAN, 2022

We are submitting the Senior Design Project Report entitled as "CUSTOM DIRECT MEMORY ACCES MODULE DESIGN AND IMPLEMENTATION". The Senior Design Project Report has been prepared as to fulfill the relevant regulations of the Electronics and Communication Engineering Department of Istanbul Technical University. We hereby confirm that we have realized all stages of the Senior Design Project work by ourselves and we have abided by the ethical rules with respect to academic and professional integrity.

> Asya TURHAL (040180730)

-Il apon

Meyra ALPASLAN (040170006)

FOREWORD

We would like to thank our esteemed advisor, Prof. Dr. Berna Örs Yalçın, for her constant help, assistance and support throughout the project. We would also like to thank our university's VLSI Laboratory and its members, who provided us with the tool we need to use for the realization of the project and for their help and support in every way related to these tools and the project.

June 2022

Asya TURHAL Meyra ALPASLAN

TABLE OF CONTENTS

Page 1

FOREWORD	
TABLE OF CONTENTS	.vi
ABBREVIATIONS	
LIST OF FIGURES	.ix
MODULE DESIGN AND IMPLEMENTATION	xii
SUMMARY	xii
ÖZET	kiii
1. INTRODUCTION	1
1.1 General Information	1
1.1.1 RISC-V Core	2
1.1.2 Dual Port RAM	2
1.1.3.Adder Core	2
1.2 Literature Review	
2. IMPLEMENTATION AND TESTING OF THE HORNET RISC-V CORE.	4
2.1 The Hornet Core	4
2.1.1 The RISC-V Instruction Set Architecture (ISA)	4
2.2 Environment Set Up	4
2.3 Realization of RISC-V Hornet Core	5
2.3.1 Preparing the Necessary Files	5
2.3.2 Simulation on Verilator	5
2.3.3 Bubble Sort Algorithm	7
2.3.4 Simulation on Cadence	8
3. OVERALL DESIGN ELEMENTS	11
3.1 RAM and FIFO Search for Sythesizing the Design	11
3.2 FIFO	12
3.3 Processing Element Adder Core with FIFO	14
3.4 Dual Port RAM (DPRAM)	
3.4.1 Dual Port Ram (DPRAM) Design	15
3.4.2 DPRAM Simulation	17
3.5 Direct Memory Access (DMA)	18
4. OVERALL DIRECT MEMORY ACCESS (DMA) SYSTEM	25
4.1 Overall System Simulation	
4.2 Overall System Synthesis	27
5. RESULTS AND RECOMMENDATIONS	
6. REALISTIC CONSTRAINTS AND CONCLUSIONS	36
6.1 Practical Application of This Project	36
6.2 Realistic Constraints	
6.2.1 Social, environmental and economic impact	37
6.2.2 Cost analysis	
6.2.3 Standards	
6.2.4 Health and safety concerns	
6.2.5 Future Work and Recommendations	37

7. REFERENCES	39
---------------	----

ABBREVIATIONS

DMA	: Direct Memory Access
CPU	: Central Processing Unit
ASIC	: Application-Specific Integrated Circuit
RISC	: Reduced Instruction Set Computer
RAM	: Random Access Memory
DPRAM	: Dual Port RAM
SoC	: System on Chip
ISA	: Instruction Set Architecture
FIFO	: First In First Out
RTL	: Register Transfer Level

LIST OF FIGURES

Page

Figure 2. 1: Bubble Sort Simulation 1	
Figure 2. 2: Bubble Sort Simulation 2	
Figure 2. 3: Bubble Sort Simulation 3	
Figure 2. 4: Folder of RISC-V	
Figure 2. 5: Entering the location of the files on terminal	9
Figure 2. 6: Testbench of the Bubble Sort Algorithm	9
Figure 2. 7: SimVision	
Figure 2. 8: Simulation waveform	.10
Figure 3. 1: RTL Schematic of FIFO	
Figure 3. 2: Behavioral Simulation of FIFO	.13
Figure 3. 3: State Diagram of the Core's Control Unit	.14
Figure 3. 4: RTL Schematic of The Adder Core	.15
Figure 3. 5: Behavioral Simulation of The Adder Core	
Figure 3. 6: Simple Block Schematic of the Overall Design	
Figure 3. 7: Elaborated Design Schematic of the DPRAM	
Figure 3. 8: Simulation results of DPRAM on Cadence	
Figure 3. 9: Simulation Results of RAM of Mem_cpy on Cadence	
Figure 3. 10: Invoking Genus	
Figure 3. 11: Elaborated Mem_cpy	
Figure 3. 12: Elaborated Mem_cpy Zoomed In for the Mem_cpy Core	
Figure 3. 13: Elaborated Mem_cpy Zoomed In for the RAM of the Block	
Figure 3. 14: Generic Gate Design Report of Mem_cpy	
Figure 3. 15: Mapping Report of Mem_cpy	
Figure 3. 16: Optimization Report of Mem_cpy	
Figure 3. 17: Timing Report of Mem_cpy	
Figure 4. 1: Overall System	.25
Figure 4. 2: C Code for the Simulation	
Figure 4. 3: RISC-V Core Instruction Memory Simulation	
Figure 4. 4: Data Memory Simulation	
Figure 4. 5: The Files for the Overall System Synthesis	
Figure 4. 6: Elaborated Overall System	
Figure 4. 7: Mem_cpy Block in the Overall System	
Figure 4. 8: Elaborated Processor Core in the Overall System	
Figure 4. 9: Elaborated DPRAM in the Overall System	
Figure 4. 10: Adder Core in the Overall System	
Figure 4. 11: Generic Gate Design Report of the Overall Systems	
Figure 4. 12: Mapping Report Part 1 of Overall System	
Figure 4. 13: Mapping Report Part 2 of Overall System	
Figure 4. 14: Optimization Report Part 1 of Overall System	
- Bure is a splittle and the point and the state of the s	

Figure 4. 15: Optimization Report Part 1 of Overall System	34
Figure 4. 16: Timing Report of Overall System	34
Figure 4. 17: Commands.tcl file	35

CUSTOM DIRECT MEMORY ACCESS MODULE DESIGN AND IMPLEMENTATION

SUMMARY

With the development of technology, the boundaries of the studies, researches and the devices have expanded. Especially in the sectors such as defense, communication, space and health, there is a constant data flow and this data is frequently in the form of great sizes due to the type of the collected data and also the high velocity of arrival of the data to the systems. As a result of this expansion, the amount of data that needs to be processed and used for these studies and devices has also increased. This increase in the amount of data is an extra burden on the devices where these operations are performed. It is not possible to solve this burden on devices only with the adjustments on the software side, also the improvements made on the hardware part give a much more effective result in terms of data performance. Due to this reason, a unique DMA design is created. In this project, which is developed for high performance purpose, an Application-Specific Integrated Circuit (ASIC) Direct Memory Access (DMA) implementation that could be used in vast amounts of data processing studies, which provides high performance guarantee in data processing, is studied. For this reason, the DMA design has been combined with a processor core, a Dual-Port Random Access Memory (DPRAM) and a adder core design so that the operations on the DMA could be observed.

The DMA unit in this design is previously tested on the FPGA, and proved that it is meeting the desired qualifications. However, it is known that the speed on the FPGA is not the maximum speed that this design could reach. As a result, to be able to increase the performance of the DMA, the design codes are handed to our side by its designers, and during the project, we have carried out the ASIC implementation studies.

For implementing the DMA, the necessary tool is the Cadence, which is provided to us from our university, and for the other units connected to DMA in this overall system design, a knowledge of HDL description languages and another helpful tool Vivado is also compulsory.

The work that has been done, the problems that are encountered and the final results during the project time are reported in detail as a consequence of our study. This project we have done regarding to this unique DMA, which is a newly designed unit, is considered as a basis for creating a starting point for further studies.

ÖZEL DOĞRUDAN BELLEK ERİŞİMİ MODÜL TASARIMI VE UYGULAMASI ÖZET

Teknolojinin gelişmesiyle birlikte yapılan çalışmaların, araştırmaların, üretilen cihazların hitap ettiği sınırlar genişlemiştir. Bu gelişmelerin özellikle yaşandığı alanlar olan savunma, haberleşme, uzay ve sağlık benzeri sektörlerde kullanılan sistemlerin sürekli olarak maruz kaldığı veri akışında, bu veriler çok büyük boyutlarda olduğu gibi bu akış çoğu zaman aralıksız olarak sisteme veri girişine sebep olmaktadır. Bu artış sonucunda ise bu sektörlerde devam eden çalışmalar ve kullanılan cihazlar için islenmesi, kullanılması gerekli olan veri miktarındaki bu artıs, calısmaların gerçeklendiği cihazlara fazladan bir yük olmaktadır. Bu yükün cihazlarda yalnızca yazılım tarafında yapılacak olan düzenlemelerle çözülmesi mümkün olmadığı gibi, donanım tarafında yapılan iyilestirmelerin, veri performansı konusunda cok daha etkili bir sonuç verdiği görülmüştür. Bu amaç doğrultusunda geliştirilen bu projede, bu çalışmalarda kullanılabilecek, veri işleme konusunda yüksek performans garantisi sunan bir Uygulamaya Özel Tümleşik Devre (ASIC) Doğrudan Bellek Erişim Modülü (DMA) implementasyonu üzerine çalışılmıştır. Bu nedenle sahip olunan DMA tasarımı, DMA üzerinde gerçekleşen işlemlerin gözlenebilmesi için bir işlemci çekirdeği, bir çift portlu bellek ve bir toplayıcı çekirdek tasarımı ile birleştirilmiştir.

Proje süresince kullandığımız özgün DMA modülü, öncelikli olarak tasarımcıları tarafından FPGA üzerinde test edilmiş, tasarımın beklenilen kriterlere uygun olduğu görülmüş ancak bir FPGA üzerinde olmasındansa ASIC olacak şekilde implementasyonu gerçekleştirildiğinde modülün hızını çok daha fazla arttıracağı düşüncesiyle ASIC olarak gerçeklemenin başlayabilmesi amacıyla modulün kodları tarafımıza teslim edilmiştir. Proje süresince sürdürülen bütün çalışma bizlere tasarımcıları tarafından teslim edilen modül kod ve dökümantasyonları üzerine inşa edilmiştir.

Çalışmanın önceliği DMA'in ASIC olarak gerçeklenmesi ve bu gerçeklenmenin üzerine DMA'in içerisinde bir alt sistem olarak yer alacağı daha büyük bir tam sistemde de istenilen kriterleri sağlaması, düzgün bir şekilde çalıştığının gözlenmesi olmuştur. Bu sebeple de gerek görülen bu daha büyük sistem bizler tarafından bir toplayıcı çekirdeği, bir çift portlu bellek ve bir işlemci çekirdeği ile bütün bu sistemi ASIC olacak şekilde gerçeklemek ve DMA performansını raporlamak olmuştur.

DMA'i ve dahil olduğu bu sistemi ASIC olarak gerçeklemek için gerekli program, üniversitemiz tarafından bize sağlanmış olan Cadence'dır ve bu bütün sistemin tasarımında DMA'e bağlı diğer birimler için Donanım Tanımlama Dilleri (HDL) bilgisi ve başka bir yardımcı program olarak proje süresince kullanılan Vivado da zorunludur. Proje süresince bahsi geçen bu programlarda ilk olarak alt modüller sonrasında da bütün sistemin simülasyonları yapılmış, simülasyon sonuçlarına göre ise sentez aşamasına geçilmiştir. Proje süresince yapılan işler, karşılaşılan problemler ve sonuçlar çalışmamız neticesinde detaylı olarak raporlanmıştır. Henüz yeni tasarlanmış bir ünite olan bu özgün DMA ile ilgili yaptığımız bu proje, devamında yapılacak çalışmalar için bir başlangıç noktası oluşturması açısından bir temel olarak düşünülmüştür.

1. INTRODUCTION

High-tech systems used in areas such as defense, intelligence, health services and finance are consistently responsible for processing extreme amounts of data. Considering data operations in a system, it is primarily the processor that is considered as the responsible unit, since the processor is expected to provide the instructions, such as address, related to the data. However, in the sectors considered, since the amount of the data is tremendous, this increase in the amount of data that needs to be processed causes a crucial performance problem. Thus, in order to increase data transfer efficiency, the speed of data transfer between the peripheral units of the hardware system is of great importance. As a solution to this issue, Direct Memory Access (DMA) unit is used in the hardware systems for the effective data transfer between the peripheral units of the hardware and the system memory. In a system with a heavily busy data flow, the inclusion of the processing unit to the flow creates a major disadvantage in terms of speed, since these data operations occupy the processor excessively. The workload of the processor is fairly reduced by involving a DMA unit to the system, thus the time and effort during the data transfer process is significantly decreased by removing the processor from the dataflow. When the DMA is used in a system data transfer path, the peripheral units in the hardware provide access to the main memory directly via DMA with no dependency to the system processor.

With this project, it is aimed to implement the ASIC design of a system with a unique DMA design by using the design tool Cadence in order to increase the data flow performance of the high-tech systems used in substantial sectors. ...

1.1 General Information

In this project, this distinctive DMA design is simulated and synthesized on the tool Cadence by forming the complete system consisting of the RISC-V Hornet core, a dual-port RAM, the DMA and a newly designed adder core, resulting with the indication that the ASIC design could be implemented.

1.1.1 RISC-V Core

When the core of the system is considered, the processor/CPU also directly occurs in the minds. However, it would not be quite correct to speak of a core in the system directly as a CPU, because a core is a small processor placed in a larger CPU. This small processor functions as a brain within the system in which it is used, performing all the essential computational jobs. In this project, for these necessary computational tasks, a RISC-V core entitled "Hornet" is implemented to the overall system as the main brain.

1.1.2 Dual Port RAM

There are units called "memory" in the systems where the transferred information or the information to be transferred is stored. In these memories, the information is kept in binary form. At certain locations with different "addresses" defined for each, this binary information could be read or written to the specific memory area located at this particular address, according to the address information given to the unit as an input in the instruction. Since the address of the information to be read does not subject to any restriction, this memory unit is called "Random-Access Memory", RAM.

A fundamental RAM unit has three inputs and one output: one input for the data, one input for the address information, one input for controlling the actualizing operation on the unit (write or read), and one output for the data to be transferred. On the other hand, a dual port RAM (DPRAM) has two distinct ports for two distinct data inputs, address information, write-read controlling input and data outputs, enabling to perform two different tasks on the different ports at the same time. A DPRAM is requisite for this project, since it is significant for the overall system to transfer information from the core to the DMA, or from DMA to the core over one memory featured channel. In this case, this proper channel is the DPRAM, one port for the core and the other port for the DMA.

1.1.3. Adder Core

Since it is built with a distinctive approach, one of the main purposes in this project is to test whether the DMA design is working properly in the way it is desired or not. This testing process requires a core, or as it is called in this project, a processing element connected to the DMA, which could make it possible to observe whether all the other elements in the system is working properly or not. In this project, this process element is chosen as an adder core, which simply sums two numbers which are delivered to the adder core via the DMA.

1.2 Literature Review

As it is stated in the previous introduction section, electronic devices which contain high amount information transaction requires read and write access constantly to the random memory. In order to reduce time consuming in data transactions between I/O ports (or some other part of the hardware) and memory, DMA is being used in many System on Chip (SoC) implementations. Through this information, to be able to implement the DMA, as a first step of this project a detailed research related to the various DMA designs is resulted. Although many studies have been conducted on the subject in recent years, not many studies have been found directly related to this thesis subject. However, articles of similar studies found as *A Low-Area Direct Memory Access Controller Architecture for a RISC-V Based Low-Power Microcontroller[1], Design and implementation of Efficient Direct Memory Access (DMA) Controller in Multiprocessor SoC[2], Direct Memory Access Remapping for Thunderbolt, Feature Deployment at Platform Level[3]. These articles are read in great detail and taken in the account throughout the continuing working process.*

Furthermore, in order to be able to understand the work flow of the Hornet RISC-V Core, the initial step has been seeking out the materials and textbooks related to the RISC-V. The known main source used in the Hornet design is *Computer Organization and Design by Patterson & Hennessy*[4]. According to that information, this book has been read for the necessary knowledge and instructions, since the textbook explains design in a processor with examples.

2. IMPLEMENTATION AND TESTING OF THE HORNET RISC-V CORE

2.1 The Hornet Core

Hornet core, which is one of the main units of the overall system as the processor core, is designed as senior design project by Yavuz Selim TOZLU and Yasin YILMAZ in year 2021. Since Hornet is also implemented in ASIC domain, it is chosen as the core in this project and before connecting the core to the system, the first stage is to check whether the core is working accurately or not.

2.1.1 The RISC-V Instruction Set Architecture (ISA)

The Reduced Instruction Set Computer - V (RISC-V) is an open source instruction set architecture. RISC-V succeeds in distinguishing itself from other processors due to the privileged features it provides, as the main object of the RISC-V being decreasing the intricacy of the operations which are performed by the hardware. A few of these significant features can be listed as being an open source architecture which does not cause any patent problems, having a wide range of compatible microarchitectures, and providing an adaptable use.

2.2 Environment Set Up

Prior to start simulating the Hornet in Cadence, the first environment to simulate the Hornet is chosen as Ubuntu, since it is an open source Linux distribution and uploading the necessary simulation tools to the Ubuntu is a smooth process. By installing Oracle's VirtualBox, which allows to extend the computer to be able to run more than one operating systems, Ubuntu 18.04 LTS is set to the computer as the operating system. The following step is to install the RISC-V GNU Toolchain to be able to create the required simulation files during the test. For the previous simulation of the Hornet core performed by Yavuz Selim TOZLU and Yasin YILMAZ, Verilator was used since it does not require any payments and it is an open-source program that helps simulating the hardware desings by generating a C++ code form of the given module. Due to this reason, before moving to Cadence in the project, Verilator is used for code

genaration. As the next step, GTKWave, which is also a free and open-source program that allows the users to be able to see simulation waveforms, is installed. All these environment set up is done by following the article of the Hornet, which is DESIGN AND IMPLEMENTATION OF A 32-BIT RISC-V CORE[5].

2.3 Realization of RISC-V Hornet Core

2.3.1 Preparing the Necessary Files

In order to be able to run the C codes on the Hornet core, the work explained in detail in the Hornet core article needs to be repeated. For the test of the core, the exact same steps and the bubble sort C code provided by Yavuz Selim Tozlu and Yasin Yılmaz is used also for this project. After the executions, all the files are prepared for simulating with Verilator.

2.3.2 Simulation on Verilator

For this section, Hornet's article is also used, and the commands as Yavuz Selim TOZLU and Yasin YILMAZ declared in their thesis.

It can be seen that the program counter works properly and some of the memory addresses does not change since they store instructions in the Figure 2.1 below.

Signals	Waves
Time	
pc_0[31:0]	
ADDR WIDTH[31:0]	0000000B
DATA WIDTH[31:0]	0000020
NUM WMASKS[31:0]	0000004
RAM DEPTH[31:0]	00000800
addr0[10:0]	here and here and here and here and here and here and here and here and here and here and here and here and her
addr1[10:0]	
clk0	
clk1	
cs0	
csl	
din0[31:0]	0000000
din1[31:0]	
dout0[31:0]	0000000
dout1[31:0]	00000000
mem(0)[31:0]	00002117
mem(1)[31:0]	FFC10113
mem(2)[31:0]	00010433
mem(2)[31:0]	0F40006F
mem(4)[31:0]	F0010113
mem(4)[31:0] mem(5)[31:0]	02012623
mem(6)[31:0]	03010413
mem(7)[31:0]	FCA42E23
mem(8)[31:0]	FCB42C23
mem(9)[31:0]	FE042623
mem(10)[31:0]	FE042423
mem(10)[31:0] mem(11)[31:0]	0AC0006F
mem(12)[31:0]	FE842783
mem(12)[31:0] mem(13)[31:0]	00279793
	FDC42703
mem(14)[31:0] mem(15)[31:0]	60F707B3
	60874703
mem(16)[31:0] mem(17)[31:0]	FE842783
	Data de la constante de la constante de la constante de la constante de la constante de la constante de la const
mem(18)[31:0]	00176793
mem(19)[31:0]	
mem(20)[31:0]	FDC42683
mem(21)[31:0]	00F687B3
mem(22)[31:0]	0007A783
mem(23)[31:0]	06E7D863
mem(24)[31:0]	FE842783
mem(25)[31:0]	66279793
mem(26)[31:0]	FDC42703
mem(27)[31:0]	00F707B3
mem(28)[31:0]	6607A783
mem(29)[31:8]	FEF42223

Figure 2. 1: Bubble Sort Simulation 1

In order to be able to understand whether the bubble sort algorithm works accurately on the implementation, the memory addresses having changes are examined.

mem(2033)[31:0]=176	0 176		
mem(2034)[31:0]=195	0 195		
mem(2035)[31:0]=14	0 195	14	
mem(2036)[31:0]=14	0 14)195)176	103
mem(2037)[31:0]=176	0 176	(195)(103	(176)54
mem(2038)[31:0]=103	0 103	(195)(54	176 32
mem(2039)[31:0]=54	0 54	(195)32)(17
mem(2040)[31:0]=32	0 32	(195)(1	.28
mem(2041)[31:0]=128	θ 128	X	195
mem(2042)[31:0]=0	Θ		

Figure 2. 2: Bubble Sort Simulation 2

mgu(5024)[21:0]=122		132						
mem(2035)[31:0]=14		14	195	14				
mem(2036)[31:0]=32		32	14	195 176		10	3	(54
mem(2037)[31:0]=54		54	176	(195	103)ii	76)54	103
mem(2038)[31:0]=103		103			195 54		176 32	
mem(2039)[31:0]=128	6	128	54		195 32		176 128	
mem(2040)[31:0]=176		176	32		(19)	5 128	176	
mem(2041)[31:0]=195		195	128			195		

Figure 2. 3: Bubble Sort Simulation 3

It could be seen that [195, 14, 176, 103, 54, 32, 128] given as main array and the algorithm is able to sort this array as [14,32,54,103,176,195]. As a result, the way a processor core works and how to run a C program on this Hornet core can be understood by following the steps of the above work flow. Subsequently, the core is proven to be ready to run any other C programs on itself.

2.3.3 Bubble Sort Algorithm

To be able to test whether the core is operating correctly or not, a basic sorting algorithm, bubble sort, is simulated. This algorithm is one of the sorting algorithms developed to keep the data in order in memory which is based on comparing each element with the adjacent element on the given array. To explain in a bit more detail, first when an array with n elements is considered, maximum n steps will be required to complete this sorting operation. In the first step, the first element of the array (on the left) is compared with the next second element in the given array. In this comparison, if the element on the left is greater than the second element, these two elements are swapped; so that the greater element for the previous step becomes the second element of the array and it is compared to the third element. Again, the greater one passes to the right and becomes the third element. In the continuation, the third element is compared to the fourth element. This process continues until the last element of the given array is reached. At the end, the greatest term of the given sequence is placed to the far right and thus, the first step of the operation is concluded.

In the second step, since the greatest right-most term is removed in the first step, the same transactions done in the first step is applied to the remaining subarray. This operation, again, selects the greatest element of the subarray as in the previous step and places it at the right end. When the whole array is considered, it can be seen that the two greatest terms of the given array are placed at the far right, sorted among themselves. The order is in descending order from right to left.

In the third step, two greatest elements which are placed at the rightmost in the array are ejected and the same operation is applied to the remaining elements on the array. Thus, the greatest element of the subarray is detected and placed at the right end of the subsequence. At the end of this step, in descending order from right to left, the three greatest elements of the given array will be placed at the far right. Since the array has n elements, the transactions explained above continues step by step for each element in the remaining subarrays until the elements of the array are sorted from right to left in a descending order, which is equivalent to an array being in an ascending order from left to the right. This completes the sorting of the elements in an array with the bubble sort algorithm. However, the beginning sorting of the given array is crucially important for the time efficiency of the algorithm. Since the algorithm has two loops: one for comparison and the second for swapping, the better way would be having a reasonably sorted array to reduce the number of the loops. Due to this reason, it can be said that for a large dataset which is not sorted fairly, bubble sorting would not be efficient.

2.3.4 Simulation on Cadence

For this part of the project, it is a necessity to refer to Hornet's article and the given work flow is followed.

Hornet's files are copied to the Cadence accounts, then over the terminal, the location of the files are reached.

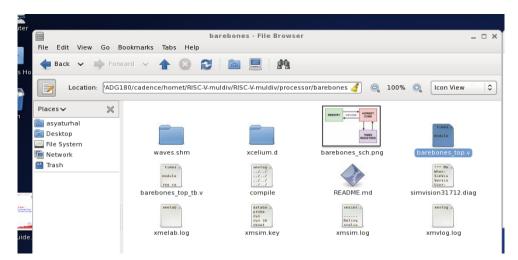
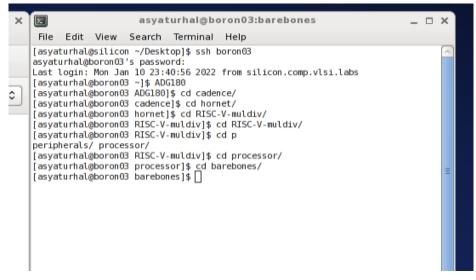
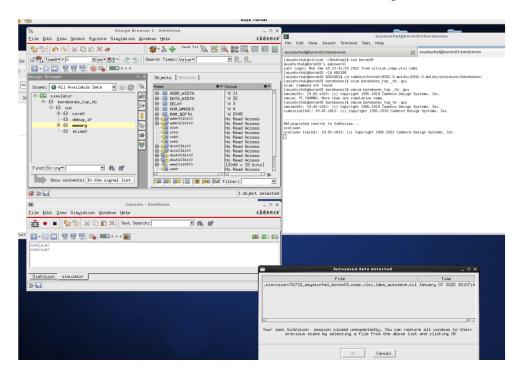


Figure 2. 4: Folder of RISC-V




Figure 2. 5: Entering the location of the files on terminal

As the following step, the line which would load the bubble_sort_tb.data to the processor memory is uncommented in the given Hornet file barebones_top_tb.v, in order to simulate the bubble sort file.

bare	barebones_top_tb.v (~/projects/ADG180/cadem
	🖸 🚍 Open 🗸 🖄 Save 🚔 🚿 Undo 🗞 🐰 🖣 💼 🏘 🎇
muldi	📄 barebones_top_tb.v 🗶 📄 barebones_top.v 🗶
	Ttimescale lns/lps
	<pre>module barebones_top_tb();</pre>
	reg reset_i, clk_i; wire irq_ack_0; reg meip_i; reg [15:0] fast_irq_i;
	barebones_top uut(.reset_i(reset_i), .clk_i(clk_i), .meip_i(meip_i), .fast_irq_i(fast_irq_i), .irq_ack_o(irq_ack_o));
	//100 MHz clock always begin clk_i = 1'b0; #5; clk_i = 1'b1; #5; end
	<pre>initial begin //uncomment the program you want to simulate //uncomment the program you want to simulate</pre>
	<pre>\$readmemh("//test/memory_contents/muldiv.data",uut.memory.mem);</pre>
	<pre>//\$readmemb("//test/memory_contents/soft_float.data",uut.memory.mem); reset_i = 1'b0; fast_irq_i = 16'b0; meip_i = 1'b0; #200; reset_i = 1'b1;</pre>
	//interrupt signals, arbitrarily generated. uncomment if you need to.
	/* 52100; meip_i=1'bl; #400; meip_i=1'bl; #400; meip_i=1'bl; #400; meip_i=1'bl; #50; meip_i=1'bl; #516; meip_i=1'bl; #516; meip_i=1'bl; #52; meip_i=1'bl; #52; meip_i=1'bl; #52; meip_i=1'bl; #52; meip_i=1'bl; #53; meip_i=1'bl; #54; meip_i=1'bl; #55
	//this always block imitates an interrupt controller. uncomment if you are using machine external interrupt. /* always @(posedge clk_i) begin
	<pre>if(irq_ack_o) meip i = 1'b0;</pre>
	end*/
	en dinodul e

Figure 2. 6: Testbench of the Bubble Sort Algorithm

The SimVision of Cadence, where the simulations are executed is opened.

Figure 2. 7: SimVision

The memory addresses are sent to the waveform window in order to be able to wiev them.

50				Waveform 3 - Sim	nVision			_ O X
Eil	e Edit <u>V</u> iew Explore	For <u>m</u> at Sim <u>u</u> lati	on Windows Hel	.p				cādence
 	*****	* 🗅 🛍 × 🔅))) () ()	·•• 🖬		🇳 - 🖶	Send To: 🐘 🏯 🗟	
Sea	arch Names: Signal 🔻	1 的 的	Search Time	es: Value▼	• Ø. (<u>).</u>		
110 x2	TimeA = 325,000 I	ps v Rux - 🦛 🖻	- 抭 🖸 - 🔟		🍎 🎼 🔂 2	,175,000ps + 3	ime: 📲 🛛 : 2,175,	000ps 🛒 👧 🕇 – = 👫
×®	Cursor-Baseline▼=325,	,000ps Ov Cursor Ov	Baseline = 0 0	TimeA = 325,000ps	S	1,000,000ps	1,500,000ps	s 2,000,)
船	Name	d 32					xxexxxxexxxexxxexxxe	
	H-10 din1[31:0]	'd 0	, ,	w % wuuuuuuuu	*//////////////////////////////////////		NALAAN AN AN AN AN AN AN AN AN AN AN AN AN	
17s		'd ×	× ()())))	× {))())(8471)))()))))))	8471 2 200	84		₩/₩₩X₩X 84> X X X X X X X X
-	■	'd 134_218▶	8471		contrant antom contrant of			Nama and Angala and Angala
-	🖂 👘 memE0:2047]	[2048 × 32)	[2048 × 32 bits]					
	🕂 🕼 nem[0]	'h 00002117	00002117					
R.S.	🛨 🌆 nem[1]	'h FFC10113	FFC10113					
	🖬	'h 00010433	00010433					
	🖬 🌆 nem [3]	'h 0040006F	0040006F					
	🖬 🗤 🌆 mem [4]	'h 16000793	16000793)
	🕀 🕼 nem[5]	'h 01C7A703	01C7A703)
	🕀 🚛 nem[6]	'h 0207A783	0207A783					
	🛨 🦙 nem[7]	'h FC010113	FC010113					
	🖃 📲 🌆 mem [8]	'h 02E12223	02E12223					
	📺	'h 02F12423	02F12423					
	🕀 🖟 nem[10]	'h 06700613	06700613)
	🕀 🕼 nem[11]	'h 08000313	08000313)
	🕂 🕼 nem[12]	'h 02000513	02000513					
J			5					
Ø	*							1 object selected
	- []							

Figure 2. 8: Simulation waveform

As a result of this overall work, the scheduled operation so far is managed by implementing Hornet Core and run C program on the core, both using Verilator and Cadence Xcellium. Consequently, it is proved that the RISC-V Hornet core is operating accurately and it is ready to be used as the processor core unit of the overall system planned in this project.

3. OVERALL DESIGN ELEMENTS

Since this project is a TUBITAK project, there is a present DMA designed for this particular project. The codes of that DMA are adjusted to this project and connected to the Hornet core. During the beginning of the DMA implementation process, it has been realized that this overall system needs a DPRAM, and a FIFO in order to synthesize the system. However, for ASIC design, neither of these elements are free. Therefore, a research process has taken place during this period of the project. One of the best solutions considered was to implement an open source RAM and FIFO to the system, but the remaining time would not be enough for realizing both RAM and FIFO. As a result, the last decision is made as using non-synthesisable RAM and FIFO to be able to conclude the project, since the main purpose of the project is to implement the DMA; FIFO and RAM are the elements that are necessary to prove that the DMA is operating as it is desired and can be implemented as an ASIC design.

3.1 RAM and FIFO Search for Sythesizing the Design

As it is mentioned in the above section, to realize the system, a configurable RAM and FIFO with a convenient speed for the design is needed. However, in Cadence libraries that are available to use for the project, no RAM or FIFO blocks could be found. For approximately two weeks, a solution to this problem has been searched.

First of all, for the system, a dual port, configurable RAM is compulsory. To have a RAM adjustable to this project, the RAM with the given qualities can be purchased from Cadence, yet this leads a budget problem for the project. However for the FIFO, a purchase cannot be possible since there are no FIFO blocks on sale, as a result, the arising solution to this, designing

a FIFO and a DPRAM in Cadence is considered. Also it is decided that this process would take approximately three months.

For the RAM problem, without any purchasing option, designing and sythesizing an Open RAM has appeared as the second solution. However the researches showed that this design process for an Open RAM would take almost the same time as a graduation project would take, and due to this reason, this option is also eliminated.

During these researches, a memory tool from Cadence: Legato is also found. Nevertheless, this tool also requires purchasing and the budget problem arised for this solution, too.

It should also be considered that this design is promising speed, the main reason that this DMA is implemented as ASIC is due to the need of high speed, which makes the case with FIFO and RAM even more difficult. The speed for a designed FIFO is estimated 1 GHz, and since there is not a complete implementation yet, the definite speed required for the design could not be decided, or the speed of the FIFO which needs to be designed from scratch would be enough or not. Also because of this speed issue, instead of a RAM, using the register blocks in the Cadence libraries are pointless in terms of speed. Nevertheless, to be able to observe the DMA work's accuracy and performance by simulating the system, it is decided to write a FIFO and DPRAM modules in Verilog.

3.2 FIFO

It is decided to use an open FIFO verilog code and modify it according to our project. This code is taken from "Verilog HDL: A Guide to Digital Design and Synthesis, Second Edition" book and the writer of the code is Venkata Ramana Kalapatapu. This FIFO design cosists of multiple registers. This registers are controlled by a control block and this unit makes registers according to FIFO behaviours. The reason this code is chosen that it is synthesizable and customable. It is suitable to change the size of it according to needed requirements.

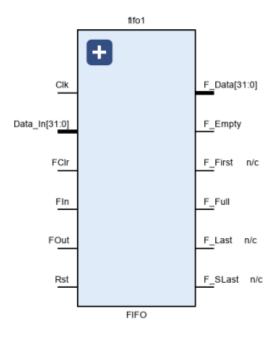
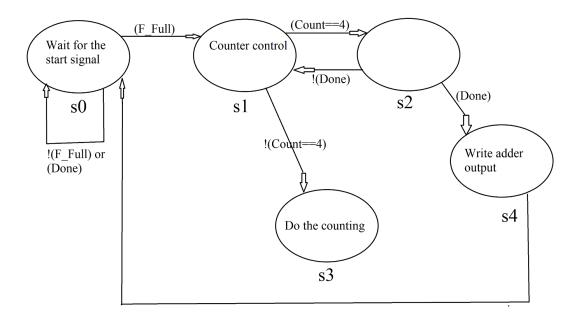


Figure 3. 1: RTL Schematic of FIFO


For this project it is needed to have a FIFO which has 32 bit data length, 4 bit data depth. In order to achieve requirements, FIFO code has been configured according to given requirements. After changing the FIFO verilog code, testbench is written in order to do behavioral simulation. It is approved that FIFO is working correctly as seen in Figure 3.2. Data is written in to FIFO as 5, 9, 25, 550 respectively and data is read from the FIFO correctly as seen in FIFODataOut port in the simulation.

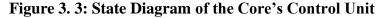

								4
Name	Value		50.000 ns	100.000 ns	150.000 ns	200.000 ns	250.000 ns	300.000 ns 350.000 n
14 Clk	0							
🐫 Rst	1							
> 😻 Data_In[31:0]	550	x	5 X 3	9 25	<u> </u>		550	
况 Fin	0							
14 FCIr	0							
14 FOut	1							
> V F_Data[31:0]	5			x		5	`	25 550 X
16 F_Full	0							
14 F_Empty	1							
16 F_Last	0	1						
16 F_SLast	0	1						
16 F_First	0	1						
> 😽 FIFODatain[31:0]	550	×	5 X :	25			550	
> V FIFODataOut[31:0]	5			x		5		25 550

Figure 3. 2: Behavioral Simulation of FIFO

3.3 Processing Element Adder Core with FIFO

In the overall design of the DMA, there are some processing elements, cores and in order to make a simulation we designed one of them. The core we design includes an adder, an input FIFO, an output FIFO and a control unit. FIFOs have 32 bit width and 4 depth. Which means we can write 4 different numbers with 32 bits. In adder block we wrote a combinential adder but added a clock in order to maintain some delay. Control unit is an finite state machine with five different states. We designed the state diagram of the control unit as seen in Figure 3.3.

In the s0 state, our circuit waits for the start signal in order to start reading from the input FIFO. Also "Done" signal show that all the calulations are done, so when it is high circuit stays in the s0 state. "F-full" signal shows that input FIFO is full which means we can read from it.

In s1 state we checked the counter and if it is 4, current state goes to s2 state, else current state goes to s3 state, keeps counting and gives the adder start signal.

In s2 we checked the done signal of the adder. If it is high our circuit starts to write the result to the output FIFO.

Since our FIFO has 4 different numbers, we needed to read from it four times and save the numbers to registers. So we did the counting, reading from first FIFO s3 state and writing to registers in s1 state.

When count is 4, our current state goes to s4 state and gives output of the adder to the output FIFO.

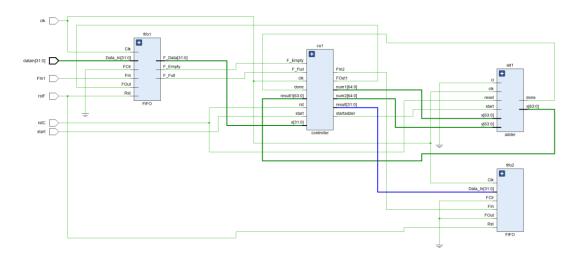
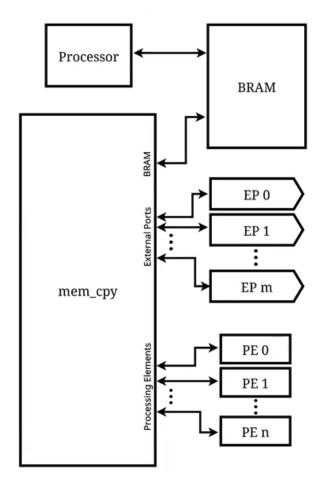


Figure 3. 4: RTL Schematic of The Adder Core

				80.000	ns																			
Name	Value	 . 50	0.000 n	. I	100.00	00 ns	1150	.000 ns		200.00	10 ns	250.	000 ns	. 1	300.000 ns	. 1	350.000 ns	400.000	450.00	00 ns	1 ⁵⁰⁰	.000 n:	• . I	550.000
🕌 dk	0								F					F										
👌 start	x																							
🕌 rstF	0																							
🐫 rstC	0																							
14 Fin1	x																							
8 datain[31:0]	20	х		20	χ 3	0 40	×										50				ه			
FIFO[0:3][31:0]	X,X,X,X										х,	к,х,х								6		61	0,80,3	,х
> 😻 [0][31:0]	x																					6	0	
> 😻 [1][31:0]	x																				ту		80	
> 😻 [2][31:0]	x													×										
> 😻 [3][31:0]	x													х										

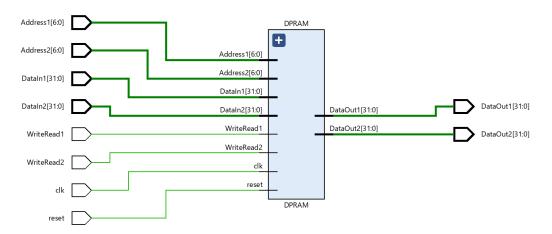

Figure 3. 5: Behavioral Simulation of The Adder Core

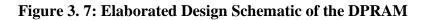
After finishing adder core design and simulation, we managed to replicate cores in the DMA design which we want to implement in ASIC.

3.4 Dual Port RAM (DPRAM)

3.4.1 Dual Port Ram (DPRAM) Design

As it is mentioned repeatedly, the design consists of a DMA block entitled "mem_cpy", a processor core and a dual port RAM. This dual port RAM is crucial to the design, since the communication between the mem_cpy block and the processor is maintained by this DPRAM. This DPRAM makes it possible for the processor and the mem_cpy to execute write and read operations on the memory block at the same time.




Figure 3. 6: Simple Block Schematic of the Overall Design

The research held in the previous steps revealed that an implementation of this DPRAM cannot be realized due to lack of budget and time. Therefore, as a result of this research, it is decided to design a dual port RAM which can be used for the simulation of the system. This DPRAM is written in Verilog hardware description language and it can be synthesized on Cadence by the registers that the library available consists of.

In accordance with this purpose, a DPRAM with the width of 64 and the data length of 32 bits is designed. DPRAM has one clock and reset inputs to activate its running process and two

separate data in and two separate data out ports. One of these data in and data out input-outputs are responsible for the data transfer between the processor, and the other data in and out ports are responsible for the data transfer between the mem_cpy block. DPRAM has also two separate write-read commands: one of them for the processor and the other for the mem_cpy block, and finally with two different address inputs, the design of the DPRAM is completed.

3.4.2 DPRAM Simulation

The design is simulated on both Vivado and Cadence Xcellium to test whether it is working under the desired conditions.

For the simulation in Cadence Xcellium, the necessary files are the HDL code of the design and a testbench code. When these files exists, the simulation process can be started as follows:

First of all, to be able to execute Cadence Xcellium, it is necessary to go to the location over the terminal where both HDL and testbench codes are. After getting to the right location, the command to invoke the Xcellium is,

xrun -access rwc -linedebug -gui tb_DPRAM.v DPRAM.v

When this command is given on the terminal, the Xcellium simulation tool starts on the Virtual Machine and by choosing the desired unit elements, they all can be send to waveform window as it is done.

It can be observed that the data inputs 1 and 2 are written or read according to the information on address inputs 1 and 2, depending to the WriteRead 1-2 inputs based on the reset value in the design.

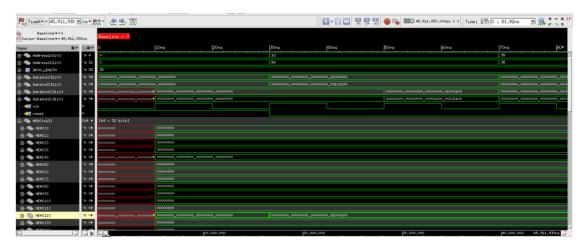


Figure 3. 8: Simulation results of DPRAM on Cadence

3.5 Direct Memory Access (DMA)

The main design of the project, the DMA, is already designed and tested on the FPGA by its own designers and the HDL codes of this DMA is delivered to this project for the ASIC implementation to have a better speed performance. However, since the unit is tested on the FPGA, the related work has been done on Vivado tool and as a result, the libraries specified for Vivado is also used. Since for the ASIC design, the tool needs to be used is Cadence, when synthesizing the mem_cpy unit, the Vivado libraries could not be used. Consequently, the RAM inside of the DMA has been altered and since as mentioned in the previous sections, there are no available RAM blocks in the Cadence libraries available, this RAM is replaced with another RAM which is just like DPRAM, generated by the registers.

Baseline▼=0 Cursor-Baseline▼=0			eline = eA = 0	0								
Name 🔅	Cursor 💁	0			50,000p	100,000ps			150			
	1											
> Reset	1											
⊕… _) ∭ DataIn[50:0]	'd ×	×	87	81	17	23		2		87		
🕂	'd ×	×	2		6		35			19		
⊕… 💼 DataOut[50:0]	'd 0	٥				(17)(•		23		0	
	×											
🔄 🚛 МЕМСО:633	[64 × 51 b⊧	[64 \times 51 bits]										
⊕	'h 00000_0▶	(00000_0000000										
⊕	'h 00000_0▶	(00000_00000000										
⊕	'h 00000_0▶	(00000_00000000										
⊕ ¶ <u>Б</u> , МЕМ[3]	'h 00000_0▶	00000_00000000										
⊕	'h 00000_0▶	(00000_00000000										
🖶 🌆 МЕМСБІ	'h 00000_0▶	(00000_0000000										
⊕	'd 0	0			17						0	
	'h 00000_0▶	000	00_000000	00								
	'h 00000_0▶	000	00_00000	00								

Figure 3. 9: Simulation Results of RAM of Mem_cpy on Cadence

When this RAM issue is also resolved, before moving on, the primary thing to do is synthesizing the mem_cpy block without any other connected units to check whether any other problem would occur or not.

For synthesizing the mem_cpy block, the Cadence Genus tool is used.

Similar to the simulation process, the first step of the synthesis is also going to the correct location where the HDL files exist. When it is reached to the correct location, the basic command "genus" on the terminal would invoke the synthesis tool.

```
[meyraaalpaslan@boron03 odbem_tek]$ genus
TMPDIR is being set to /tmp/genus_temp_7108_boron03.comp.vlsi.labs_meyraaalpasla
n Nja3GL
Cadence Genus(TM) Synthesis Solution.
Copyright 2017 Cadence Design Systems, Inc. All rights reserved worldwide.
Cadence and the Cadence logo are registered trademarks and Genus is a trademark
of Cadence Design Systems, Inc. in the United States and other countries.
Version: 17.11-s014 1, built Mon Oct 09 2017
Options:
         Fri Jun 10 23:04:48 2022
Date:
         boron03.comp.vlsi.labs (x86_64 w/Linux 2.6.32-279.el6.x86_64) (6cores*2
Host:
4cpus*2physical cpus*Intel(R) Xeon(R) CPU X5670 @ 2.93GHz 12288KB) (49357944KB)
         CentOS release 6.3 (Final)
05:
Checking out license: Genus_Synthesis
Loading tool scripts...
Finished loading tool scripts (11 seconds elapsed).
WARNING: This version of the tool is 1705 days old.
agenus:root: 1>
```

Figure 3. 10: Invoking Genus

When the terminal is switched to the Genus, the commands needs to be given are as follows:

- set_db lib_search_path /work/kits/tsmc/lib/90lp/TSMCHOME/digital/Front_End/timing_powe r_noise/NLDM/tcbn90lpbwp14t_211a
- set_db library {tcbn90lpbwp14ttc.lib}

These two commands set the technology library. For this project, tsmc 90nm library is used.

• set_db hdl_vhdl_read_version 2008

Since the DMA is written in VHDL language, it is essential to set the correct VHDL version library.

• set_db hdl_search_path {source}

By this command, the folder to be searched for the design codes is given. Since during this synthesis, the codes are under the folder "source" at the location where Genus is invoked, the name between the curly braces is written as source.

- read_hdl -vhdl sync_ram.vhd
- read_hdl -vhdl mem_cpy.vhd
- read_hdl -vhdl mem_cpy_top.vhd

With these three commands, the necessary code files for the mem_cpy block is read and checked for any kind of errors by the Genus. If there is no problem until this stage, the next step would be elaborating the design by writing the command,

elaborate mem_cpy_top

If Genus elaborates the design without any error on the terminal, the elaborated design could be seen with the command,

• gui_show

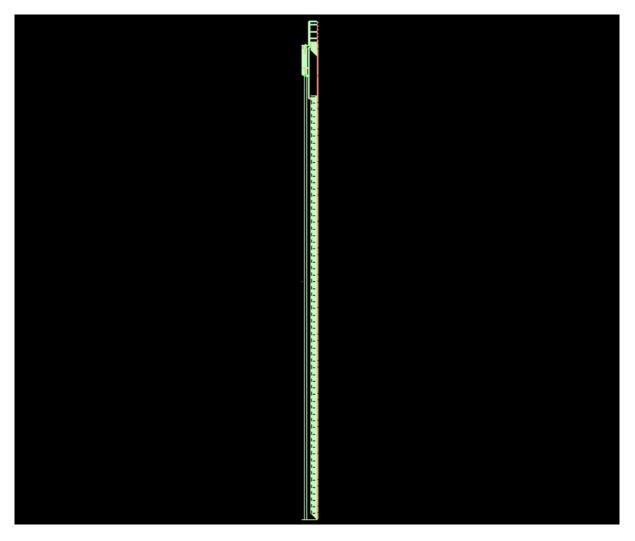


Figure 3. 11: Elaborated Mem_cpy

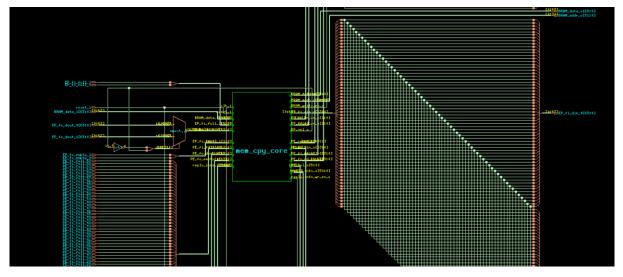
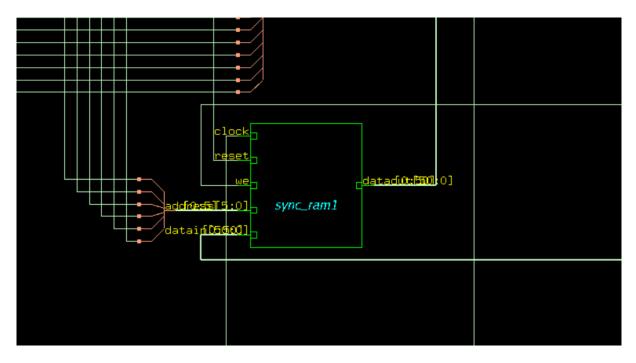



Figure 3. 12: Elaborated Mem_cpy Zoomed In for the Mem_cpy Core

Figure 3. 13: Elaborated Mem_cpy Zoomed In for the RAM of the Block

When the elaboration is also succeeded, the following step would be synthesizing the design. To be able to synthesize the design, a clock needs to be given to the system.

• create_clock -name clk_i -period 2 -waveform {0 1} clk_i

By this command, the clock of the system is entitled clk_i at the -name clk_i part of the command, a clock with a period of 2 ns is given with -period 2 part, -waveform {0 1} defines the rise and fall edge times for one clock period of the clock waveform, and at the last part clk_i is the name of the clock port in the desing is given to the Genus.

syn_gen

This command is to synthesizes the design with the generic gates included in the technology library and optimizes the RTL.

+	+	+			+
Server	Physical Memory	y (MB)	Peak Phys:	ical Memory	(MB)
localhost 1 3	53.1			53.1	
localhost 1 4		ł		47.2	- i
localhost 1 5				72.4	i
localhost 1 7		ł		30.1	- i
localhost 1 6		i		52.9	- i
localhost 1 2		i		74.9	i
localhost 1 0		ł		463.2	i
localhost 1 1		i		30.1	i
+		+			
##>====== Cader	ice Confidential	(Generi	c-Logical)		
##>Main Thread Su	ummary:		· ·		
##>		Tests		Honomi	
##>STEP ##>	Elapsed				
##> ##>G:Initial	0		234214		
##>G:Setup	0	0900	234214	200	
##>G:Secup ##>G:Launch ST	0	-	-	-	
##>G:Launch ST ##>G:Partition	0	-	-	-	
##>G:Partition ##>G:CPN	0	-	-	-	
##>G:Init Power	0	-	-	-	
##>G:Budgeting	0	-	-	-	
##>G:Derenv-DB	0	-	-	-	
##>G:ST loading	0	-	-	-	
##>G:ST toading ##>G:Distributed		-	-	-	
##>G:Assembly	0	-	-	-	
##>G:Const Prop	1	34669	323447	814	
##>G:Cleanup	0	34009	32344/	014	
##>G:Cteanup ##>G:Misc	159	-	-	-	
##>0;HISC ##>	139				
##>Total Elapsed	160				
##>10tat Etapseu	100				
Info : Done sy	wothesizing [SY	NTH-21			
	ynthesizing 'mem		to gener	ic dates	
	e flow.realtime				tun wns
UM: 230		camalig	is copiens	criming. set	-ap mile
C 250	, ,05				
~					

• syn_map

This command is for mapping the block to the cells included in the given technology library.

##>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	34669 34669 	2076 2076 2076 2076	47 47 - - - - 64 64 64 64	776 776 - - - - - - - - - - - - - - - -			
###H:PPEC ###H:Setup ###H:Launch ST ###H:Power ###H:Derenv-DB ###H:Derenv-DB ###H:Doding ###H:Doding ###H:Coding ###H:Coding ###H:Cost Prop ###H:Cost Prop ###H:Cleanup ####:Cleanup ####:Cleanup ####:Cleanup ####:Cleanup ####:Cleanup ###:Cl	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	34669 	2076 2076 2076 2076	47 - - - - - - - - - - - - - - - - - - -	776 - - - - - - - - - - - - - - - - - -			
<pre>##>H:Setup ##>H:Launch ST ##>H:Partition ##>H:Partition ##>H:Partition ##>H:Partition ##>H:Partition ##>H:Dirtibuted ##>I:Dirtibuted########I:Dirtibuted##############I:Dirtibuted#######################</pre>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	19004 19004 19004	2076 2076 2076 2076	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -			
##>H:Launch ST ##>H:Partinon ##>H:Partinon ##>H:Partinon ##>H:Budgeting ##>H:Budgeting ##>H:Distributed ##>H:ST loading ####:ST loading ####:ST loading ##:ST loading ###	0 0 0 0 0 0 0 0 5 0 1 0 140	19004 19004	2076 2076 2076 2076	64 64 64	899 899 899			
<pre>##>H:Partition ##>H:Partition ##>H:Ent Power ##>H:Ent Power ##>H:Ent Power ##>H:Ent Power ##>H:Ent Power ##>H:Ent Power ##>H:Ent Power ##>H:Ent Power ##>H:Ent ##>Total Elapsed ##> ##>Total Elapsed ##> ##>Total Elapsed ##> ##> ##> ##> ##> ##> ##> ##> ##> ##</pre>	0 0 0 0 0 0 0 0 5 0 1 0 140 146	19004 19004	2076	64 64 64	899 899 899			
##>H:CPN ##>H:Dit Power ##>H:Budgeting ##>H:Ditsributed ##>H:ST loading ##>H:ST loading ##>H:ST loading ##>H:ST loading ##>H:ST loading ##>H:ST loading ##>H:ST loading ##>H:ST loading ##>H:ST loading ##>H:ST loading ##>H:ST loading ##>H:ST loading ##>H:ST loading ##>H:ST loading ##> + + + + + + + + + + + + + + + + + +	0 0 0 0 0 0 0 5 0 1 0 140	19004 19004	2076	64 64 64	899 899 899			
<pre>##>H:Enit Power ##>H:Berenv-DB ##>H:Berenv-DB ##>H:Derenv-DB ##>H:DitTibuted ##>H:DitTibuted ##>H:DitTibuted ##>H:DitTibuted ##>H:DitTibuted ##>H:DitTibuted ##>H:DitTibuted ##>H:DitTibuted ##>H:DitTibuted ##>H:DitTibuted ##>H:DitTibuted ##> Localhost boron03.com Localhost 1_12 Localhost 1_13 Localhost 1_14 Localh</pre>	0 0 0 0 0 5 5 0 1 0 140 146	19004 19004	2076	64 64 64	899 899 899			
<pre>###H:Budgeting ###H:Bernv-D8 ###H:ST loading ###H:Distributed ###H:Assembly ###H:Assembly ###H:Assembly ###H:BCI ####H:BCI ####H:BCI ####H:BCI #####:BCI #####:BCI #####:BCI #####:BCI #####:BCI #####:BCI #####:BCI #####:BCI #####:BCI ###:BCI ##</pre>	0 0 0 0 5 0 1 1 0 140	19004 19004	2076	64 64 64	899 899 899			
<pre>###N:ET Loading ###N:ET Loading ###N:ET Loading ###N:EX Loading ###N:Distributed ###N:Rics ###M:Rics ###Total Elapsed ####Total Elapsed ####Total Elapsed ####Total Elapsed ####Total Elapsed ####Total Elapsed ####Total Elapsed ####Total Elapsed ####Total Elapsed ####Total Elapsed ####################################</pre>	0 0 0 5 0 1 0 140 146	19004 19004	2076	64 64 64	899 899 899			
##JH:ST loading ##JH:Distributed ##JH:Assembly ##JH:Const Prop ##JH:Const Prop ##JH:Const Prop ##JH:MECL #	0 0 5 0 1 0 140 146	19004 19004	2076	64 64 64	899 899 899			
<pre>###N:bistributed ###N:bssembly ##M:DP ops ###N:Const Prop ###M:BCI ###M:NBCI ###M:NBCI ###Total Elapsed ##</pre>	0 0 5 0 1 0 140 146	19004 19004	2076	64 64 64	899 899 899			
###N:Assembly ###N:DP ops ###N:Claanup ###N:Elapsed ###N:Elapsed ##=Tal Elapsed ##=Tal Elapsed Host Machi localhost 1_12 localhost 1_13 localhost 1_13 localhost 1_14 localhost 1_1	0 5 0 1 0 140 146	19004 19004	2076	64 64 64	899 899 899			
<pre>###N:CD ops ###N:Const Prop ###N:Clanup ###N:MECI ###M:Misc ### ##Total Elapsed ## Host Machi Localhost boron63.com Server Physica localhost 1.12 localhost 1.13 localhost 1.13 localhost 1.14 localhost 1.14</pre>	5 0 1 0 140 146	19004 19004	2076	64 64 64	899 899 899			
<pre>###R:Cleanup ###R:Cleanup ###R:Cleanup ###I:HBCI ###I:HBCI ##JTAL Elapsed ##JTAL Elapsed Host Machi Localhost boron03.comp Server Physica Localhost 1_12 Localhost 1_13 Localhost 1_14 Localhost 1_14</pre>	1 0 140 146	19004 19004	2076	64 64 64	899 899 899			
###N:RIGC ##>N:RIGC ##>: ##>: ##>: ##>: Host Machi localhost boron03.com Server Physica localhost 1.12 localhost 1.13 localhost 1.13 localhost 1.14 localhost 1.14	1 0 140 146	19004 19004	2076	64 64 64	899 899			
<pre>###HRGI ##>HRGI ##>Total Elapsed ##> Host Machi Localhost boron03.com Server Physica Localhost 1_12 Localhost 1_13 Localhost 1_14 Localhost 1_14</pre>	140 146				899			
###Hisc ##-Total Elapsed ##- Host Machi localhost boron03.com Server Physica localhost 1 12 localhost 1 13 localhost 1 13 localhost 1 10 localhost 1 14	140 146							
<pre>##>- Total Elapsed ##>- Host Machi Localhost boron03.com Localhost 1 12 Localhost 1 12 Localhost 1 13 Localhost 1 13 Localhost 1 14</pre>	140 146							
##>Total Elapsed ##>	146							
Host Hachi localhost boron03.com Server Physica localhost 1 12 localhost 1 9 localhost 1 13 localhost 1 10 localhost 1 10 localhost 1 14								
Host Machi localhost boron03.com Server Physica localhost 1 12 localhost 1 13 localhost 1 13 localhost 1 10 localhost 1 14								
localhost boron03.comp Server Physica localhost 1 12 localhost 1 13 localhost 1 13 localhost 1 10 localhost 1 14	ine	i	CPU Ph	ysical	Memory	(MB)	Peak Physical	Memory (MB)
Server Physica localhost 1 - 12 localhost 1 - 9 localhost 1 - 13 localhost 1 - 10 localhost 1 - 14	.vlsi.	labs	8	8	99.0	i	900	0.4
localhost_1_12 localhost_1_9 localhost_1_13 localhost_1_10 localhost_1_10	al Memo	ry (MB)	Peak	Physica	al Memor	y (MB)	+	
localhost119 localhost113 localhost110 localhost110 localhost114			-+				+	
localhost_1_13 localhost_1_10 localhost_1_14	32.1		1		2.1			
localhost_1_10 localhost_1_14	32.1				2.1			
localhost_1_14	53.8		1		3.8		1	
	54.4		1		4.4			
	65.9		1	65	5.9			
	98.2		1 I	91	8.2		ĺ	
	501.8		i	5	01.8		İ	
localhost_1_8	98.5		1	9	8.5		1	
+++			-+				+	
Info : Done mapping. [S								
: Done mapping 'me	SYNTH-5							
flow.cputime flow.re	SYNTH-5	top'.						

Figure 3. 15: Mapping Report of Mem_cpy

• syn_opt

This command is for performing the optimization at gate level for enhancing the timing on crucial paths and saving area for the paths which are not crucial.

init_area rem_buf rem_inv merge_bi io_phase gate_comp glob_area area_down	2078 2075 2075 2075 2074 2074 2073	99 91 09 00 12 97	0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0
Trick	Calls	Accepts	Attempts	Time(s	ecs)	
undup	0 (0 /	0) 0.18		
	6 (
	76 (63 /		0.24		
merge bi		26 /	26	0.42		
rem_inv_qb	0 (0 /	Θ	0.00		
seq_res_area	50 (0 /	Θ) 27.52		
io_phase	14 (4 /	4	0.04		
gate comp	114 (33 /	33) 2.18		
gcomp_mog	8 (0 /	0) 1.04		
glob_area		4 /) 0.06		
area_down		7 /	7) 0.21		
size_n_buf		0 /) 0.06		
gate_deco_area		0 /) 0.01		
rem_buf	0 (0 /) 0.00		
rem_inv	11 (0 /) 0.02		
merge_bi	2 (0 /) 0.04		
rem_inv_qb	0 (0 /	0) 0.00		

Figure 3. 16: Optimization Report of Mem_cpy

• report_timing : Creates the timing report for the design.

Generated by: Generated on: Module: Operating conditions: Wireload mode: Area mode:	Genus(TM) Jun 05 20 mem_cpy_to NCCOM (ba segmented timing li	Synthes 22 05:2 op lanced_1	sis Solu 25:32 pm tree)							
Path 1: MET (24 ps) Setup Group: clk_i Startpoint: (R) mem_ Clock: (R) clk Endpoint: (F) mem_ Clock: (R) clk	cpy_core_Pl i cpy_core_d	E_sel_re	eg_reg[4]/CP	ta_reg_reg[11]/CF	P->D				
	ure									
Clock Edge:+ 2 Src Latency:+ Net Latency:+ Arrival:= 2	0	ő								
Net Latency:+	0 (I)	0	(I)							
Arrival:= 2	000	0								
Setup:-	57									
Required Time:= 1 Launch Clock:- Data Path:- 1	.943									
Launch Clock:-	0									
Data Path:- 1	918									
Slack:=	24									
				Edge	Cell	Ennout	Land	Tenne	Delaw	A
							4.000	1 1	4 3	1 1
							(16)	(ps)	(ps)	(ps)
mem cov core PE sel rec	real 41/CP			R	(arrival)	3668		A		
mem cpy_core_PE_sel_reg	reg[4]/0		CP->0	F	SDE0D2BWP14T	15	51.6	91	164	16
	Treat the						5110		201	27
mem cpv core a72359/ZN		-	I->ZN	R	INVND2BWP14T	9	31.1	148	108	
mem_cpy_core_g72359/ZN mem_cpv_core_g72246/ZN		2	1->ZN A2->ZN	F	INVND2BWP14T NR2PD2BWP14T	9 4	31.1 13.6	148 62	108 66	33
mem_cpy_core_g72359/ZN mem_cpy_core_g72246/ZN mem_cpy_core_g72226/ZN		-	I->ZN A2->ZN I->ZN	R F R	INVND2BWP14T NR2PD2BWP14T INVND2BWP14T	9 4 5	31.1 13.6 15.5	148 62 80	108 66 64	33
mem_cpy_core_g72359/ZN mem_cpy_core_g72246/ZN mem_cpy_core_g72226/ZN mem_cpy_core_g72187/ZN		-	I->ZN A2->ZN I->ZN A1->ZN	R R F	INVND2BWP14T NR2PD2BWP14T INVND2BWP14T NR2PD2BWP14T	9 4 5 3	31.1 13.6 15.5 10.1	148 62 80 58	108 66 64 42	33 40 44
mem_cpy_core_g72359/ZN mem_cpy_core_g72246/ZN mem_cpy_core_g72226/ZN mem_cpy_core_g72187/ZN mem_cpy_core_g71979/ZN		-	I->ZN A2->ZN I->ZN A1->ZN C2->ZN	R R F R	INVND2BWP14T NR2PD2BWP14T INVND2BWP14T NR2PD2BWP14T A0I222PD2BWP14T	9 4 5 3 1	31.1 13.6 15.5 10.1 3.1	148 62 80 58 114	108 66 64 42 118	33 40 44 50
mem_cpy_core_g72359/ZN mem_cpy_core_g72246/ZN mem_cpy_core_g72226/ZN mem_cpy_core_g7187/ZN mem_cpy_core_g71979/ZN mem_cpy_core_g71951/ZN		-	I->ZN A2->ZN I->ZN A1->ZN C2->ZN A1->ZN	R F F R F	INVND2BWP14T NR2PD2BWP14T INVND2BWP14T NR2PD2BWP14T A0I222PD2BWP14T ND2ND2BWP14T	9 4 5 3 1	31.1 13.6 15.5 10.1 3.1 3.1	148 62 80 58 114 36	108 66 42 118 33	33 44 44 50
mem_cpy_core_g72359/ZM mem_cpy_core_g72246/ZN mem_cpy_core_g72226/ZN mem_cpy_core_g7187/ZN mem_cpy_core_g71951/ZN mem_cpy_core_g71816/ZN		- - - - -	I->ZN A2->ZN I->ZN A1->ZN C2->ZN A1->ZN A2->ZN	R F F F F F R	INVND2BWP14T NR2PD2BWP14T INVND2BWP14T NR2PD2BWP14T A0I222PD2BWP14T ND2ND2BWP14T A0I222PD2BWP14T	9 4 5 3 1 1	31.1 13.6 15.5 10.1 3.1 3.1 3.6	148 62 80 58 114 36 118	108 66 64 42 118 33 77	3: 41 44 51 51
mem_cpy_core_g72359/ZM mem_cpy_core_g72246/ZN mem_cpy_core_g72226/ZN mem_cpy_core_g72187/ZN mem_cpy_core_g71959/ZN mem_cpy_core_g71816/ZN mem_cpy_core_g71806/ZN		· · · ·	I->ZN A2->ZN I->ZN A1->ZN C2->ZN A1->ZN A2->ZN C->ZN	R F R F R F R F	INVND2BWP14T NR2PD2BWP14T INVND2BWP14T NR2PD2BWP14T A01222PD2BWP14T A01222PD2BWP14T A01222PD2BWP14T 0A1211PD2BWP14T	9 4 3 1 1 1	31.1 13.6 15.5 10.1 3.1 3.1 3.6 2.4	148 62 80 58 114 36 118 66	108 66 64 118 33 77 73	3: 4(44 5) 5) 6) 74
mem_cpy_core_g72259/ZN mem_cpy_core_g72246/ZN mem_cpy_core_g72226/ZN mem_cpy_core_g72187/ZN mem_cpy_core_g71979/ZN mem_cpy_core_g71851/ZN mem_cpy_core_g71886/ZN mem_cpy_core_g718806/ZN			I->ZN A2->ZN I->ZN A1->ZN C2->ZN A1->ZN A2->ZN C->ZN A1->ZN	R F R F R F R F R F R	INVND2BWP14T NR2PD2BWP14T INVND2BWP14T NR2PD2BWP14T A0I222PD2BWP14T A0I222PD2BWP14T A0I222PD2BWP14T A0I222PD2BWP14T NR4PD2BWP14T	9 4 5 1 1 1 1	31.1 13.6 15.5 10.1 3.1 3.1 3.6 2.4 3.2	148 62 80 58 114 36 118 66 96	108 66 42 118 33 77 73 62	3: 44 50 59 67 80 81
mem_cpy_core_g72259/2M mem_cpy_core_g72246/2M mem_cpy_core_g72226/2M mem_cpy_core_g712167/2M mem_cpy_core_g7199/2M mem_cpy_core_g71816/2M mem_cpy_core_g71806/2M mem_cpy_core_g71806/2M mem_cpy_core_g71806/2M		· · · ·	I->ZN A2->ZN I->ZN A1->ZN C2->ZN A1->ZN A2->ZN C->ZN A1->ZN A1->ZN A1->ZN	R F R F R F R F R F R F R F	INVND2BWP14T NR2PD2BWP14T INVND2BWP14T NR2PD2BWP14T A0I222PD2BWP14T A0I222PD2BWP14T A0I222PD2BWP14T A0I222PD2BWP14T NR4PD2BWP14T ND2PD2BWP14T	9 4 5 1 1 1 4	31.1 13.6 15.5 10.1 3.1 3.1 3.6 2.4 3.2 12.7	148 62 80 58 114 36 118 66 96 68	108 66 42 118 33 77 73 62 66	33 44 50 51 67 81 81 81 81
mem_cpy_core_g72259/2M mem_cpy_core_g72246/ZN mem_cpy_core_g7226/ZN mem_cpy_core_g7187/ZN mem_cpy_core_g7185/ZN mem_cpy_core_g71816/ZN mem_cpy_core_g71806/ZN mem_cpy_core_g71806/ZN g87972/ZN		· · · · ·	I->ZN A2->ZN I->ZN A1->ZN C2->ZN A1->ZN A2->ZN C->ZN A1->ZN A1->ZN A1->ZN A2->ZN	R F R F R F R F R F R F R F R F R F R F	INVND2BWP14T NR2PD2BWP14T INVND2BWP14T NR2PD2BWP14T AD122PD2BWP14T AD122PD2BWP14T AD122PD2BWP14T AR4PD2BWP14T NR4PD2BWP14T OA1221PD2BWP14T OA1221PD2BWP14T	9 4 5 1 1 1 1 4 5	31.1 13.6 15.5 10.1 3.1 3.6 2.4 3.2 12.7 53.1	148 62 80 58 114 36 118 66 96 68 341	108 66 64 118 33 77 73 62 66 211	33 44 44 59 67 74 80 81 100
em_cpy_core_g72559/2N em_cpy_core_g7226/2N em_cpy_core_g7226/2N em_cpy_core_g72187/2N em_cpy_core_g7187/2N em_cpy_core_g71851/2N em_cpy_core_g71806/2N em_cpy_core_g71806/2N em_cpy_core_g71806/2N em_cpy_core_g71806/2N em_cpy_core_g71806/2N em_cpy_core_g71806/2N em_cpy_core_g71806/2N		· · · · · · ·	I->ZN A2->ZN I->ZN A1->ZN C2->ZN A1->ZN A2->ZN C->ZN A1->ZN A1->ZN A1->ZN A2->ZN A2->ZN A2->ZN	R F R F R F R F R F R F	INVN02BWP14T NR2P02BWP14T INVN02BWP14T NR2P02BWP14T A0I222P02BWP14T A0I222P02BWP14T A0I222P02BWP14T A0I221P02BWP14T A0I221P02BWP14T ND2P02BWP14T ND2P02BWP14T NR2P02BWP14T NR2P02BWP14T	9 4 5 1 1 1 1 4 15 49	31.1 13.6 15.5 10.1 3.1 3.6 2.4 3.2 12.7 53.1 162.0	148 62 80 58 114 36 118 66 96 68 341 400	108 66 64 42 118 33 77 73 62 66 211 330	3: 44 44 50 59 67 74 80 80 100 144
em_cpy_core_g72359/2N em_cpy_core_g72246/2N em_cpy_core_g72226/2N em_cpy_core_g72226/2N em_cpy_core_g71387/2N em_cpy_core_g71318/2N em_cpy_core_g71318/2N em_cpy_core_g71390/2N em_cpy_core_g71390/2N em_cpy_core_g71390/2N em_cpy_core_g71390/2N em_cpy_core_g71290/2N em_cpy_core_g71290/2N em_cpy_core_g71290/2N		-	I->ZN A2->ZN I->ZN A1->ZN C2->ZN A1->ZN A2->ZN A1->ZN A1->ZN A1->ZN A2->ZN A2->ZN A2->ZN A2->ZN	R F R F R F R F R F F F	INVND2EMP14T INVND2EMP14T INVND2EMP14T NR2PD2EMP14T AD1222PD2EMP14T AD122PD2EMP14T AD122PD2EMP14T OA1221PD2EMP14T OA121PD2EMP14T OA121PD2EMP14T AR2PD2EMP14T	9 4 5 3 1 1 1 1 4 49 29	31.1 13.6 15.5 10.1 3.1 3.6 2.4 3.2 12.7 53.1 162.0 98.8	148 62 80 58 114 36 118 66 96 68 341 400 241	108 66 64 42 118 33 77 73 62 66 211 330 269	3: 44 44 50 59 67 74 80 100 144 160
em_cpy_core_g72359/2N em_cpy_core_g72246/2N em_cpy_core_g72226/2N em_cpy_core_g71387/2N em_cpy_core_g71387/2N em_cpy_core_g71367/2N em_cpy_core_g71806/2N em_cpy_core_g71806/2N em_cpy_core_g71806/2N em_cpy_core_g71806/2N em_cpy_core_g71806/2N em_cpy_core_g71806/2N em_cpy_core_g71806/2N em_cpy_core_g71806/2N em_cpy_core_g71806/2N em_cpy_core_g71806/2N		· · · · · · · · · · · · · · · · · · ·	I->ZN A2->ZN I->ZN A1->ZN A1->ZN A1->ZN A2->ZN A2->ZN A1->ZN A1->ZN A2->ZN A2->ZN A2->ZN A2->ZN A2->ZN	RFRFRFRFRFRFFRF	INVND2BMP14T INVND2BMP14T INVND2BMP14T NR2PD2BMP14T NR2PD2BMP14T AD1222PD2BMP14T AD1222PD2BMP14T AD122PD2BMP14T NR4PD2BMP14T NR2PD2BMP14T INVND2BMP14T INVND2BMP14T INVND2BMP14T	9 4 5 3 1 1 1 1 4 49 29 49	31.1 13.6 15.5 10.1 3.1 3.6 2.4 3.2 12.7 53.1 162.0 98.8 12.8	148 62 80 58 114 36 96 68 341 400 241 105	108 66 64 42 118 33 77 73 62 66 211 330 269 98	2 3: 4 4 5 5 5 6 7 7 8 8 8 10 14 16 17
em_cpy_core_g72359/2N em_cpy_core_g72246/2N em_cpy_core_g72226/2N em_cpy_core_g72367/2N em_cpy_core_g71379/2N em_cpy_core_g71351/2N em_cpy_core_g713810/2N em_cpy_core_g71800/2N em_cpy_core_g71800/2N em_cpy_core_g71796/2N g87972/2N em_cpy_core_g85631/2 em_cpy_core_g85631/2 em_cpy_core_g85631/2		· · · · · · · · · ·	I->ZN A2->ZN I->ZN A1->ZN C2->ZN A1->ZN A2->ZN A1->ZN A1->ZN A2->ZN A2->ZN A2->ZN B->ZN B->ZN	RFRFRFRFRFRFFRF	INVN02BWP14T INVN02BWP14T INVN02BWP14T NR2P02BWP14T NR2P02BWP14T A01222P02BWP14T A01222P02BWP14T A01222P02BWP14T NR4P02BWP14T NR4P02BWP14T NR2P02BWP14T INV2P02BWP14T I0A21P02BWP14T I0A22P02BWP14T I0A22P02BWP14T	9 4 5 3 1 1 1 1 4 4 29 29 4	31.1 13.6 15.5 10.1 3.1 3.6 2.4 3.2 12.7 53.1 162.0 98.8 12.8 3.0	148 62 80 58 114 36 96 68 341 400 241 105 39	108 66 64 42 118 33 77 73 62 66 211 330 269 98 40	3: 4(44 5(5) 6; 6; 74 8(8) 10(14) 16(17) 18)
em_cpy_core_PE_sel_reg mem_cpy_core_PE_sel_reg mem_cpy_core_g72559/2N mem_cpy_core_g72259/2N mem_cpy_core_g7226/2N mem_cpy_core_g72187/2N mem_cpy_core_g71817/2N mem_cpy_core_g71817/2N mem_cpy_core_g71819/2N mem_cpy_core_g71890/2N mem_cpy_core_g71890/2N mem_cpy_core_g71890/2N mem_cpy_core_g8563/2/2N mem_cpy_core_g8563/2/2N mem_cpy_core_g8565/2N mem_cpy_core_g8565/2N mem_cpy_core_g8565/2N mem_cpy_core_g8565/2N mem_cpy_core_g8565/2N mem_cpy_core_g8565/2N		- - - - - - - - - - - - - - - - - - -	I - >ZN A2 - >ZN I - >ZN A1 - >ZN A1 - >ZN A1 - >ZN A1 - >ZN A1 - >ZN A1 - >ZN A1 - >ZN A1 - >ZN A2 - >ZN A2 - >ZN A2 - >ZN B - >ZN A1 - >ZN A2 - >ZN A1 - >ZN A2 - >ZN A1 - >ZN A2 - >ZN A1 - >ZN A2 - >ZN A1 - >ZN	RFRFRFRFRFRFRFRFRF	INVND2BMP14T INVND2BMP14T INVND2BMP14T NR2PD2BMP14T A0I222PD2BMP14T A0I222PD2BMP14T A0I222PD2BMP14T A0I222PD2BMP14T NR4PD2BMP14T ND2PD2BMP14T NR2PD2BMP14T INVND2BMP14T INVND2BMP14T INVND2BMP14T INVND2BMP14T IOAI21PD2BMP14T IOAI21PD2BMP14T	9 4 5 3 1 1 1 1 4 4 5 49 29 29 4 1	31.1 13.6 15.5 10.1 3.1 3.1 3.2 4 3.2 12.7 53.1 162.0 98.8 12.8 3.0 3.7	148 62 80 58 114 36 96 68 341 400 241 105 39 124	108 66 64 42 118 33 77 73 62 66 211 330 269 98 40 64	2: 44 44 55 55 67 74 86 88 100 142 161 174 183 183 183 199

Figure 3. 17: Timing Report of Mem_cpy

These reports are included in this report to create a starting point for the future works related this DMA.

4. OVERALL DIRECT MEMORY ACCESS (DMA) SYSTEM

Overall system includes HORNET RISC-V Core, one dual port ram for instruction memory, one dual port ram for data memory and programming element. These module are connected together as seen in Figure 4.1.

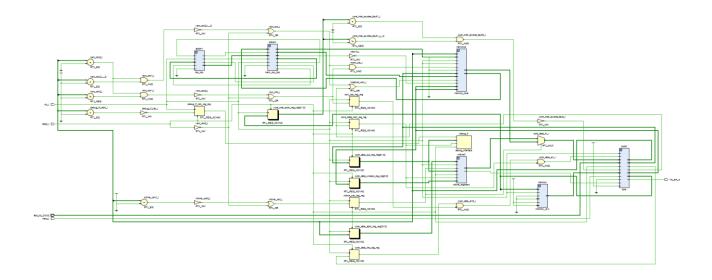


Figure 4. 1: Overall System

4.1 Overall System Simulation

In order to test the system, a C code is written as seen below.

```
#include "mem_cpy.h"
#include <stdint.h>
int main(void)
>{
unsigned long long request[2]={0x000000000000, 0x00000000002};
unsigned short request_size = 16;
send_to_PE(1, request, request_size);
}
```

Figure 4. 2: C Code for the Simulation

In this code, send_to_PE command, reads the data in the request array from the data memory and sends it to programming element. This code has been compiled by GCC Compiler to be compliant with RISC-V processor, it is loaded to instruction memory. Then the simulation is ran. It is seen from the instruction memory that, C code loading has been succesfull. It is also seen that data memory works but since the addressing of the processor has its own algorithm, control address for DMA could not be given correctly.

Name	Value	55,148,370 ps	1	55,148,372 ps	1	55,148,374 ps		55,148,376 ps		55,148,378 ps	1	55,148,380 ps
🐻 reset_i	1											
🐌 dk_i	0											
le irq_ack_o	0											
👌 meip_i	0											
> 😻 fast_irq_i[15:0]	0									0		
> 😻 mem(0:2047][31:0]	8471,42908388	8471,429083880	3,66611,113246	319,4261478675	,8465955,336210	11,4272170531,	4273218595,427	4266659,1258485	1,4274267907,1	5179811,839054	7,4270073603,1	5179811,16779155

Figure 4. 3: RISC-V Core Instruction Memory Simulation

> 😻 [2033][31:0]	X			Х		
> 😻 [2034][31:0]	х		х	X	8188	
> 😻 [2035][31:0]	х			x		
> 😻 [2036][31:0]	x			x		
> 😻 [2037][31:0]	х	x	χ		1	
> 😻 [2038][31:0]	x	x	X		0	
> 😻 [2039][31:0]	х		x		2	
> 😻 [2040][31:0]	х		х		0	
> 😻 [2041][31:0]	х			х		
> 😻 [2042][31:0]	х	X	X		х	
> 😻 [2043][31:0]	x			x		
> 😻 [2044][31:0]	х			х		
> 😻 [2045][31:0]	x	×			8188	
> 😻 [2046][31:0]	х	x	X		0	X

In this simulation, it is seen that DMA works but RISC-V core has an algorithm that changes the data memory adress. Since it is crucial to have the same address for control in order to DMA to work correctly, DMA could not read the control adress. Since all the system elements have been tested seperately, there is no reason for this system to not to work after adressing core problem is solved.

4.2 Overall System Synthesis

As the final step of the project, since with the previous work it could be seen that the DMA is working and the only problem is the address problem which is related only to the processor, not to the DMA, the overall system is synthesized on Genus by Cadence. To be able to start synthesis, as with synthesizing only the DMA block mem_cpy, it is necessary to be at the accurate location on the terminal where the files exist for invoking Genus. The commands are exactly the same and the only differences are the names of the HDL files and since for a more organized folder arrangement the processor core is seperated to its own units, at the commands section there are commands which changes the folders to look for the HDL files.

When Genus is invoked, the commands to write are as follows,

 set_db lib_search_path /vlsi/kits/xfab/xkit/xh018/diglibs/D_CELLS_HD/v3_0/liberty_LPMO S/v3_0_0/PVT_1_80V_range

Differing from the previous mem_cpy synthesis, for this operation the technology library is changed to another library, as the path of this library is given in this command. It should be acknowledged that this change with the library is not related to the DMA, the tsmc 90nm technology library is capable of synthesizing the DMA. This change is done only because the adder core had some instances that were not covered in the tsmc 90nm library.

set_db library { D_CELLS_HD_LPMOS_fast_1_98V_125C.lib}

The name of the new technology library is given to the Genus by this command. The remaining commands are the same as mem_cpy synthesis commands, only the name of the code files and the name of the folders for the codes to be looked for are changed.

- set_db hdl_search_path {source}
- set_db hdl_vhdl_read_version 2008

- read_hdl -vhdl sync_ram.vhd
- read_hdl -vhdl mem_cpy.vhd
- read_hdl -vhdl mem_cpy_top.vhd
- set_db hdl_search_path {core}
- read_hdl ALU.v
- read_hdl control_unit.v
- read_hdl core.v
- read_hdl csr_unit.v
- read_hdl forwarding_unit.v
- read_hdl hazard_detection_unit.v
- read_hdl imm_decoder.v
- read_hdl load_store_unit.v
- set_db hdl_search_path {muldiv}
- read_hdl divider_32.v
- read_hdl MULDIV_ctrl.v
- read_hdl MULDIV_in.v
- read_hdl MUL_DIV_out.v
- read_hdl multiplier_32.v
- read_hdl MULDIV_top.v
- set_db hdl_search_path {peripherals}
- read_hdl debug_interface.v
- read_hdl loader.v
- read_hdl memory_2rw.v

- read_hdl mtime_registers.v
- read_hdl uart.v
- set_db hdl_search_path {source}
- read_hdl FIFO_MEM_BLK.v
- read_hdl FIF0.v
- read_hdl adder.v
- read_hdl adder_top.v
- read_hdl memory_dual.v
- read_hdl top_top.v
- set_db hdl_search_path {processor}
- read_hdl barebones_top.v
- elaborate barebones_top

If there is no error until this stage, it means that the elaboration is successfully done. The command to see the elaborated design is,

• gui_show

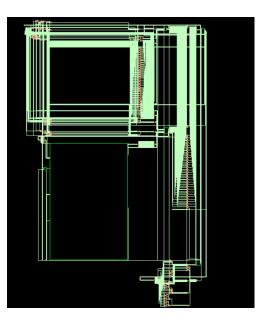


Figure 4. 6: Elaborated Overall System

Since the overall system is extremely large, by zooming in, the mem_cpy block entitled as odbem, DPRAM, processor core and the adder core could be observed.

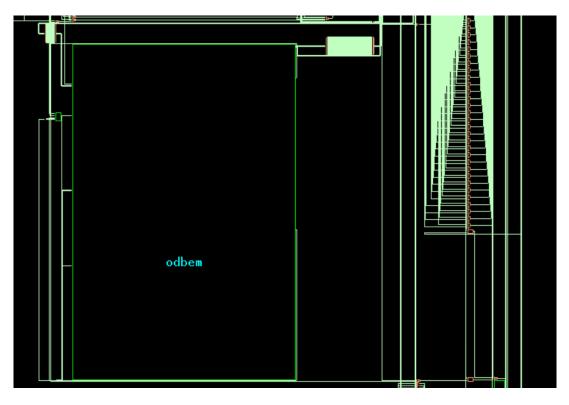


Figure 4. 7: Mem_cpy Block in the Overall System

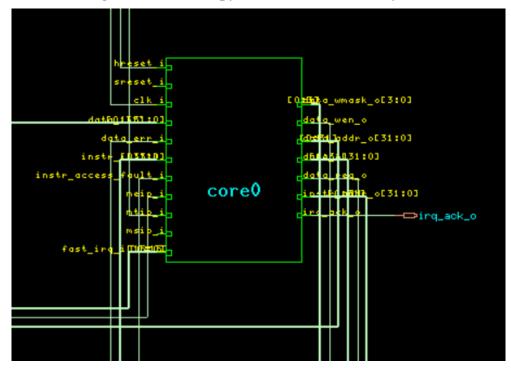
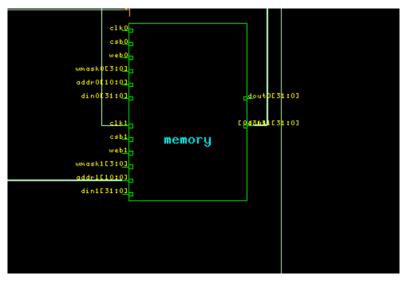



Figure 4. 8: Elaborated Processor Core in the Overall System

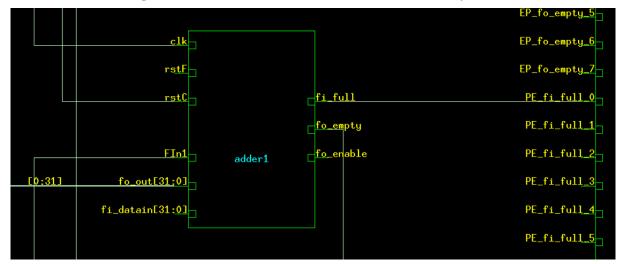
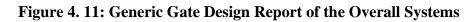



Figure 4. 10: Adder Core in the Overall System

Since the elaboration is successfully done, the system is ready for the synthesis. The commands for the synthesis are as follows,

- create_clock -name clk_i -period 2 -waveform {0 1} clk_i
- syn_gen

##>===== Cadence (. (Generi	.c-Logical)		
##>Main Thread Summa					
##>					
	Elapsed				
##>					
##>G:Initial		285373	13587884	1363	
##>G:Setup	0	-	-	-	
##>G:Launch ST	0	-	-	-	
##>G:Partition	0	-	-	-	
##>G:CPN	Θ	-	-	-	
##>G:Init Power	Θ	-	-	-	
##>G:Budgeting	0	-	-	-	
##>G:Derenv-DB	0	-	-	-	
##>G:ST loading	Θ	-	-	-	
##>G:Distributed	Θ	-	-	-	
##>G:Assembly	0	-	-	-	
##>G:Const Prop	28	1083101	21059152	4283	
##>G:Cleanup	0		-	-	
##>G:Misc	9217				
##>					
##>Total Elapsed	9286				
<pre>##> Info : Done synthe : Done synthe flow.cputime fl UM: 11797</pre>	esizing. [S esizing 'ba	(NTH-2] rebones_t e timing	op' to gene	eric gates. timing.setup.wn	is snapshot syn_generic

• syn_map

##>===================================	partitions	in total):	- cauence	Contracticita	r (nappi	ng-Logical)				
##> ##>PARTITION ##>	1	6	2	3	10	4	5	9	7	
##>PRE WNS	- 4261	-559	-1500	- 1895	-831	-559	-559	-324	-347	-55
##>PRE_TNS	5483797	5093308	1875851	1535682	115014	5436965	5382400	5074952	5144167	494631
##>PRE_CNT	104182	149389	156377	155863	99956	75276	75418	75240	75240	7312
##>PRE_PORT_CNT	110052	75161	66149	66079	67745	9695	9824	9565	9552	93
##>PRE_AREA ##>	1500149	4753998	2238122	2246183	1440631	1601354	1605190	1600944	1600944	15559
##>POST WNS	- 4526	-616	-1990	-2213	-740	- 62 4	-601	-584	- 655	- 6(
##>P0ST_TNS	7597281	7911146	3888083	3341433	594908	8385339	8191900	7723092	8042968	76109
##>P0ST_CNT	86091	133828	126691	98692	42052	59475	58900	59394	59332	571
##>P0ST_P0RT_CNT	110052	75161	66149	66079	67745	9695	9824	9565	9552	93.
##>P0ST_AREA ##>	1115555	5378238	1823670	1543833	785868	1365182	1350993	1354799	1352459	13118
##>M:Structuring	336	253	493	587	338	210	196	173	176	15
##>M:Mapping	2252	1363	1290	1018	686	358	369	356	356	34
##>M:Global Incr	133	244	224	223	78	129	120	115	103	1
##>M:Misc	237	488	269	273	165	141	150	135	142	1
##>Total Elapsed	2958	2348	2276	2101	1267	838	835	779	777	73
##>===================================										
##>										
##>STEP	Elapsed		Area							
##>										
##>M:Initial	26		21059152							
##>M:PREC	5		21059152							
##>M:Setup	11									
##>M:Launch ST			-	8666						
##-N.D.setition	8	-	-	8666						
	87	-	-	8666 8666						
##>M:CPN	87 42	-		8666 8666 8666						
##>M:CPN ##>M:Init Power	87 42 0	-	-	8666 8666 8666 8666						
##>M:CPN ##>M:Init Power ##>M:Budgeting	87 42 0 93	-	-	8666 8666 8666 8666 8666						
##>M:CPN ##>M:Init Power ##>M:Budgeting ##>M:Derenv-DB	87 42 0 93 25	-	-	8666 8666 8666 8666 8666 8666 8666						
##>M:CPN ##>M:Init Power ##>M:Budgeting ##>M:Derenv-DB ##>M:ST loading	87 42 0 93 25 1	-	-	8666 8666 8666 8666 8666 8666 8666						
##>M:CPN ##>M:Init Power ##>M:Budgeting ##>M:Derenv-DB ##>M:ST loading ##>M:Distributed	87 42 0 93 25 1 3202		-	8666 8666 8666 8666 8666 8666 8666 866						
##>M:CPN ##>M:Init Power ##>M:Budgeting ##>M:Derenv-DB ##>M:ST loading ##>M:Distributed ##>M:Assembly	87 42 0 93 25 1 3202 242		-	8666 8666 8666 8666 8666 8666 8666 866						
##>M:CPN ##>M:Init Power ##>M:Budgeting ##>M:Derenv-DB ##>M:ST loading ##>M:Distributed ##>M:Assembly ##>M:DP ops	87 42 0 93 25 1 3202 242 242 175	815751	- - - - - - - - - - - - - - - - - - -	8666 8666 8666 8666 8666 8666 8666 866						
##>M:CPN ##>M:Init Power ##>M:Budgeting ##>M:Sucgeting ##>M:ST loading ##>M:Distributed ##>M:Assembly ##>M:Const Prop ##>M:Const Prop	87 42 0 93 25 1 3202 242 175 0	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	8666 8666 8666 8666 8666 8666 8666 866						
##>M:CPN ##>M:Init Power ##>M:Budgeting ##>M:Derenv-DB ##>M:ST loading ##>M:ST loading ##>M:Ssembly ##>M:Assembly ##>M:Const Prop ##>M:Ceanup	87 42 0 325 1 3202 242 175 0 3213	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	8666 8666 8666 8666 8666 8666 8666 866						
##>M:CPN ##>M:Init Power ##>M:Budgeting ##>M:Derenv-DB ##>M:ST loading ##>M:Oistributed ##>M:Distributed ##>M:Const Prop ##>M:Cleanup ##>M:Cleanup ##>M:EL	7 42 0 93 25 1 3202 242 175 0 3213 0	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	8666 8666 8666 8666 8666 8666 8666 866						
<pre>##>M:Partition ##>M:Init Power ##>M:Init Power ##>M:Budgeting ##>M:Derenv-DB ##>M:Distributed ##>M:Distributed ##>M:DP ops ##>M:Const Prop ##>M:Cleanup ##>M:Cleanup ##>M:MBCI ##>M:MBCI</pre>	87 42 0 325 1 3202 242 175 0 3213	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	8666 8666 8666 8666 8666 8666 8666 866						
<pre>##>M:CPN ##>M!Init Power ##>M!Budgeting ##>M:Bucrenv-DB ##>M:ST loading ##>M:ST loading ##>M:Distributed ##>M:Assembly ##>M:CP ops ##>M!Const Prop ##>M:Cleanup ##>M:BCI</pre>	7 42 0 93 25 1 3202 242 175 0 3213 0	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	8666 8666 8666 8666 8666 8666 8666 866						

Figure 4. 12: Mapping Report Part 1 of Overall System

##PBS-Mapping-Logical Partitions:11 Stage Total:7020 Longest:2958 Average:1491 PBS Index:0.50
##>

| Host | Machine | CPU | Physical Memory (MB) | Peak Physical Memory (MB) | ····· +-|localhost | boron03.comp.vlsi.labs | 8 | 8202.6 14603.6 - 1 Server | Physical Memory (MB) | Peak Physical Memory (MB) | ----

 localhost_1_18
 215.9
 215.9

 localhost_1_19
 173.5
 173.5

 localhost_1_17
 407.2
 407.2

 localhost_1_21
 405.1
 405.1

 localhost_1_15
 666.1
 666.1

 localhost_1_0
 4696.9
 10809.9

 localhost_1_16
 141.3
 141.3

 localhost_1_20
 297.3
 297.3

 10809.9 -----+----: Done mapping. [SYNTH-5] : Done mapping 'barebones_top'. Info _

Figure 4. 13: Mapping Report Part 2 of Overall System

syn_opt

<pre># Incremental Opt</pre>	imization F	Runtime Sun	mary:									
	Step	Elapsed Ti	ime(s) Ru	intime(s)	WNS(TNS(ps		CELL ARE		NET AREA	Leakage Power
****	*********	********	********	*******	*****	******	********	********	******	*****		****************
	INIT		0.0%)	0 (0.6)%) NOT_	TIMED	NOT_TI	IMED	18326070		1239406	NA
	OUT_OPTO		0.3 %)	33 (0.3			696539	9746	18331110		1239548	NA
SC	ORE INIT	0 (6	0.0%)	0 (0.6)%) -566	7.7	696539	9746	18331110		1239548	NA
	WNS_OPTO	233 (2		231 (2.2			697275		18335402		1239608	NA
	TNS OPTO	586 (5	5.3 %)	584 (5.6	5%) -557	9.6	694078	8195	18333535		1239786	NA
	FIRST_ST	1653 (1	15.0%)	990 (9.6		TIMED	NOT_TI		18217160		1222065	NA
	INIT	32 (0	0.3 %)	31 (0.3			716691	046	18217160		1222065	NA
	OUT_OPTO	8 (6	0.1 %)	7 (0.1			716661	977	18226242		1222298	NA
MULTI	BIT_OPTO	1 (6	0.0 %)	1 (0.6)%) -692	5.4	716661	.977	18226242		1222298	NA
SC	ORE INIT	0 (6	0.0 %)	0 (0.0)%) -692	5.4	716661	977	18226242		1222298	NA
	WNS OPTO	1984 (1	18.0%)	1980 (19.	1%) -547	2.6	673951	335	18252321		1223540	NA
	TNS OPTO	122 (1	1.1 %)	121 (1.2	%) -547	2.6	673203	933	18249820		1223624	NA
	INIT	2 (6	0.0 %)	1 (0.6)%) -547	2.6	673203	933	18249826		1223624	NA
LA	TCH OPTO	0 (0	0.0 %)	0 (0.6)%) -547	2.6	673203	933	18249826		1223624	NA
SC	ORE INIT	0 (0	0.0 %)	0 (0.0)%) -547	2.6	673203	933	18249826		1223624	NA
	WNS OPTO	2506 (2	2.7%)	2500 (24.	1%) -535	5.6	661903	103	18253989		1223784	NA
	TNS OPTO	382 (3		381 (3.7		5.6	658073	184	18241480		1223788	NA
WNS	CRR OPTO	3494 (3		3486 (33.		6.4	631974		18252950		1224801	NA
	DRC OPTO		0.0 %)	0 (0.0		6.4	631974		18252985		1224802	NA
*****	*********											
					********	*********	*********	*********	********	*****	*****	****************
		11048		L0364					********	*******	********	****************
Done incremental		11048							*****	******	********	*********
Done incrementall	y optimizir	11048 Ig.	1	10364							*******	*******
##>=======	y optimizir	11048 Ig.	Cadeno	10364							****	*******
	y optimizir	11048 ng. ; in total)	Cadeno	10364							****	*****
##>>==================================	y optimizir	11048 ng. ; in total)	Cadeno	10364							****	******
##>===================================	y optimizir partitions 9	11048 ig. ; in total) 4	Cadeno : 0	10364 ce Confiden 3	tial (Iopt 10	-Logical) 5	6	8	7	2	****	
##>===================================	y optimizir partitions 9 -2494	11048 ig. ; in total) 4 -2066	Cadeno : 0 -4526	10364 ce Confiden 3 -2119	tial (Iopt 10 -1952	-Logical) 5 -1764	6 -2374	8 -1851	7 - 969	2 infinity	****	
##>===================================	y optimizir partitions 9 -2494 46359074	11048 ig. ; in total) 4 -2066 348351	Cadeno : - 4526 4739870	10364 ce Confiden 3 -2119 11055410	itial (Iopt 10 -1952 21373446	-Logical) 5 -1764 438951	6 -2374 107852	8 -1851 24993539	7 - 969 13875249	2 infinity 0	****	
##>ST Summary (11 ##>	y optimizin partitions 9 -2494 46359074 86106	11048 ig. in total) 4 -2066 348351 82716	Cadeno : - 4526 4739870 41181	10364 ce Confiden 3 -2119 11055410 85585	tial (Iopt 10 -1952 21373446 86102	-Logical) 5 -1764 438951 62807	-2374 107852 50703	8 - 1851 24993539 86107	7 -969 13875249 86107	2 infinity 0 74554	****	
##>=T Summary (11 ##>= ##=PARTITION ##>= ##==PRE_WNS ##==PRE_TNS ##==PRE_CNT ##==PRE_PORT_CNT	y optimizir partitions 9 -2494 46359074 86106 39862	11048 ng. in total) 4 -2066 348351 82716 59805	Cadeno Ca	10364 ce Confiden 3 -2119 11055410 85585 37110	tial (Iopt 10 -1952 21373446 86102 26566	-Logical) 5 -1764 438951 62807 31222	6 -2374 107852 50703 29835	8 -1851 24993539 86107 46438	7 - 969 13875249 86107 38071	2 infinity 0 74554 65586	****	
##>===================================	y optimizin partitions 9 -2494 46359074 86106	11048 ig. in total) 4 -2066 348351 82716	Cadence : 	10364 ce Confiden 3 -2119 11055410 85585	tial (Iopt 10 -1952 21373446 86102	-Logical) 5 -1764 438951 62807	-2374 107852 50703	8 - 1851 24993539 86107	7 -969 13875249 86107	2 infinity 0 74554	****	
##>===================================	y optimizin partitions -2494 46359074 86106 39862 2058023	11048 ig. in total) 4 -2066 348351 82716 59805 1120983	Cadeno Cadeno - 4526 4739870 41181 240 840005	10364 ce Confiden 3 -2119 11055410 85585 37110 1855050	10 -1952 21373446 86102 26566 1987947	-Logical) 5 -1764 438951 62807 31222 831737	6 -2374 107852 50703 29835 639605	8 -1851 24993539 86107 46438 1989012	7 -969 13875249 86107 38071 1995483	2 infinity 0 74554 65586 4029619		
##>	y optimizin partitions 9 -2494 46359074 86106 39862 2058823 -1192	11048 ig. ; in total) 4 -2066 348351 82716 59805 1120983 -1951	Cadeno Cadeno 1: 0 -4526 4739870 41181 240 840005 -3941	10364 ce Confiden 3 -2119 11055410 85585 37110 1855050 -1587	10 10 -1952 21373446 86102 26566 1987947 -773	-Logical) 5 -1764 438951 62807 31222 831737 -1516	6 -2374 107852 50703 29835 639605 -1594	8 -1851 24993539 86107 46438 1989012 -1122	7 -969 13875249 86107 38071 1995483 -637	2 infinity 0 74554 65586 4029619 infinity		
##>ST Summary (11 ##>ST Summary (11 ##> ##>PRE_TNS ##>PRE_TNS ##>PRE_CNT ##>PRE_CNT ##>PRE_CNT ##>PRE_REA ##>-0ST_WNS ##>POST_WNS	y optimizir partitions 9 -2494 46359074 86106 39862 2058023 -1192 27633212	11048 ig. i in total) 4 -2066 348351 82716 59805 1120983 -1951 280847	Cadeno Cadeno Cadeno -4526 4739870 41181 240 840005 -3941 3473075	10364 ce Confiden 3 -2119 11055410 8585 37110 1855050 -1587 10102301	tial (Iopt 10 -1952 21373446 86102 26566 1987947 -773 14939186	-Logical) 5 -1764 438951 62807 31222 831737 -1516 372698	6 - 2374 107852 50703 29835 639605 - 1594 78672	8 -1851 24993539 86107 46438 1989012 -1122 19336003	7 -969 13875249 86107 38071 1995483 -637 12277410	2 infinity 0 74554 405586 4029619 infinity 0		
##>===================================	y optimizin partitions 9 -2494 46359074 86106 39862 2058023 -1192 27623212 79662	11048 ig. in total) -2066 348351 82716 59805 1120983 -1951 280847 78936	Cadeno Cadeno - 4526 4739870 41181 240 840005 - 3941 3473075 38644	10364 ce Confiden 3 -2119 11055410 85585 37110 1855050 -1587 10102301 79624	10 -1952 21373446 86102 26566 1987947 -773 14939186 84183	-Logical) 5 -1764 438951 62807 31222 831737 -1516 372698 60397	6 -2374 107852 50703 29835 639605 -1594 78672 49926	8 -1851 24993539 86107 46438 1989012 -1122 19336003 85042	7 - 969 13875249 86107 38071 1995483 - 637 12277410 84951	2 infinity 65586 4029619 infinity 0 74554		
##>ST Summary (11 ##>PRATITION ##>PRE WNS ##>PRE CNT ##>PRE CNT ##>PRE CNT ##>PRE PORT_CNT ##>PRS AREA ##>POST_NNS ##>POST_CNT ##>POST_CNT	y optimizir partitions 9 -2494 46359074 86106 39862 2058023 -1192 27623212 79662 39862	11048 ig. i in total) 4 -2066 348351 82716 59805 1120983 -1951 280847 78936 59805	Cadeno Cadeno	10364 ce Confiden 3 -2119 11055410 85585 37110 1855050 -1587 10102301 79624 37110	10 -1952 21373446 86102 26566 1987947 -773 14939186 84183 26566	-Logical) 5 -1764 438951 62807 31222 831737 -1516 372698 60397 31222	6 -2374 107852 50703 29835 639605 -1594 78672 49926 29835	8 -1851 24993539 86107 46438 1989012 -1122 19336003 85042 46438	7 -969 13875249 86107 1995483 -637 12277410 84951 38071	2 infinity 0 74554 65586 4029619 infinity 0 74554 65586		
##>===================================	y optimizin partitions 9 -2494 46359074 86106 39862 2058023 -1192 27623212 79662	11048 ig. in total) -2066 348351 82716 59805 1120983 -1951 280847 78936	Cadeno Cadeno - 4526 4739870 41181 240 840005 - 3941 3473075 38644	10364 ce Confiden 3 -2119 11055410 85585 37110 1855050 -1587 10102301 79624	10 -1952 21373446 86102 26566 1987947 -773 14939186 84183	-Logical) 5 -1764 438951 62807 31222 831737 -1516 372698 60397	6 -2374 107852 50703 29835 639605 -1594 78672 49926	8 -1851 24993539 86107 46438 1989012 -1122 19336003 85042	7 - 969 13875249 86107 38071 1995483 - 637 12277410 84951	2 infinity 65586 4029619 infinity 0 74554		
##>ST Summary (11 ##>PARTITION ##>PARTITION ##>PRE WNS ##>PRE TNS ##>PRE FORT_CNT ##>PRE AREA ##>- ##>OST_WNS ##>POST_TNS ##>POST_CNT ##>POST_CNT ##>POST_CNT ##>POST_CNT	y optimizin partitions 9 -2494 46359074 66106 39862 2058023 -1192 2763212 79662 39862 2041923	11048 ig. i in total) 4 -2066 348351 82716 59805 1120983 -1951 280847 78936 59805 1091755	Cadenci : -4526 4739870 41181 240 840005 -3941 3473075 38644 240 820769	10364 ce Confiden 2119 11055410 85585 37110 1855050 -1587 10102301 79624 37110 1838611	tial (Iopt -1952 21373446 86102 26566 1987947 -773 14939186 84183 26566 1979081	-Logical) 5 -1764 438951 62807 31222 831737 -1516 372698 60397 31222 812398	6 -2374 107852 50703 29835 639605 -1594 78672 49926 29835 634389	8 -1851 24993539 86107 46438 1989012 -1122 19336003 85642 46438 1989645	7 -969 13875249 86107 38071 1995483 -637 12277410 84951 38071 1993340	2 infinity 0 74554 65586 4029619 infinity 0 74554 65586 4029224		
##>===================================	y optimizir partitions 9 -2494 46359074 86106 39862 2058023 -1192 27623212 79662 39862	11048 ig. i in total) 4 -2066 348351 82716 59805 1120983 -1951 280847 78936 59805	Cadeno Cadeno	10364 ce Confiden 3 -2119 11055410 85585 37110 1855050 -1587 10102301 79624 37110	10 -1952 21373446 86102 26566 1987947 -773 14939186 84183 26566	-Logical) 5 -1764 438951 62807 31222 831737 -1516 372698 60397 31222	6 -2374 107852 50703 29835 639605 -1594 78672 49926 29835	8 -1851 24993539 86107 46438 1989012 -1122 19336003 85042 46438	7 -969 13875249 86107 1995483 -637 12277410 84951 38071	2 infinity 0 74554 65586 4029619 infinity 0 74554 65586		

##>Main Thread Summary:

Figure 4. 14: Optimization Report Part 1 of Overall System

##>STEP	Elapsed		Area		
##>					
##>I:Initial	22	825595	18326070	8200	
##>I:Setup	10	-	-	8666	
##>I:Launch ST	8	-	-	8666	
<pre>##>I:Partition</pre>	66	-	-	8666	
##>I:CPN	0	-	-	-	
##>I:Init Power	0	-	-	8666	
##>I:Budgeting	95	-	-	8666	
##>I:Derenv-DB	59	-	-	8666	
	1	-	-	8666	
	1401	-	-	8666	
##>I:Assembly	8	-	-	8666	
##>I:Const Prop	0	-	-	-	
##>I:Cleanup	11061	803738	18252985	65 0 4	
##>I:Misc	0				
##>					
##>Total Elapsed					
##>======					
##PBS-Iopt-Logical ##>=====					

: Done incrementally optimizing 'barebones_top'.

Figure 4. 15: Optimization Report Part 1 of Overall System

• report_timing

Timing Point	Flags	Arc	Edge	Cell	Fanout	Load (fF)	Trans (ps)	Delay (ps)	Arrival (ps)

core0/IDEX_preg_rs1_reg[4]/C		÷	R	(arrival)		-	0	-	
	1.0	C->Q	F	DFRRHDX1	5	29.0		429	42
		A->0	R	INHDX1	1	5.8	62	72	50
core0/FWD_UNIT/g83/Q	0.5	D->Q	R	AND5HDX2	2	10.6	108	212	71
		C->0	F	N0312HDX1		11.5	64	73	78
core0/FWD_UNIT/g8435/Q	1.7	B->Q	F	AND2HDX4	4	44.4	73	231	101
core0/g137267/Q	-	A->0	R	INHDX0	1	6.4	89	89	110
core0/g40/Q	12	B->Q	R	AND2HDX2	1	36.6	107	168	127
core0/fopt41/Q	-	A->0	F	INHDX6	4	83.2	74	82	135
core0/fopt262874/Q		A->0	R	INHDX8	18	125.1	93	88	144
core0/g136505/Q		A->0	F	AN22HDX1	1	7.2	111	97	154
core0/g261880/Q		C->0	R	NA22HDX1	2	12.0	100	110	165
core0/g263427/0		B->0	R	NA22HDX2	1	11.8	80	138	178
core0/g263426/0	-	AN->0	R	NA2I1HDX4	15	80.5	180	180	196
core0/ALU/lt_37_38_Y_gte_44_38_g5052/Q	<u></u>	A->0	F	INHDX1	2	8.2	66	72	204
core0/ALU/g35936/Q	-	A->0	F	BUHDX1	6	25.4	112	190	223
core0/ALU/g13273/Q		D->0	F	0A221HDX0	1	3.7	73	242	247
core0/ALU/g13232/Q		B->0	B	N02I1HDX0	1	6.5	186	170	264
core0/ALU/g13191/0	<u>.</u>	E->0	F	AN221HDX1	1	6.9	163	96	273
core0/ALU/g37153/Q		C->0	B	NA22HDX1	1	7.6	88	108	284
core0/ALU/g37152/Q	- C	A->0	F	N02HDX1	1	6.1	58	43	289
core0/ALU/g36691/Q		B->0	F	AND2HDX2	1	11.4	39	150	304
	÷.		R	NA3HDX2	3	15.6	125	85	
core0/ALU/g37122/Q		A->0							312
core0/LS_UNIT/g108/Q	1	B->0	R	AND5HDX2	1	10.6	109	165	329
core0/LS_UNIT/g22/Q		B->Q	F	NA2HDX2	2	15.6	62	62	335
core0/LS_UNIT/g105/Q	1	AN->0		NA2I1HDX4	3	42.8	71	140	349
core0/LS_UNIT/fopt7527/Q		A->Q	F	BUHDX1	3	15.6	78	160	365
core0/LS_UNIT/g7531/Q	1	B->Q	R	N02HDX1	1	10.6	155	142	379
core0/LS_UNIT/g41/Q		B->Q	F	NA2HDX2	1	7.5	53	48	384
core0/LS_UNIT/g40/Q		A->0	F	NA22HDX2	3	40.3	113	183	462
g297/Q	-	A->0	R	N02HDX2	1	8.9	98	100	412
g34/Q		A->0	R	AND2HDX2	1	14.0	57	129	425
g70/Q	-	C->0	F	NA3HDX2	1	14.8	86	83	433
g68/Q	10	AN->0	F	NA2I1HDX4	5	59.1	96	163	450
memory2/fopt2487955/Q	2	A->0	F	BUHDX4	3	62.6	73	154	465
memory2/fopt2487954/0		A->0	R	INHDX6	3	60.0	67	66	472
memory2/fopt2487953/0		A->0	F	INHDX3	6	74.8	109	108	482
memory2/fopt2487952/0		A->0	F	BUHDX3	3	51.6	80	166	499
memory2/fopt2487951/0	-	A->0	F	BUHDX6	2	59.0	53	131	512
memory2/fopt2487950/0		A->0	F	BUHDX8	2	52.0	40	108	523
memory2/g2412513 dup/Q		A->0	R	NA2HDX4	3	46.9	122	95	533
memory2/g2417121/0		A->0	R	BUHDX6		109.6	100	138	546
memory2/g2417125/Q	2	B->0	F	N0211HDX4		114.6	107	114	558
memory2/fopt2424119/0		A->0	R	INHDX12	1	74.9	54	59	564
memory2/fopt2424115/0	53	A->0	F	INHDX12		301.6	107	104	574
memory2/g2417175/g		B->0	R	NA2HDX0	1	7.2	118	126	587
memory2/g241/1/5/Q memory2/g2294023/0	1	A->0	R	N022HDX0	1	7.8	212	228	609
		A->0	R	AND4HDX1	1	7.6	72	193	629
memory2/g474748/Q	3								
memory2/g474461/Q		C->Q	R	AND4HDX1	1	7.6	71	185	647
memory2/g2443699/Q	10	C->0	R	AND4HDX1	1	9.1	78	191	666
memory2/g474329/Q	18	A->0	R	AND6HDX2	1	8.8	101	187	685
memory2/g2428509/Q		B->0	F	NA3HDX1	1	6.7	86	86	693
memory2/dout0 reg[29]/D	-	B->Q	F	DFROHDX1	1	0.7	00	00	693
memor Art and co leditalin			52	LA PATILIZA	1			0	030

Figure 4. 16: Timing Report of Overall System

Instead of writing all these commands one by one, at the accurate location a file named "commands.tcl" could be created with all these commands written inside of it, and when the Genus is invoked the command,

source commands.tcl

could be run. This command would give all the commands to the Genus.

📄 commands.tcl 🗶
<pre>1 set_db lib_search_path /vlsi/kits/xfab/xkit/xh018/diglibs/D_CELLS_HD/v3_0/liberty_LPM05/v3_0_0/PVT_1_80V_range 2 set_db library {D_CELLS_HD_LPM0S_fast_1_98V_125C.lib} 3 set_db hdl_search_path {source} 4 set_db hdl_vhdl_read_version 2008 5 read_hdl -vhdl sync_ram.vhd 6 read_hdl -vhdl mem_cpy_vhd 7 read_hdl -vhdl mem_cpy_top.vhd 8 set_db hdl_search_path {core} 9 read_hdl ALU.v 10 read_hdl control_unit.v 11 read_hdl core.v 12 read_hdl core.v 13 read_hdl forwarding_unit.v 14 read_hdl forwarding_unit.v 15 read_hdl inad_detection_unit.v 16 read_hdl load_store_unit.v 17 set_db hdl_search_path {muldiv} 18 read_hdl MULDIV_ctrl.v 20 read_hdl MULDIV_trl.v 21 read_hdl MULDIV_in.v 21 read_hdl MULDIV_in.v 22 read_hdl MULDIV_in.v</pre>
24 set_db hdl_search_path {peripherals} 25 read_hdl debug_interface.v 26 read_hdl loader.v 27 read_hdl memory_2rw.v 28 read_hdl mtime_registers.v
29 read_hdl uart.v 30 set_db hdl_search_path { source } 31 read_hdl FIFO_MEM_BLK.v 32 read_hdl FIFO.v 33 read_hdl adder.v
34 read_hdl adder_top.v 35 read_hdl memory_dual.v 36 read_hdl top_top.v 37 set_db hdl_search_path {processor} 38 read_hdl barebones_top.v
39 elaborate barebones_top 40 create_clock -name clk_i -period 2 -waveform {0 1} clk_i 41 syn_gen 42 syn_map 43 syn_opt 44 report_timing

Figure 4. 17: Commands.tcl file

The system is successfully synthesized on Cadence Genus tool, and all the reports related to the synthesis are presented. It is proved that this newly designed DMA is meeting its design criterias also for the ASIC design implementation.

5. RESULTS AND RECOMMENDATIONS

As it is mentioned in the overall system simulation section, we have managed to connect all the system together and ran the simulation by running the C code in order to test the system. Due to data adress algorithm of the processer, DMA could not read the commands from the data memory. Nevertheless, system would work after adressing issue is fixed since all the elements are tested and verified seperately.

In this project, all the memory elements such as FIFO, RAM aree written by us in order to be able to implement them in ASIC since ASIC memory elements are expensive. When implementing this system on chip, it would be muc more effcient in terms of performance and area usage to buy memory elements rather than writing them by using register elements.

6. REALISTIC CONSTRAINTS AND CONCLUSIONS

The amount of the data that needs to be processed in the technological systems is increasing day by day due to the advanced technological developments around the world. As a result, processing this vast amount of data with a high speed is essential and crucial for this high-tech systems. This DMA project is presented as a solution to this performance problem, and with the work done in this project, it is shown that this DMA is able to be implemented as ASIC.

6.1 Practical Application of This Project

The vast majority of technological developments aimed at increasing our quality of life and the way that we understand the universe, including in vital sectors, do this by perceiving the data around it or by processing the data directly uploaded to the system. This DMA block is designed to increase the performance of these products by using them in these technological products.

6.2 Realistic Constraints

During this project, as the work progressed, many problems arised mostly due to the lack of budget and the time.

6.2.1 Social, environmental and economic impact

This DMA design differs significantly from the other DMA designs realized until now. To be able to utilize this DMA for its considerable advantages, this DMA needs to be purchased by the users.

6.2.2 Cost analysis

Since there is a limited budget allocated for this project, limitations were encountered at several stages during the course of the project, such as the need to purchase FIFO, RAM, DPRAM for the overall system. In addition, Cadence, the tool on which the project was implemented, and Vivado, which is used as an assistant throughout the project, are also paid, and both platforms were made available to us free of charge by our university.

6.2.3 Standards

Throughout the project, the hardware description languages Verilog and VHDL were studied within the scope of the standards set by IEEE.

6.2.4 Health and safety concerns

In the work progress of this project, there has been no health and safety concerns.

6.2.5 Future Work and Recommendations

Our project is part of a two-year spanned TÜBİTAK project and we are the first people to work on the ASIC implementation of this unique design. Related to this issue, since our work proved the ASIC design also meets the required criterias and the DMA module is working in a larger system which includes connections to a processor core, a DPRAM and a processing element, our recommendation for the future work related to this DMA is improving the timing performance of the design by using our work as a base. The technology we used while synthesizing the design should be considered, and it should be on mind that changing the technology is also an option for improving the performance.

7. REFERENCES

[1] H. Morales, C. Duran and E. Roa, "A Low-Area Direct Memory Access Controller Architecture for a RISC-V Based Low-Power Microcontroller," 2019 IEEE 10th Latin American Symposium on Circuits & Systems (LASCAS), 2019, pp. 97-100, doi: 10.1109/LASCAS.2019.8667579.

[2] Y. J. M. Shirur, K. M. Sharma and A. A, "Design and implementation of Efficient Direct Memory Access (DMA) Controller in Multiprocessor SoC," 2018 International Conference on Networking, Embedded and Wireless Systems (ICNEWS), 2018, pp. 1-6, doi: 10.1109/ICNEWS.2018.8903991.

[3] A. Rani, A. Pai, B. Naware, Z. H. Yang and T. -Y. Huang, "Direct Memory Access Remapping for Thunderbolt, Feature Deployment at Platform Level," 2020 IEEE International Conference for Innovation in Technology (INOCON), 2020, pp. 1- 5, doi: 10.1109/INOCON50539.2020.9298289.

[4] D. A. Patterson, J. L. Hennessy, Computer Organization and Design: The Hardware/Software Interface. Waltham, MA: Elsevier, 2012.

[5] Y. Yılmaz, Y. S. Tozlu,(2021), Design and Implementation of a 32-bit RISC-V Core
[Bachelor's Thesis, Istanbul Technical University].
https://web.itu.edu.tr/~orssi/thesis/2021/YavuzTozlu_bit.pdf

[6] ' Hornet RISC-V Core' https://github.com/yavuz650/RISC-V

[7] Palnitkar, S. (2003), Verilog HDL: A Guide to Digital Design and Synthesis, (2nd ed.), Prentice Hall PTR