

ISTANBUL TECHNICAL UNIVERSITY

ELECTRICAL-ELECTRONICS FACULTY

SENIOR DESIGN PROJECT

JUNE 2022

CUSTOM DIRECT MEMORY ACCESS

MODULE DESIGN AND IMPLEMENTATION

Asya TURHAL

Meyra ALPASLAN

ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT

ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT

JUNE 2022

ISTANBUL TECHNICAL UNIVERSITY

ELECTRICAL-ELECTRONICS FACULTY

CUSTOM DIRECT MEMORY ACCESS

MODULE DESIGN AND IMPLEMENTATION

SENIOR DESIGN PROJECT

Asya TURHAL

 (040180730)

Meyra ALPASLAN

 (040170006)

Project Advisor: Prof. Dr. Berna Örs Yalçın

ÖZEL DOĞRUDAN BELLEK ERİŞİMİ

MODÜL TASARIMI VE UYGULAMASI

LİSANS BİTİRME TASARIM PROJESİ

Asya TURHAL

 (040180730)

Meyra ALPASLAN

 (040170006)

Proje Danışmanı: Prof. Dr. Berna Örs Yalçın

HAZİRAN, 2022

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

İSTANBUL TEKNİK ÜNİVERSİTESİ

 ELEKTRİK-ELEKTRONİK FAKÜLTESİ

iv

Asya TURHAL

(040180730)

We are submitting the Senior Design Project Report entitled as “CUSTOM DIRECT

MEMORY ACCES MODULE DESIGN AND IMPLEMENTATION”. The Senior

Design Project Report has been prepared as to fulfill the relevant regulations of the

Electronics and Communication Engineering Department of Istanbul Technical

University. We hereby confirm that we have realized all stages of the Senior Design Project

work by ourselves and we have abided by the ethical rules with respect to academic and

professional integrity .

Meyra ALPASLAN

(040170006)

v

FOREWORD

We would like to thank our esteemed advisor, Prof. Dr. Berna Örs Yalçın, for her

constant help, assistance and support throughout the project. We would also like to

thank our university's VLSI Laboratory and its members, who provided us with the

tool we need to use for the realization of the project and for their help and support in

every way related to these tools and the project.

June 2022

Asya TURHAL

Meyra ALPASLAN

vi

TABLE OF CONTENTS

Page

FOREWORD ... iv
TABLE OF CONTENTS .. vi
ABBREVIATIONS ... viii

LIST OF FIGURES .. ix
MODULE DESIGN AND IMPLEMENTATION ... xii

SUMMARY ... xii
ÖZET………. ... xiii

 INTRODUCTION .. 1
 General Information ... 1
1.1.1 RISC-V Core ... 2

1.1.2 Dual Port RAM ... 2

 1.1.3.Adder Core .. 2
 Literature Review ... 3

 IMPLEMENTATION AND TESTING OF THE HORNET RISC-V CORE .. 4

 The Hornet Core ... 4
2.1.1 The RISC-V Instruction Set Architecture (ISA) ... 4

 Environment Set Up ... 4
 Realization of RISC-V Hornet Core ... 5

2.3.1 Preparing the Necessary Files ... 5
2.3.2 Simulation on Verilator ... 5

2.3.3 Bubble Sort Algorithm .. 7
2.3.4 Simulation on Cadence.. 8

 OVERALL DESIGN ELEMENTS... 11

 RAM and FIFO Search for Sythesizing the Design ... 11
 FIFO ... 12
 Processing Element Adder Core with FIFO ... 14

 Dual Port RAM (DPRAM) ... 15
3.4.1 Dual Port Ram (DPRAM) Design ... 15

3.4.2 DPRAM Simulation .. 17
 Direct Memory Access (DMA) .. 18

 OVERALL DIRECT MEMORY ACCESS (DMA) SYSTEM 25

 Overall System Simulation ... 25
 Overall System Synthesis ... 27

 RESULTS AND RECOMMENDATIONS .. 36
 REALISTIC CONSTRAINTS AND CONCLUSIONS 36

 Practical Application of This Project ... 36
 Realistic Constraints ... 37
6.2.1 Social, environmental and economic impact... 37
6.2.2 Cost analysis .. 37

6.2.3 Standards ... 37
6.2.4 Health and safety concerns .. 37

6.2.5 Future Work and Recommendations ... 37

vii

 REFERENCES ... 39

viii

ABBREVIATIONS

DMA : Direct Memory Access

CPU : Central Processing Unit

ASIC : Application-Specific Integrated Circuit

RISC : Reduced Instruction Set Computer

RAM : Random Access Memory

DPRAM : Dual Port RAM

SoC : System on Chip

ISA : Instruction Set Architecture

FIFO : First In First Out

RTL : Register Transfer Level

ix

LIST OF FIGURES

Page

Figure 2. 1: Bubble Sort Simulation 1 .. 6
Figure 2. 2: Bubble Sort Simulation 2 .. 6
Figure 2. 3: Bubble Sort Simulation 3 .. 6

Figure 2. 4: Folder of RISC-V ... 8

Figure 2. 5: Entering the location of the files on terminal 9

Figure 2. 6: Testbench of the Bubble Sort Algorithm .. 9
Figure 2. 7: SimVision ... 10
Figure 2. 8: Simulation waveform .. 10

Figure 3. 1: RTL Schematic of FIFO ... 13
Figure 3. 2: Behavioral Simulation of FIFO .. 13

Figure 3. 3: State Diagram of the Core’s Control Unit .. 14
Figure 3. 4: RTL Schematic of The Adder Core ... 15
Figure 3. 5: Behavioral Simulation of The Adder Core 15

Figure 3. 6: Simple Block Schematic of the Overall Design 16
Figure 3. 7: Elaborated Design Schematic of the DPRAM 17

Figure 3. 8: Simulation results of DPRAM on Cadence 18

Figure 3. 9: Simulation Results of RAM of Mem_cpy on Cadence 19

Figure 3. 10: Invoking Genus .. 19
Figure 3. 11: Elaborated Mem_cpy .. 21

Figure 3. 12: Elaborated Mem_cpy Zoomed In for the Mem_cpy Core............. 21
Figure 3. 13: Elaborated Mem_cpy Zoomed In for the RAM of the Block 22
Figure 3. 14: Generic Gate Design Report of Mem_cpy....................................... 23

Figure 3. 15: Mapping Report of Mem_cpy .. 23
Figure 3. 16: Optimization Report of Mem_cpy ... 24
Figure 3. 17: Timing Report of Mem_cpy ... 24

Figure 4. 1: Overall System ... 25

Figure 4. 2: C Code for the Simulation .. 26
Figure 4. 3: RISC-V Core Instruction Memory Simulation 26

Figure 4. 4: Data Memory Simulation.. 26
Figure 4. 5: The Files for the Overall System Synthesis 27
Figure 4. 6: Elaborated Overall System ... 29

Figure 4. 7: Mem_cpy Block in the Overall System .. 30
Figure 4. 8: Elaborated Processor Core in the Overall System 30

Figure 4. 9: Elaborated DPRAM in the Overall System 31
Figure 4. 10: Adder Core in the Overall System ... 31
Figure 4. 11: Generic Gate Design Report of the Overall Systems 32
Figure 4. 12: Mapping Report Part 1 of Overall System...................................... 32
Figure 4. 13: Mapping Report Part 2 of Overall System...................................... 33
Figure 4. 14: Optimization Report Part 1 of Overall System 33

x

Figure 4. 15: Optimization Report Part 1 of Overall System 34

Figure 4. 16: Timing Report of Overall System .. 34

Figure 4. 17: Commands.tcl file .. 35

xi

xii

CUSTOM DIRECT MEMORY ACCESS

MODULE DESIGN AND IMPLEMENTATION

SUMMARY

With the development of technology, the boundaries of the studies, researches and the

devices have expanded. Especially in the sectors such as defense, communication,

space and health, there is a constant data flow and this data is frequently in the form

of great sizes due to the type of the collected data and also the high velocity of arrival

of the data to the systems. As a result of this expansion, the amount of data that needs

to be processed and used for these studies and devices has also increased. This increase

in the amount of data is an extra burden on the devices where these operations are

performed. It is not possible to solve this burden on devices only with the adjustments

on the software side, also the improvements made on the hardware part give a much

more effective result in terms of data performance. Due to this reason, a unique DMA

design is created. In this project, which is developed for high performance purpose, an

Application-Specific Integrated Circuit (ASIC) Direct Memory Access (DMA)

implementation that could be used in vast amounts of data processing studies, which

provides high performance guarantee in data processing, is studied. For this reason,

the DMA design has been combined with a processor core, a Dual-Port Random

Access Memory (DPRAM) and a adder core design so that the operations on the DMA

could be observed.

The DMA unit in this design is previously tested on the FPGA, and proved that it is

meeting the desired qualifications. However, it is known that the speed on the FPGA

is not the maximum speed that this design could reach. As a result, to be able to

increase the performance of the DMA, the design codes are handed to our side by its

designers, and during the project, we have carried out the ASIC implementation

studies.

For implementing the DMA, the necessary tool is the Cadence, which is provided to

us from our university, and for the other units connected to DMA in this overall system

design, a knowledge of HDL description languages and another helpful tool Vivado is

also compulsory.

The work that has been done, the problems that are encountered and the final results

during the project time are reported in detail as a consequence of our study. This

project we have done regarding to this unique DMA, which is a newly designed unit,

is considered as a basis for creating a starting point for further studies.

xiii

ÖZEL DOĞRUDAN BELLEK ERİŞİMİ

MODÜL TASARIMI VE UYGULAMASI

ÖZET

Teknolojinin gelişmesiyle birlikte yapılan çalışmaların, araştırmaların, üretilen

cihazların hitap ettiği sınırlar genişlemiştir. Bu gelişmelerin özellikle yaşandığı alanlar

olan savunma, haberleşme, uzay ve sağlık benzeri sektörlerde kullanılan sistemlerin

sürekli olarak maruz kaldığı veri akışında, bu veriler çok büyük boyutlarda olduğu gibi

bu akış çoğu zaman aralıksız olarak sisteme veri girişine sebep olmaktadır. Bu artış

sonucunda ise bu sektörlerde devam eden çalışmalar ve kullanılan cihazlar için

işlenmesi, kullanılması gerekli olan veri miktarındaki bu artış, çalışmaların

gerçeklendiği cihazlara fazladan bir yük olmaktadır. Bu yükün cihazlarda yalnızca

yazılım tarafında yapılacak olan düzenlemelerle çözülmesi mümkün olmadığı gibi,

donanım tarafında yapılan iyileştirmelerin, veri performansı konusunda çok daha etkili

bir sonuç verdiği görülmüştür. Bu amaç doğrultusunda geliştirilen bu projede, bu

çalışmalarda kullanılabilecek, veri işleme konusunda yüksek performans garantisi

sunan bir Uygulamaya Özel Tümleşik Devre (ASIC) Doğrudan Bellek Erişim Modülü

(DMA) implementasyonu üzerine çalışılmıştır. Bu nedenle sahip olunan DMA

tasarımı, DMA üzerinde gerçekleşen işlemlerin gözlenebilmesi için bir işlemci

çekirdeği, bir çift portlu bellek ve bir toplayıcı çekirdek tasarımı ile birleştirilmiştir.

Proje süresince kullandığımız özgün DMA modülü, öncelikli olarak tasarımcıları

tarafından FPGA üzerinde test edilmiş, tasarımın beklenilen kriterlere uygun olduğu

görülmüş ancak bir FPGA üzerinde olmasındansa ASIC olacak şekilde

implementasyonu gerçekleştirildiğinde modülün hızını çok daha fazla arttıracağı

düşüncesiyle ASIC olarak gerçeklemenin başlayabilmesi amacıyla modulün kodları

tarafımıza teslim edilmiştir. Proje süresince sürdürülen bütün çalışma bizlere

tasarımcıları tarafından teslim edilen modül kod ve dökümantasyonları üzerine inşa

edilmiştir.

Çalışmanın önceliği DMA’in ASIC olarak gerçeklenmesi ve bu gerçeklenmenin

üzerine DMA’in içerisinde bir alt sistem olarak yer alacağı daha büyük bir tam

sistemde de istenilen kriterleri sağlaması, düzgün bir şekilde çalıştığının gözlenmesi

olmuştur. Bu sebeple de gerek görülen bu daha büyük sistem bizler tarafından bir

toplayıcı çekirdeği, bir çift portlu bellek ve bir işlemci çekirdeği ile bütün bu sistemi

ASIC olacak şekilde gerçeklemek ve DMA performansını raporlamak olmuştur.

DMA'i ve dahil olduğu bu sistemi ASIC olarak gerçeklemek için gerekli program,

üniversitemiz tarafından bize sağlanmış olan Cadence'dır ve bu bütün sistemin

tasarımında DMA'e bağlı diğer birimler için Donanım Tanımlama Dilleri (HDL)

bilgisi ve başka bir yardımcı program olarak proje süresince kullanılan Vivado da

zorunludur. Proje süresince bahsi geçen bu programlarda ilk olarak alt modüller

sonrasında da bütün sistemin simülasyonları yapılmış, simülasyon sonuçlarına göre ise

sentez aşamasına geçilmiştir.

xiv

Proje süresince yapılan işler, karşılaşılan problemler ve sonuçlar çalışmamız

neticesinde detaylı olarak raporlanmıştır. Henüz yeni tasarlanmış bir ünite olan bu

özgün DMA ile ilgili yaptığımız bu proje, devamında yapılacak çalışmalar için bir

başlangıç noktası oluşturması açısından bir temel olarak düşünülmüştür.

1

 INTRODUCTION

High-tech systems used in areas such as defense, intelligence, health services and

finance are consistently responsible for processing extreme amounts of data.

Considering data operations in a system, it is primarily the processor that is considered

as the responsible unit, since the processor is expected to provide the instructions, such

as address, related to the data. However, in the sectors considered, since the amount of

the data is tremendous, this increase in the amount of data that needs to be processed

causes a crucial performance problem. Thus, in order to increase data transfer

efficiency, the speed of data transfer between the peripheral units of the hardware

system is of great importance. As a solution to this issue, Direct Memory Access

(DMA) unit is used in the hardware systems for the effective data transfer between the

peripheral units of the hardware and the system memory. In a system with a heavily

busy data flow, the inclusion of the processing unit to the flow creates a major

disadvantage in terms of speed, since these data operations occupy the processor

excessively. The workload of the processor is fairly reduced by involving a DMA unit

to the system, thus the time and effort during the data transfer process is significantly

decreased by removing the processor from the dataflow. When the DMA is used in a

system data transfer path, the peripheral units in the hardware provide access to the

main memory directly via DMA with no dependency to the system processor.

With this project, it is aimed to implement the ASIC design of a system with a unique

DMA design by using the design tool Cadence in order to increase the data flow

performance of the high-tech systems used in substantial sectors. ...

 General Information

In this project, this distinctive DMA design is simulated and synthesized on the tool

Cadence by forming the complete system consisting of the RISC-V Hornet core, a

dual-port RAM, the DMA and a newly designed adder core, resulting with the

indication that the ASIC design could be implemented.

2

1.1.1 RISC-V Core

When the core of the system is considered, the processor/CPU also directly occurs in

the minds. However, it would not be quite correct to speak of a core in the system

directly as a CPU, because a core is a small processor placed in a larger CPU. This

small processor functions as a brain within the system in which it is used, performing

all the essential computational jobs. In this project, for these necessary computational

tasks, a RISC-V core entitled “Hornet” is implemented to the overall system as the

main brain.

1.1.2 Dual Port RAM

There are units called “memory” in the systems where the transferred information or

the information to be transferred is stored. In these memories, the information is kept

in binary form. At certain locations with different “addresses” defined for each, this

binary information could be read or written to the specific memory area located at this

particular address, according to the address information given to the unit as an input

in the instruction. Since the address of the information to be read does not subject to

any restriction, this memory unit is called “Random-Access Memory”, RAM.

A fundamental RAM unit has three inputs and one output: one input for the data, one

input for the address information, one input for controlling the actualizing operation

on the unit (write or read), and one output for the data to be transferred. On the other

hand, a dual port RAM (DPRAM) has two distinct ports for two distinct data inputs,

address information, write-read controlling input and data outputs, enabling to perform

two different tasks on the different ports at the same time. A DPRAM is requisite for

this project, since it is significant for the overall system to transfer information from

the core to the DMA, or from DMA to the core over one memory featured channel. In

this case, this proper channel is the DPRAM, one port for the core and the other port

for the DMA.

1.1.3. Adder Core

Since it is built with a distinctive approach, one of the main purposes in this project is

to test whether the DMA design is working properly in the way it is desired or not.

This testing process requires a core, or as it is called in this project, a processing

element connected to the DMA, which could make it possible to observe whether all

3

the other elements in the system is working properly or not. In this project, this process

element is chosen as an adder core, which simply sums two numbers which are

delivered to the adder core via the DMA.

 Literature Review

As it is stated in the previous introduction section, electronic devices which contain

high amount information transaction requires read and write access constantly to the

random memory. In order to reduce time consuming in data transactions between I/O

ports (or some other part of the hardware) and memory, DMA is being used in many

System on Chip (SoC) implementations. Through this information, to be able to

implement the DMA, as a first step of this project a detailed research related to the

various DMA designs is resulted. Although many studies have been conducted on the

subject in recent years, not many studies have been found directly related to this thesis

subject. However, articles of similar studies found as A Low-Area Direct Memory

Access Controller Architecture for a RISC-V Based Low-Power Microcontroller[1],

Design and implementation of Efficient Direct Memory Access (DMA) Controller in

Multiprocessor SoC[2], Direct Memory Access Remapping for Thunderbolt, Feature

Deployment at Platform Level[3]. These articles are read in great detail and taken in

the account throughout the continuing working process.

Furthermore, in order to be able to understand the work flow of the Hornet RISC-V

Core, the initial step has been seeking out the materials and textbooks related to the

RISC-V. The known main source used in the Hornet design is Computer Organization

and Design by Patterson & Hennessy[4]. According to that information, this book has

been read for the necessary knowledge and instructions, since the textbook explains

design in a processor with examples.

4

 IMPLEMENTATION AND TESTING OF THE HORNET RISC-V CORE

 The Hornet Core

Hornet core, which is one of the main units of the overall system as the processor core, is

designed as senior design project by Yavuz Selim TOZLU and Yasin YILMAZ in year 2021.

Since Hornet is also implemented in ASIC domain, it is chosen as the core in this project and

before connecting the core to the system, the first stage is to check whether the core is working

accurately or not.

2.1.1 The RISC-V Instruction Set Architecture (ISA)

The Reduced Instruction Set Computer - V (RISC-V) is an open source instruction set

architecture. RISC-V succeeds in distinguishing itself from other processors due to the

privileged features it provides, as the main object of the RISC-V being decreasing the intricacy

of the operations which are performed by the hardware. A few of these significant features can

be listed as being an open source architecture which does not cause any patent problems, having

a wide range of compatible microarchitectures, and providing an adaptable use.

 Environment Set Up

Prior to start simulating the Hornet in Cadence, the first environment to simulate the Hornet is

chosen as Ubuntu, since it is an open source Linux distribution and uploading the necessary

simulation tools to the Ubuntu is a smooth process. By installing Oracle’s VirtualBox, which

allows to extend the computer to be able to run more than one operating systems, Ubuntu 18.04

LTS is set to the computer as the operating system. The following step is to install the RISC-V

GNU Toolchain to be able to create the required simulation files during the test. For the

previous simulation of the Hornet core performed by Yavuz Selim TOZLU and Yasin

YILMAZ, Verilator was used since it does not require any payments and it is an open-source

program that helps simulating the hardware desings by generating a C++ code form of the given

module. Due to this reason, before moving to Cadence in the project, Verilator is used for code

5

genaration. As the next step, GTKWave, which is also a free and open-source program that

allows the users to be able to see simulation waveforms, is installed. All these environment set

up is done by following the article of the Hornet, which is DESIGN AND

IMPLEMENTATION OF A 32-BIT RISC-V CORE[5].

 Realization of RISC-V Hornet Core

2.3.1 Preparing the Necessary Files

In order to be able to run the C codes on the Hornet core, the work explained in detail in the

Hornet core article needs to be repeated. For the test of the core, the exact same steps and the

bubble sort C code provided by Yavuz Selim Tozlu and Yasin Yılmaz is used also for this

project. After the executions, all the files are prepared for simulating with Verilator.

2.3.2 Simulation on Verilator

For this section, Hornet’s article is also used, and the commands as Yavuz Selim TOZLU and

Yasin YILMAZ declared in their thesis.

It can be seen that the program counter works properly and some of the memory addresses does

not change since they store instructions in the Figure 2.1 below.

6

Figure 2. 1: Bubble Sort Simulation 1

In order to be able to understand whether the bubble sort algorithm works accurately on the

implementation, the memory addresses having changes are examined.

Figure 2. 2: Bubble Sort Simulation 2

Figure 2. 3: Bubble Sort Simulation 3

7

It could be seen that [195, 14, 176, 103, 54, 32, 128] given as main array and the algorithm is

able to sort this array as [14,32,54,103,176,195]. As a result, the way a processor core works

and how to run a C program on this Hornet core can be understood by following the steps of

the above work flow. Subsequently, the core is proven to be ready to run any other C programs

on itself.

2.3.3 Bubble Sort Algorithm

To be able to test whether the core is operating correctly or not, a basic sorting algorithm, bubble

sort, is simulated. This algorithm is one of the sorting algorithms developed to keep the data in

order in memory which is based on comparing each element with the adjacent element on the

given array. To explain in a bit more detail, first when an array with n elements is considered,

maximum n steps will be required to complete this sorting operation. In the first step, the first

element of the array (on the left) is compared with the next second element in the given array.

In this comparison, if the element on the left is greater than the second element, these two

elements are swapped; so that the greater element stays at the right when the smaller one stays

on the left. Then in the new array, the greater element for the previous step becomes the second

element of the array and it is compared to the third element. Again, the greater one passes to

the right and becomes the third element. In the continuation, the third element is compared to

the fourth element. This process continues until the last element of the given array is reached.

At the end, the greatest term of the given sequence is placed to the far right and thus, the first

step of the operation is concluded.

In the second step, since the greatest right-most term is removed in the first step, the same

transactions done in the first step is applied to the remaining subarray. This operation, again,

selects the greatest element of the subarray as in the previous step and places it at the right end.

When the whole array is considered, it can be seen that the two greatest terms of the given array

are placed at the far right, sorted among themselves. The order is in descending order from right

to left.

In the third step, two greatest elements which are placed at the rightmost in the array are ejected

and the same operation is applied to the remaining elements on the array. Thus, the greatest

element of the subarray is detected and placed at the right end of the subsequence. At the end

of this step, in descending order from right to left, the three greatest elements of the given array

8

will be placed at the far right. Since the array has n elements, the transactions explained above

continues step by step for each element in the remaining subarrays until the elements of the

array are sorted from right to left in a descending order, which is equivalent to an array being

in an ascending order from left to the right. This completes the sorting of the elements in an

array with the bubble sort algorithm. However, the beginning sorting of the given array is

crucially important for the time efficiency of the algorithm. Since the algorithm has two loops:

one for comparison and the second for swapping, the better way would be having a reasonably

sorted array to reduce the number of the loops. Due to this reason, it can be said that for a large

dataset which is not sorted fairly, bubble sorting would not be efficient.

2.3.4 Simulation on Cadence

For this part of the project, it is a necessity to refer to Hornet’s article and the given work flow

is followed.

Hornet’s files are copied to the Cadence accounts, then over the terminal, the location of the

files are reached.

Figure 2. 4: Folder of RISC-V

9

Figure 2. 5: Entering the location of the files on terminal

As the following step, the line which would load the bubble_sort_tb.data to the processor

memory is uncommented in the given Hornet file barebones_top_tb.v, in order to simulate the

bubble sort file.

Figure 2. 6: Testbench of the Bubble Sort Algorithm

10

The SimVision of Cadence, where the simulations are executed is opened.

Figure 2. 7: SimVision

The memory addresses are sent to the waveform window in order to be able to wiev them.

Figure 2. 8: Simulation waveform

11

As a result of this overall work, the scheduled operation so far is managed by implementing

Hornet Core and run C program on the core, both using Verilator and Cadence Xcellium.

Consequently, it is proved that the RISC-V Hornet core is operating accurately and it is ready

to be used as the processor core unit of the overall system planned in this project.

 OVERALL DESIGN ELEMENTS

Since this project is a TUBITAK project, there is a present DMA designed for this particular

project. The codes of that DMA are adjusted to this project and connected to the Hornet core.

During the beginning of the DMA implementation process, it has been realized that this overall

system needs a DPRAM, and a FIFO in order to synthesize the system. However, for ASIC

design, neither of these elements are free. Therefore, a research process has taken place during

this period of the project. One of the best solutions considered was to implement an open source

RAM and FIFO to the system, but the remaining time would not be enough for realizing both

RAM and FIFO. As a result, the last decision is made as using non-synthesisable RAM and

FIFO to be able to conclude the project, since the main purpose of the project is to implement

the DMA; FIFO and RAM are the elements that are necessary to prove that the DMA is

operating as it is desired and can be implemented as an ASIC design.

 RAM and FIFO Search for Sythesizing the Design

As it is mentioned in the above section, to realize the system, a configurable RAM and FIFO

with a convenient speed for the design is needed. However, in Cadence libraries that are

available to use for the project, no RAM or FIFO blocks could be found. For approximately

two weeks, a solution to this problem has been searched.

First of all, for the system, a dual port, configurable RAM is compulsory. To have a RAM

adjustable to this project, the RAM with the given qualities can be purchased from Cadence,

yet this leads a budget problem for the project. However for the FIFO, a purchase cannot be

possible since there are no FIFO blocks on sale, as a result, the arising solution to this, designing

12

a FIFO and a DPRAM in Cadence is considered. Also it is decided that this process would take

approximately three months.

For the RAM problem, without any purchasing option, designing and sythesizing an Open

RAM has appeared as the second solution. However the researches showed that this design

process for an Open RAM would take almost the same time as a graduation project would take,

and due to this reason, this option is also eliminated.

During these researches, a memory tool from Cadence: Legato is also found. Nevertheless, this

tool also requires purchasing and the budget problem arised for this solution, too.

It should also be considered that this design is promising speed, the main reason that this DMA

is implemented as ASIC is due to the need of high speed, which makes the case with FIFO and

RAM even more difficult. The speed for a designed FIFO is estimated 1 GHz, and since there

is not a complete implementation yet, the definite speed required for the design could not be

decided, or the speed of the FIFO which needs to be designed from scratch would be enough or

not. Also because of this speed issue, instead of a RAM, using the register blocks in the Cadence

libraries are pointless in terms of speed. Nevertheless, to be able to observe the DMA work’s

accuracy and performance by simulating the system, it is decided to write a FIFO and DPRAM

modules in Verilog.

 FIFO

It is decided to use an open FIFO verilog code and modify it according to our project. This code

is taken from “Verilog HDL: A Guide to Digital Design and Synthesis, Second Edition” book

and the writer of the code is Venkata Ramana Kalapatapu. This FIFO design cosists of multiple

registers. This registers are controlled by a control block and this unit makes registers according

to FIFO behaviours. The reason this code is chosen that it is synthesizable and customable. It

is suitable to change the size of it according to needed requirements.

13

Figure 3. 1: RTL Schematic of FIFO

For this project it is needed to have a FIFO which has 32 bit data length, 4 bit data depth. In

order to achieve requirements, FIFO code has been configured according to given requirements.

After changing the FIFO verilog code, testbench is written in order to do behavioral simulation.

It is approved that FIFO is working correctly as seen in Figure 3.2. Data is written in to FIFO

as 5, 9, 25, 550 respectively and data is read from the FIFO correctly as seen in FIFODataOut

port in the simulation.

Figure 3. 2: Behavioral Simulation of FIFO

14

 Processing Element Adder Core with FIFO

In the overall design of the DMA, there are some processing elements, cores and in order to

make a simulation we designed one of them. The core we design includes an adder, an input

FIFO, an output FIFO and a control unit. FIFOs have 32 bit width and 4 depth. Which means

we can write 4 different numbers with 32 bits. In adder block we wrote a combinential adder

but added a clock in order to maintain some delay. Control unit is an finite state machine with

five different states. We designed the state diagram of the control unit as seen in Figure 3.3.

Figure 3. 3: State Diagram of the Core’s Control Unit

In the s0 state, our circuit waits for the start signal in order to start reading from the input FIFO.

Also “Done” signal show that all the calulations are done, so when it is high circuit stays in the

s0 state. “F-full” signal shows that input FIFO is full which means we can read from it.

In s1 state we checked the counter and if it is 4, current state goes to s2 state, else current state

goes to s3 state, keeps counting and gives the adder start signal.

In s2 we checked the done signal of the adder . If it is high our circuit starts to write the result

to the output FIFO.

15

Since our FIFO has 4 different numbers, we needed to read from it four times and save the

numbers to registers. So we did the counting, reading from first FIFO s3 state and writing to

registers in s1 state.

When count is 4, our current state goes to s4 state and gives output of the adder to the output

FIFO.

Figure 3. 4: RTL Schematic of The Adder Core

Figure 3. 5: Behavioral Simulation of The Adder Core

After finishing adder core design and simulation, we managed to replicate cores in the DMA

design which we want to implement in ASIC.

 Dual Port RAM (DPRAM)

3.4.1 Dual Port Ram (DPRAM) Design

16

As it is mentioned repeatedly, the design consists of a DMA block entitled “mem_cpy”, a

processor core and a dual port RAM. This dual port RAM is crucial to the design, since the

communication between the mem_cpy block and the processor is maintained by this DPRAM.

This DPRAM makes it possible for the processor and the mem_cpy to execute write and read

operations on the memory block at the same time.

Figure 3. 6: Simple Block Schematic of the Overall Design

The research held in the previous steps revealed that an implemetation of this DPRAM cannot

be realized due to lack of budget and time. Therefore, as a result of this research, it is decided

to design a dual port RAM which can be used for the simulation of the system. This DPRAM

is written in Verilog hardware description language and it can be synthesized on Cadence by

the registers that the library available consists of.

In accordance with this purpose, a DPRAM with the width of 64 and the data length of 32 bits

is designed. DPRAM has one clock and reset inputs to activate its running process and two

17

separate data in and two separate data out ports. One of these data in and data out input-outputs

are responsible for the data transfer between the processor, and the other data in and out ports

are responsible for the data transfer between the mem_cpy block. DPRAM has also two separate

write-read commands: one of them for the processor and the other for the mem_cpy block, and

finally with two different address inputs, the design of the DPRAM is completed.

Figure 3. 7: Elaborated Design Schematic of the DPRAM

3.4.2 DPRAM Simulation

The design is simulated on both Vivado and Cadence Xcellium to test whether it is working

under the desired conditions.

For the simulation in Cadence Xcellium, the necessary files are the HDL code of the design and

a testbench code. When these files exists, the simulation process can be started as follows:

First of all, to be able to execute Cadence Xcellium, it is necessary to go to the location over

the terminal where both HDL and testbench codes are. After getting to the right location, the

command to invoke the Xcellium is,

xrun -access rwc -linedebug -gui tb_DPRAM.v DPRAM.v

When this command is given on the terminal, the Xcellium simulation tool starts on the Virtual

Machine and by choosing the desired unit elements, they all can be send to waveform window

as it is done.

18

It can be observed that the data inputs 1 and 2 are written or read according to the information

on address inputs 1 and 2, depending to the WriteRead 1-2 inputs based on the reset value in

the design.

Figure 3. 8: Simulation results of DPRAM on Cadence

 Direct Memory Access (DMA)

The main design of the project, the DMA, is already designed and tested on the FPGA by its

own designers and the HDL codes of this DMA is delivered to this project for the ASIC

implementation to have a better speed performance. However, since the unit is tested on the

FPGA, the related work has been done on Vivado tool and as a result, the libraries specified for

Vivado is also used. Since for the ASIC design, the tool needs to be used is Cadence, when

synthesizing the mem_cpy unit, the Vivado libraries could not be used. Consequently, the RAM

inside of the DMA has been altered and since as mentioned in the previous sections, there are

no available RAM blocks in the Cadence libraries available, this RAM is replaced with another

RAM which is just like DPRAM, generated by the registers.

19

Figure 3. 9: Simulation Results of RAM of Mem_cpy on Cadence

When this RAM issue is also resolved, before moving on, the primary thing to do is synthesizing

the mem_cpy block without any other connected units to check whether any other problem

would occur or not.

For synthesizing the mem_cpy block, the Cadence Genus tool is used.

Similar to the simulation process, the first step of the synthesis is also going to the correct

location where the HDL files exist. When it is reached to the correct location, the basic

command “genus” on the terminal would invoke the synthesis tool.

Figure 3. 10: Invoking Genus

20

When the terminal is switched to the Genus, the commands needs to be given are as follows:

• set_db lib_search_path

/work/kits/tsmc/lib/90lp/TSMCHOME/digital/Front_End/timing_powe

r_noise/NLDM/tcbn90lpbwp14t_211a

• set_db library {tcbn90lpbwp14ttc.lib}

These two commands set the technology library. For this project, tsmc 90nm library is used.

• set_db hdl_vhdl_read_version 2008

Since the DMA is written in VHDL language, it is essential to set the correct VHDL version

library.

• set_db hdl_search_path {source}

By this command, the folder to be searched for the design codes is given. Since during this

synthesis, the codes are under the folder “source” at the location where Genus is invoked, the

name between the curly braces is written as source.

• read_hdl -vhdl sync_ram.vhd

• read_hdl -vhdl mem_cpy.vhd

• read_hdl -vhdl mem_cpy_top.vhd

With these three commands, the necessary code files for the mem_cpy block is read and

checked for any kind of errors by the Genus. If there is no problem until this stage, the next step

would be elaborating the design by writing the command,

• elaborate mem_cpy_top

If Genus elaborates the design without any error on the terminal, the elaborated design could

be seen with the commmand,

• gui_show

21

Figure 3. 11: Elaborated Mem_cpy

Figure 3. 12: Elaborated Mem_cpy Zoomed In for the Mem_cpy Core

22

Figure 3. 13: Elaborated Mem_cpy Zoomed In for the RAM of the Block

When the elaboration is also succeeded, the following step would be synthesizing the design.

To be able to synthesize the design, a clock needs to be given to the system.

• create_clock -name clk_i -period 2 -waveform {0 1} clk_i

By this command, the clock of the system is entitled clk_i at the -name clk_i part of the

command, a clock with a period of 2 ns is given with -period 2 part, -waveform {0 1}

defines the rise and fall edge times for one clock period of the clock waveform, and at the last

part clk_i is the name of the clock port in the desing is given to the Genus.

• syn_gen

This command is to synthesizes the design with the generic gates included in the technology

library and optimizes the RTL.

23

Figure 3. 14: Generic Gate Design Report of Mem_cpy

• syn_map

This command is for mapping the block to the cells included in the given technology library.

Figure 3. 15: Mapping Report of Mem_cpy

24

• syn_opt

This command is for performing the optimization at gate level for enhancing the timing on

crucial paths and saving area for the paths which are not crucial.

Figure 3. 16: Optimization Report of Mem_cpy

• report_timing : Creates the timing report for the design.

Figure 3. 17: Timing Report of Mem_cpy

25

These reports are included in this report to create a starting point for the future works related

this DMA.

 OVERALL DIRECT MEMORY ACCESS (DMA) SYSTEM

Overall system includes HORNET RISC-V Core, one dual port ram for instruction memory,

one dual port ram for data memory and programming element. These module are connected

together as seen in Figure 4.1.

Figure 4. 1: Overall System

 Overall System Simulation

In order to test the system, a C code is written as seen below.

26

Figure 4. 2: C Code for the Simulation

In this code, send_to_PE command, reads the data in the request array from the data memory

and sends it to programming element. This code has been compiled by GCC Compiler to be

compliant with RISC-V processor, it is loaded to instruction memory. Then the simulation is

ran. It is seen from the instruction memory that, C code loading has been succesfull. It is also

seen that data memory works but since the addressing of the processor has its own algorithm,

control address for DMA could not be given correctly.

Figure 4. 3: RISC-V Core Instruction Memory Simulation

Figure 4. 4: Data Memory Simulation

In this simulation, it is seen that DMA works but RISC-V core has an algorithm that changes

the data memory adress. Since it is crucial to have the same address for control in order to DMA

to work correctly, DMA could not read the control adress. Since all the system elements have

been tested seperately, there is no reason for this system to not to work after adressing core

problem is solved.

27

 Overall System Synthesis

As the final step of the project, since with the previous work it could be seen that the DMA is

working and the only problem is the address problem which is related only to the processor, not

to the DMA, the overall system is synthesized on Genus by Cadence. To be able to start

synthesis, as with synthesizing only the DMA block mem_cpy, it is necessary to be at the

accurate location on the terminal where the files exist for invoking Genus. The commands are

exactly the same and the only differences are the names of the HDL files and since for a more

organized folder arrangement the processor core is seperated to its own units, at the commands

section there are commands which changes the folders to look for the HDL files.

Figure 4. 5: The Files for the Overall System Synthesis

When Genus is invoked, the commands to write are as follows,

• set_db lib_search_path

/vlsi/kits/xfab/xkit/xh018/diglibs/D_CELLS_HD/v3_0/liberty_LPMO

S/v3_0_0/PVT_1_80V_range

Differing from the previous mem_cpy synthesis, for this operation the technology library is

changed to another library, as the path of this library is given in this command. It should be

acknowledged that this change with the library is not related to the DMA, the tsmc 90nm

technology library is capable of synthesizing the DMA. This change is done only because the

adder core had some instances that were not covered in the tsmc 90nm library.

• set_db library { D_CELLS_HD_LPMOS_fast_1_98V_125C.lib}

The name of the new technology library is given to the Genus by this command. The remaining

commands are the same as mem_cpy synthesis commands, only the name of the code files and

the name of the folders for the codes to be looked for are changed.

• set_db hdl_search_path {source}

• set_db hdl_vhdl_read_version 2008

28

• read_hdl -vhdl sync_ram.vhd

• read_hdl -vhdl mem_cpy.vhd

• read_hdl -vhdl mem_cpy_top.vhd

• set_db hdl_search_path {core}

• read_hdl ALU.v

• read_hdl control_unit.v

• read_hdl core.v

• read_hdl csr_unit.v

• read_hdl forwarding_unit.v

• read_hdl hazard_detection_unit.v

• read_hdl imm_decoder.v

• read_hdl load_store_unit.v

• set_db hdl_search_path {muldiv}

• read_hdl divider_32.v

• read_hdl MULDIV_ctrl.v

• read_hdl MULDIV_in.v

• read_hdl MUL_DIV_out.v

• read_hdl multiplier_32.v

• read_hdl MULDIV_top.v

• set_db hdl_search_path {peripherals}

• read_hdl debug_interface.v

• read_hdl loader.v

• read_hdl memory_2rw.v

29

• read_hdl mtime_registers.v

• read_hdl uart.v

• set_db hdl_search_path {source}

• read_hdl FIFO_MEM_BLK.v

• read_hdl FIFO.v

• read_hdl adder.v

• read_hdl adder_top.v

• read_hdl memory_dual.v

• read_hdl top_top.v

• set_db hdl_search_path {processor}

• read_hdl barebones_top.v

• elaborate barebones_top

If there is no error until this stage, it means that the elaboration is successfully done. The

command to see the elaborated design is,

• gui_show

Figure 4. 6: Elaborated Overall System

30

Since the overall system is extremely large, by zooming in, the mem_cpy block entitled as

odbem, DPRAM, processor core and the adder core could be observed.

Figure 4. 7: Mem_cpy Block in the Overall System

Figure 4. 8: Elaborated Processor Core in the Overall System

31

Figure 4. 9: Elaborated DPRAM in the Overall System

Figure 4. 10: Adder Core in the Overall System

Since the elaboration is successfully done, the system is ready for the synthesis. The commands

for the syhnthesis are as follows,

• create_clock -name clk_i -period 2 -waveform {0 1} clk_i

• syn_gen

32

Figure 4. 11: Generic Gate Design Report of the Overall Systems

• syn_map

Figure 4. 12: Mapping Report Part 1 of Overall System

33

Figure 4. 13: Mapping Report Part 2 of Overall System

• syn_opt

Figure 4. 14: Optimization Report Part 1 of Overall System

34

Figure 4. 15: Optimization Report Part 1 of Overall System

• report_timing

Figure 4. 16: Timing Report of Overall System

35

Instead of writing all these commands one by one, at the accurate location a file named

“commands.tcl” could be created with all these commands written inside of it, and when the

Genus is invoked the command,

• source commands.tcl

could be run. This command would give all the commands to the Genus.

Figure 4. 17: Commands.tcl file

The system is successfully synthesized on Cadence Genus tool, and all the reports related to the

synthesis are presented. It is proved that this newly designed DMA is meeting its design criterias

also for the ASIC design implementation.

36

 RESULTS AND RECOMMENDATIONS

As it is mentioned in the overall system simulation section, we have managed to connect all the

system together and ran the simulation by running the C code in order to test the system. Due

to data adress algorithm of the procosser, DMA could not read the commands from the data

memory. Nevertheless, system would work after adressing issue is fixed since all the elements

are tested and verified seperately.

In this project, all the memory elements such as FIFO, RAM aree written by us in order to be

able to implement them in ASIC since ASIC memory elements are expensive. When

implementing this system on chip, it would be muc more effcient in terms of performance and

area usage to buy memory elements rather than writing them by using register elements.

 REALISTIC CONSTRAINTS AND CONCLUSIONS

The amount of the data that needs to be processed in the technological systems is increasing

day by day due to the advanced technological developments around the world. As a result,

processing this vast amount of data with a high speed is essential and crucial for this high-tech

systems. This DMA project is presented as a solution to this performance problem, and with

the work done in this project, it is shown that this DMA is able to be implemented as ASIC.

 Practical Application of This Project

The vast majority of technological developments aimed at increasing our quality of life and the

way that we understand the universe, including in vital sectors, do this by perceiving the data

around it or by processing the data directly uploaded to the system. This DMA block is designed

to increase the performance of these products by using them in these technological products.

37

 Realistic Constraints

During this project, as the work progressed, many problems arised mostly due to the lack of

budget and the time.

6.2.1 Social, environmental and economic impact

This DMA design differs significantly from the other DMA designs realized until now. To be

able to utilize this DMA for its considerable advantages, this DMA needs to be purchased by

the users.

6.2.2 Cost analysis

Since there is a limited budget allocated for this project, limitations were encountered at several

stages during the course of the project, such as the need to purchase FIFO, RAM, DPRAM for

the overall system. In addition, Cadence, the tool on which the project was implemented, and

Vivado, which is used as an assistant throughout the project, are also paid, and both platforms

were made available to us free of charge by our university.

6.2.3 Standards

Throughout the project, the hardware description languages Verilog and VHDL were studied

within the scope of the standards set by IEEE.

6.2.4 Health and safety concerns

In the work progress of this project, there has been no health and safety concerns.

6.2.5 Future Work and Recommendations

Our project is part of a two-year spanned TÜBİTAK project and we are the first people to work

on the ASIC implementation of this unique design. Related to this issue, since our work proved

the ASIC design also meets the required criterias and the DMA module is working in a larger

system which includes connections to a processor core, a DPRAM and a processing element,

38

our recommendation for the future work related to this DMA is improving the timing

performance of the design by using our work as a base. The technology we used while

synthesizing the design should be considered, and it should be on mind that changing the

technology is also an option for improving the performance.

39

 REFERENCES

[1] H. Morales, C. Duran and E. Roa, "A Low-Area Direct Memory Access Controller

Architecture for a RISC-V Based Low-Power Microcontroller," 2019 IEEE 10th Latin

American Symposium on Circuits & Systems (LASCAS), 2019, pp. 97-100, doi:

10.1109/LASCAS.2019.8667579.

[2] Y. J. M. Shirur, K. M. Sharma and A. A, "Design and implementation of Efficient Direct

Memory Access (DMA) Controller in Multiprocessor SoC," 2018 International Conference on

Networking, Embedded and Wireless Systems (ICNEWS), 2018, pp. 1-6, doi:

10.1109/ICNEWS.2018.8903991.

 [3] A. Rani, A. Pai, B. Naware, Z. H. Yang and T. -Y. Huang, "Direct Memory Access

Remapping for Thunderbolt, Feature Deployment at Platform Level," 2020 IEEE International

Conference for Innovation in Technology (INOCON), 2020, pp. 1- 5, doi:

10.1109/INOCON50539.2020.9298289.

[4] D. A. Patterson, J. L. Hennessy, Computer Organization and Design: The

Hardware/Software Interface. Waltham, MA: Elsevier, 2012.

[5] Y. Yılmaz, Y. S. Tozlu,(2021), Design and Implementation of a 32-bit RISC-V Core

[Bachelor’s Thesis, Istanbul Technical University].

https://web.itu.edu.tr/~orssi/thesis/2021/YavuzTozlu_bit.pdf

[6] ‘ Hornet RISC-V Core’ https://github.com/yavuz650/RISC-V

[7] Palnitkar, S. (2003), Verilog HDL: A Guide to Digital Design and Synthesis, (2nd ed.) ,

Prentice Hall PTR

https://web.itu.edu.tr/~orssi/thesis/2021/YavuzTozlu_bit.pdf
https://github.com/yavuz650/RISC-V

40

