ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICS FACULTY

CUSTOM DIRECT MEMORY ACCESS
MODULE DESIGN AND IMPLEMENTATION

SENIOR DESIGN PROJECT

Asya TURHAL
Meyra ALPASLAN

ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT

JUNE 2022

ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICS FACULTY

CUSTOM DIRECT MEMORY ACCESS
MODULE DESIGN AND IMPLEMENTATION

SENIOR DESIGN PROJECT

Asya TURHAL
(040180730)

Meyra ALPASLAN
(040170006)

ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT

Project Advisor: Prof. Dr. Berna Ors Yal¢in

JUNE 2022

ISTANBUL TEKNIiK UNiVERSITESI
ELEKTRIK-ELEKTRONIK FAKULTESI

OZEL DOGRUDAN BELLEK ERiSiMi
MODUL TASARIMI VE UYGULAMASI

LiSANS BITIRME TASARIM PROJESI

Asya TURHAL
(040180730)

Meyra ALPASLAN
(040170006)

Proje Damismani: Prof. Dr. Berna Ors Yalcin

ELEKTRONIK VE HABERLESME MUHENDISLiGi BOLUMU

HAZIRAN, 2022

We are submitting the Senior Design Project Report entitled as “CUSTOM DIRECT
MEMORY ACCES MODULE DESIGN AND IMPLEMENTATION”. The Senior
Design Project Report has been prepared as to fulfill the relevant regulations of the
Electronics and Communication Engineering Department of Istanbul Technical
University. We hereby confirm that we have realized all stages of the Senior Design Project
work by ourselves and we have abided by the ethical rules with respect to academic and
professional integrity .

Asya TURHAL
(040180730)

Meyra ALPASLAN
(040170006)

FOREWORD

We would like to thank our esteemed advisor, Prof. Dr. Berna Ors Yalcin, for her
constant help, assistance and support throughout the project. We would also like to
thank our university's VLSI Laboratory and its members, who provided us with the
tool we need to use for the realization of the project and for their help and support in
every way related to these tools and the project.

June 2022 Asya TURHAL
Meyra ALPASLAN

TABLE OF CONTENTS

Page

FOREWORDcooiiiiiieit sttt bbbttt bbbt 1\
TABLE OF CONTENTS ..ottt Vi
ABBREVIATIONS ...ttt viii
LIST OF FIGURES ...ttt iX
MODULE DESIGN AND IMPLEMENTATION......cccotiiiinint s xii
SUMMARY L.ttt ettt beeseese et e e et e stestesreereaneeneenes Xii
OZET . .ccuieeeee s xiii
1. INTRODUCTIONooiiiiieie ettt sttt sresre e neeneas 1
1.1 General INfOrMAationccooiieiiic e 1
0N 2§ 1T OV o] (- SRR 2
1.1.2 DUAl POME RAM ...ttt 2

I R Ao 0 (<] o] £~ ST ROPRURPP 2

1.2 LITErature REVIBWcivieiiciic ettt 3
2. IMPLEMENTATION AND TESTING OF THE HORNET RISC-V CORE..4
B T I 0 T= 0 [=) A o] - USSR 4
2.1.1 The RISC-V Instruction Set Architecture (ISA)cccoovevviiiininiiieee, 4

2.2 ENVIFONMENT SEE UP ..ouviiiiieiiiieieieie ettt 4
2.3 Realization 0f RISC-V HOIMMEt COTe........ccceeiieiieiieiieie e 5
2.3.1 Preparing the Necessary FileScooviiiiiieiiciicieccc e 5
2.3.2 SIMUIAtION 0N VEIALONcvviieciieceee e 5
2.3.3 Bubble Sort AIGOrithmc..ooiiiiecec e 7
2.3.4 SIMUIAtion 0N CadENCE........ccuveiiiieeee e 8

3. OVERALL DESIGN ELEMENTS ..ot 11
3.1 RAM and FIFO Search for Sythesizing the Designccccocevviieniinineciiennnn, 11
B2 FIFO et 12
3.3 Processing Element Adder Core with FIFOcooviiiiiiiiiieee, 14
3.4 Dual POrt RAM (DPRAM)....ccuiiiiiiieieiee ettt 15
3.4.1 Dual Port Ram (DPRAM) DESION.......ccviiiiiiiriiiieieneesie et 15
3.4.2 DPRAM SIMUIALIONooiiiiiiiiccie e 17

3.5 Direct Memory ACCESS (DIMA) ..o 18
4. OVERALL DIRECT MEMORY ACCESS (DMA) SYSTEM.........cccoevvenennn 25
4.1 Overall System SIMUIATION.........ccoiiiiiiiie e 25
4.2 Overall System SYNThESIScoviiiiiiiiie s 27
5. RESULTS AND RECOMMENDATIONSccooiiiiireieeese e 36
6. REALISTIC CONSTRAINTS AND CONCLUSIONS.........ccooiiiiiiriirieiennn 36
6.1 Practical Application of ThiS Projectcccooeviiiniiniiniiiee e, 36
6.2 REaliStiC CONSLIAINTS.......ccviiiiiecie et 37
6.2.1 Social, environmental and economMIC IMPACL...........ccceviveieeiieeresie e 37
6.2.2 COSt ANAIYSIS. . .ecviiiiiciee sttt 37
6.2.3 SEANAAIASccvviiiie e 37
6.2.4 Health and safety CONCEIMNS..........coveiiiiiiiiie e 37
6.2.5 Future Work and Recommendations..........ccccovervievvenesieseese e 37

Vi

7. REFERENCES

vii

ABBREVIATIONS

DMA
CPU
ASIC
RISC
RAM
DPRAM
SoC

ISA
FIFO
RTL

: Direct Memory Access

: Central Processing Unit

: Application-Specific Integrated Circuit
: Reduced Instruction Set Computer

: Random Access Memory

: Dual Port RAM

: System on Chip

. Instruction Set Architecture

> First In First Out

: Register Transfer Level

viii

LIST OF FIGURES

Figure 2.
Figure 2.
Figure 2.
Figure 2.
Figure 2.
Figure 2.
Figure 2.
Figure 2.

Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.

Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.

Page
1: Bubble Sort SIMulation L........cccooiiiiiiiiiiieeee e 6
2: Bubble Sort SImulation 2. 6
3: Bubble Sort SImulation 3. 6
4: FOlder Of RISC-V ...t 8
5: Entering the location of the files on terminal...............c..cccooveiiienne, 9
6: Testbench of the Bubble Sort Algorithm ..., 9
72 SIMVISION Lottt ettt 10
8: SImulation WavefOrMccooiiiiiieee e 10
1: RTL Schematic Of FIFOc.ccooiiiiiiieciee e 13
2: Behavioral Simulation of FIFO ..o, 13
3: State Diagram of the Core’s Control Unitcccoeiiiennennne 14
4: RTL Schematic of The Adder COreccovvvviireie e, 15
5: Behavioral Simulation of The Adder Coreccccovvvcveie e 15
6: Simple Block Schematic of the Overall Design............ccccceevvevvennne. 16
7: Elaborated Design Schematic of the DPRAMccccoovviiiinennn, 17
8: Simulation results of DPRAM on Cadence.........cccocevevvivnenenninnn, 18
9: Simulation Results of RAM of Mem_cpy on Cadence.................... 19
10: INVOKING GENUS......ooviiiieiiece ettt sre e eres 19
11: Elaborated Mem_CPYcoooviiiiiiiieiese e, 21
12: Elaborated Mem_cpy Zoomed In for the Mem_cpy Core............. 21
13: Elaborated Mem_cpy Zoomed In for the RAM of the Block........ 22
14: Generic Gate Design Report of Mem_CpY.......cccccovvevviieiieieciennnn, 23
15: Mapping Report of MEmM_CPY ..ccoovriiiiiiiiieieeeee e, 23
16: Optimization Report of Mem_CPYccoeveiieiiiieieece e 24
17: Timing Report of MEM_CPYcoovviiiiiiiiiiiceee e 24
1 OVerall SYSTEIM ... 25
2: C Code for the SIMulation ..o, 26
3: RISC-V Core Instruction Memory Simulationcc.ccocvveinennn. 26
4: Data Memory SImulation...........cccccvevieiie e 26
5: The Files for the Overall System Synthesis.........cccccoveviiiiininienn, 27
6: Elaborated Overall System ... 29
7: Mem_cpy Block in the Overall System.........cccociiiiiiiiniiniiiiceen, 30
8: Elaborated Processor Core in the Overall Systemcccocevvee. 30
9: Elaborated DPRAM in the Overall Systemcccocooviiiiiiniennn, 31
10: Adder Core in the Overall Systemccccoovveviiiiiieiie e 31
11: Generic Gate Design Report of the Overall Systems 32
12: Mapping Report Part 1 of Overall System............cccoceevvevieiieennnnn, 32
13: Mapping Report Part 2 of Overall System............cccccvevvviveriviiinnnnn, 33
14: Optimization Report Part 1 of Overall Systemc.ccccceevveeiinens 33

Figure 4. 15: Optimization Report Part 1 of Overall System
Figure 4. 16: Timing Report of Overall System
Figure 4. 17: Commands.tcl file ...,

Xi

CUSTOM DIRECT MEMORY ACCESS
MODULE DESIGN AND IMPLEMENTATION

SUMMARY

With the development of technology, the boundaries of the studies, researches and the
devices have expanded. Especially in the sectors such as defense, communication,
space and health, there is a constant data flow and this data is frequently in the form
of great sizes due to the type of the collected data and also the high velocity of arrival
of the data to the systems. As a result of this expansion, the amount of data that needs
to be processed and used for these studies and devices has also increased. This increase
in the amount of data is an extra burden on the devices where these operations are
performed. It is not possible to solve this burden on devices only with the adjustments
on the software side, also the improvements made on the hardware part give a much
more effective result in terms of data performance. Due to this reason, a uniqgue DMA
design is created. In this project, which is developed for high performance purpose, an
Application-Specific Integrated Circuit (ASIC) Direct Memory Access (DMA)
implementation that could be used in vast amounts of data processing studies, which
provides high performance guarantee in data processing, is studied. For this reason,
the DMA design has been combined with a processor core, a Dual-Port Random
Access Memory (DPRAM) and a adder core design so that the operations on the DMA
could be observed.

The DMA unit in this design is previously tested on the FPGA, and proved that it is
meeting the desired qualifications. However, it is known that the speed on the FPGA
IS not the maximum speed that this design could reach. As a result, to be able to
increase the performance of the DMA, the design codes are handed to our side by its
designers, and during the project, we have carried out the ASIC implementation
studies.

For implementing the DMA, the necessary tool is the Cadence, which is provided to
us from our university, and for the other units connected to DMA in this overall system
design, a knowledge of HDL description languages and another helpful tool Vivado is
also compulsory.

The work that has been done, the problems that are encountered and the final results
during the project time are reported in detail as a consequence of our study. This
project we have done regarding to this uniqgue DMA, which is a newly designed unit,
is considered as a basis for creating a starting point for further studies.

xii

OZEL DOGRUDAN BELLEK ERiSiMi
MODUL TASARIMI VE UYGULAMASI
OZET

Teknolojinin gelismesiyle birlikte yapilan calismalarin, arastirmalarin, iretilen
cihazlarin hitap ettigi sinirlar genislemistir. Bu gelismelerin 6zellikle yasandigi alanlar
olan savunma, haberlesme, uzay ve saglik benzeri sektorlerde kullanilan sistemlerin
stirekli olarak maruz kaldig1 veri akisinda, bu veriler ¢ok biiyiik boyutlarda oldugu gibi
bu akis ¢ogu zaman araliksiz olarak sisteme veri girisine sebep olmaktadir. Bu artis
sonucunda ise bu sektorlerde devam eden calismalar ve kullanilan cihazlar icin
islenmesi, kullanilmas:t gerekli olan veri miktarindaki bu artis, calismalarin
gerceklendigi cihazlara fazladan bir yiik olmaktadir. Bu yiikiin cihazlarda yalnizca
yazilim tarafinda yapilacak olan diizenlemelerle ¢oziilmesi miimkiin olmadig: gibi,
donanim tarafinda yapilan iyilestirmelerin, veri performansi konusunda ¢ok daha etkili
bir sonug¢ verdigi goriilmiistiir. Bu amag¢ dogrultusunda gelistirilen bu projede, bu
calismalarda kullanilabilecek, veri isleme konusunda yiiksek performans garantisi
sunan bir Uygulamaya Ozel Tiimlesik Devre (ASIC) Dogrudan Bellek Erisim Modiilii
(DMA) implementasyonu tizerine g¢alisilmistir. Bu nedenle sahip olunan DMA
tasarimi, DMA iizerinde gerceklesen islemlerin gozlenebilmesi igin bir islemci
cekirdegi, bir ¢ift portlu bellek ve bir toplayici gekirdek tasarimu ile birlestirilmistir.

Proje siiresince kullandigimiz 6zgiin DMA modiilii, oncelikli olarak tasarimcilari
tarafindan FPGA iizerinde test edilmis, tasarimin beklenilen kriterlere uygun oldugu
goriilmiis ancak bir FPGA {izerinde olmasindansa ASIC olacak sekilde
implementasyonu gergeklestirildiginde modiiliin hizim1 ¢ok daha fazla arttiracagi
diistincesiyle ASIC olarak gerceklemenin baslayabilmesi amaciyla moduliin kodlar
tarafimiza teslim edilmistir. Proje siiresince siirdiiriilen biitiin calisma bizlere
tasarimcilari tarafindan teslim edilen modiil kod ve dokiimantasyonlari iizerine insa
edilmistir.

Calismanin 6nceligi DMA’in ASIC olarak gerceklenmesi ve bu gerceklenmenin
tizerine DMA’in igerisinde bir alt sistem olarak yer alacagi daha biiylik bir tam
sistemde de istenilen kriterleri saglamasi, diizgiin bir sekilde calistiginin gézlenmesi
olmustur. Bu sebeple de gerek goriilen bu daha biiyiik sistem bizler tarafindan bir
toplayici ¢ekirdegi, bir ¢ift portlu bellek ve bir islemci ¢ekirdegi ile biitiin bu sistemi
ASIC olacak sekilde gerceklemek ve DMA performansini raporlamak olmustur.

DMA!'i ve dahil oldugu bu sistemi ASIC olarak gergeklemek i¢in gerekli program,
tiniversitemiz tarafindan bize saglanmis olan Cadence'dir ve bu biitiin sistemin
tasariminda DMA'e baglh diger birimler i¢in Donanim Tanimlama Dilleri (HDL)
bilgisi ve bagka bir yardimci1 program olarak proje siiresince kullanilan Vivado da
zorunludur. Proje siiresince bahsi gegen bu programlarda ilk olarak alt modiiller
sonrasinda da biitiin sistemin simiilasyonlar1 yapilmis, simiilasyon sonuglarina gore ise
sentez agamasina gecilmistir.

Xiii

Proje siiresince yapilan isler, karsilasilan problemler ve sonuglar calismamiz
neticesinde detayli olarak raporlanmistir. Heniiz yeni tasarlanmis bir iinite olan bu
ozglin DMA ile ilgili yaptigimiz bu proje, devaminda yapilacak ¢aligmalar i¢in bir
baslangi¢ noktasi olusturmasi agisindan bir temel olarak diistiniilmiistiir.

Xiv

1. INTRODUCTION

High-tech systems used in areas such as defense, intelligence, health services and
finance are consistently responsible for processing extreme amounts of data.
Considering data operations in a system, it is primarily the processor that is considered
as the responsible unit, since the processor is expected to provide the instructions, such
as address, related to the data. However, in the sectors considered, since the amount of
the data is tremendous, this increase in the amount of data that needs to be processed
causes a crucial performance problem. Thus, in order to increase data transfer
efficiency, the speed of data transfer between the peripheral units of the hardware
system is of great importance. As a solution to this issue, Direct Memory Access
(DMA) unit is used in the hardware systems for the effective data transfer between the
peripheral units of the hardware and the system memory. In a system with a heavily
busy data flow, the inclusion of the processing unit to the flow creates a major
disadvantage in terms of speed, since these data operations occupy the processor
excessively. The workload of the processor is fairly reduced by involving a DMA unit
to the system, thus the time and effort during the data transfer process is significantly
decreased by removing the processor from the dataflow. When the DMA is used in a
system data transfer path, the peripheral units in the hardware provide access to the

main memory directly via DMA with no dependency to the system processor.

With this project, it is aimed to implement the ASIC design of a system with a unique
DMA design by using the design tool Cadence in order to increase the data flow
performance of the high-tech systems used in substantial sectors. ...

1.1 General Information

In this project, this distinctive DMA design is simulated and synthesized on the tool
Cadence by forming the complete system consisting of the RISC-V Hornet core, a
dual-port RAM, the DMA and a newly designed adder core, resulting with the
indication that the ASIC design could be implemented.

1.1.1 RISC-V Core

When the core of the system is considered, the processor/CPU also directly occurs in
the minds. However, it would not be quite correct to speak of a core in the system
directly as a CPU, because a core is a small processor placed in a larger CPU. This
small processor functions as a brain within the system in which it is used, performing
all the essential computational jobs. In this project, for these necessary computational
tasks, a RISC-V core entitled “Hornet” is implemented to the overall system as the

main brain.

1.1.2 Dual Port RAM

There are units called “memory” in the systems where the transferred information or
the information to be transferred is stored. In these memories, the information is kept
in binary form. At certain locations with different “addresses” defined for each, this
binary information could be read or written to the specific memory area located at this
particular address, according to the address information given to the unit as an input
in the instruction. Since the address of the information to be read does not subject to

any restriction, this memory unit is called “Random-Access Memory”, RAM.

A fundamental RAM unit has three inputs and one output: one input for the data, one
input for the address information, one input for controlling the actualizing operation
on the unit (write or read), and one output for the data to be transferred. On the other
hand, a dual port RAM (DPRAM) has two distinct ports for two distinct data inputs,
address information, write-read controlling input and data outputs, enabling to perform
two different tasks on the different ports at the same time. A DPRAM is requisite for
this project, since it is significant for the overall system to transfer information from
the core to the DMA, or from DMA to the core over one memory featured channel. In
this case, this proper channel is the DPRAM, one port for the core and the other port
for the DMA.

1.1.3. Adder Core

Since it is built with a distinctive approach, one of the main purposes in this project is
to test whether the DMA design is working properly in the way it is desired or not.
This testing process requires a core, or as it is called in this project, a processing
element connected to the DMA, which could make it possible to observe whether all

the other elements in the system is working properly or not. In this project, this process
element is chosen as an adder core, which simply sums two numbers which are
delivered to the adder core via the DMA.

1.2 Literature Review

As it is stated in the previous introduction section, electronic devices which contain
high amount information transaction requires read and write access constantly to the
random memory. In order to reduce time consuming in data transactions between 1/0
ports (or some other part of the hardware) and memory, DMA is being used in many
System on Chip (SoC) implementations. Through this information, to be able to
implement the DMA, as a first step of this project a detailed research related to the
various DMA designs is resulted. Although many studies have been conducted on the
subject in recent years, not many studies have been found directly related to this thesis
subject. However, articles of similar studies found as A Low-Area Direct Memory
Access Controller Architecture for a RISC-V Based Low-Power Microcontroller[1],
Design and implementation of Efficient Direct Memory Access (DMA) Controller in
Multiprocessor SoC[2], Direct Memory Access Remapping for Thunderbolt, Feature
Deployment at Platform Level[3]. These articles are read in great detail and taken in
the account throughout the continuing working process.

Furthermore, in order to be able to understand the work flow of the Hornet RISC-V
Core, the initial step has been seeking out the materials and textbooks related to the
RISC-V. The known main source used in the Hornet design is Computer Organization
and Design by Patterson & Hennessy[4]. According to that information, this book has
been read for the necessary knowledge and instructions, since the textbook explains

design in a processor with examples.

2. IMPLEMENTATION AND TESTING OF THE HORNET RISC-V CORE

2.1 The Hornet Core

Hornet core, which is one of the main units of the overall system as the processor core, is
designed as senior design project by Yavuz Selim TOZLU and Yasin YILMAZ in year 2021.
Since Hornet is also implemented in ASIC domain, it is chosen as the core in this project and
before connecting the core to the system, the first stage is to check whether the core is working

accurately or not.

2.1.1 The RISC-V Instruction Set Architecture (ISA)

The Reduced Instruction Set Computer - V (RISC-V) is an open source instruction set
architecture. RISC-V succeeds in distinguishing itself from other processors due to the
privileged features it provides, as the main object of the RISC-V being decreasing the intricacy
of the operations which are performed by the hardware. A few of these significant features can
be listed as being an open source architecture which does not cause any patent problems, having
a wide range of compatible microarchitectures, and providing an adaptable use.

2.2 Environment Set Up

Prior to start simulating the Hornet in Cadence, the first environment to simulate the Hornet is
chosen as Ubuntu, since it is an open source Linux distribution and uploading the necessary
simulation tools to the Ubuntu is a smooth process. By installing Oracle’s VirtualBox, which
allows to extend the computer to be able to run more than one operating systems, Ubuntu 18.04
LTS is set to the computer as the operating system. The following step is to install the RISC-V
GNU Toolchain to be able to create the required simulation files during the test. For the
previous simulation of the Hornet core performed by Yavuz Selim TOZLU and Yasin
YILMAZ, Verilator was used since it does not require any payments and it is an open-source
program that helps simulating the hardware desings by generating a C++ code form of the given

module. Due to this reason, before moving to Cadence in the project, Verilator is used for code

genaration. As the next step, GTKWave, which is also a free and open-source program that
allows the users to be able to see simulation waveforms, is installed. All these environment set
up is done by following the article of the Hornet, which is DESIGN AND
IMPLEMENTATION OF A 32-BIT RISC-V CORE[5].

2.3 Realization of RISC-V Hornet Core

2.3.1 Preparing the Necessary Files

In order to be able to run the C codes on the Hornet core, the work explained in detail in the
Hornet core article needs to be repeated. For the test of the core, the exact same steps and the
bubble sort C code provided by Yavuz Selim Tozlu and Yasin Yilmaz is used also for this

project. After the executions, all the files are prepared for simulating with Verilator.

2.3.2 Simulation on Verilator

For this section, Hornet’s article is also used, and the commands as Yavuz Selim TOZLU and

Yasin YILMAZ declared in their thesis.

It can be seen that the program counter works properly and some of the memory addresses does

not change since they store instructions in the Figure 2.1 below.

Signals Waves
Time
pc_ol31:0]}
ADDR WIDTH(31:0]
DATA WIDTH(31:0)
NUM WMASKS([31:0)
RAM DEPTHI[31:0]
addro{16:0]
addri(10:0])
clko
clkl
csO
csl
dind(31:0]
dinl(31:0])
douto(31:0])
doutl(31:0])
mem(0)(31:0)
mem(1)(31:0])
mom(2)(31:0]
mem(3)(31:0]
mem(4)(31:0]
mom(S)(31:0)
mem(6)(31:0])
mem(7)(31:0]
mem(8)(31:0]
mem(9)(31:0]
mem(10)(31:0)
mem(11)(31:0)
men(12)(31:0)
mem{13)(31:0]
men(14)(31:0)
mem(15)(31:0)
mem(16)(31:0]
men(17)(31:0)
mem(18)[31:0)
mem(19)(31:0)
men(20)(31:0])
mem(21)(31:0)
men(22)(31:0)
mem(23)(31:8)
mem(24)(31:0)
men(25)(31:0)
men(26)(31:0)
mem(27)(31:0)
men(28)[31:0)
mem(29)(31:0]

Figure 2. 1: Bubble Sort Simulation 1
In order to be able to understand whether the bubble sort algorithm works accurately on the

implementation, the memory addresses having changes are examined.

mem(2033) [31:0] =176
mem(2034) [31:0] =195
mem(2635) [31:0] =14
mem(2036) [31:0] =14
mem(2637) [31:0] =176
mem(2638) [31:0] =103

mem(2039) [31:0] =54
mem(2040) [31:0] =32
mem(2041)[31:0] =128
mem(2042) [31:0] =0

MUMILUIATIILIU] SAVD
nen(2035) (31:0) =14
nen(2036) (31:0) «32
nen(2037) [31:0] »54
nen(2038) (31:0) «103

nen(2039) (31:0] »128 [\
nen(2040) [31:0] »176

nen(2041) (31:0] =195

Figure 2. 3: Bubble Sort Simulation 3

It could be seen that [195, 14, 176, 103, 54, 32, 128] given as main array and the algorithm is
able to sort this array as [14,32,54,103,176,195]. As a result, the way a processor core works
and how to run a C program on this Hornet core can be understood by following the steps of
the above work flow. Subsequently, the core is proven to be ready to run any other C programs

on itself.

2.3.3 Bubble Sort Algorithm

To be able to test whether the core is operating correctly or not, a basic sorting algorithm, bubble
sort, is simulated. This algorithm is one of the sorting algorithms developed to keep the data in
order in memory which is based on comparing each element with the adjacent element on the
given array. To explain in a bit more detail, first when an array with n elements is considered,
maximum n steps will be required to complete this sorting operation. In the first step, the first
element of the array (on the left) is compared with the next second element in the given array.
In this comparison, if the element on the left is greater than the second element, these two
elements are swapped; so that the greater element stays at the right when the smaller one stays
on the left. Then in the new array, the greater element for the previous step becomes the second
element of the array and it is compared to the third element. Again, the greater one passes to
the right and becomes the third element. In the continuation, the third element is compared to
the fourth element. This process continues until the last element of the given array is reached.
At the end, the greatest term of the given sequence is placed to the far right and thus, the first

step of the operation is concluded.

In the second step, since the greatest right-most term is removed in the first step, the same
transactions done in the first step is applied to the remaining subarray. This operation, again,
selects the greatest element of the subarray as in the previous step and places it at the right end.
When the whole array is considered, it can be seen that the two greatest terms of the given array
are placed at the far right, sorted among themselves. The order is in descending order from right
to left.

In the third step, two greatest elements which are placed at the rightmost in the array are ejected
and the same operation is applied to the remaining elements on the array. Thus, the greatest
element of the subarray is detected and placed at the right end of the subsequence. At the end

of this step, in descending order from right to left, the three greatest elements of the given array

will be placed at the far right. Since the array has n elements, the transactions explained above
continues step by step for each element in the remaining subarrays until the elements of the
array are sorted from right to left in a descending order, which is equivalent to an array being
in an ascending order from left to the right. This completes the sorting of the elements in an
array with the bubble sort algorithm. However, the beginning sorting of the given array is
crucially important for the time efficiency of the algorithm. Since the algorithm has two loops:
one for comparison and the second for swapping, the better way would be having a reasonably
sorted array to reduce the number of the loops. Due to this reason, it can be said that for a large

dataset which is not sorted fairly, bubble sorting would not be efficient.

2.3.4 Simulation on Cadence

For this part of the project, it is a necessity to refer to Hornet’s article and the given work flow

is followed.

Hornet’s files are copied to the Cadence accounts, then over the terminal, the location of the

files are reached.

El
File Edit Wiew Go Bookmarks Tabs Help
[| = |
o v *OR @m=| M
|“/’?| Location: [ADG1E0/cadence/homet/RISCAmuldiv/RISCA-muldiv/processar/barebones ? S 100% & lcon Wiew j+}
w
Places w b4 — T
[asyaturhal y [1
(5 Desktop s D
L] File System

[T&| Network waves.shm xcelium.d barebones_sch.png

@ Trash tim aalag
sadula YY) < ?;
frea ra | | YR

wari |
harebaones_top_th.v compile README. md simvision31712 diag

datasa

wmvlag.log

X
=9
pt
-
=3

Figure 2. 4: Folder of RISC-V

x H asyaturhal@boron03:barebones - 0 X

|()

File Edit View Search Terminal Help

[asyaturhal@silicon ~/Desktop]$ ssh borond3
asyaturhal@borond3's password:

Last login: Mon Jan 10 23:40:56 2022 from silicon, comp.vlsi.labs
[asyaturhal@borond3d ~]% ADGLEO

[asyaturhal@boronds ADGLE0)% cd cadence/
[asyaturhal@boronds cadence]$ cd hornet/
[asyaturhalgborond3 hornet|$ cd RISC-V-muldiv/
[asyaturhal@borondd RISC-V.muldiv]$ cd RISC-V-muldiv/
[asyaturhal@boronfs RISC-V-muldiv]$ cd p

peripherals/ processor/

[asyaturhalgborond RISC-W-muldiv]$ cd processar/
[asyaturhal@boroni3 processor]$ cd barebones/
[asyaturhal@boron@3 barebones]§ |:|

Figure 2. 5: Entering the location of the files on terminal

As the following step, the line which would load the bubble_sort_th.data to the processor

memory is uncommented in the given Hornet file barebones_top_tb.v, in order to simulate the

bubble sort file.

sarefl 3 barebones_top_tb.v (~/projects/ADG180/caden|

File Edit View Search Tools Documents Help

| i Lo
t | 58 open ~ 57 Save = |]:'| 24 M
e :bareboﬁes_top_tb.v ||| barebones_topw 3£

timescale 1ns/lps

module barebones_top_tbi);

reg reset i, clk_i:
wire irq ack_o:

reg meip i;

reg [16:0] fast_irq i

barebones_top uut(.reset_i(reset i), .clk_i{clk_i}, .meip_i{meip_i}, .fast_irq i(fast_irq i), .irq ack_o(irq ack_o)):

/7100 MHz clock

always begin

clk_i = 1'b0; #5; clk_i = 1'bl; #5;
end

initial begin
//uncomment the program you want to simulate
mem) ;

Greadmenh("../. . /test/memory_contents/muldiv.data",uut.memory . mem); I

f/Greadmemh ../ . /test/memary_contents/soft_float.data",uut.memory.mem) ;
reset_i = 1'b0; fast_irq_ i = 16'b0; meip_i = 1'bO;

#200;

reset i = 1'b1;

dfinterrupt signals, arbitrarily generated. uncomment if you need to.
i

#2100; meip i=1'bl;
#400; meip_i=1'bl;
#400; meip_i=1'bl;
#400; weip i=1'bl;
#850; meip i=1'bl;
#316; meip_i=1'bl:
#TE3: meip_i=1'bl:
#152; melp i=1'bl;
#7EL; meip i=1'bl;
#252: meip_i=1'hb1:*/
end

//this always block imitates an interrupt controller. uncomment if you are using machine external interrupt.

i
always @(posedge clk_i)
begin
if{irg_ack_o)
meip_i = 1'b0;
end*/

endmodule

Figure 2. 6: Testbench of the Bubble Sort Algorithm

The SimVision of Cadence, where the simulations are executed is opened.

A

Eile Edit Yiew

Dasign Browser 1

Gelect Explore Simlation Hindous

simvision

telp

Fle Edt View Search Terminal Tabs Help

AL

The memory addresses are sent to the waveform window in order to be able to wiev them.

-

P Tineie -6

L

[De2 1gn Broussr

Scope: [@ RIL Ausilsbls Data

=24 sinulator
5) barebones_top_th

0 nenory
QO neined

Find:[Strirg~

Show cortents: [In the signal list .

= oae

Search Tines: [Valus=|

i
4| asyaturhal@baron03barebones 3¢ | asyatumalg@borono3 barenones

i .conp V151 1ab

=l iy

asyat 5 top_th -gu
s 164) Zadence De:
simision(64) ¢ 19952019 Cadence

txelf4): 19,0

13: (c) Copyright 1996-2622 Cadence D

@|dd
-

L cbject selected

Console - Simvision -ox

Eile Edit Yiew Simglation Hirdows Help

cadence

[Text Search: |

< i i

Autosaved data detected

Sinvision simulator

i

Fils Tine
54 is 1on/31712_asuaturhal_boron03 .comp, wlsi, lebs_autosave tol Jaruary 07 2022 15:07:4

Vour last SisVizion ssssion closed unexpectedly, You can restors all windows to their
previcus state by selecting a File from the above list snd clicking OK

Figure 2. 7: SimVision

Waveform 3 - SimVi

View Explore Format Simulation Windows Help cadence

[% 0 i % | B [n-

;8|

| search Names:[Signal~ =ty i

@+ ""RERRAEEE

Al

36

“Search Times: [Valuev = 8

|F Tineav=[z25,000 ~ips|p¥-| @ .

“n>
uu

o
o
oy
M
oy
g
T,
e
oy

mem101
memC11]

mem12]

&~ Cursor &v

43 x 320

00002117
h FFC10113

0001

08000313

02000513

00002117

FFC10113

700613
08000313

2000613 F

|1 object selected

|I-E RS D @ EO27500s + 3| Tine: 8B0 : 217500001 & £ 5 5[

Figure 2. 8: Simulation waveform

10

As a result of this overall work, the scheduled operation so far is managed by implementing
Hornet Core and run C program on the core, both using Verilator and Cadence Xcellium.
Consequently, it is proved that the RISC-V Hornet core is operating accurately and it is ready

to be used as the processor core unit of the overall system planned in this project.

3. OVERALL DESIGN ELEMENTS

Since this project is a TUBITAK project, there is a present DMA designed for this particular
project. The codes of that DMA are adjusted to this project and connected to the Hornet core.
During the beginning of the DMA implementation process, it has been realized that this overall
system needs a DPRAM, and a FIFO in order to synthesize the system. However, for ASIC
design, neither of these elements are free. Therefore, a research process has taken place during
this period of the project. One of the best solutions considered was to implement an open source
RAM and FIFO to the system, but the remaining time would not be enough for realizing both
RAM and FIFO. As a result, the last decision is made as using non-synthesisable RAM and
FIFO to be able to conclude the project, since the main purpose of the project is to implement
the DMA; FIFO and RAM are the elements that are necessary to prove that the DMA is
operating as it is desired and can be implemented as an ASIC design.

3.1 RAM and FIFO Search for Sythesizing the Design

As it is mentioned in the above section, to realize the system, a configurable RAM and FIFO
with a convenient speed for the design is needed. However, in Cadence libraries that are
available to use for the project, no RAM or FIFO blocks could be found. For approximately
two weeks, a solution to this problem has been searched.

First of all, for the system, a dual port, configurable RAM is compulsory. To have a RAM
adjustable to this project, the RAM with the given qualities can be purchased from Cadence,
yet this leads a budget problem for the project. However for the FIFO, a purchase cannot be

possible since there are no FIFO blocks on sale, as a result, the arising solution to this, designing

11

a FIFO and a DPRAM in Cadence is considered. Also it is decided that this process would take
approximately three months.

For the RAM problem, without any purchasing option, designing and sythesizing an Open
RAM has appeared as the second solution. However the researches showed that this design
process for an Open RAM would take almost the same time as a graduation project would take,
and due to this reason, this option is also eliminated.

During these researches, a memory tool from Cadence: Legato is also found. Nevertheless, this

tool also requires purchasing and the budget problem arised for this solution, too.

It should also be considered that this design is promising speed, the main reason that this DMA
is implemented as ASIC is due to the need of high speed, which makes the case with FIFO and
RAM even more difficult. The speed for a designed FIFO is estimated 1 GHz, and since there
is not a complete implementation yet, the definite speed required for the design could not be
decided, or the speed of the FIFO which needs to be designed from scratch would be enough or
not. Also because of this speed issue, instead of a RAM, using the register blocks in the Cadence
libraries are pointless in terms of speed. Nevertheless, to be able to observe the DMA work’s
accuracy and performance by simulating the system, it is decided to write a FIFO and DPRAM
modules in Verilog.

3.2 FIFO

It is decided to use an open FIFO verilog code and modify it according to our project. This code
is taken from “Verilog HDL: A Guide to Digital Design and Synthesis, Second Edition” book
and the writer of the code is Venkata Ramana Kalapatapu. This FIFO design cosists of multiple
registers. This registers are controlled by a control block and this unit makes registers according
to FIFO behaviours. The reason this code is chosen that it is synthesizable and customable. It

is suitable to change the size of it according to needed requirements.

12

L1+ R

Clk F_Data[31:0]
Data_In[31:0] F_Empty

— —

FCIr F_First nic
Fin F_Full

FOut F_Last nic
Rst F_SLast nic

FIFO

Figure 3. 1: RTL Schematic of FIFO
For this project it is needed to have a FIFO which has 32 bit data length, 4 bit data depth. In
order to achieve requirements, FIFO code has been configured according to given requirements.
After changing the FIFO verilog code, testbench is written in order to do behavioral simulation.
It is approved that FIFO is working correctly as seen in Figure 3.2. Data is written in to FIFO
as 5, 9, 25, 550 respectively and data is read from the FIFO correctly as seen in FIFODataOut

port in the simulation.

s Clk
4 Rst

> W Data_In[31:0]
s Fin

& FCIr

> W F_Data[31:0]
& F_Full
& F_Empty

Figure 3. 2: Behavioral Simulation of FIFO

13

3.3 Processing Element Adder Core with FIFO

In the overall design of the DMA, there are some processing elements, cores and in order to
make a simulation we designed one of them. The core we design includes an adder, an input
FIFO, an output FIFO and a control unit. FIFOs have 32 bit width and 4 depth. Which means
we can write 4 different numbers with 32 bits. In adder block we wrote a combinential adder
but added a clock in order to maintain some delay. Control unit is an finite state machine with

five different states. We designed the state diagram of the control unit as seen in Figure 3.3.

(Count==4

Wait for the Counter control

start signal

Write adder
output

'(F_Full) or
(Done)

s4

Do the counting

Figure 3. 3: State Diagram of the Core’s Control Unit
In the s0 state, our circuit waits for the start signal in order to start reading from the input FIFO.
Also “Done” signal show that all the calulations are done, so when it is high circuit stays in the

s0 state. “F-full” signal shows that input FIFO is full which means we can read from it.

In s1 state we checked the counter and if it is 4, current state goes to s2 state, else current state

goes to s3 state, keeps counting and gives the adder start signal.

In s2 we checked the done signal of the adder . If it is high our circuit starts to write the result
to the output FIFO.

14

Since our FIFO has 4 different numbers, we needed to read from it four times and save the
numbers to registers. So we did the counting, reading from first FIFO s3 state and writing to

registers in sl state.

When count is 4, our current state goes to s4 state and gives output of the adder to the output

FIFO.

Figure 3. 4: RTL Schematic of The Adder Core

Figure 3. 5: Behavioral Simulation of The Adder Core
After finishing adder core design and simulation, we managed to replicate cores in the DMA

design which we want to implement in ASIC.

3.4 Dual Port RAM (DPRAM)

3.4.1 Dual Port Ram (DPRAM) Design

15

As it is mentioned repeatedly, the design consists of a DMA block entitled “mem cpy”, a
processor core and a dual port RAM. This dual port RAM is crucial to the design, since the
communication between the mem_cpy block and the processor is maintained by this DPRAM.
This DPRAM makes it possible for the processor and the mem_cpy to execute write and read

operations on the memory block at the same time.

>
Processor

BRAM
Ej
:
> EPO
£le
L EP 1 >
> EP m >

mem_cpy

<_|'—> PE O
L) PEn

Processing Elements

Figure 3. 6: Simple Block Schematic of the Overall Design
The research held in the previous steps revealed that an implemetation of this DPRAM cannot
be realized due to lack of budget and time. Therefore, as a result of this research, it is decided
to design a dual port RAM which can be used for the simulation of the system. This DPRAM
is written in Verilog hardware description language and it can be synthesized on Cadence by

the registers that the library available consists of.

In accordance with this purpose, a DPRAM with the width of 64 and the data length of 32 bits

is designed. DPRAM has one clock and reset inputs to activate its running process and two

16

separate data in and two separate data out ports. One of these data in and data out input-outputs
are responsible for the data transfer between the processor, and the other data in and out ports
are responsible for the data transfer between the mem_cpy block. DPRAM has also two separate
write-read commands: one of them for the processor and the other for the mem_cpy block, and

finally with two different address inputs, the design of the DPRAM is completed.

Address1[6:0] D— DPRAM
Address2(6:0] D_ Address1[6:0]
Address2[6:0]
Dataln1[31:0] I : I
Dataln1[31:0]
Dataln2[31:0] D—| Dataln2[31:0] DataOut1[31:0] |_D DataOut1[31:0]
WriteRead 1 DataOut2[31:0
WriteRead 1 > rened ataOut2[31:0] : > DataOut2[31:0]
WriteRead?2
WriteRead2 D—‘ m
reset
clk > |
DPRAM
reset Di

Figure 3. 7: Elaborated Design Schematic of the DPRAM

3.4.2 DPRAM Simulation

The design is simulated on both Vivado and Cadence Xcellium to test whether it is working
under the desired conditions.

For the simulation in Cadence Xcellium, the necessary files are the HDL code of the design and

a testbench code. When these files exists, the simulation process can be started as follows:

First of all, to be able to execute Cadence Xcellium, it is necessary to go to the location over
the terminal where both HDL and testbench codes are. After getting to the right location, the

command to invoke the Xcellium is,
Xrun -access rwc -linedebug -gui tb DPRAM.v DPRAM.v

When this command is given on the terminal, the Xcellium simulation tool starts on the Virtual
Machine and by choosing the desired unit elements, they all can be send to waveform window

as it is done.

17

It can be observed that the data inputs 1 and 2 are written or read according to the information
on address inputs 1 and 2, depending to the WriteRead 1-2 inputs based on the reset value in
the design.

N, Tinsite|= 5501530 =l e~ g+ 8 w41 O B S| @ B0 501,990,000 + 0| Tine: BB : 6102w = B T TS

Figure 3. 8: Simulation results of DPRAM on Cadence

3.5 Direct Memory Access (DMA)

The main design of the project, the DMA, is already designed and tested on the FPGA by its
own designers and the HDL codes of this DMA is delivered to this project for the ASIC
implementation to have a better speed performance. However, since the unit is tested on the
FPGA, the related work has been done on Vivado tool and as a result, the libraries specified for
Vivado is also used. Since for the ASIC design, the tool needs to be used is Cadence, when
synthesizing the mem_cpy unit, the Vivado libraries could not be used. Consequently, the RAM
inside of the DMA has been altered and since as mentioned in the previous sections, there are
no available RAM blocks in the Cadence libraries available, this RAM is replaced with another
RAM which is just like DPRAM, generated by the registers.

18

&L Baselinew=0 - B
EfCursor-Bazselinew=0 Baseline = 0
meA = 0

Bl Mige HEM

M. HEMLO]
M. HEMI[1]
Mg, HEHLZ2]
2. HEML3]

qc

il”c}'c}

M. MEMC4]

. MEMLE1]

B

] HEML&]

=

. MEML71

&

. MEHLE1]

=

Figure 3. 9: Simulation Results of RAM of Mem_cpy on Cadence
When this RAM issue is also resolved, before moving on, the primary thing to do is synthesizing
the mem_cpy block without any other connected units to check whether any other problem

would occur or not.
For synthesizing the mem_cpy block, the Cadence Genus tool is used.

Similar to the simulation process, the first step of the synthesis is also going to the correct
location where the HDL files exist. When it is reached to the correct location, the basic
command “genus® on the terminal would invoke the synthesis tool.

[meyraaalpaslan@boron03 odbem_tek]$ genus

TMPDIR is being set to /tmp/genus_temp_7108 boron@3.comp.vlsi.labs_meyraaalpasla
n_Nja3GL

Cadence Genus(TM) Synthesis Solution.

Copyright 2017 Cadence Design Systems, Inc. ALl rights reserved worldwide.
Cadence and the Cadence logo are registered trademarks and Genus is a trademark
of Cadence Design Systems, Inc. in the United States and other countries,

Version: 17.11-s014 1, built Mon Oct 09 2017

Options:

Date: Fri Jun 10 23:04:48 2022

Host: boron@3.comp.vlsi.labs (x86 64 w/Linux 2.6.32-279,el6.x86_64) (6cores*2
dcpus*2physical cpus*Intel(R) Xeon(R) CPU X5670 @ 2.93GHz 12288KB) (49357944KB)
0S: Cent0S release 6.3 (Final)

Checking out license: Genus_Synthesis

Loading tool scripts...
Finished loading tool scripts (11 seconds elapsed).

WARNING: This version of the tool is 1705 days old.
ggenus:root: 1> |]

Figure 3. 10: Invoking Genus

19

When the terminal is switched to the Genus, the commands needs to be given are as follows:

e set_db lib_search_path
/work/kits/tsmc/1ib/901p/TSMCHOME/digital/Front_End/timing_powe
r_noise/NLDM/tcbn90lpbwpl4dt 211a

e set_db library {tcbn9@lpbwpl4ttc.lib}
These two commands set the technology library. For this project, tsmc 90nm library is used.
e set_db hdl_vhdl_read_version 2008

Since the DMA is written in VHDL language, it is essential to set the correct VHDL version

library.
e set db hdl search path {source}

By this command, the folder to be searched for the design codes is given. Since during this
synthesis, the codes are under the folder “source” at the location where Genus is invoked, the

name between the curly braces is written as source.
e read_hdl -vhdl sync_ram.vhd
e read_hdl -vhdl mem_cpy.vhd
e read_hdl -vhdl mem_cpy_top.vhd

With these three commands, the necessary code files for the mem_cpy block is read and
checked for any kind of errors by the Genus. If there is no problem until this stage, the next step

would be elaborating the design by writing the command,
e elaborate mem_cpy_top

If Genus elaborates the design without any error on the terminal, the elaborated design could

be seen with the commmand,

e gui_show

20

Figure 3. 12: Elaborated Mem_cpy Zoomed In for the Mem_cpy Core

Figure 3. 13: Elaborated Mem_cpy Zoomed In for the RAM of the Block
When the elaboration is also succeeded, the following step would be synthesizing the design.

To be able to synthesize the design, a clock needs to be given to the system.
e create_clock -name clk i -period 2 -waveform {© 1} clk i

By this command, the clock of the system is entitled clk_i at the -name clk_i part of the
command, a clock with a period of 2 ns is given with -period 2 part, -waveform {0 1}
defines the rise and fall edge times for one clock period of the clock waveform, and at the last
part c1k_1i is the name of the clock port in the desing is given to the Genus.

e syn_gen

This command is to synthesizes the design with the generic gates included in the technology

library and optimizes the RTL.

22

___________________________ +
Peak Physical Memory (MB)

| localhost_1 3
| localhost 1 4
| localhost_1_5
| ‘Localhost 17
| localhost_ l]
| 12
| 10
| 11

W
bR ENE

gﬁ«h'\l@m\llﬂ

localhost_
localhost_
‘Localhost

Fs

L e ——————

#fm======== (adence Confidential (Gener.l.c Logical)
##=Main Thread Summary:

##=G:Initial ¢} 8908 234214 386
##>6:Setup a - - -
##>G:Launch ST i}
#&=G:Partition [:]
##=G1CPN]
##>6:Init Power a - - -
##>0:Budgeting [} - - -
#&=G:Derenv-0B o
##=6:5T loading ¢}
#¥>0:Distributed]
##=0:Assembly 1]
##>G:Const Prop 1
##=G:Cleanup [¢]
#4>0:Misc 159

34669 323447 814

##=Total Elapsed 160
Ead
Info ¢ Done synthesizing. [SYNTH-2]
: Done synthesizing ‘mem_cpy_top' to generic gates.
flow.cputime flow.realtime timing.setup.tns timing.setup.wns snapshot
UMt 230 703 syn_generi
[

Figure 3. 14: Generic Gate Design Report of Mem_cpy

e syn_map

This command is for mapping the block to the cells included in the given technology library.

#fi>======== Cadence Confidential (Mapping-Logical) ==

##=M:Initial

##=M: PREC

##=M:Setup

##>M:Launch ST

#=M:Partition
1CPN

34669 323447 776
34669 323447 776

]
i}
]
)
6]
i}
##=M:Init Power [:]
##>M:Budgeting]
##>M:Derenv-DB 0
##>M:5T loading]
##=M:Distributed)
##>M:Assembly]
##>M:0DP ops 5
##>M:Const Prop]
=M Cleanup 1
#E>M:MBCT]
##>M:M:Lsc 140

19004 207664 899
19004 207664 899
19004 207664 899
19004 207664 899

a

Feeesme i B S
| Server | Physical Memory (MB) eak Physical Memory (MB) |
A R ittt +
localhost 112	2.1 321
localhost 19	32.1 32.1
localhost_1_13	53.8 53.8
localhost 110	54.4 54.4
localhost 114	65.9 65.9
localhost_1_11	98.2 98.2
localhost 10	501.8 501.8
localhost 1 8	
oo + -4
I

: Done mappmg "mem_cpy_top'.
flow.cputime flow.realtime timing.setup.tns timing.setup.wns snapshot
UM: 239 416 0.0 ps 140.0 ps syn_map

Figure 3. 15: Mapping Report of Mem_cpy

23

e syn opt

This command is for performing the optimization at gate level for enhancing the timing on
crucial paths and saving area for the paths which are not crucial.

init_area 207922 0 0 0 2]
rem_buf 207899 0 [i] 0]
rem_inv 207591 <] [i] 0 0
merge bi 207509] ;] 5] 0
io_phase 207500]] [¢] 5]
gate_comp 207412 [} [} 5] 0
glob_area 207397 0 0 0 0
area_down 207376 0 0 0 0
Trick Calls Accepts Attempts Time(secs)
undup o 0/ o) 0.18
rem_buf 6 6/ 6) 0.62
rem_inv 76 63 / 63) 0.24
merge_bi 28 26 / 26) 0.42
rem_inv_gb [e/ 0) 0.00
Seq_res_area 50 e/ 0) 27.52
io_phase 14 4/ 4) 0.04
gate_comp 114 | 33/ 33) 2.18
gcomp_mog 8 | 0/ o) 1.04
glob_area 41 47 41) 0.06
area_down SERN 7/ 7) 0.21
size n_buf a 0/ o) 0.06
gate_deco_area [e/ 0) 0.01
rem_buf [0/ o) 0.00
rem_inv 11 0/ o) 0.0
merge_bi 2 { 0/ o) 0.04
rem_inv_gb o 0/ o) 0.00

Figure 3. 16: Optimization Report of Mem_cpy
e report_timing : Creates the timing report for the design.

Generated by: Genus(TM) Synthesis Solution 17.11-s014 1
Generated on: Jun 05 2022 0©5:25:32 pm

Module: mem_cpy_top

Operating conditions: NCCOM (balanced_tree)

Wireload mode: segmented

Area mode: timing library

Path 1: MET (24 ps) Setup Check with Pin mem cpy core data reg reg[11]/CP->D
Group: clk_i
Startpoint: (R) mem_cpy_core PE_sel_reqg_reg[4]/CP
Clock: (R} clk_i
Endpoint: (F) mem_cpy_core_data_reg_reg[11]/D
Clock: (R) clk_i

Capture Launch
Clock Edge:+ 2000 0
Src Latency:+ a]
Net Latency:+ a1 0(I)
Arrival:= 2000 0
Setup: - 57
Required Time:= 1943
Launch Clock:- 0
Data Path:- 1918
Slacki= 24
N e R e e B A e e e e
Timing Point Flags Arc Edge Cell Fanout Load Trans Delay Arrival
(fF) (ps) (ps) (ps)
Beceeeceecciedciccceiccciescsccecccscccccscsssescsesssssssesesssesssesssssssssesssessssscsesesssessssaen
mem_cpy core PE sel reg reg[4]/CP - - R (arrival) 3668 - - a
mem_cpy_core PE_sel_reg_reg[4]/0 - P> F SOFQD2BWP14T 15 51.6 a1 164 164
mem_cpy_core_g72359/ZN - I->IN R INVND2BWP14T 9 31.1 148 108 272
mem_cpy_core_gi2246/IN - A2->IN F NR2PD2BWP14T 4 13.6 62 66 338
mem_cpy core gi2226/IN - I-=ZN R INVND2EBRP14T 5 15.5 80 64 401
mem_cpy_core_g72187/IN - Al-=IN F NR2PD2BWP14T 3 10.1 58 42 444
mem_cpy_core_g71979/ZN - Q->IN R AQ0T222PD2BWP14T 1 3.1 114 18 561
mem_cpy_core_g71951/2N - Al-5ZN F ND2ND2 BP14T 1 3.1 36 33 594
mem_cpy core_gi 1816/ZN - A2->IN R AQI222PD2BWP14T 1 3.6 118 7 672
mem_cpy core_gi 1806/ZN - C-»IN F OAT211PD2BWP14T 1 2.4 66 3 744
mem_cpy_core_g7 1800/ ZN - Al->IN R NR4PD2BWP14T 1 3.2 9% 62 806
mem_cpy_core_g7 1796/ZN - AL->ZN F ND2PD2BAP14T 4 127 68 66 872
q87972/IN - A2->IN R OAI21PD2BWP14T 15 53.1 341 211 1084
mem_cpy core g86692/IN - A2-5IN F NR2XPD2BwP14T 49 162.0 400 330 1413
mem_cpy_core_g86561/2 - A2-7 F AN2PD2BWP14T 29 98.8 241 269 1682
mem_cpy_core_g86430/ZN - I-»IN R TNVND2BAP14T 4 12.8 105 98 1780
mem_cpy_core_g86188/ZN - B->ZN F T0A21PD2BWP14T 1 3.0 39 40 1820
mem_cpy core_g86056/ZN - Al->IN R AQI221PD2BWP14T 1 3.7 124 64 1884
mem_cpy core g86041/IN - I->IN F INVPD2BWP14T 1 3.4 34 34 1918
mem_cpy_core_data_req_reg[11]/D <<< - F SDFOQD2EWP14T 1 -] 1918

Figure 3. 17: Timing Report of Mem_cpy

24

These reports are included in this report to create a starting point for the future works related
this DMA.

4. OVERALL DIRECT MEMORY ACCESS (DMA) SYSTEM

Overall system includes HORNET RISC-V Core, one dual port ram for instruction memory,
one dual port ram for data memory and programming element. These module are connected

together as seen in Figure 4.1.

0 =
el -

Figure 4. 1: Overall System
4.1 Overall System Simulation

In order to test the system, a C code is written as seen below.

25

#include "mem cpy.h"
#include <stdint.h>

int main(void)

a{

unsigned long long redquest[2]={ . };:
unsigned short reguest size = :

send to PE(l, request, request size);

1

Figure 4. 2: C Code for the Simulation

In this code, send_to_PE command, reads the data in the request array from the data memory
and sends it to programming element. This code has been compiled by GCC Compiler to be
compliant with RISC-V processor, it is loaded to instruction memory. Then the simulation is
ran. It is seen from the instruction memory that, C code loading has been succesfull. It is also
seen that data memory works but since the addressing of the processor has its own algorithm,

control address for DMA could not be given correctly.

Figure 4. 4: Data Memory Simulation
In this simulation, it is seen that DMA works but RISC-V core has an algorithm that changes

the data memory adress. Since it is crucial to have the same address for control in order to DMA

to work correctly, DMA could not read the control adress. Since all the system elements have
been tested seperately, there is no reason for this system to not to work after adressing core

problem is solved.

26

4.2 Overall System Synthesis

As the final step of the project, since with the previous work it could be seen that the DMA is
working and the only problem is the address problem which is related only to the processor, not
to the DMA, the overall system is synthesized on Genus by Cadence. To be able to start
synthesis, as with synthesizing only the DMA block mem_cpy, it is necessary to be at the
accurate location on the terminal where the files exist for invoking Genus. The commands are
exactly the same and the only differences are the names of the HDL files and since for a more
organized folder arrangement the processor core is seperated to its own units, at the commands
section there are commands which changes the folders to look for the HDL files.
= =

processor source commands.tcl finalcommands.tcl

Figure 4. 5: The Files for the Overall System Synthesis
When Genus is invoked, the commands to write are as follows,

e set _db lib_search_path
/vlsi/kits/xfab/xkit/xh018/diglibs/D_CELLS HD/v3_©/liberty_ LPMO
S/v3_0_0/PVT_1_80V_range

Differing from the previous mem_cpy synthesis, for this operation the technology library is
changed to another library, as the path of this library is given in this command. It should be
acknowledged that this change with the library is not related to the DMA, the tsmc 90nm
technology library is capable of synthesizing the DMA. This change is done only because the

adder core had some instances that were not covered in the tsmc 90nm library.
e set _db library {D_CELLS HD LPMOS_fast_1 98V _125C.lib}

The name of the new technology library is given to the Genus by this command. The remaining
commands are the same as mem_cpy synthesis commands, only the name of the code files and

the name of the folders for the codes to be looked for are changed.
e set _db hdl_search_path {source}

e set _db hdl_vhdl _read_version 2008

27

read_hdl -vhdl sync_ram.vhd
read _hdl -vhdl mem_cpy.vhd
read_hdl -vhdl mem_cpy_top.vhd
set_db hdl _search_path {core}
read_hdl ALU.v

read_hdl control_unit.v
read_hdl core.v

read_hdl csr_unit.v

read_hdl forwarding unit.v
read_hdl hazard_detection_unit.v
read_hdl imm_decoder.v

read_hdl load store unit.v
set_db hdl search_path {muldiv}
read_hdl divider_32.v

read_hdl MULDIV_ctrl.v

read_hdl MULDIV_ in.v

read_hdl MUL_DIV out.v

read_hdl multiplier_32.v
read_hdl MULDIV_top.v

set_db hdl_search_path {peripherals}
read_hdl debug_interface.v

read hdl loader.v

read_hdl memory_2rw.v

28

e read_hdl mtime_ registers.v

e read_hdl uart.v

e set_db hdl_search_path {source}
e read_hdl FIFO_MEM BLK.v

e read_hdl FIFO.v

e read_hdl adder.v

e read_hdl adder_top.v

e read_hdl memory dual.v

e read_hdl top_top.v

e set _db hdl_search_path {processor}
e read _hdl barebones top.v

e elaborate barebones top

If there is no error until this stage, it means that the elaboration is successfully done. The
command to see the elaborated design is,

e gui show

Figure 4. 6: Elaborated Overall System

29

Since the overall system is extremely large, by zooming in, the mem_cpy block entitled as

odbem, DPRAM, processor core and the adder core could be observed.

([T

([T

il
I

odbem

corel

Figure 4. 8: Elaborated Processor Core in the Overall System

30

memory

dini[31:01

Figure 4. 9: Elaborated DPRAM in the Overall System

EP_fo_empty_b!
EP_fo_empty_6/
EP_fo_empty_7
PE_fi_full 0

PE_fi_full 1

‘ fo_erable PE_fi_full_2|

adder]

PE_fi_full_3
fi_datain[31:0] PE_fi_full_4

PE_fi full 5-

Figure 4. 10: Adder Core in the Overall System

Since the elaboration is successfully done, the system is ready for the synthesis. The commands

for the syhnthesis are as follows,
e create_clock -name clk i -period 2 -waveform {© 1} clk i

e syn_gen

31

ffs======== (adence Confidential (Generic-Logical) =s======
##=Main Thread Summary:

-5

#HE=STEP Elapsed Insts Area Memory

- P R U ——

#E=G:Initial 41 285373 13587884 1363

##>6:Setup] . - -

##=>G:Launch ST il - - -

E2=GPartition 0 . - -

HE=G:CPN] - - -

##=6:Init Power 0 . . .

##>G:Budgeting il - - -

##=0:Derenv-0B 0 . . .

##>6:5T loading 0 - - -

##=0:Distributed o - - -

=6 Assembly 0 - - -

#E=6:Const Prop 28 1083101 21059152 4283

##=0:Cleanup 0 . - -

##=6:Misc 9217

L e et e

#¥=Total Elapsed 9286

=3

Info : Done synthesizing. [SYNTH-2]

: Done synthesizing 'barebones_top' to generic gates.
flow.cputime flow.realtime timing.setup.tns timing.setup.wns snapshot
UM : 11797 9333 syn_generic
Figure 4. 11: Generic Gate Design Report of the Overall Systems

syn_map
H#> Cadence Confidential (Mapping-Logical)
#&>5T Summary (11 partitions in total):
-
##=>PARTITION 1 6 2 3 10 4 5 9 7 8
<
##>PRE_WNS -4261 -559 -1500 -1895 -831 -559 -559 -324 -347 -559
##>PRE_TNS 5483797 5093308 1875851 1535682 115014 5436965 5382400 5074952 5144167 4946313
##>PRE_CNT 104182 149389 156377 155863 99956 75276 75418 75240 75240 73127
##=PRE_PORT_CNT 110052 75161 66149 66079 67745 9695 9824 9565 9552 9315
##>PRE_AREA 1500149 4753998 2238122 2246183 1440631 1601354 1605190 1600944 16500944 1555932
-
##>POST_WNS -4526 -616 -1990 -2213 740 -624 -601 -584 -655 -607
##>P0ST_TNS 7597281 7911146 3888083 3341433 594908 ©385339 8191900 7723092 8042968 7610917
##>POST_CNT 86091 133828 126691 98692 42052 59475 58900 59394 59332 57165
##>POST_PORT_CNT 110052 75161 66149 66079 67745 9695 9824 9565 9552 9315
##>POST_AREA 1115555 5378238 1823670 1543833 785868 1365182 1350993 1354799 1352459 1311819
<
##sMiStructuring 336 253 493 587 338 210 196 173 176 156
##>M:Mapping 2252 1363 1290 1018 686 358 369 356 356 347
##>M:Global Incr 133 244 224 223 78 129 120 115 103 100
#E=MiMNisc 237 488 269 273 165 141 150 135 142 151
##>Total Elapsed 2958 2348 2276 2101 1267 38 835 779 m 734
##=Main Thread Summary:
e e e
##>5TEP Elapsed Insts Area Memory
=
##=M: Initial 26 1083101 21059152 3822
##=M:PREC 5 1083101 21059152 3822
##sM:Setup 11 - - 8666
##>M:Launch ST 8 - - 8666
##=M:Partition a7 - - 8666
#2=M:CPN 42 - - 8666
##M:Init Power <] - - 8666
##>M:Budgeting 93 - - 8666
##=M:0Derenv-DB 25 - - 8666
##=1:5T loading 1 - - 8666
#E=M:Distributed 3282 - - 8666
##>M:Assembly 242 - - 8666
##=M:DP ops 175 B15751 18161636 5333
#&=M:Const Prop a 815751 18161636 5333
##=M:Cleanup 3213 825595 18326070 8202
##=M; MBCT 0 825595 18326070 8202
#E=M:Misc [¢]
-
##>Total Elapsed 7020

##

Figure 4. 12: Mapping Report Part 1 of Overall System

32

##PBS-Mapping-Logical Partitions:11 Stage Total:7020 Longest:2958 Average:1491 PBS Index:0.50

TR et T e et T e +
| Host | Machine | CPU | Physical Memory (MB) | Peak Physical Memory (MB) |
o o I domm e BT e +
| localhost | boron®3.comp.vlsi.labs | 8 | 8202.6 | 14603 .6 |
Fommmmmmmaa et o mmm e e +
e domm e BT +
| Server | Physical Memory (MB) | Peak Physical Memory (MB) |
TP PP T T +
localhost_1 18	215.9	215.9
localhost 1 19	173.5	173.5
localhost 1 17	407 .2	467 .2
Localhost_1 21	405.1	405.1
localhost_1 15	666.1	666.1
localhost 1 0	4696.9	10809.9
localhost 1 16	141.3	141.3
Localhost_1 20	297 .3	297 .3

Info : Done mapping. [SYNTH-5]
: Done mapping 'barebones_top'.

Figure 4. 13: Mapping Report Part 2 of Overall System

syn_opt
Incremental Optimization Runtime Summary:
Step Elapsed Time(s) Runtime(s) ¥NS(ps) TNS(ps) CELL AREA NET AREA Leakage Power
INIT 0 (0.0 %) 0 (0.0 %) NOT_TIMED NOT_TIMED 18326070 1239406 NA
HIGH_FANOUT_OPTO 34 (0.3 %) 33 (0.3 %) -5667.7 696539746 18331110 1239548 NA
SCORE_INIT 0 (0.0 %) 0(0.0%) -5667.7 696539746 18331110 1239548 NA
¥INS_OPTO 233 (2.1 %) 231 (2.2 %) -5579.6 697275375 18335402 1239608 NA
TNS_OPTO 586 (5.3 %) 584 (5.6 %) -5579.6 694078195 18333535 1239786 NA
FIRST_ST 1653 (15.0%) 990 (9.6 %) NOT_TIMED NOT_TIMED 18217160 1222065 NA
INIT 32 (0.3 %) 31 (0.3 %) -6925.4 716691046 18217160 1222065 NA
HIGH_FANOUT_OPTO 8 (0.1%) 7 (0.1%) -6925.4 716661977 18226242 1222298 NA
MULTIBIT_OPTO 1(0.0%) 1(0.0%) -6925.4 716661977 18226242 1222298 NA
SCORE_INIT 0 (0.0 %) 0 (0.0 %) -6925.4 716661977 18226242 1222298 NA
WINS_OPTO 1984 (18.0%) 1980 (19.1%) -5472.6 673951335 18252321 1223540 NA
TNS_OPTO 122 (1.1 %) 121 (1.2 %) -5472.6 673203933 18249820 1223624 NA
INIT 2 (0.0%) 1(0.0%) -5472.6 673203933 18249820 1223624 NA
LATCH_OPTO 0 (0.0 %) 0 (0.0%) -5472.6 673203933 18249820 1223624 NA
SCORE_INIT 0 (0.0 %) 0 (0.0 %) -5472.6 673203933 18249820 1223624 NA
¥INS_OPTO 2506 (22.7%) 2500 (24.1%) -5355.6 661903103 18253989 1223784 NA
TNS_OPTO 382 (3.5 %) 381 (3.7 %) -5355.6 658073184 18241480 1223788 NA
WNS_CRR_OPTO 3494 (31.6%) 3486 (33.6%) -5136.4 631974927 18252950 1224801 NA
DRC_OPTO 0 (0.0%) 0 (0.0 %) -5136.4 631974927 18252985 1224802 NA
11048 10364
Done incrementally optimizing.
Cadence Confidential (Iopt-Logical)
##>ST Summary (11 partitions in total):
B> cccccccicccccccccccccccccccccccccccteccccctcctctcc s s s sccccccectcs s estctcc et cesastencetcececcnsascanseannen
##>PARTITION g 4 0 3 10 5 6 8 7 2
B e e e e e e eennean
##>PRE_WNS -2494 -2066 -4526 -2119 -1952 -1764 -2374 -1851 -969 infinity
##>PRE_TNS 46359074 348351 4739870 11055410 21373446 438951 107852 24993539 13875249 0
##>PRE_CNT 86106 82716 41181 85585 86102 62807 50763 86107 86107 74554
##>PRE_PORT_CNT 39862 59805 240 37110 26566 31222 29835 46438 38071 65586
##>PRE_AREA 2058023 1120983 840005 1855050 1987947 831737 639605 1989012 1995483 4029619
o i e e et e o e b e S g i e g s b i
##>POST_WNS -1192 -1951 -3941 -1587 -773 -1516 -1594 -1122 -637 infinity
##>POST_TNS 27623212 280847 3473075 10102301 14939186 372698 78672 19336003 12277410 0
##>POST_CNT 79662 78936 38644 79624 84183 66397 49926 85042 84951 74554
##>POST_PORT_CNT 39862 59805 240 37110 26566 31222 29835 46438 38071 65586
##>POST_AREA 2041923 1091755 820769 1838611 1979081 812398 634389 1989645 1993340 4029224
B e R R e S R R A S R e S S S R e e S S S S S R e S S S SRR S S
##>1:Misc 891 834 786 742 614 549 515 423 423 134
##>Total Elapsed 891 834 786 742 614 549 515 423 423 134

##>Main Thread Summary:

Figure 4. 14: Optimization Report Part 1 of Overall System

33

##=Main Thread Summary :

BEe
##>STEP Elapsed Insts Area Memory
EE o ool
#=1:Initial 22 825595 18326070 8200
##>1:5etup 10 - - 8666
##=1:Launch ST 8 - - 8666
#=1:Partition 66 - - 8666
##=1:CPN [¢] - - -
##>1:Init Power 0 - - 8666
##>1:Budgeting a5 - - 8666
#2#=1:Derenv-DB 59 - - 8666
##>1:5T loading 1 . - 8666
##=1:Distributed 1401 - - 8666
##>1: Assembly 8 - - 8666
##=1:Const Prop 0 - - -
##>1:Cleanup 11061 803738 18252985 6504
##=1:Misc 0

BB - o e e e ccccecmmeemas
##>Total Elapsed 11083

##PBS- Iopt -Logical Partitions:11 Stage Total:11083 Longest:891 Average:591 PBS Index:0.66
#H

Info ¢ Done incrementally optimizing. [SYNTH-8]
. Done incrementally optimizing 'barebones_top'.

Figure 4. 15: Optimization Report Part 1 of Overall System

report_timing

2 Timing Point Flags Arc [Edge Cell Fanout Load Trans Delay Arrival
£ (1F) (ps) (ps) (ps)
s

core0/IDEX_preg_rs1_reg[4]/C - (arrival) 137086

i R 3
core/IDEX_preg_rs1_reg[4]/Q C>0 F DFRRHOX1 5 29.0 148 429 429
core0/FWD_UNIT/ fopt8077/Q A->Q R INHDX1 1 5.8 & 72 S0l
core0/FWD_UNIT/g83/Q . D->0 R ANDSHOX2 2 106 108 22 712
core0/FWD_UNIT/g82/Q 3 C->0 F NG3I2HOX1 2 115 64 73 785
core0/FWD_UNIT/g8435/Q = B->0 F AND2HOX4 4 4.4 73 221 1016
core0/q137267/Q A->Q R INHOXO 1 6.4 8 89 1165
cored/gd0/Q B->0 R AND2HDX2 1 36,6 107 168 1274
cored/ fopt41/Q A->Q F INHOX6 4 82 74 8 1355
core/ fopt262874/Q A->Q R INHDXB 181251 9B 88 1444
core0/g136505/Q A->Q F AN22HOXL 1 72 M1 9 1541
core0/g261880/Q - C>0 R NA22HOX1 2 12.0 100 110 1651
core0/q263427/Q 4 B->0 R NA22HDX2 1 11.8 80 138 1789
core0/g263426/Q - AN->Q R NA2T1HDX4 15 80.5 180 180 1969
core0/ALU/Lt_37_38_Y_gte_44_38_g5052/0 - A->Q0 F INHDXL 2 82 66 72 2041
core0/ALU/g35936/Q " A->0 F BUHDXI 6 25.4 112 190 2231
core0/ALU/g13273/Q 2 D->0 F 0A221HDXO 1 37 713 242 2473
core0/ALU/g13232/0Q . B->0 R NO2T1HDXO 1 65 18 170 2643
core0/ALU/g13191/Q é E->0 F AN221HDX1 1 6.9 163 9 2739
core0/ALU/g37153/Q s C>0 R NA22HOX1 1 7.6 8 108 2848
core0/ALU/g37152/Q - A->Q F NO2HDX1 1 6.1 58 43 2890
core0/ALU/g36691/Q . B->0 F AND2HDX2 1 11.4 39 150 3040
core0/ALU/g37122/Q : A->0 R NASHDX2 3 15.6 125 8 3126
core0/LS_UNIT/g108/Q . B->0 R ANDSHOX2 1 10,6 109 165 3291
core0/LS_UNIT/g22/Q 2 B->0 F HA2HDX2 2 156 6 6 3352
core0/LS_UNIT/g105/Q . AN->Q F NA2T1HDX4 3 2.8 71 140 34®
core0/LS_UNIT/fopt7527/Q i A->Q F BUHDX1 3 15.6 78 160 3652
core0/LS_UNIT/g7531/Q . B->0 R NO2HDX1 1 10,6 155 142 3794
core6/LS_UNIT/g41/Q - B->0 F NA2HDX2 1 7.5 53 48 3882
cored/LS_UNIT/g46/Q A3 F NA22HDX2 3 403 113 18 4026
QR97/Q : A->Q0 R NO2HDX2 1 89 98 100 4126
934/0 - A->Q R AND2HOX2 1 140 57 129 4255
970/Q X C>Q F WA3HDX2 1 148 8 & 4338
968/Q . AN->Q F NA2T1HDX4 5 59,1 95 163 4500
memory2/ fopt2487955/Q A->Q0 F BUHDX4 3 6.6 73 154 4655
memory2/ fopt2487954/Q A->0 R INHDX6 3 600 & 66 4721
memory2/ fopt2487953/Q A0 F INHDG 6 74.8 109 108 4829
memory2/ fopt2487952/Q . A->Q F BUHDIG 3 51.6 80 166 4995
memory2/ fopt2487951/Q 3 A->Q F BUHDX6 2 59.0 53 131 5126
memory2/ fopt2487950/Q - A->Q F BUHDXB 2 52.0 40 108 5234
memory2/g2412513_dup/Q H A->Q R NA2HDX4 3 469 122 9% 5330
memory2/g24171217Q A->Q R BUHDX6 51069.6 100 138 5468
memory2/g2417125/Q 2 B->0 F NO2T1HDX4 8114.6 107 114 5582
memory2/ fopt2424119/Q . A->Q R INHDXI2 1 74.9 54 59 5641
memory2/ fopt2424118/Q ¢ A->Q F INHOXL2 57 301.6 107 104 5744
menory2/g2417175/Q . B->0 R NA2HOXO 1 7.2 18 126 5870
memory2/g2294023/Q Z A->Q R NO22HOXO 1 7.8 212 228 6098
memory2/g474746/Q . A->0 R ANDSHOX1 1 7.6 72 18 691
memory2/g474461/Q : C->Q R AND4HOX1 1 7.6 71 18 6476
memory2/g2443699/Q . C->0 R ANDSHOX1 1 91 78 191 6667
memory2/g474329/Q 3 A->0 R ANDSHOX2 1 88 101 18 6854
memory2/g2428509/Q - B->0 F NABHOXL 1 67 8 8 689
memory2/dout0_reg[29)/0 << - F DFROHDX4 1 - . 0 6939

Figure 4. 16: Timing Report of Overall System

34

Instead of writing all these commands one by one, at the accurate location a file named
“commands.tcl” could be created with all these commands written inside of it, and when the

Genus is invoked the command,
e source commands.tcl

could be run. This command would give all the commands to the Genus.

[A, commands.tcl ¢

bs/D_CELLS_HD/v3_0/1iberty LPMOS/v3_0_0/PVT_1 _80V_range

1g_unit.v
ection_unit.v

arch_path {source}

hdl FIFO MEM BLK.v
hdl FIFO.v

syn_map
syn opt
f"f[:“:'l'tvf iming

Figure 4. 17: Commands.tcl file
The system is successfully synthesized on Cadence Genus tool, and all the reports related to the
synthesis are presented. It is proved that this newly designed DMA is meeting its design criterias
also for the ASIC design implementation.

35

5. RESULTS AND RECOMMENDATIONS

As it is mentioned in the overall system simulation section, we have managed to connect all the
system together and ran the simulation by running the C code in order to test the system. Due
to data adress algorithm of the procosser, DMA could not read the commands from the data
memory. Nevertheless, system would work after adressing issue is fixed since all the elements

are tested and verified seperately.

In this project, all the memory elements such as FIFO, RAM aree written by us in order to be
able to implement them in ASIC since ASIC memory elements are expensive. When
implementing this system on chip, it would be muc more effcient in terms of performance and

area usage to buy memory elements rather than writing them by using register elements.

6. REALISTIC CONSTRAINTS AND CONCLUSIONS

The amount of the data that needs to be processed in the technological systems is increasing
day by day due to the advanced technological developments around the world. As a result,
processing this vast amount of data with a high speed is essential and crucial for this high-tech
systems. This DMA project is presented as a solution to this performance problem, and with
the work done in this project, it is shown that this DMA is able to be implemented as ASIC.

6.1 Practical Application of This Project

The vast majority of technological developments aimed at increasing our quality of life and the
way that we understand the universe, including in vital sectors, do this by perceiving the data
around it or by processing the data directly uploaded to the system. This DMA block is designed

to increase the performance of these products by using them in these technological products.

36

6.2 Realistic Constraints

During this project, as the work progressed, many problems arised mostly due to the lack of

budget and the time.

6.2.1 Social, environmental and economic impact

This DMA design differs significantly from the other DMA designs realized until now. To be
able to utilize this DMA for its considerable advantages, this DMA needs to be purchased by

the users.

6.2.2 Cost analysis

Since there is a limited budget allocated for this project, limitations were encountered at several
stages during the course of the project, such as the need to purchase FIFO, RAM, DPRAM for
the overall system. In addition, Cadence, the tool on which the project was implemented, and
Vivado, which is used as an assistant throughout the project, are also paid, and both platforms

were made available to us free of charge by our university.

6.2.3 Standards
Throughout the project, the hardware description languages Verilog and VHDL were studied

within the scope of the standards set by IEEE.

6.2.4 Health and safety concerns

In the work progress of this project, there has been no health and safety concerns.

6.2.5 Future Work and Recommendations

Our project is part of a two-year spanned TUBITAK project and we are the first people to work
on the ASIC implementation of this unique design. Related to this issue, since our work proved
the ASIC design also meets the required criterias and the DMA module is working in a larger

system which includes connections to a processor core, a DPRAM and a processing element,

37

our recommendation for the future work related to this DMA is improving the timing
performance of the design by using our work as a base. The technology we used while
synthesizing the design should be considered, and it should be on mind that changing the

technology is also an option for improving the performance.

38

7. REFERENCES

[1] H. Morales, C. Duran and E. Roa, "A Low-Area Direct Memory Access Controller
Architecture for a RISC-V Based Low-Power Microcontroller,” 2019 IEEE 10th Latin
American Symposium on Circuits & Systems (LASCAS), 2019, pp. 97-100, doi:
10.1109/LASCAS.2019.8667579.

[2] Y. J. M. Shirur, K. M. Sharma and A. A, "Design and implementation of Efficient Direct
Memory Access (DMA) Controller in Multiprocessor SoC," 2018 International Conference on
Networking, Embedded and Wireless Systems (ICNEWS), 2018, pp. 1-6, doi:
10.1109/ICNEWS.2018.8903991.

[3] A. Rani, A. Pai, B. Naware, Z. H. Yang and T. -Y. Huang, "Direct Memory Access
Remapping for Thunderbolt, Feature Deployment at Platform Level,” 2020 IEEE International
Conference for Innovation in Technology (INOCON), 2020, pp. 1- 5, doi:
10.1109/INOCON50539.2020.9298289.

[4] D. A. Patterson, J. L. Hennessy, Computer Organization and Design: The
Hardware/Software Interface. Waltham, MA: Elsevier, 2012.

[5]1Y. Yilmaz, Y. S. Tozlu,(2021), Design and Implementation of a 32-bit RISC-V Core
[Bachelor’s Thesis, Istanbul Technical University].
https://web.itu.edu.tr/~orssi/thesis/2021/YavuzTozlu_bit.pdf

[6] ¢ Hornet RISC-V Core’ https://github.com/yavuz650/RISC-V

[7] Palnitkar, S. (2003), Verilog HDL: A Guide to Digital Design and Synthesis, (2nd ed.) ,
Prentice Hall PTR

39

https://web.itu.edu.tr/~orssi/thesis/2021/YavuzTozlu_bit.pdf
https://github.com/yavuz650/RISC-V

40

