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DESIGN AND IMPLEMENTATION OF A 32-BIT RISC-V CORE 

SUMMARY 

The concepts of “Open-source software” and “Open-source hardware” are thriving in 

the modern society. Hundreds of companies and groups are working hard to provide 

the humanity with free and open-source software and hardware designs. “Open-

source” in this context refers to the fact that the design files are freely available to the 

public. A significant part of this effort is directed towards the provision of open-source 

microprocessor designs. In light of this, researchers at University of California, 

Berkeley developed a license-free Instruction Set Architecture called “RISC-V”, 

which essentially defines the vocabulary of the hardware/software interface. This ISA 

is warmly welcomed by researchers and companies; thus, many different RISC-V 

processors, be it open-source or proprietary, emerged and many have seen tape-outs. 

Some crucial aspect of an open-source hardware are its extendibility, flexibility, and 

comprehensibility. Most designs are often extendible and well thought-out, but they 

are rarely comprehensible, which negatively impacts their extendibility. The common 

problem is that they either lack documentation, or have hastily written ones. This 

causes the users to spend so much time decoding and understanding the design, such 

is the case with most of the open-source RISC-V cores. In this project, we wanted to 

tackle this problem. We developed a 32-bit RISC-V core that is not only open-source, 

but also well documented. We disclosed the design diagrams and decisions that we 

made during the design process, so that the users can get started quickly, and 

experiment with the core as they wish. 

We first started off with learning about computer architecture from textbooks. We 

learned how we could build a processor from scratch. Then, using that knowledge, we 

started designing the core. We spent weeks drawing design diagrams and iteratively 

fixing bugs. Once we were confident in our design, we started implementing it. The 

implementation was done in ASIC domain. We used industry-standard simulation and 

synthesis tools. We wrote the RTL description of the design, simulated and synthesized 

it. Last but not least, we wrote several test programs in C programming language to 

verify functionality of the processor. We successfully ran these C programs in a 

simulation environment, and verified the functionality of our design. 

In the end, we managed to design and develop a synthesizable 32-bit RISC-V 

processor that is capable of executing integer instructions, multiply/divide instructions, 

and handling interrupts and exceptions. We also documented every step as much as 

we could. Of course, we have published our design on Github, where we also present 

example system-on-chip designs, useful peripherals, testing infrastructure, 

documentation, and some useful software libraries. 

We named this RISC-V core “Hornet”.
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32-BİTLİK RISC-V İŞLEMCİSİ TASARIMI VE GERÇEKLENMESİ 

ÖZET 

 “Açık-kaynak yazılım” ve “Açık-kaynak donanım” konseptleri günümüzde oldukça 

yaygınlaşmış durumda. Yüzlerce şirket ve araştırma grubu, insanlığa açık-kaynak 

yazılım ve donanım tasarımları kazandırmak için çalışıyor. Bu bağlamda, bir tasarımın 

“Açık-kaynak” olması, tasarım dosyalarının koşulsuz şartsız topluma açık olması 

anlamına geliyor. Bu çalışmaların ciddi bir kısmı açık-kaynak işlemci tasarlamaya 

yönelik. Bu doğrultuda California, Berkeley Üniversitesi’ndeki araştırmacılar, adı 

“RISC-V” olan, lisans koşulu olmayan, donanım ile yazılım arasındaki arayüzü 

sağlayan bir Komut Kümesi Mimarisi geliştirdiler. Bu Komut Kümesi Mimarisi 

araştırmacılar ve şirketler tarafından olumlu karşılandı, böylece birçok çeşit RISC-V 

işlemcisi, hem açık-kaynak hem de tescilli olmak üzere, ortaya çıktı, ve bunların 

birçoğu üretime gitti. 

Açık-kaynak donanımın kritik özelliklerinden bazıları geliştirilebilir olması, esnek 

olması, ve anlaşılır olmasıdır. Çoğu tasarımlar genellikle geliştirilebilir ve iyi 

düşünülmüş oluyorlar, ancak nadiren anlaşılır oluyorlar, ki bu da geliştirilebilirliklerini 

olumsuz etkiliyor. Yaygın görülen problemlerden birisi, tasarımların ya 

dökümanlarının eksik olması, ya da üstünkörü yazılmış olmasıdır. Bu, kullanıcıların 

tasarımı anlamak için çok fazla zaman harcamalarına sebep oluyor. Açık-kaynak 

RISC-V işlemcilerinin birçoğunda durumun böyle olduğu görülebilir. Bu projede, 

bahsi geçen problemi çözmeyi hedefledik. 32-bitlik bir RISC-V çekirdeği geliştirdik, 

ki bu çekirdek sadece açık-kaynak değil, aynı zamanda kapsamlı bir şekilde 

dökümanlanmış oldu. Tasarım sürecinde çizdiğimiz diagramları ve aldığımız kararları 

da paylaşıma sunduk. Böylece, kullanıcılar çekirdek ile çalışmaya kolayca 

başlayabilirler, ve çekirdeği istedikleri gibi kurcalayabilirler. 

Çekirdeği tasarlama işine koyulmadan önce, bilgisayar mimarisi alanında yazılan 

kitaplardan bu işi nasıl yapacağımızı öğrendik. Ders kitaplarından faydanalarak, 

baştan aşağıya bir işlemcinin nasıl tasarlandığını öğrendik. Öğrendiğimiz bu bilgiler 

ile çekirdeği tasarlamaya başladık. Haftalarca diagramlar çizdik; iteratif bir biçimde 

hataları düzeltip, tekrar çizim yaptık. Tasarımımızın hazır olduğunu düşündüğümüzde 

gerçeklemeye başladık. Gerçekleme işlemini ASIC dömeninde yaptık. Endüstride 

yaygın olarak kullanılan benzetim ve sentez araçlarını kullandık. Tasarımın RTL 

kodunu yazdık, simülasyonlarını ve sentez işlemini yaptık. Son olarak da, çekirdeğin 

fonksiyonelliğini test etmek maksadıyla, C programları yazdık. Bu programları 

simülasyon ortamında başarılı bir şekilde çalıştırıp, çekirdeğin fonksiyonel olduğunu 

onayladık. 

Sonuç olarak; 32-bitlik, sentezlenebilir bir RISC-V çekirdeğini tasarlayıp gerçekledik. 

Bu çekirdek; integer ve çarpma/bölme komutlarını çalıştırma kabiliyetine, ayrıca 

kesmeleri de kontrol edebilme kabiliyetine sahip. Süreç boyunca her adımı 

raporlamaya çalıştık. Tasarımımızı, kırmık üstü sistem örneklerini, çevre birimlerini, 
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test alt yapısını, dokümanları, ve yazılım kütüphanelerini de Github platformunda 

paylaşıma sunduk. 

Bu RISC-V çekirdeğinin adını “Hornet” (Eşek Arısı) koyduk.
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 INTRODUCTION 

Computers came into play in calculations that humans can’t easily overcome, because 

of several possible reasons like excessive number of operands or extreme number of 

steps to reach the goal.  

Innovation of electronic computing systems started in 40s and it has been a fast pace 

process both on academic and industrial sides.  

The brain of established electronic computer systems of today is the “processor”, that 

speaks with the other components, like memories or a keyboard, and works on the 

information that it has acquired from them. There are several proposed design styles 

and circuits for processors that differs in how the data flows or where the data and 

instructions are stored. Designing new architectures and developing and enhancing the 

existing ones is still an exciting topic, and a huge academic and industrial area. 

The primary objective of this project is to produce a synthesizable 32-bit Reduced 

Instruction Set Computer-V(RISC-V) core in Verilog HDL. We aim to implement at 

least the “I” integer base instruction set, the “M” multiply/divide standard extension, 

and the Machine Level Instruction Set Architecture(ISA). We will verify the 

functionality of the core by running various C programs on it.  

One of the shortcomings of the state-of-the-art RISC-V cores is that it is difficult to 

understand the low-level design, because it is not documented. We will make sure our 

design is simple, and easy to understand by thoroughly documenting it. 

The project consists of three main stages: Developing the “I” base integer set, the “M” 

multiply/divide extension and the Machine Level ISA.  

The first stage is to design and implement the “I” base instruction set defined in the 

Unprivileged ISA [1]. This task involves the design of the 5-stage pipeline that can 

execute the integer instructions listed in the RISC-V ISA.  

The second stage is to add the “M” standard extension, which includes the 

multiply/divide instructions. We will look up the multiplication/division algorithms 

available in the literature, and pick the ones that suit our needs. 
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The third stage is to implement the Machine Level instruction set defined in the 

Privileged ISA [2]. Machine Level instruction set defines the instructions and registers 

necessary to control and monitor the processor’s status. 

 General Information and Concepts 

We have aimed to design and implement a processor by using the open source Reduced 

Instruction Set Computer – V (RISC-V) as our Instruction Set Architecture (ISA). We 

have used the basic information that we had, and also acquired the needed information 

that we hadn’t had beforehand. 

1.1.1 Binary numbers and two’s complement format 

The signals that electronic devices like computers most easily understand are on and 

off, and the corresponding symbols for the characters are “0” and “1”, respectively.  

This representation is called the “binary representation”, and the number system 

formed with this representation is the “binary numbers”. Least Significant Bit (LSB), 

which is the rightmost bit,  is the value 20, and the Most Significant Bit (MSB), which 

is the leftmost bit, is the value 2N-1, where N is the number of bits forming the number.    

For example, a 4-bit binary number “1010” represents the number 9 in the decimal 

number system, and it is calculated as follows, 

0 × 20   +  1 × 21  +  0 × 22  +  1 × 23  =  9 

There are a number of ways to represent negative numbers in binary form. The one 

that is most used in electronic circuits and most suitable one for the binary arithmetic 

is the “two’s complement” representation. With this representation, negative numbers 

are constructed as taking the complement of a positive binary number, which means 

inverting each bit of the number, then adding “1” to the emerged number. N+1 bits are 

needed for representing numbers in the range of -2N and (2N-1). For example, to 

represent -9, “01010” is inverted to “10101” then 1 is added to the inverted number to 

obtain “10110”. 
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1.1.2 A processor 

Today's most popular processors use architectures derived from the design style called 

Von Neumann defined by John von Neumann and his friends from the ENIAC project, 

which is the first general-purpose electronic computer [Computer organization and 

design RISC-V edition]. This model proposes an architecture that in its basic form 

includes a processing unit with an Arithmetic and Logic Unit (ALU) and Registers, a 

Control Unit and a Program Counter, and a mutual Memory for the Instructions and 

Data. Each component has its own role and works together to carry through the 

processing.  

The ALU is responsible for executing the arithmetic operations like addition, and logic 

operations like bitwise AND. Registers are memory components that are close to the 

ALU and hold the data that the ALU works on, that is either moved to the registers 

from the Memory or placed there by the Control unit. The Control Unit controls the 

rest of the processor with control signals generated specifically for each Instruction. 

The Memory holds the Data and Instructions in addresses in binary form, and the rest 

of the circuit can reach its content with the addresses. 

1.1.3 Instruction set architecture 

The processor obeys the orders given by us, the humans. These orders are given in a 

form called “instructions”, that are in binary representations; therefore, the hardware 

of the processor can recognize those instructions and then can follow them. For 

example, in an instruction set architecture, the instruction represented as “111000111” 

could employ the processor to perform addition on specified values.  

The designs for computer architectures differ in which instructions they can execute 

with their hardware and how they do it. The design choices around these points make 

up an architecture. Different architectures may execute the same instruction 

differently, or they may have instructions specific for that architecture. A design that 

specifies a set of instructions and the properties of those instructions, that a circuit 

must be able to carry out is called an Instruction Set Architecture (ISA). 
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1.1.4 RISC-V instruction set architecture 

The Reduced Instruction Set Computer - V (RISC-V) is an ISA, that is a side product 

of a 5-year project carried out in University of California, Berkeley by Prof. Krste 

Asanović and graduate students Yunsup Lee and Andrew Waterman. The RISC-V ISA 

specifies the minimum set instructions that a possible implementation should be able 

to fulfill, and additional subsets of instructions and higher-level specifications for more 

complex designs. The RISC-V ISA does not define how a design must be implemented 

or which subsets it must contain, but rather specifies a balanced and well-designed set 

of instructions that a designer can make decisions on what to use and how to 

implement.  

As stated in the RISC-V organization webpage, “The worldwide interest in RISC-V is 

not because it is a great new chip technology, the interest is because it is a common 

free and open standard to which software can be ported, and which allows anyone to 

freely develop their own hardware to run the software.” [4]. These properties of the 

RISC-V ISA make it ideal for our desired use. 

1.1.4.1 Integer instruction set 

The integer instruction set consists of the most basic instructions; such as addition, 

subtraction, branch, jump, and memory operations. Integer instruction sets are 

available in 32, 64 and 128-bit options. They are also the base intruction sets, which 

means that every RISC-V core must subsume at least one of the integer instruction 

sets. 

1.1.4.2 “M” standard extension 

The “M” Standard Extension adds multiplication and division features to the repertoire 

of a RISC-V core. The subset includes the instructions “MUL”, “MULH”, “MULHU”, 

and “MULHSU” for the multiplication; “DIV”, “DIVU”, “REM”, and “REMU” for 

division. 

The specifications for these instructions are given in the RISC-V Instruction Set 

Manual [1] and are briefly given below.  

With 32-bit operands, “MUL” instruction performs multiplication on two source 

registers and stores the lower 32 bits of the 64-bit result value to the destination 

register. “MULH” instruction stores the higher 32 bits of the result after the same 
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operation. For “MUL” and “MULH” instructions, the operands are treated as signed 

numbers. “MULHU” instruction stores the higher 32 bits of the result, with both 

operands treated as unsigned numbers. “MULHSU” again stores the higher 32 bits of 

the result, with the first operand treated as signed while the other as unsigned. 

With 32-bit operands, “DIV” and “DIVU” instructions perform multiplication on two 

source registers and store the 32-bit quotient value to the destination register with the 

operands treated as signed or unsigned, respectively. “REM” and “REMU” 

instructions perform multiplication on two source registers and store the 32-bit 

remainder value to the destination register when the operands are treated as signed or 

unsigned, respectively. 

Arithmetic circuits in computer architecture are realizations of arithmetic algorithms. 

These algorithms are selected or constructed with the capabilities of the current 

hardware technology in mind, they should be suitable to be constructed. For the part 

we are interested in, which is binary multiplication and division, there are several 

proposed algorithms and architectures[7][8].  

Multiplication 

For multiplication, the main steps are generation of partial products and addition of 

them[7]. Optimizing the generation of partial products is a way to speed up the 

multiplication, and a popular multiplication method for this purpose is Booth's 

Algorithm, and its modified variations[7]. For implementing large multipliers that 

work with big operands, an efficient method is to partition the operands into smaller 

chunks, then use smaller bit multipliers to obtain partial products. The next part is to 

align these products properly and add them to acquire the final result. There are several 

ways for optimizing this addition using Carry-Save Adders(CSA), like Wallace 

Tree[7]. 

Division 

Division is more complex than multiplication, and they often take the most time to be 

executed in computer architectures[8]. The types of dividers are sequential dividers, 

array dividers and dividers implemented with multipliers[8]. The most well-known 

sequential divider algorithm is SRT Algorithm[7]. To speed up the sequential dividers, 

High-Radix Divider algorithms are constructed. Array Divider architectures are 

suitable for pipelining applications, so their critical paths can be adjusted for required 

speeds. But their design is more complex and they are larger, when implemented. 
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1.1.4.3 Privileged architecture 

The privileged architecture of RISC-V describes privileged instructions and 

mechanisms to utilize operating systems and external devices. It defines several 

privileged instructions and registers that allow for interrupts, exceptions, hardware 

identification, configuration and more. Moreover, in order to satisfy RISC-V 

compliances, the privileged architecture must be implemented to some degree. 

RISC-V defines four privilege modes: User, Supervisor, Hypervisor, and Machine 

modes. Briefly, the concept of privilege levels is required to ensure stability and safety 

of the processor. Each privilege mode has a certain degree of access to the hardware, 

with the User mode being the least privileged and the Machine mode being the most 

privileged. In other words, only the Machine mode software has complete access to 

the underlying hardware. Therefore, in a RISC-V compliant processor, at least the 

Machine privilege mode must be implemented.  

Each privilege level has its own set of privileged instructions and registers. These 

registers are called “CSR Registers”. They are used to configure and monitor the 

processor’s state. Their functions range from storing the program counter value of the 

interrupted instruction to enabling and disabling interrupts. In order to read and write 

to these registers, RISC-V defines 6 CSR instructions. 

 

 

 

 

 

 

 

 

 



20 

 DESIGN AND IMPLEMENTATION OF THE INTEGER PIPELINE 

Our first goal in this project was to design the hardware that can execute the integer 

instructions in the RV32I Base Integer Instruction Set. The instructions that are 

included in this set are shown in Figure 2.1, 

 

Figure 2.1 : List of RV32I instructions 

 Microarchitecture of the core 

In computer architecture domain, the term “microarchitecture” refers to the underlying 

implementation of the processor. For example, the number of pipeline stages, the task 

of each pipeline stage and the inner working mechanisms of each stage are 

microarchitectural decisions. 
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2.1.1 Designing the datapath for integer instructions 

Initially, we designed a datapath for each instruction in the RV32I set. A datapath in 

this context refers to the physical flow of execution of an instruction. To design a 

datapath, we determined what functional units each instruction required, and 

connected them appropriately to realize the datapath. For example, the “ADD” 

instruction is supposed to read two registers, add them together, and finally write the 

result to a register. This means, there must be a register file that houses the registers, 

and an ALU to perform the binary addition operation. Another example can be the 

“Load Word” instruction, which is supposed to read a register, add a 32-bit immediate 

value to that register to form the address of the data, read the data from the memory, 

and finally write that data to a register. This indicates that there must be a data memory 

and an immediate decoder in the datapath, in addition to a register file and an ALU. 

Figures 2.2 and 2.3 show the diagram for these datapaths, 

 

Figure 2.2 : Datapath for the ADD instruction 
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Figure 2.3 : Datapath for the Load Word instruction 

 

Once we determined the datapaths for all of the instructions, we combined them all 

together to form the complete datapath. We also added muxes where necessary. Figure 

2.4 shows the complete datapath for the RV32I instruction set. Note that the control 

signals for muxes, which are generated by the Control Unit, are omitted in the diagram 

to avoid cluttering. 

 

Figure 2.4 : Complete datapath for RV32I instructions 

 

The Instruction Memory is where the instructions are stored. At each clock cycle, a 

new instruction is read from there and executed in the datapath. The PC is a register 

which holds the address of the next instruction that will be fetched from the memory. 
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PC is incremented by 4 at each cycle. The mux at the input of PC determines where 

the next instruction address comes from. When a branch or a jump occurs, address of 

the next instruction is determined by the 32-bit adder. Register File houses all 32 of 

the 32-bit registers defined in the RISC-V standard. It has two ports to read, and one 

port to write. Control Unit generates the control signals for Register File, muxes, ALU 

and Data Memory. Immediate Decoder generates 32-bit immediate values from 

instructions, as defined in the RISC-V standard. ALU executes all the arithmetic 

operations that the instructions require, which involve addition, subtraction, shifts, 

logic operations and comparisons. Data Memory stores the program data. The 

processor can store or load 8, 16 and 32 bits of data to and from the Data Memory.  

2.1.2 Pipelining the datapath 

2.1.2.1 What is pipelining? 

Pipelining is a well-known technique in hardware design. From ADCs to CPUs, many 

different structures utilize pipelining to increase performance. 

The problem with a traditional datapath is that the signal propagation delay from the 

beginning to the end can be quite long. This long delay is a natural by-product of 

electronic circuits. In a typical pipelining scheme, the idea is to split the datapath into 

“pipeline stages”, and insert “pipeline registers” between the stages. This way, with 

every clock cycle, the signals are only required to propagate from one stage to the next. 

Therefore, the average propagation delay in the datapath is reduced, and the frequency 

of operation can be increased. 

2.1.2.2 Design of the pipeline 

In our design, we decided to use a 5-stage pipelined microarchitecture. This is a typical 

pipelining scheme for simple RISC processors. The pipeline stages are as follows, in 

order, 

 1. Instruction Fetch (IF) 

 2. Instruction Decode (ID) 

 3. Execute (EX) 

 4. Memory (MEM) 
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 5. Writeback (WB) 

In the Instruction Fetch stage, the next instruction is fetched from memory.  

In the Instruction Decode stage, the instruction is decoded in the Control Unit, and 

control signals are generated. In addition to that, Immediate Decoder block generates 

the 32-bit immediate value, and the registers are read from the Register File. 

In the Execute stage, the ALU performs the arithmetic operations for the instruction. 

Branch target address is also calculated in this stage. 

In the Memory stage, data is either stored to or loaded from the Data Memory.  

In the Writeback stage, the data is written to the Register File. 

Between the stages, there are pipeline registers that convey the necessary signals from 

the previous stage to the next stage. For example, between IF and ID stages, there is a 

pipeline register that stores the instruction and the associated PC value. 

2.1.2.3 Pipeline hazards 

In pipelined processors, there are multiple instructions being processed at a given time. 

The problem is that an instruction at an earlier stage might depend on an instruction 

that is not yet completed. For example, consider the code shown in Figure 2.5, 

 

Figure 2.5 : Assembly code that causes a pipeline hazard 

 

The code in Figure 2.5 loads three values from the memory, then performs an addition 

and a logical shift operation on x1 register. The issue with this code is that the logical 

shift instruction slli depends on the addition instruction addi. In the pipeline, the 

addition instruction will write its result to the Register File in the Writeback stage, but 

the shift instruction requires the data before that. This issue is called a pipeline hazard. 

Fortunately, the solution is quite simple. We exploit the fact that the result of the 

addition instruction is calculated in the EX stage. Then, the shift instruction need not 

wait for the addition to write the result to the Register File. Instead, when the shift 
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instruction reaches EX stage, the addition instruction will have reached the MEM 

stage, we simply forward this result from the MEM stage to the EX stage, before it is 

written to the Register File. However, not all pipeline hazards can be resolved by 

forwarding data. As an example, consider the code shown in Figure 2.6, 

 

Figure 2.6 : Assembly code that causes a pipeline hazard 

 

This time, the addition instruction depends on the memory load instruction. The load 

instruction will have the data ready at the end of MEM stage, but the addition 

instruction requires the data before that. This hazard cannot be resolved by forwarding 

alone. The addition instruction must stall and wait for the load instruction to read the 

data from memory. A stall is when the pipeline basically stops execution. A NOP 

instruction, which does not change anything visible in the processor, is inserted into 

the pipeline to realize the stall. After stalling for one cycle in the ID stage, addition 

instruction can advance to the EX stage, and load instruction can forward the data from 

the WB stage. 

In summary, there are two countermeasures for pipeline hazards: forwarding and 

stalling. Forwarding can resolve majority of the data dependencies, but a stall is 

necessary if an instruction depends on a load instruction. 

In our core, we designed two modules to handle pipeline hazards: Forwarding Unit 

and Hazard Detection Unit. The Forwarding Unit detects data dependencies and 

forwards data when necessary. The Hazard Detection Unit detects data dependencies 

that require pipeline stalls, and stalls the pipeline. 

Figure 2.7 shows the complete diagram of the pipeline that is capable of executing 

RV32I instructions,
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Figure 2.7 : Complete pipeline diagram for RV32I instructions 
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 Implementation of the design 

2.2.1 Verilog description of the design 

Implementing a hardware design consists of several iterative steps. In digital design, 

the first step in implementation is describing the design in a Hardware Description 

Language. HDLs are very commonly used to describe digital hardware. In a way, 

HDLs define a set of rules to describe hardware in text format. This allows a formal 

description of any hardware, which in turn allows different groups of people to 

efficiently describe and understand hardware. Moreover, modern CAD tools can 

simulate HDLs in a cycle-accurate manner. This greatly simplifies the design of 

complex hardware, such as processors. Most importantly, such CAD tools can also 

synthesize real hardware from the HDL code of the design. Without such 

conveniences, it would be incredibly difficult to implement any meaningful hardware. 

In practice, the HDL description of a design is also called the “RTL” description. 

In our project, we used Verilog[5] HDL to describe our design. We wrote the following 

Verilog modules, 

 ALU – Executes arithmetic operations 

 Control Unit – Generates the control signals  

 Hazard Detection Unit – Detects pipeline hazards and stalls the pipeline 

 Forwarding Unit – Detects pipeline hazards and forwards data 

 Immediate Decoder – Generates 32-bit immediate values 

 Load-Store Unit – Generates Data Memory interface signals 

 Core – Top module where all the submodules are instantiated and the pipeline 

is described 

Figure 2.8 shows the module hierarchy in a visual way, 
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Figure 2.8 : Module hierarchy 

It should be noted that the memory is not a part of the core, hence the separation in the 

diagram.  

2.2.2 Synthesis of the RTL description 

Once we prepared and tested our RTL descriptions, we proceeded to synthesize the 

design. Synthesis is the process of generating a netlist that consists of real primitive 

cells. A “cell” in this context is simply a logic circuit block, such as an And-Or-Invert, 

a Full-Adder, a NAND gate, a Flip-Flop etc.  

There are several synthesis programs out there, some of them are free to use, others 

are proprietary. We used Genus synthesis tool from Cadence, which is provided by the 

VLSI Lab at our faculty. Genus expects several inputs from the user, where the 

essential ones are listed below, 

 RTL files of the design – The Verilog source files, in our case 

 An ASIC cell library – We used TSMC’s 90nm general purpose cell library 

 Timing constraints: Clock frequency, input and output delays.  

 Load at the output ports 

 Driving cells of the inputs 
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Genus simply generates a netlist of cells that is functionally equivalent to the RTL 

description of the design, while also meeting the specified constraints, if possible. 

More specifically, it generates a Verilog file that describes the netlist, an SDF[6] file 

that contains the cell delays, and report files that contain detailed information about 

the timing, gate count and area consumption of the design. We then use the Verilog 

and the SDF file to run post-synthesis timing simulations.  

In practice, a synthesis script is written to automate this process. The script contains 

all the constraints and commands necessary to complete the synthesis process. The 

script we used in this project is shown in Appendix A. 

 DESIGN AND IMPLEMENTATION OF THE PRIVILEGED 

ARCHITECTURE 

 About the Privileged Architecture 

In a typical computer, there are several levels of privilege in the hardware level for 

security purposes. Traditionally, each level is associated with a mode of operation, and 

at any given time, the software is running in one of the available modes. The important 

part is that each mode has a certain level of access to the underlying hardware; hence 

the name “privilege”. For example, the mode with the highest privilege level has 

access to all the registers and memory regions, whereas the mode with the lowest 

privilege level might have access to only a limited portion of them. As the privilege 

levels are enforced in the hardware, the software –under normal circumstances– has 

no way to bypass this security scheme. 

This privileged architecture is necessary to realize a stable and secure execution 

environment. For example, in a computer with an operating system installed, there are 

often multiple programs running simultaneously. The only way to ensure that these 

programs do not interfere with each other, willingly or not, is to utilize a privilege 

scheme, as described above. This way, the user programs would run in a lower 

privilege mode, whereas the operating system would run in a higher privilege mode. 
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Thus, the programs would not be able to interfere with each other, because they would 

simply lack the privilege to do so. 

In the case of RISC-V, the privileged architecture is described in the Volume II of the 

Instruction Set Manual[2]. There are 4 modes of operation: Machine, Hypervisor, 

Supervisor and User, in decreasing privilege level. Each mode has its dedicated set of 

registers called Control and Status Registers and instructions. These registers and 

instructions allow the core to handle interrupts and exceptions. The spec only mandates 

the provision of Machine mode; the rest are optional. The more modes are provided, 

the better the security of the processor. 

In our project, we only implemented the Machine mode, which involves several new 

registers and instructions.  

 Design of the Privileged Architecture 

3.2.1 Requirements 

Design of the Machine-Level architecture involves the following new registers and 

instructions, 

 Machine-Level Control and Status Registers 

 MRET instruction 

 “Zicsr” standard extension, which includes 6 new instructions 

The Machine-Level CSRs provide essential information and functionalities to the core; 

such as the instructions supported by the core, length of the instructions in bits, 

interrupt enable and disable, interrupt handler address and more. The instructions 

included in the “Zicsr” extension are called CSR instructions. They are used to read 

and write to the CSRs. The MRET instruction is used to return from an interrupt or an 

exception handler.  

3.2.2 Machine-Level Registers 

We designed a new module called “CSR Unit”, which implements the registers and a 

finite-state machine that handles interrupts and exceptions. The registers are written 

on the falling edge of the clock and on the WB stage of the instruction. The unused 

parts of the registers are hardwired to 0. Following is the list of implemented registers, 
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 mstatus – Machine Status: Contains the global interrupt enable/disable bit. 

 mie – Machine Interrupt Enable: Contains the Machine-Level interrupt 

enable/disable bits 

 mip – Machine Interrupt Pending: Contains the Machine-Level interrupt 

pending bits. A bit is set if its associated interrupt is pending. 

 mcause – Machine Cause: Holds the cause of the interrupt or exception.  

 mtvec – Machine Trap Vector: Holds the base address of the 

interrupt/exception handler. 

 mepc – Machine Exception PC: Holds the address of the interrupted 

instruction 

 mscratch – Machine Scratch: Dedicated register for Machine-Level code.  

3.2.3 Interrupts and Exceptions 

In addition to the Machine-Level registers, RISC-V standard defines the following 

interrupt sources, 

 Software interrupts – Set and cleared by a write to a memory-mapped register 

 Timer Interrupts – Triggers when the timer register exceeds the timer compare 

register 

 External Interrupts – Set and cleared by an external interrupt controller 

 Fast Interrupts, 16 of them – Platform specific interrupts 

Moreover, the finite-state machine also handles several sources of exceptions, as listed 

below, 

 Instruction Access Fault – Generated when an error occurs during an 

instruction access. 

 Instruction Address Misaligned – Generated when the address of an instruction 

is not 4-byte aligned. 

 Illegal Instruction – Generated when an illegal instruction is encountered. 
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 ECALL – Environment Call exception. Generated by an ECALL instruction, 

which is used to generate system calls. 

 EBREAK – Environment Break exception. Generated by an EBREAK 

instruction, which is used to return control to debugging environment. 

Each interrupt/exception source sets the mcause register to a unique value. 

Exceptions are always enabled, by definition. An interrupt is taken if the interrupts are 

globally enabled, and the associated bits are set in the mie and the mip registers. 

Then, depending on the interrupt handling mode, the hardware calculates the handler 

address, as elaborated below, 

 Vectored mode: Handler address = mtvec + 4 × mcause 

 Direct mode: Handler address = mtvec 

Finally, the PC is set to the address of the handler. 

The finite-state machine realizes the task of handling interrupts and exceptions. When 

an interrupt or an exception occurs, it performs the following actions, 

 Flush the pipeline 

 Disable interrupts globally 

 Save the PC of the interrupted instruction to the mepc register 

 Set the value of mcause register depending on the cause of the 

interrupt/exception 

 Set PC to the address of the handler 

When an MRET instruction is encountered, this process is reversed. The global 

interrupts are enabled; PC is set to the value in the mepc register.  

Figure 3.1 shows the algorithmic state machine chart of this finite-state machine, 
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Figure 3.1 : ASM chart of the finite-state machine 

 

The FSM is initially at the Stand-by state. On every rising edge of the clock, if there 

is a pending interrupt or an exception, FSM will switch to the S1 state, while setting 

the value of the mcause register. On the next rising edge, it will switch back to the 

Stand-by state, while disabling global interrupts and saving the PC to the mepc 

register. 

The CSR Unit module also has a pipeline flushing mechanism that controls the flush 

signals. When an interrupt or an exception occurs, this mechanism flushes the oldest 

valid instruction that is not yet retired, and the instructions before that. The PC of the 

latest flushed instruction is saved. What complicates matters is that not all instructions 
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might be valid in the pipeline at a given time. For example, there might be a NOP 

instruction inserted by a pipeline stall. The flushing mechanism can and should detect 

this dummy instruction, and avoid saving its PC. Another problem is that a store 

instruction retires at the end of MEM stage, whereas almost all the other instructions 

retire at the end of WB stage. This means, the flushing mechanism should also avoid 

flushing a store instruction that is already retired. 

3.2.4 CSR Instructions 

The Zicsr standard extension defines 6 new instructions. Figure 3.2 shows the 

encoding of these instructions, 

 

Figure 3.2 : Encoding of the CSR instructions 

 

All CSR instructions read a CSR into an integer register, and modify the CSR. There 

are dozens of CSRs defined in the RISC-V standard. Therefore, an addressing scheme 

is utilized to distinguish the CSRs. Each CSR has a 12-bit address, which is encoded 

in the instruction as the “csr” field. The “rs1” field encodes either the integer register 

or the immediate that acts as the bit mask. The “rd” field encodes the integer register 

where the CSR will be read into.  

 

Following list briefly explains the functionalities of the instructions, 

 CSRRW – CSR Read/Write: Swaps the values of a CSR with an integer 

register 

 CSRRS – CSR Read/Set: Reads the value of the CSR into an integer register, 

and sets the bits in the CSR. The integer register acts a mask. 

 CSRRC – CSR Read/Clear: Reads the value of the CSR into an integer register, 

and clears the bits in the CSR. The integer register acts a mask. 
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 CSRRWI, CSRRSI, CSRRCI – Similar to the instructions above, except that 

an immediate is used as a bit mask, instead of an integer register. 

We had to do several changes to the pipeline design to implement these instructions. 

We added several pipeline registers to hold the address of the CSR, modified the ALU 

to perform masking operations, added new muxes and added forwarding logic for 

CSRs as well. We also extended the Control Unit to accommodate for the new 

instructions. 

We also significantly improved the overall design of the pipeline. Figure 3.3 shows 

the updated pipeline diagram.
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Figure 3.3 : Updated pipeline diagram with the privileged architecture  



37 

 

 Implementation of the design 

We wrote the new module, CSR Unit, in Verilog HDL. We also made the necessary 

changes to the RTL code of the existing modules. We then synthesized the updated 

design in Genus with the same synthesis script. In other words, implementation of the 

privileged architecture is identical to the unprivileged architecture. 

 DESIGN AND IMPLEMENTATION OF THE “M” STANDARD 

EXTENSION 

As it was described in the introduction under the “M” extension title, RISC-V ISA 

introduces a total of eight multiplication and division instructions, four for each. The 

opcodes for the instructions are given in Figure 4.1. 

 

Figure 4.1 : Instruction opcodes for the “M” standard extension 

After reviewing “M” Standard Extension requirements, and design techniques with 

examples, the effort for designing a suitable multiplier and divider circuit was started.  

The symbol “A” is used for the Multiplicand 1 of the multiplication instructions and 

Dividend of the division instructions; and the symbol “B” is used for the Multiplicand 

2 of the multiplication instructions and the Divisor of the division instructions, and 

they will be frequently used in this chapter.  

 Multiplier 

After reviewing the literature and circuit examples for desired operation of multiplying 

32-bit operands, we decided a design where the operands are first partitioned then 
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multiplied in an order, and after that they are added again in an order to achieve the 

final result. 

4.1.1 Multiplier algorithm 

The partitions are constructed according to the following equations for the 

multiplication algorithm.  

                                            (3.1) 

With equation (3.1) used in A × B operation:  

(3.2) 

With these steps, four partitions AHBH, AHBL, ALBH, and ALBL are constructed. Each 

partition can also be partitioned. For example, for AHBH: 

(3.3) 

(3.4)                                     

With the use of equations (3.1), (3.2), (3.3) and (3.4), operands are partitioned to AHH, 

AHL, ALH, and ALL for A, and BHH, BHL, BLH, and BLL for B. These partitions are 8-bit, 

and are multiplied in an order for generating the second level partitions AHBH, AHBL, 

ALBH, and ALBL. These second level partitions are then added in an order to generate 

the final result. This algorithm will be realised with a design consisting of 8-bit 

multipliers and adders to construct the 32-bit multiplier circuit.  

4.1.2 Design of the multiplier 

There are instructions for both signed and unsigned multiplication, so the circuit must 

be able to carry out both unsigned and signed multiplication. For that purpose, an 

additional bit is prepended to the 8-bit chunks, making them 9-bit chunks. For there 

are 9-bit portions, some of the multipliers are 9-bit multipliers. These multiplier 

modules use the “*” operator of Verilog. Figure 4.2 shows the diagram of the first 

version of the design. 
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Figure 4.2 : Circuit diagram of the multiplier 
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 Divider 

For desired operation of integer division, there are a number of suitable design styles. 

A simple sequential divider that takes N clock cycles to calculate the result could be 

used with little design complexity, where N is the bit length of the operands. Or, a 

more complex combinational array divider could be utilized, which would have the 

result ready in a given number of clock cycles. The former wields a small area, but its 

speed, which is how few number of clock cycles it requires to calculate the result, is 

low. The latter however is very fast, but it is a relatively large circuit which requires 

much more area on the implementation. After considering the mentioned trade-offs, 

we decided to design a circuit that is not a fully combinational array or a simple 

sequential divider, but a combination of those. 

4.2.1 Divider algorithm 

Arithmetic circuits realize algorithms that are constructed for a desired operation. We 

decided to use a combination of sequential and combinational circuits, so we needed 

an algorithm that would suit this style of circuitry.  

A strong candidate for a combination of sequential and combinational style of circuitry 

would be pipelining of combinational parts. For a 32-bit division operation, at most 32 

subtraction operations are needed. These subtractions can be executed in groups 

combinationally, then these groups can be executed sequentially to achieve the final 

result. The number of cascaded subtractions in a group will determine the critical path, 

and the number of groups will determine the number of clock cycles required for 

finalization of the operation.  

The subtraction number in a group was initially chosen as 4, which means there would 

be 4 32-bit cascaded subtraction operations. This means, division operations would 

complete in 8 cycles. However, we quickly realized that this scheme had a very long 

critical path delay. Therefore, we changed the design to 16-cycle division. 

With that decision made, the algorithm has been constructed. The algorithm includes 

two for blocks. In the inner for block, 2 bits of the quotient is produced and a temporary 

remainder is generated to use in the next turn of the same for block. The outer for block 

ensures for the inner block to repeat 16 times. The algorithm written in the style of a 

programming language is given in the Figure 4.3. 
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Figure 4.3 : Division algorithm 

4.2.2 Design of the divider 

The circuit that realizes the algorithm needs a block that will carry out the operations 

in the inner for block. And then, that block either can be replicated 16 times and aligned 

in a serial fashion, or a single block can be used 16 times with control components 

helping with the adjusting of inputs for the block. The first option would make the 

circuit capable of performing up to 16 division operations back to back, because a 

block can take the next division operations information as input after it outputs the 

previous division operation’s information to the next block. With the second option, 

the circuit would be able to execute the next division operation in line after it finalizes 

the current one, but in return it would be approximately 16 times smaller in space. 

The latter option was chosen, because we didn’t have a specific division-heavy 

application that we are planning on using the core with. Also because of division 

operations being not that frequent in most of the applications, the second choice was 

more logical in our case.  
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With the algorithm and design style decided, a diagram is constructed for realizing the 

algorithm. Figure 4.4 illustrates the design of the circuit. 

 

Figure 4.4 : Circuit diagram of the divider 

The circuit includes a Divider Block, a Control Unit and registers and multiplexers for 

controlling the signals proper to the algorithm.  

As decided, the Divider Block will be used over and over again in 16 rounds with 

different inputs, and each round 2 bits of the quotient will be generated and saved. And 

at the 16th round, the final remainder is ready.  

4.2.2.1 Divider block 

The divider block needs two arrays that will execute a subtraction on R and B, the 

divisor. Each array will calculate 1 bit of the quotient and a 32-bit R. The block then 

will output 2 bits of the quotient and a 32-bit remainder that is the R from the final 

array. The bits of the quotient need to be saved, and the remainder will be used again 

by the block at the next round. At the first round, the remainder input needs to be 0. 

4.2.2.2 Control unit 

The Control Unit is responsible for making sure that the rest of the circuit is operating 

correctly. It controls which signals will be inputted to the Divider Block, and where 



43 

 

the outputs from the Divider Block will go. The Control Unit is an Algorithmic State 

Machine, and it controls the circuit by determining the values of the control signals.  

The State Diagram of the circuit is given in Figure 4.5. 

 

Figure 4.5 : State diagram of the divider 

The circuit waits for the operation in the state IDLE. When the start signal is asserted, 

the division operation begins and the circuit goes through 16 rounds, during where it 

calculates required results and transfers them to the next round. In the final round, 

which is the 16th round, it asserts a ready signal and the final result for quotient and 

remainder is ready. 

4.2.2.3 Testing of the initial design 

Verilog code for the required modules was written, and then control components, 

multiplexers and registers, were combined on a top module to construct the final 

circuit.  

The circuit was tested with a simple testbench, and emergent errors were corrected. 

The first circuit design for the divider was thus finalized. 
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 The MULDIV Circuit 

The initial design of the multiplier circuit is capable of handling signed operands, 

because of its relatively complex operand alignment and signed 9-bit multipliers. But 

the first design of the divider circuit is not able to work with signed inputs. To finalize 

the multiplier and divider unit, a signed divider circuit needs to be constructed. For 

fulfilling this task,   

4.3.1 Signed divider circuit 

For constructing a signed integer divider, a strong option from existing solutions is to 

implement input and output adjuster circuit that converts signed operands to unsigned 

inputs for the divider circuit, and convert unsigned result to a signed number if 

necessary, respectively. These adjuster circuits are relatively simple, compared to a 

possible solution that would change the design and algorithm, and can also be 

configured to handle the input and output of the multiplier circuit, making it possible 

to simplify the design of the multiplier circuit to an unsigned multiplier. For these 

reasons, we decided to use this approach for the signed divider and also configure it to 

handle the inputs for the multiplier. This decision allowed us to design a combined 

multiplier/divider circuit that will be the “M” Extension to the core.  

4.3.2 Design of the MULDIV circuit 

The input and output circuits were used as components together with a multiplier and 

divider circuit on a newly designed top module to achieve a signed multiplier/divider 

circuit. We called this circuit the “MULDIV”. The multiplier used in this design was 

the renewed version of the initial signed multiplier design, which uses the same 

algorithm without the addition of a sign bit.  

The diagram of the design for the MULDIV is given in Figure 4.6. 
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Figure 4.6 : Circuit diagram of the MULDIV
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As it can be seen from the figure, the input adjuster is the MULDIV_in block and there 

are output adjusters DIV_out and MUL_out for the divider and multiplier, 

respectively. Also there are multiplexers and registers, that are controlled by the 

Control Unit. The Control Unit MULDIV_ctrl again is an ASM, and it realizes the 

designed state diagram for the multiplication and division operations.  

4.3.2.1 Input and output adjuster circuits 

Input adjuster circuit MULDIV_in checks if the current instruction is a signed one, 

namely MUL, MULH, MULHSU (only for the first operand, in_A), DIV or REM. 

After the operands are checked whether they are negative or positive, the MSB of the 

operands reveal their sign; so if it’s logic “1”, the number is negative and vice versa. 

Input adjuster circuits then need to convert the negative operands to positive numbers 

that will be used in the multiplier or the divider. It is done by taking the “two’s 

complement” of determined operands. After converting required operands, the new 

operands are outputted to the rest of the circuit. The MULDIV_in circuit also checks 

if either of the operands are “0”, “1” or “-1” and expresses the result in the form of a 

6-bit output signal “AB_status”. Figure 4.7 shows the bit arrangement of the signal 

“AB_status”. 

 

Figure 4.7 : Bit arrangement of the “AB_status” 

The bits in the “AB_status” arranged to become 1 if the condition that they represent 

is true. This signal will be used in the control unit of the circuit, MULDIV_ctrl, for 

enabling a faster outputting of the result if one of the operands is “-1”, “1” or “0”. An 

output generated in one cycle is possible if at least one of the operands are “-1”, “1” 

or “0”, because these values are neutral or absorbing elements of multiplication and 

division. More detailed information will be given there. 
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Output adjuster circuit, DIV_out and MUL_out, changes the result to negative if 

necessary. This is done by checking the operation and the sign of the operands, similar 

to the input adjuster circuit.  

4.3.2.2 Control unit 

The Control Unit of the MULDIV, MULDIV_ctrl is responsible for the correct 

operation of the rest of the circuit. The State Diagram that the MULDIV_ctrl realizes 

is given in Figure 4.8. The states and transitions are designed so that the input adjuster 

circuits work on the inputs first then transfer them to the divider and multiplier circuits, 

and after the result is calculated, the output adjuster circuits work on the result and the 

correct the output from DIV_out or MUL_out is selected as the final result with a 

multiplexer.  
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Figure 4.8 : State diagram of the MULDIV 
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At the state “IDLE”, the signal “mux_fastres_sel” is checked. This signal and another 

signal “fastres” is generated in the “MULDIV_ctrl” after examining the “AB_status” 

signal that is produced in the “MULDIV_in”. “fastres” is a 32-bit signal and it is 

determined together with the “mux_fastres_sel” by the fast result conditions, given as 

a schematic in the Figure 4.9. For example, if “AB_status” is “000100”, meaning the 

operand A is “-1”, a fast result is possible because the result will be “-B” if the 

instruction is “MUL”, “11111111” if the instruction is “MULH”, “MULHSU” 

“MULHU”, “REM” or “REMU”, and “0” if the instruction is “DIV” or “DIVU”. 

“mux_fastres_sel” is then used in the MULDIV for selecting the “fastres” as the 

output.  
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Figure 4.9 : Fast result conditions and output arrangements 
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4.3.3 Testing of the MULDIV module 

After MULDIV was constructed, its functionality firstly needed to be tested. The 

testing of a module with that size is a challenge, and it is an entire topic on its own. 

We reviewed our options, from the ones that are more accurate and acceptable but 

complex and time consuming, to the ones that are very primitive but relatively simple.  

We first decided to use the programming language Python, and a library constructed 

for the testing of HDL designs called “cocotb”[9]. With the help of this library, it was 

possible to create a testing environment written in Python, which is a very simple 

language, and using a basic simulation program like Icarus Verilog. We started to 

create the environment, but tackled upon problems with the simulation program Icarus 

Verilog that we weren’t able to resolve. So, also considering the time we need to spend 

on it, we chose not to use it. 

After the failure with the decent choice of using an established testing environment, 

we decided to use the Verilog language to write a testbench and test the circuit several 

times with the random inputs for A and B. This option was still acceptable, because a 

random number generator was available for Verilog, and our circuit was simple 

enough in terms of input and outputs. We wrote a testbench that gives random inputs 

between 0 and 232 – 1, and checks the output for each instruction, namely “MUL”, 

“MULH”, “MULHU”, “MULHSU”, “DIV”, “DIVU”, “REM”, and “REMU”, and it 

broadcasts a message if the testbench found an error. We can adjust how many test 

cases there will be for each instruction. With the help of the fast computers at the VLSI 

Lab in our faculty, we tested each instruction with 200,000 random inputs. The 

testbench doesn’t examine the corner cases, which are the cases where one or both of 

the operands are the smallest or the biggest number possible, specifically “0” or “232 -

1”. So, we tested the circuit for these corner cases separately in another testbench, with 

smaller test cases.  

After completing the test with zero errors, we were confident enough of the circuit's 

functionality to move on.  

4.3.4 Integration to the core 

After the circuit for the whole “M” extension was finalized, it was now the time for 

integrating the circuit to the rest of the core. Challenges for the integration process was 
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modifying the control unit of the core for the control signals of the MULDIV, proper 

handling of forwarding and hazard detection for the “M” extension instructions, and 

required stalling. These challenges except stalling are trivial, because the MULDIV 

circuit is similar to the ALU, so arranging the control signals other than the ones 

specific for MULDIV, and organizing the forwarding and hazard detection is the same 

for the instructions that use the ALU. And for the same reason, the data inputs of 

MULDIV are the same with the ALU, and data output from MULDIV combines with 

the one from the ALU with a multiplexer and connects to the pipeline.  

The MULDIV circuit prepares the result in 4 clock cycles for the multiplication and 

16 for the division, and it can output the result in 1 clock cycle if a fast result condition 

is met, as it was designed and shown in the state diagram in Figure 4.9. So, if the result 

is not prepared in a clock cycle, the rest of the pipeline needs to be stalled. This stalling 

condition is determined with the signal “muldiv_stall”, that is generated as shown in 

Figure 4.10. 

 

Figure 4.10 : Generation of the “muldiv_stall” signal 

The “muldiv_stall” signal becomes logic “1” if an “M” extension instruction was in 

progress in the execution stage, meaning the “muldiv_start” is logic “1”, and the signal 

that indicates that the calculation in the “MULDIV” is finished, that is “muldiv_done” 

is logic “0”. This signal is then used in the top module of the core to stall the Instruction 

Fetch and Decode stages of the pipeline.  

With these modifications done, the “M” Extension is now added to the core, and it is 

ready for the testing and the benchmarking. Figure 4.11 shows the updated diagram 

with the addition of the MULDIV block. 
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Figure 4.11 : Updated pipeline diagram with MULDIV block
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 TESTING THE DESIGN 

Verifying the functionality of a microprocessor is no trivial task. In the case of RISC-

V, a formal verification procedure is defined[10]. This procedure involves the 

implementation of what is called a “formal interface”. Through this interface, a number 

of relevant signals are monitored while the core executes instructions. The signals are 

then checked if they are correct or not.  

Even though this formal verification process guarantees the functionality of the design, 

it is tedious and time consuming. Therefore, we took a different path for the 

verification task. We wrote several programs in C language, and ran them on the core. 

The test programs are quite comprehensive, but it is not guaranteed that every single 

instruction is tested, nor that all existing bugs are exposed. However, it is worth noting 

that we detected and fixed dozens of bugs thanks to this testing scheme. We also check 

the functionality of interrupts through some of these programs. 

The testing procedure consists of the following steps, 

1. Development of test programs in C 

2. Compilation of the test programs using the RISC-V GNU Toolchain[11] 

3. Execution of the program in a simulator environment 

4. Analysis of the signals and results 

Bugs are detected in the last step, and the design is fixed until no bugs are left. The 

details of the testing procedure are described in the following sections. 

 Setting up the environment for testing 

The test programs can be written in any text editor. However, the compilation process 

requires the RISC-V GNU Toolchain, which is only available on a Linux environment. 
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5.1.1 Installing Ubuntu Linux operating system 

A very popular Linux distribution is Ubuntu[12]. There are several ways to install 

Ubuntu on a machine. Typically, it is setup as a virtual machine on top of a Windows 

operating system, which is what we did in our case. Obviously, it can also be installed 

as the main operating system, or a dual boot configuration can be utilized.  

To setup a Ubuntu virtual machine, Oracle’s VirtualBox software can be used[13]. 

Once the setup is complete, and the virtual machine is ready, it is time to setup the 

environment. 

5.1.2 Installing the toolchain 

In Linux operating systems, most software is installed and used through a command 

line. Such a command line can be access through the Terminal application that the 

operating system provides. The user can issue the commands through this interface. 

In order to install the RISC-V GNU Toolchain on the system, first, the repository must 

be cloned via the following command, 

 git clone https://github.com/riscv/riscv-gnu-toolchain 

The toolchain requires a bunch of prerequisite software, which can be installed with 

the following command, 

 sudo apt-get install autoconf automake autotools-dev curl python3 
libmpc-dev libmpfr-dev libgmp-dev gawk build-essential bison flex 
texinfo gperf libtool patchutils bc zlib1g-dev libexpat-dev 

Once the prerequisites are installed, current directory should be changed using the 

following command, 

 cd riscv-gnu-toolchain 

Now, the setup must be configured. The following command should do that, 

 ./configure –-prefix=/opt/riscv --with-multilib-generator="rv32i-
ilp32--;rv32im-ilp32--" 

The first part of the command that starts with “--prefix" sets the installation directory. 

the second part that starts with “--with" configures the installer so that both RV32I and 

RV32IM libraries are installed. This is convenient because it allows the user to force 

the compiler to use only RV32I instructions or RV32IM instructions. If we did not 

install both of them, the compiler would always use RV32IM (or RV32I) instructions, 

even if we compiled for RV32I (or RV32IM). 
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Finally, the toolchain can be installed by executing the following command, 

 sudo make 

The installation may take roughly an hour, beware. Once the installation is complete 

the installation directory must be added to the PATH. In order to do that, we simply need 

to modify a text file. To open that text file, following command should be executed, 

 sudo nano /etc/environment 

This will open the text file on the Terminal. Now, simply add the following text to the 

end of the file, 

 :/opt/riscv/bin 

Now press CTRL+O to write the changes to file and hit Enter. Press CTRL+X to exit. 

You should be able to invoke the RISC-V compiler now. 

5.1.3 Installing Verilator 

Verilator[14] is a free and open-source software that essentially simulates Verilog 

designs. It generates a C++ class from the Verilog module, which in turn can be 

instantiated in a C++ program. As Verilator can be invoked from the command line, 

the simulation process can be scripted. In our project, we used this software for 

automated testing. However, this software is not strictly needed, as other simulators 

can also be used. 

Executing the following command should install Verilator on your system, 

 sudo apt-get install verilator 

You should now be able to invoke Verilator from your command line. 

5.1.4 Installing GTKWave 

GTKWave[15] is another free and open-source software that can be used to view 

simulation waveforms. It simply visualizes the waveforms generated by a simulator. 

GTKWave can be used in conjunction with Verilator. Verilator can be invoked with 

the necessary options to generate a waveform dump file. GTKWave can generate 

waveform views from that file. Again, this software is not strictly necessary, but it can 

be convenient for debugging. Following command should install the software, 

 sudo apt-get install gtkwave 
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You should now be able to invoke GTKWave. 

 Compiling a RISC-V program 

We now have everything ready to compile a RISC-V program. Compilation is the 

process of generating a binary file from a C program. With Verilator, the binary file 

alone is enough for simulation. However, with real Verilog simulators, a memory file 

must be generated from the binary file. This memory file can be loaded into the 

memory of the processor in the testbench. In any case, the first step is to generate the 

binary file. 

Let us work on the bubble sort program provided in the Github repository of this 

project. First, clone the repository with the following command,  

 git clone https://github.com/yavuz650/RISC-V.git 

Change directory to the bubble_sort folder, 

 cd RISC-V/test/bubble_sort 

As the name implies, bubble sort is a simple program that sorts an array using the 

bubble sort algorithm. Of course, the source code is available in the bubble_sort.c 

file. 

Now, we need to compile this program into an Executable and Linkable File format, 

i.e. a .elf file. Following command should do this task, 

 riscv64-unknown-elf-gcc bubble_sort.c ../crt0.s –march=rv32i –

mabi=ilp32 –T ../linksc.ld –nostartfiles –ffunction-sections –fdata-

sections –Wl,--gc sections –o bubble_sort.elf 

This command will generate the bubble_sort.elf file. Let us breakdown this verbose 

command, 

 riscv64-unknown-elf-gcc: This invokes the GNU C compiler. 

 bubble_sort.c: This is the source file 

 ../crt0.s: This is an assembly code that performs the initialization routine. 

It simply initialies the stack pointer and jumps to the main function. 

 -march=rv32i: Specifies the target ISA 

 -mabi=ilp32: Specifies the Application Binary Interface 
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 -T ../linksc.ld: Specifies the linker script. A linker script defines the 

memory regions of the processor. In this case, it has two regions: ROM and 

RAM. ROM is where the instructions and the read-only data is stored. RAM is 

where the run-time variables are stored. The linker uses this script to place the 

instructions at appropriate memory regions. 

 –nostartfiles –ffunction-sections –fdata-sections –Wl,--gc sections: 

These options are used to strip the elf file from unused and redundant code. 

 -o bubble_sort.elf: Specifies the name of the output file. 

Now, we need to generate the binary file from this elf file. Following command should 

do that, 

 riscv64-unknown-elf-objcopy –O binary –j .init –j .text –j .rodata 

bubble_sort.elf bubble_sort.bin 

This command copies the .init, .text and .rodata sections from the elf file and generates 

the binary file. 

The program is now compiled successfully. One last step before simulating is to 

generate the .data file which will be loaded into the processor’s memory. To do that, 

we have written a simple C program which is also available in the repository. This 

program accepts a binary file as an input, and generates a .data file that contains the 

instruction opcodes, and the read-only data. This .data file can be loaded into the 

memory of the processor using the $readmem command in Verilog.  

Figure 5.1 shows the C code of this program, 
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Figure 5.1 : C code of the ROM generator program 

Following sequence of commands can be used to compile this program, 

 cd .. 

g++ rom_generator.c –o rom_generator 

cd bubble_sort 

Now use the following command to generate the .data file, 

 ../rom_generator bubble_sort.bin 

All the files are now prepared for simulation. 

In practice, these steps are executed by a makefile. A makefile is basically a script that 

is used to build programs. Such makefiles are provided in each test folder. Then, 

instead of executing all the commands above, makefile can be run to do all of them at 

once. Simply running the command make should be enough to invoke the makefile. 

An example makefile is shown in Appendix B. 
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 Simulating a RISC-V program using the core 

5.3.1 Developing an SoC for simulation 

Before we can simulate the core, we need to attach the necessary peripherals to make 

it work. For simulation purposes, a dual-port memory is enough. We simply combine 

the core with the memory on a top module. This top module becomes a system-on-

chip that can simulate RISC-V binaries. In the repository, an SoC named “barebones” 

is provided for this purpose. 

5.3.2 Simulating with Cadence Xcelium 

Xcelium is a commercial RTL compiler and simulator developed by Cadence Design 

Systems. As such, this tool is not freely available to the public. In the scope of this 

project, we had access to this software through the VLSI Lab at our faculty. 

To simulate a program with Xcelium, we must first compile the Verilog source files. 

Executing the following command while in the barebones directory should compile 

the necessary source files, 

 xmvlog ../../core/core.v ../../core/ALU.v ../../core/control_unit.v 

../../core/forwarding_unit.v ../../core/hazard_detection_unit.v  

../../core/imm_decoder.v ../../core/load_store_unit.v 

../../core/csr_unit.v \ 

../../peripherals/memory_2rw.v ../../peripherals/mtime_registers.v \ 

../../core/muldiv/divider_32.v ../../core/muldiv/multiplier_32.v 

../../core/muldiv/MULDIV_ctrl.v ../../core/muldiv/MULDIV_in.v \ 

../../core/muldiv/MUL_DIV_out.v ../../core/muldiv/MULDIV_top.v 

../../peripherals/debug_interface.v \ 

barebones_top.v barebones_top_tb.v 

Then, following command should elaborate the testbench, 

 xmelab –access rwc barebones_top_tb 

Now, the simulation can be launched with the following command, 

 xmsim –gui barebones_top_tb 
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5.3.3 Simulating with Verilator 

Simulating with Verilator is quite different than simulating with a traditional RTL 

simulator. For Verilator, instead of a Verilog testbench, a C++ wrapper file is required. 

This wrapper file acts like the testbench. In it, an object of the generated C++ class is 

instantiated. Through the interface of that class, the signals are driven and read. Figure 

5.2 shows the wrapper code for bubble sort, 

 

Figure 5.2 : C++ wrapper file for bubble sort 

This wrapper file instantiates an object of VBarebones_top class, which is generated 

by Verilator based on the Verilog design files. In the while loop, the signals are read 

and driven, much like a Verilog testbench. Once the wrapper file is ready, Verilator 

can be invoked to generate the necessary files. While in the bubble_sort directory, 
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following command can be executed to invoke a script that compiles and runs the 

Verilog designs using Verilator, 

 ./bubble_sort_script 

Once the simulation completes, waveforms can be viewed using GTKWave. To do 

that, first change the directory using the following command, 

 cd obj_dir 

Then, launch GTKWave, 

 gtkwave simx.vcd 

You should now be able to view waveforms. 

 BENCHMARKS AND POST-SYNTHESIS ANALYSIS 

 Benchmarks 

In addition to tests, we also developed simple benchmarks to quantify the advantage 

of having the “M” standard extension for multiply/divide operations. We developed 4 

benchmarks; 64-bit integer multiplication and division, 64-bit floating-point 

multiplication and division. As RV32IM does not have native instructions for 64-bit 

division and floating point operations, they are emulated on software. 

Figures 6.1 to 6.4 show the benchmark programs, 

 

Figure 6.1 : 64-bit integer multiplication code 
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Figure 6.2 : 64-bit integer division code 

 

 

Figure 6.3 : 64-bit floating-point multiplication code 

 

 

Figure 6.4 : 64-bit floating-point division code 

All benchmark programs start with a stack initialization routine, then proceed to the 

initialization of variables. These initialization routines are common to all programs, 

therefore the effects on results will be the same. Then, the arithmetic operation is 

performed. A benchmark ends when the result is stored to the memory. 

Each program is compiled with the highest optimization level, -O3, for both RV32I 

and RV32IM instruction sets. The programs are simulated on Cadence Xcelium 

Simulator, and the number of clock cycles are determined through the waveform 

window. Table 6.1 summarizes the results, 
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Table 6.1 : Benchmark results 

     Instruction Set 
 

Benchmark 

RV32I RV32IM 

64-bit Integer Mul. 311 28 

64-bit Integer Div. 972 183 

64-bit Floating-point Mul. 2241 291 

64-bit Floating-point Div. 3489 448 

 The critical path 

In a clocked digital circuit, the critical path refers to the path which starts and ends 

with a register, and has the longest propagation delay. This path is called the critical 

path because it determines the maximum frequency of operation of the circuit. 

In a typical design flow, the critical path is determined after synthesis. In this project, 

Genus synthesis tool is used to generate a timing report which includes all the details 

of the critical path.  

We examined the critical path in two configurations: with and without the 

multiply/divide unit. 

Without the multiply/divide unit, the critical path turned out to be between a CSR and 

a pipeline register. More specifically, the startpoint is the mstatus CSR, and the 

endpoint is the pipeline register between ID and EX stages. The main reason why this 

path is critical is because the mstatus register is written on the falling edge of the 

clock, as is the case with all the other registers. Moreover, the important detail about 

this register is that it contains the global interrupt enable bit, which is used in the 

calculation of the pipeline flush signals. The calculation of the pipeline flush signals 

involves several cascaded logic operations, which result in a long propagation delay. 

Combining this with the fact that the path has half a clock cycle to complete, it is 

natural that this path turned out to be the critical path. 

The reason why we designed the registers so that they are written on the falling edge 

is because it is another form of forwarding data. If the registers were written on the 

rising edge, then there would have to be additional pipeline stalls on occasions. In 
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retrospect, this was a poor design choice by us. Because, such stalls would be 

extremely rare, which means such a tight critical path is not worth it. 

After the incorporation of the multiply/divide unit, the critical path turned out to be in 

the division path. This was expected because the division algorithm initially involved 

4 32-bit cascaded subtractions. At that time, a division operation took 8 cycles. After 

that, we changed the algorithm so that it completed in 16 cycles, and involved 2 32-bit 

cascaded subtractions. After this change, the critical path changed back to what it was 

before. Figures 6.5 to 6.7 show the timing reports, 

 

Figure 6.5 : Critical path without multiply/divide unit 

 

 

Figure 6.6 : Critical path after adding multiply/divide unit 

 

 

Figure 6.7 : Critical path after changing division to 16 cycles 
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 Area 

We also compared the change in the consumed area. Table 6.2 summarizes the results, 

Table 6.2 : Area consumption 

 RV32I RV32IM 

Area (um2) 106768 175450 

Gate Count 7969 13203 

 

As expected, addition of the multiply/divide unit incurs significant area consumption. 

It is worth noting that we used TSMC’s 90nm general purpose ASIC cell library for 

synthesis. 

 REALISTIC CONSTRAINTS AND CONCLUSIONS 

Open-source hardware platforms are growing bigger every day. In this project, we 

contributed to this growth by developing a well-documented, open-source RISC-V 

core. The design is free to use and extend. It can be used for research purposes, 

educational purposes, and even for personal projects.  

 Practical Application of this Project 

In the simplest case, the design can be used for further research. Moreover, it can be 

extended and prepared for a chip tape-out. This could be an important contribution to 

the processor design initiative that is present in the country. 

 

 

 Realistic Constraints 

7.2.1 Social, environmental and economic impact 
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RISC-V is a license-free ISA. This means that companies or groups do not have to pay 

for a licensing fee to produce and/or sell RISC-V processors. 

7.2.2 Cost analysis 

The CAD tools used in this project are not free. Simulation and synthesis tools are 

quite costly. Fortunately, VLSI Lab in our faculty provided us with the necessary 

software. 

7.2.3 Standards 

The only standard to follow in this project is the RISC-V ISA manual. 

7.2.4 Health and safety concerns 

This project does not involve health and safety concerns. 

 Future Work and Recommendations 

There is an incredible amount of room for future work. To begin with, the remaining 

standard extensions, such as the floating-point instruction set, can be implemented. 

Supervisor mode and virtual memory can be implemented to allow for operating 

systems. Instruction and Data caches can be implemented. An interface can be 

provided for communication with peripherals. Last but not least, chip tape-outs can 

also be done.  
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APPENDICES 

APPENDIX A: Genus synthesis script 

APPENDIX B: Example makefile 
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APPENDIX A  

 

Figure A.1 : Synthesis script for Genus 

APPENDIX B 

 

Figure B.1 : Example makefile script 
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