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DESIGN AND IMPLEMENTATION OF A 32-BIT RISC-V CORE

SUMMARY

The concepts of “Open-source software” and “Open-source hardware” are thriving in
the modern society. Hundreds of companies and groups are working hard to provide
the humanity with free and open-source software and hardware designs. “Open-
source” in this context refers to the fact that the design files are freely available to the
public. A significant part of this effort is directed towards the provision of open-source
microprocessor designs. In light of this, researchers at University of California,
Berkeley developed a license-free Instruction Set Architecture called “RISC-V”,
which essentially defines the vocabulary of the hardware/software interface. This ISA
iIs warmly welcomed by researchers and companies; thus, many different RISC-V
processors, be it open-source or proprietary, emerged and many have seen tape-outs.

Some crucial aspect of an open-source hardware are its extendibility, flexibility, and
comprehensibility. Most designs are often extendible and well thought-out, but they
are rarely comprehensible, which negatively impacts their extendibility. The common
problem is that they either lack documentation, or have hastily written ones. This
causes the users to spend so much time decoding and understanding the design, such
is the case with most of the open-source RISC-V cores. In this project, we wanted to
tackle this problem. We developed a 32-bit RISC-V core that is not only open-source,
but also well documented. We disclosed the design diagrams and decisions that we
made during the design process, so that the users can get started quickly, and
experiment with the core as they wish.

We first started off with learning about computer architecture from textbooks. We
learned how we could build a processor from scratch. Then, using that knowledge, we
started designing the core. We spent weeks drawing design diagrams and iteratively
fixing bugs. Once we were confident in our design, we started implementing it. The
implementation was done in ASIC domain. We used industry-standard simulation and
synthesis tools. We wrote the RTL description of the design, simulated and synthesized
it. Last but not least, we wrote several test programs in C programming language to
verify functionality of the processor. We successfully ran these C programs in a
simulation environment, and verified the functionality of our design.

In the end, we managed to design and develop a synthesizable 32-bit RISC-V
processor that is capable of executing integer instructions, multiply/divide instructions,
and handling interrupts and exceptions. We also documented every step as much as
we could. Of course, we have published our design on Github, where we also present
example system-on-chip designs, useful peripherals, testing infrastructure,
documentation, and some useful software libraries.

We named this RISC-V core “Hornet”.
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32-BITLIK RISC-V ISLEMCISI TASARIMI VE GERCEKLENMESI

OZET

“Acik-kaynak yazilim” ve “Acik-kaynak donanim” konseptleri gliniimiizde oldukca
yayginlasmis durumda. Yiizlerce sirket ve arastirma grubu, insanliga agik-kaynak
yazilim ve donanim tasarimlar1 kazandirmak i¢in ¢alisiyor. Bu baglamda, bir tasarimin
“Acik-kaynak” olmasi, tasarim dosyalarinin kosulsuz sartsiz topluma agik olmasi
anlamma geliyor. Bu caligmalarin ciddi bir kismi agik-kaynak islemci tasarlamaya
yonelik. Bu dogrultuda California, Berkeley Universitesi’ndeki arastirmacilar, adi
“RISC-V” olan, lisans kosulu olmayan, donanim ile yazilim arasindaki arayiizii
saglayan bir Komut Kiimesi Mimarisi gelistirdiler. Bu Komut Kiimesi Mimarisi
arastirmacilar ve sirketler tarafindan olumlu karsilandi, bdylece bir¢ok ¢esit RISC-V
islemcisi, hem agik-kaynak hem de tescilli olmak {izere, ortaya ¢ikti, ve bunlarin
birgogu liretime gitti.

Acik-kaynak donanimin kritik 6zelliklerinden bazilart gelistirilebilir olmasi, esnek
olmasi, ve anlasilir olmasidir. Cogu tasarimlar genellikle gelistirilebilir ve iyi
diisiiniilmiis oluyorlar, ancak nadiren anlasilir oluyorlar, ki bu da gelistirilebilirliklerini
olumsuz etkiliyor. Yaygmn goriilen problemlerden birisi, tasarimlarin ya
dokiimanlarinin eksik olmasi, ya da tstiinkorii yazilmig olmasidir. Bu, kullanicilarin
tasarimi anlamak icin ¢ok fazla zaman harcamalarina sebep oluyor. Agik-kaynak
RISC-V islemcilerinin birgogunda durumun bdyle oldugu goriilebilir. Bu projede,
bahsi gegen problemi ¢ozmeyi hedefledik. 32-bitlik bir RISC-V ¢ekirdegi gelistirdik,
Ki bu c¢ekirdek sadece acik-kaynak degil, ayni1 zamanda kapsamli bir sekilde
dokiimanlanmis oldu. Tasarim siirecinde ¢izdigimiz diagramlari ve aldigimiz kararlari
da paylasima sunduk. Bdylece, kullanicilar c¢ekirdek ile ¢alismaya kolayca
baglayabilirler, ve ¢ekirdegi istedikleri gibi kurcalayabilirler.

Cekirdegi tasarlama isine koyulmadan Once, bilgisayar mimarisi alaninda yazilan
kitaplardan bu is1 nasil yapacagimizi 6grendik. Ders kitaplarindan faydanalarak,
bastan asagiya bir islemcinin nasil tasarlandigini 6grendik. Ogrendigimiz bu bilgiler
ile ¢ekirdegi tasarlamaya basladik. Haftalarca diagramlar ¢izdik; iteratif bir bicimde
hatalar1 diizeltip, tekrar ¢izim yaptik. Tasarimimizin hazir oldugunu diistindiigiimiizde
gerceklemeye basladik. Gergekleme islemini ASIC domeninde yaptik. Endiistride
yaygin olarak kullanilan benzetim ve sentez araclarmi kullandik. Tasarimin RTL
kodunu yazdik, simiilasyonlarini ve sentez islemini yaptik. Son olarak da, ¢ekirdegin
fonksiyonelligini test etmek maksadiyla, C programlari yazdik. Bu programlari
simiilasyon ortaminda basarili bir sekilde ¢alistirip, ¢ekirdegin fonksiyonel oldugunu
onayladik.

Sonug olarak; 32-bitlik, sentezlenebilir bir RISC-V ¢ekirdegini tasarlayip gergekledik.
Bu c¢ekirdek; integer ve ¢arpma/bdlme komutlarini ¢alistirma kabiliyetine, ayrica
kesmeleri de kontrol edebilme kabiliyetine sahip. Siire¢ boyunca her adimi
raporlamaya calistik. Tasarimimizi, kirmik iistii sistem 6rneklerini, ¢evre birimlerini,

Xii



test alt yapisini, dokiimanlari, ve yazilim kiitiiphanelerini de Github platformunda
paylagima sunduk.

Bu RISC-V ¢ekirdeginin adin1 “Hornet” (Esek Arisi) koyduk.
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1. INTRODUCTION

Computers came into play in calculations that humans can’t easily overcome, because
of several possible reasons like excessive number of operands or extreme number of

steps to reach the goal.

Innovation of electronic computing systems started in 40s and it has been a fast pace
process both on academic and industrial sides.

The brain of established electronic computer systems of today is the “processor”, that
speaks with the other components, like memories or a keyboard, and works on the
information that it has acquired from them. There are several proposed design styles
and circuits for processors that differs in how the data flows or where the data and
instructions are stored. Designing new architectures and developing and enhancing the

existing ones is still an exciting topic, and a huge academic and industrial area.

The primary objective of this project is to produce a synthesizable 32-bit Reduced
Instruction Set Computer-V(RISC-V) core in Verilog HDL. We aim to implement at
least the “I” integer base instruction set, the “M” multiply/divide standard extension,
and the Machine Level Instruction Set Architecture(ISA). We will verify the
functionality of the core by running various C programs on it.

One of the shortcomings of the state-of-the-art RISC-V cores is that it is difficult to
understand the low-level design, because it is not documented. We will make sure our

design is simple, and easy to understand by thoroughly documenting it.

The project consists of three main stages: Developing the “I”” base integer set, the “M”

multiply/divide extension and the Machine Level ISA.

The first stage is to design and implement the “I”” base instruction set defined in the
Unprivileged ISA [1]. This task involves the design of the 5-stage pipeline that can
execute the integer instructions listed in the RISC-V ISA.

The second stage is to add the “M” standard extension, which includes the
multiply/divide instructions. We will look up the multiplication/division algorithms

available in the literature, and pick the ones that suit our needs.
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The third stage is to implement the Machine Level instruction set defined in the
Privileged ISA [2]. Machine Level instruction set defines the instructions and registers

necessary to control and monitor the processor’s status.

1.1 General Information and Concepts

We have aimed to design and implement a processor by using the open source Reduced
Instruction Set Computer — V (RISC-V) as our Instruction Set Architecture (ISA). We
have used the basic information that we had, and also acquired the needed information
that we hadn’t had beforehand.

1.1.1 Binary numbers and two’s complement format

The signals that electronic devices like computers most easily understand are on and
off, and the corresponding symbols for the characters are “0” and “1”, respectively.
This representation is called the “binary representation”, and the number system
formed with this representation is the “binary numbers”. Least Significant Bit (LSB),
which is the rightmost bit, is the value 2°, and the Most Significant Bit (MSB), which
is the leftmost bit, is the value 2N, where N is the number of bits forming the number.
For example, a 4-bit binary number “1010” represents the number 9 in the decimal

number system, and it is calculated as follows,
0x2° +1x2'+0x%x22+1x%x22=09

There are a number of ways to represent negative numbers in binary form. The one
that is most used in electronic circuits and most suitable one for the binary arithmetic
is the “two’s complement” representation. With this representation, negative numbers
are constructed as taking the complement of a positive binary number, which means
inverting each bit of the number, then adding “1” to the emerged number. N+1 bits are
needed for representing numbers in the range of -2V and (2V-1). For example, to
represent -9, “01010” is inverted to “10101” then 1 is added to the inverted number to
obtain “10110”.

15



1.1.2 A processor

Today's most popular processors use architectures derived from the design style called
Von Neumann defined by John von Neumann and his friends from the ENIAC project,
which is the first general-purpose electronic computer [Computer organization and
design RISC-V edition]. This model proposes an architecture that in its basic form
includes a processing unit with an Arithmetic and Logic Unit (ALU) and Registers, a
Control Unit and a Program Counter, and a mutual Memory for the Instructions and
Data. Each component has its own role and works together to carry through the

processing.

The ALU is responsible for executing the arithmetic operations like addition, and logic
operations like bitwise AND. Registers are memory components that are close to the
ALU and hold the data that the ALU works on, that is either moved to the registers
from the Memory or placed there by the Control unit. The Control Unit controls the
rest of the processor with control signals generated specifically for each Instruction.
The Memory holds the Data and Instructions in addresses in binary form, and the rest

of the circuit can reach its content with the addresses.

1.1.3 Instruction set architecture

The processor obeys the orders given by us, the humans. These orders are given in a
form called “instructions”, that are in binary representations; therefore, the hardware
of the processor can recognize those instructions and then can follow them. For
example, in an instruction set architecture, the instruction represented as “111000111”

could employ the processor to perform addition on specified values.

The designs for computer architectures differ in which instructions they can execute
with their hardware and how they do it. The design choices around these points make
up an architecture. Different architectures may execute the same instruction
differently, or they may have instructions specific for that architecture. A design that
specifies a set of instructions and the properties of those instructions, that a circuit

must be able to carry out is called an Instruction Set Architecture (ISA).
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1.1.4 RISC-V instruction set architecture

The Reduced Instruction Set Computer - V (RISC-V) is an ISA, that is a side product
of a 5-year project carried out in University of California, Berkeley by Prof. Krste
Asanovi¢ and graduate students Yunsup Lee and Andrew Waterman. The RISC-V ISA
specifies the minimum set instructions that a possible implementation should be able
to fulfill, and additional subsets of instructions and higher-level specifications for more
complex designs. The RISC-V ISA does not define how a design must be implemented
or which subsets it must contain, but rather specifies a balanced and well-designed set
of instructions that a designer can make decisions on what to use and how to

implement.

As stated in the RISC-V organization webpage, “The worldwide interest in RISC-V is
not because it is a great new chip technology, the interest is because it is a common
free and open standard to which software can be ported, and which allows anyone to
freely develop their own hardware to run the software.” [4]. These properties of the
RISC-V ISA make it ideal for our desired use.

1.1.4.1 Integer instruction set

The integer instruction set consists of the most basic instructions; such as addition,
subtraction, branch, jump, and memory operations. Integer instruction sets are
available in 32, 64 and 128-bit options. They are also the base intruction sets, which
means that every RISC-V core must subsume at least one of the integer instruction

sets.

1.1.4.2 “M” standard extension

The “M” Standard Extension adds multiplication and division features to the repertoire
of a RISC-V core. The subset includes the instructions “MUL”, “MULH”, “MULHU”,
and “MULHSU” for the multiplication; “DIV”, “DIVU”, “REM”, and “REMU” for
division.

The specifications for these instructions are given in the RISC-V Instruction Set

Manual [1] and are briefly given below.

With 32-bit operands, “MUL” instruction performs multiplication on two source
registers and stores the lower 32 bits of the 64-bit result value to the destination

register. “MULH” instruction stores the higher 32 bits of the result after the same

17



operation. For “MUL” and “MULH” instructions, the operands are treated as signed
numbers. “MULHU” instruction stores the higher 32 bits of the result, with both
operands treated as unsigned numbers. “MULHSU” again stores the higher 32 bits of

the result, with the first operand treated as signed while the other as unsigned.

With 32-bit operands, “DIV” and “DIVU” instructions perform multiplication on two
source registers and store the 32-bit quotient value to the destination register with the
operands treated as signed or unsigned, respectively. “REM” and “REMU”
instructions perform multiplication on two source registers and store the 32-bit
remainder value to the destination register when the operands are treated as signed or

unsigned, respectively.

Arithmetic circuits in computer architecture are realizations of arithmetic algorithms.
These algorithms are selected or constructed with the capabilities of the current
hardware technology in mind, they should be suitable to be constructed. For the part
we are interested in, which is binary multiplication and division, there are several

proposed algorithms and architectures[7][8].

Multiplication

For multiplication, the main steps are generation of partial products and addition of
them[7]. Optimizing the generation of partial products is a way to speed up the
multiplication, and a popular multiplication method for this purpose is Booth's
Algorithm, and its modified variations[7]. For implementing large multipliers that
work with big operands, an efficient method is to partition the operands into smaller
chunks, then use smaller bit multipliers to obtain partial products. The next part is to
align these products properly and add them to acquire the final result. There are several
ways for optimizing this addition using Carry-Save Adders(CSA), like Wallace
Tree[7].

Division

Division is more complex than multiplication, and they often take the most time to be
executed in computer architectures[8]. The types of dividers are sequential dividers,
array dividers and dividers implemented with multipliers[8]. The most well-known
sequential divider algorithm is SRT Algorithm[7]. To speed up the sequential dividers,
High-Radix Divider algorithms are constructed. Array Divider architectures are
suitable for pipelining applications, so their critical paths can be adjusted for required
speeds. But their design is more complex and they are larger, when implemented.

18



1.1.4.3 Privileged architecture

The privileged architecture of RISC-V describes privileged instructions and
mechanisms to utilize operating systems and external devices. It defines several
privileged instructions and registers that allow for interrupts, exceptions, hardware
identification, configuration and more. Moreover, in order to satisfy RISC-V
compliances, the privileged architecture must be implemented to some degree.

RISC-V defines four privilege modes: User, Supervisor, Hypervisor, and Machine
modes. Briefly, the concept of privilege levels is required to ensure stability and safety
of the processor. Each privilege mode has a certain degree of access to the hardware,
with the User mode being the least privileged and the Machine mode being the most
privileged. In other words, only the Machine mode software has complete access to
the underlying hardware. Therefore, in a RISC-V compliant processor, at least the

Machine privilege mode must be implemented.

Each privilege level has its own set of privileged instructions and registers. These
registers are called “CSR Registers”. They are used to configure and monitor the
processor’s state. Their functions range from storing the program counter value of the
interrupted instruction to enabling and disabling interrupts. In order to read and write
to these registers, RISC-V defines 6 CSR instructions.

19



2. DESIGN AND IMPLEMENTATION OF THE INTEGER PIPELINE

Our first goal in this project was to design the hardware that can execute the integer
instructions in the RV32l Base Integer Instruction Set. The instructions that are

included in this set are shown in Figure 2.1,

Category Name | Fmt RV32] Base
Loads Load Byte LB rd,rsl,imm
Load Halfword LH rd,rsl,imm
Load Word LW rd,rsl,imm

Load Byte Unsigned
Load Half Unsigned

LBU rd,rsl,imm
LHU rd,rsl,imm

Stores Store Byte SB rsil,rs2,imm
Store Halfword SH rsl,rs2,imm
Store Word SW rsl,rs2,imm
Shifts Shift Left SLL rd,rsl,rs2
Shift Left Immediate SLLI rd,rsl,shamt

shift Right

Shift Right Immediate
Shift Right Arithmetic
Shift Right Arith Imm
Arithmetic ADD
ADD Immediate
SUBtract

SRL rd,rsl,rs2
SRLI rd,rsl,shamt
SRA rd,rsl,rs2
SRAI rd,rsl,shamt
RDD rd,rsl,rs2
ADDI rd,rsl,imm
SUB rd,rsl,rs2
LUI rd, imm

AUIPC rd,imm

Load Upper Imm
Add Upper Imm to PC

Logical XOR ¥OR rd,rsl,rs2
XOR Immediate XORI rd,rsl,imm

OR OR rd,rsl,rs2

OR Immediate ORI rd,rsl,imm

AND AND rd,rsl,rs2

AND Immediate BNDI rd,rsl,imm
Compare Set < SLT rd,rsl,rs2

Set < Immediate
Set < Unsigned
Set < Imm Unsigned

SLTI rd,rsl,imm
SLTU rd,rsl,rs2
SLTIU rd,rsl,imm
Branches Branch =| SB |BEQ rsi1,rs2,imm
Branch =| SB |BNE rsl,rs2,imm
Branch <| SB |BLT rsl,rs2,imm
Branch =| SB |BGE rsl,rs2,imm
Branch < Unsigned| SB [BLTU rsl,rs2,imm
Branch = Unsigned| SB [BGEU rs1,rs2,imm
Jump & Link JBL| UJ (JAL rd,imm
Jump & Link Register| U] (JALR rd,rsl,imm

[ I - I P SR ISR o Ml el anlil = BESE < ) (SIS < INSVES - RSV o B N7, WV, BV, | (SRS Ry Sy

Figure 2.1 : List of RV32l instructions
2.1 Microarchitecture of the core

In computer architecture domain, the term “microarchitecture” refers to the underlying
implementation of the processor. For example, the number of pipeline stages, the task
of each pipeline stage and the inner working mechanisms of each stage are

microarchitectural decisions.
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2.1.1 Designing the datapath for integer instructions

Initially, we designed a datapath for each instruction in the RV32I set. A datapath in
this context refers to the physical flow of execution of an instruction. To design a
datapath, we determined what functional units each instruction required, and
connected them appropriately to realize the datapath. For example, the “ADD”
instruction is supposed to read two registers, add them together, and finally write the
result to a register. This means, there must be a register file that houses the registers,
and an ALU to perform the binary addition operation. Another example can be the
“Load Word” instruction, which is supposed to read a register, add a 32-bit immediate
value to that register to form the address of the data, read the data from the memory,
and finally write that data to a register. This indicates that there must be a data memory
and an immediate decoder in the datapath, in addition to a register file and an ALU.

Figures 2.2 and 2.3 show the diagram for these datapaths,

INSTRUCTION
MEMORY
—>» Address
Register File
»| Read Reg 1 Read Data 1
Instruction »| Read Reg 2

Read Data 2

> Write Reg 1

’_) Write Data

Figure 2.2 : Datapath for the ADD instruction
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—» Address

INSTRUCTION
MEMORY

Instruction

Y

Register File

Read Reg 1

Read Reg 2

Write Reg 1

Enatle

Read Data 1

Read Data 2

Data Memory

Address

Read Data

’—) Write Data

Immediate
Decoder

» Insir. In

In

Figure 2.3 : Datapath for the Load Word instruction

Once we determined the datapaths for all of the instructions, we combined them all
together to form the complete datapath. We also added muxes where necessary. Figure
2.4 shows the complete datapath for the RV32l instruction set. Note that the control
signals for muxes, which are generated by the Control Unit, are omitted in the diagram

to avoid cluttering.

’w
Address &

Register File

| INSTRUCTION
MEMORY

Aedress n
3
edress Oul

1

Data Memory

Read Reg 1 Read Data 1

Instruction

Read Reg 2
Y| Address

Read Data 2
Read Data

Viite Reg 1

’_; Wirite Data

Immediate
Decoder

3| Instr In

Immediate

Figure 2.4 : Complete datapath for RV32l instructions

The Instruction Memory is where the instructions are stored. At each clock cycle, a
new instruction is read from there and executed in the datapath. The PC is a register
which holds the address of the next instruction that will be fetched from the memory.
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PC is incremented by 4 at each cycle. The mux at the input of PC determines where
the next instruction address comes from. When a branch or a jump occurs, address of
the next instruction is determined by the 32-bit adder. Register File houses all 32 of
the 32-bit registers defined in the RISC-V standard. It has two ports to read, and one
port to write. Control Unit generates the control signals for Register File, muxes, ALU
and Data Memory. Immediate Decoder generates 32-bit immediate values from
instructions, as defined in the RISC-V standard. ALU executes all the arithmetic
operations that the instructions require, which involve addition, subtraction, shifts,
logic operations and comparisons. Data Memory stores the program data. The
processor can store or load 8, 16 and 32 bits of data to and from the Data Memory.

2.1.2 Pipelining the datapath

2.1.2.1 What is pipelining?

Pipelining is a well-known technique in hardware design. From ADCs to CPUs, many

different structures utilize pipelining to increase performance.

The problem with a traditional datapath is that the signal propagation delay from the
beginning to the end can be quite long. This long delay is a natural by-product of
electronic circuits. In a typical pipelining scheme, the idea is to split the datapath into
“pipeline stages”, and insert “pipeline registers” between the stages. This way, with
every clock cycle, the signals are only required to propagate from one stage to the next.
Therefore, the average propagation delay in the datapath is reduced, and the frequency

of operation can be increased.

2.1.2.2 Design of the pipeline

In our design, we decided to use a 5-stage pipelined microarchitecture. This is a typical
pipelining scheme for simple RISC processors. The pipeline stages are as follows, in

order,
e 1. Instruction Fetch (IF)
e 2. Instruction Decode (ID)
e 3. Execute (EX)

e 4. Memory (MEM)
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e 5. Writeback (WB)
In the Instruction Fetch stage, the next instruction is fetched from memory.

In the Instruction Decode stage, the instruction is decoded in the Control Unit, and
control signals are generated. In addition to that, Immediate Decoder block generates

the 32-bit immediate value, and the registers are read from the Register File.

In the Execute stage, the ALU performs the arithmetic operations for the instruction.

Branch target address is also calculated in this stage.
In the Memory stage, data is either stored to or loaded from the Data Memory.
In the Writeback stage, the data is written to the Register File.

Between the stages, there are pipeline registers that convey the necessary signals from
the previous stage to the next stage. For example, between IF and ID stages, there is a
pipeline register that stores the instruction and the associated PC value.

2.1.2.3 Pipeline hazards

In pipelined processors, there are multiple instructions being processed at a given time.
The problem is that an instruction at an earlier stage might depend on an instruction
that is not yet completed. For example, consider the code shown in Figure 2.5,

1w x1,x4,

1w ®x2 x4,

1w ®x3,x4,

addi =1,x1,

5111 x1,x1,

Figure 2.5 : Assembly code that causes a pipeline hazard

The code in Figure 2.5 loads three values from the memory, then performs an addition
and a logical shift operation on x1 register. The issue with this code is that the logical
shift instruction s111 depends on the addition instruction addi. In the pipeline, the
addition instruction will write its result to the Register File in the Writeback stage, but
the shift instruction requires the data before that. This issue is called a pipeline hazard.
Fortunately, the solution is quite simple. We exploit the fact that the result of the
addition instruction is calculated in the EX stage. Then, the shift instruction need not

wait for the addition to write the result to the Register File. Instead, when the shift
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instruction reaches EX stage, the addition instruction will have reached the MEM
stage, we simply forward this result from the MEM stage to the EX stage, before it is
written to the Register File. However, not all pipeline hazards can be resolved by
forwarding data. As an example, consider the code shown in Figure 2.6,

1w x1,x4,

addi =x1,x1,

5111 x1,x1,

1w ®x2,x4,

1w ®x3,x4,

Figure 2.6 : Assembly code that causes a pipeline hazard

This time, the addition instruction depends on the memory load instruction. The load
instruction will have the data ready at the end of MEM stage, but the addition
instruction requires the data before that. This hazard cannot be resolved by forwarding
alone. The addition instruction must stall and wait for the load instruction to read the
data from memory. A stall is when the pipeline basically stops execution. A NOP
instruction, which does not change anything visible in the processor, is inserted into
the pipeline to realize the stall. After stalling for one cycle in the ID stage, addition
instruction can advance to the EX stage, and load instruction can forward the data from
the WB stage.

In summary, there are two countermeasures for pipeline hazards: forwarding and
stalling. Forwarding can resolve majority of the data dependencies, but a stall is

necessary if an instruction depends on a load instruction.

In our core, we designed two modules to handle pipeline hazards: Forwarding Unit
and Hazard Detection Unit. The Forwarding Unit detects data dependencies and
forwards data when necessary. The Hazard Detection Unit detects data dependencies
that require pipeline stalls, and stalls the pipeline.

Figure 2.7 shows the complete diagram of the pipeline that is capable of executing
RV32l instructions,
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Figure 2.7 : Complete pipeline diagram for RV32l instructions
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2.2 Implementation of the design

2.2.1 Verilog description of the design

Implementing a hardware design consists of several iterative steps. In digital design,
the first step in implementation is describing the design in a Hardware Description
Language. HDLs are very commonly used to describe digital hardware. In a way,
HDLs define a set of rules to describe hardware in text format. This allows a formal
description of any hardware, which in turn allows different groups of people to
efficiently describe and understand hardware. Moreover, modern CAD tools can
simulate HDLs in a cycle-accurate manner. This greatly simplifies the design of
complex hardware, such as processors. Most importantly, such CAD tools can also
synthesize real hardware from the HDL code of the design. Without such

conveniences, it would be incredibly difficult to implement any meaningful hardware.
In practice, the HDL description of a design is also called the “RTL” description.

In our project, we used Verilog[5] HDL to describe our design. We wrote the following

Verilog modules,
e ALU — Executes arithmetic operations
e Control Unit — Generates the control signals
e Hazard Detection Unit — Detects pipeline hazards and stalls the pipeline
e Forwarding Unit — Detects pipeline hazards and forwards data
e Immediate Decoder — Generates 32-bit immediate values
e Load-Store Unit — Generates Data Memory interface signals

e Core — Top module where all the submodules are instantiated and the pipeline

is described

Figure 2.8 shows the module hierarchy in a visual way,
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CPU CORE

PIPELINE MEMORY
DESCRIPTION

HAZARD UNITS
ALU « INST. MEM.
IMM. DECODER = DATA MEM.
CONTROL UNIT

LOAD-STORE
UNIT

CLK RESET

Figure 2.8 : Module hierarchy
It should be noted that the memory is not a part of the core, hence the separation in the
diagram.
2.2.2 Synthesis of the RTL description

Once we prepared and tested our RTL descriptions, we proceeded to synthesize the
design. Synthesis is the process of generating a netlist that consists of real primitive

cells. A “cell” in this context is simply a logic circuit block, such as an And-Or-Invert,

a Full-Adder, a NAND gate, a Flip-Flop etc.

There are several synthesis programs out there, some of them are free to use, others
are proprietary. We used Genus synthesis tool from Cadence, which is provided by the
VLSI Lab at our faculty. Genus expects several inputs from the user, where the
essential ones are listed below,

e RTL files of the design — The Verilog source files, in our case

e An ASIC cell library — We used TSMC’s 90nm general purpose cell library
e Timing constraints: Clock frequency, input and output delays.

e Load at the output ports

e Driving cells of the inputs
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Genus simply generates a netlist of cells that is functionally equivalent to the RTL
description of the design, while also meeting the specified constraints, if possible.
More specifically, it generates a Verilog file that describes the netlist, an SDF[6] file
that contains the cell delays, and report files that contain detailed information about
the timing, gate count and area consumption of the design. We then use the Verilog
and the SDF file to run post-synthesis timing simulations.

In practice, a synthesis script is written to automate this process. The script contains
all the constraints and commands necessary to complete the synthesis process. The

script we used in this project is shown in Appendix A.

3. DESIGN AND IMPLEMENTATION OF THE PRIVILEGED
ARCHITECTURE

3.1 About the Privileged Architecture

In a typical computer, there are several levels of privilege in the hardware level for
security purposes. Traditionally, each level is associated with a mode of operation, and
at any given time, the software is running in one of the available modes. The important
part is that each mode has a certain level of access to the underlying hardware; hence
the name “privilege”. For example, the mode with the highest privilege level has
access to all the registers and memory regions, whereas the mode with the lowest
privilege level might have access to only a limited portion of them. As the privilege
levels are enforced in the hardware, the software —under normal circumstances— has

no way to bypass this security scheme.

This privileged architecture is necessary to realize a stable and secure execution
environment. For example, in a computer with an operating system installed, there are
often multiple programs running simultaneously. The only way to ensure that these
programs do not interfere with each other, willingly or not, is to utilize a privilege
scheme, as described above. This way, the user programs would run in a lower

privilege mode, whereas the operating system would run in a higher privilege mode.
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Thus, the programs would not be able to interfere with each other, because they would
simply lack the privilege to do so.

In the case of RISC-V, the privileged architecture is described in the Volume 11 of the
Instruction Set Manual[2]. There are 4 modes of operation: Machine, Hypervisor,
Supervisor and User, in decreasing privilege level. Each mode has its dedicated set of
registers called Control and Status Registers and instructions. These registers and
instructions allow the core to handle interrupts and exceptions. The spec only mandates
the provision of Machine mode; the rest are optional. The more modes are provided,

the better the security of the processor.

In our project, we only implemented the Machine mode, which involves several new

registers and instructions.

3.2 Design of the Privileged Architecture

3.2.1 Requirements

Design of the Machine-Level architecture involves the following new registers and

instructions,
e Machine-Level Control and Status Registers
e MRET instruction
e “Zicsr” standard extension, which includes 6 new instructions

The Machine-Level CSRs provide essential information and functionalities to the core;
such as the instructions supported by the core, length of the instructions in bits,
interrupt enable and disable, interrupt handler address and more. The instructions
included in the “Zicsr” extension are called CSR instructions. They are used to read
and write to the CSRs. The MRET instruction is used to return from an interrupt or an

exception handler.

3.2.2 Machine-Level Registers

We designed a new module called “CSR Unit”, which implements the registers and a
finite-state machine that handles interrupts and exceptions. The registers are written
on the falling edge of the clock and on the WB stage of the instruction. The unused

parts of the registers are hardwired to 0. Following is the list of implemented registers,
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mstatus — Machine Status: Contains the global interrupt enable/disable bit.

mie — Machine Interrupt Enable: Contains the Machine-Level interrupt

enable/disable bits

mip — Machine Interrupt Pending: Contains the Machine-Level interrupt

pending bits. A bit is set if its associated interrupt is pending.
mcause — Machine Cause: Holds the cause of the interrupt or exception.

mtvec — Machine Trap Vector: Holds the base address of the

interrupt/exception handler.

mepc — Machine Exception PC: Holds the address of the interrupted

instruction

mscratch — Machine Scratch: Dedicated register for Machine-Level code.

3.2.3 Interrupts and Exceptions

In addition to the Machine-Level registers, RISC-V standard defines the following

interrupt Sources,

Software interrupts — Set and cleared by a write to a memory-mapped register

Timer Interrupts — Triggers when the timer register exceeds the timer compare

register
External Interrupts — Set and cleared by an external interrupt controller

Fast Interrupts, 16 of them — Platform specific interrupts

Moreover, the finite-state machine also handles several sources of exceptions, as listed

below,

Instruction Access Fault — Generated when an error occurs during an

instruction access.

Instruction Address Misaligned — Generated when the address of an instruction

is not 4-byte aligned.

Illegal Instruction — Generated when an illegal instruction is encountered.
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e ECALL - Environment Call exception. Generated by an ECALL instruction,

which is used to generate system calls.

e EBREAK - Environment Break exception. Generated by an EBREAK

instruction, which is used to return control to debugging environment.

Each interrupt/exception source sets the mcause register to a unique value.
Exceptions are always enabled, by definition. An interrupt is taken if the interrupts are
globally enabled, and the associated bits are set in the mie and the mip registers.
Then, depending on the interrupt handling mode, the hardware calculates the handler

address, as elaborated below,
e Vectored mode: Handler address = mtvec + 4 X mcause
e Direct mode: Handler address = mtvec

Finally, the PC is set to the address of the handler.

The finite-state machine realizes the task of handling interrupts and exceptions. When

an interrupt or an exception occurs, it performs the following actions,
e Flush the pipeline
e Disable interrupts globally
e Save the PC of the interrupted instruction to the mepc register

e Set the value of mcause register depending on the cause of the

interrupt/exception
e Set PC to the address of the handler

When an MRET instruction is encountered, this process is reversed. The global

interrupts are enabled; PC is set to the value in the mepc register.

Figure 3.1 shows the algorithmic state machine chart of this finite-state machine,
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The FSM is initially at the Stand-by state. On every rising edge of the clock, if there
is a pending interrupt or an exception, FSM will switch to the S1 state, while setting
the value of the mcause register. On the next rising edge, it will switch back to the

Stand-by state, while disabling global interrupts and saving the PC to the mepc

register.

The CSR Unit module also has a pipeline flushing mechanism that controls the flush
signals. When an interrupt or an exception occurs, this mechanism flushes the oldest
valid instruction that is not yet retired, and the instructions before that. The PC of the

latest flushed instruction is saved. What complicates matters is that not all instructions

mie=0
ack=0

Figure 3.1 : ASM chart of the finite-state machine
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might be valid in the pipeline at a given time. For example, there might be a NOP
instruction inserted by a pipeline stall. The flushing mechanism can and should detect
this dummy instruction, and avoid saving its PC. Another problem is that a store
instruction retires at the end of MEM stage, whereas almost all the other instructions
retire at the end of WB stage. This means, the flushing mechanism should also avoid

flushing a store instruction that is already retired.

3.2.4 CSR Instructions

The Zicsr standard extension defines 6 new instructions. Figure 3.2 shows the

encoding of these instructions,

31 20 19 15 14 12 11 76
| ST rsl | funct3 | rd | opcode
12 5 3 5 7
source/dest source ~ CSRRW dest; SYSTEM
source/dest source ~ CSRRS dest SYSTEM
source/dest source ~ CSRRC dest SYSTEM
source/dest uimm[4:0] CSRRWI  dest SYSTEM
source/dest uimm[4:0] CSRRSI dest SYSTEM
source /dest uimm[4:0] CSRRCI dest SYSTEM

Figure 3.2 : Encoding of the CSR instructions

All CSR instructions read a CSR into an integer register, and modify the CSR. There
are dozens of CSRs defined in the RISC-V standard. Therefore, an addressing scheme
is utilized to distinguish the CSRs. Each CSR has a 12-bit address, which is encoded
in the instruction as the “csr” field. The “rs1” field encodes either the integer register
or the immediate that acts as the bit mask. The “rd” field encodes the integer register

where the CSR will be read into.

Following list briefly explains the functionalities of the instructions,
e CSRRW - CSR Read/Write: Swaps the values of a CSR with an integer

register

e CSRRS — CSR Read/Set: Reads the value of the CSR into an integer register,
and sets the bits in the CSR. The integer register acts a mask.

e CSRRC - CSR Read/Clear: Reads the value of the CSR into an integer register,
and clears the bits in the CSR. The integer register acts a mask.
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e CSRRWI, CSRRSI, CSRRCI - Similar to the instructions above, except that

an immediate is used as a bit mask, instead of an integer register.

We had to do several changes to the pipeline design to implement these instructions.
We added several pipeline registers to hold the address of the CSR, modified the ALU
to perform masking operations, added new muxes and added forwarding logic for
CSRs as well. We also extended the Control Unit to accommodate for the new

instructions.

We also significantly improved the overall design of the pipeline. Figure 3.3 shows

the updated pipeline diagram.
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Figure 3.3 : Updated pipeline diagram with the privileged architecture

36



3.3 Implementation of the design

We wrote the new module, CSR Unit, in Verilog HDL. We also made the necessary
changes to the RTL code of the existing modules. We then synthesized the updated
design in Genus with the same synthesis script. In other words, implementation of the

privileged architecture is identical to the unprivileged architecture.

4. DESIGN AND IMPLEMENTATION OF THE “M” STANDARD
EXTENSION

As it was described in the introduction under the “M” extension title, RISC-V ISA
introduces a total of eight multiplication and division instructions, four for each. The
opcodes for the instructions are given in Figure 4.1.

RV32M Standard Extension

0000001 rs2 rsl 000 rd 0110011 MUL
0000001 rs2 rsl 001 rd 0110011 MULH
0000001 rs2 rsl 010 rd 0110011 MULHSU
0000001 rs2 rsl 011 rd 0110011 MULHU
0000001 rs2 rsl 100 rd 0110011 DIV
0000001 rs2 rsl 101 rd 0110011 DIVU
0000001 rs2 rsl 110 rd 0110011 REM
0000001 rs2 rsl 111 rd 0110011 REMU

Figure 4.1 : Instruction opcodes for the “M” standard extension
After reviewing “M” Standard Extension requirements, and design techniques with

examples, the effort for designing a suitable multiplier and divider circuit was started.

The symbol “A” is used for the Multiplicand 1 of the multiplication instructions and
Dividend of the division instructions; and the symbol “B” is used for the Multiplicand
2 of the multiplication instructions and the Divisor of the division instructions, and

they will be frequently used in this chapter.

4.1 Multiplier

After reviewing the literature and circuit examples for desired operation of multiplying

32-bit operands, we decided a design where the operands are first partitioned then

37



multiplied in an order, and after that they are added again in an order to achieve the

final result.

4.1.1 Multiplier algorithm

The partitions are constructed according to the following equations for the

multiplication algorithm.

A=(A,2"°+A,) B=(B,2°+B,)) (3.1)
With equation (3.1) used in A x B operation:

AXB=(A;2"+A,)x(B,2"°+B,)=A,;B,2"+(A,B,+A,B,)2"+A,B, (32)

With these steps, four partitions AxBr, AuBL, ALBH, and ALB. are constructed. Each
partition can also be partitioned. For example, for AxBH:

AH:(AHH28+AHL) BH:(BHH28+BHL) 33)
AHXBHx(AHH28+AHL)X(BHH28+BHL):AHHBHH216+(AHHBHL+AHLBHH)28+AHLBHL (34)
With the use of equations (3.1), (3.2), (3.3) and (3.4), operands are partitioned to Axn,
AnL, An, and Ap for A, and Brn, B, Br, and B for B. These partitions are 8-bit,
and are multiplied in an order for generating the second level partitions AnBH, AxBL,
ALBH, and ALBL. These second level partitions are then added in an order to generate

the final result. This algorithm will be realised with a design consisting of 8-bit
multipliers and adders to construct the 32-bit multiplier circuit.

4.1.2 Design of the multiplier

There are instructions for both signed and unsigned multiplication, so the circuit must
be able to carry out both unsigned and signed multiplication. For that purpose, an
additional bit is prepended to the 8-bit chunks, making them 9-bit chunks. For there
are 9-bit portions, some of the multipliers are 9-bit multipliers. These multiplier
modules use the “*” operator of Verilog. Figure 4.2 shows the diagram of the first

version of the design.
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STAGE 1

STAGE 2

Figure 4.2 : Circuit diagram of the multiplier
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4.2 Divider

For desired operation of integer division, there are a number of suitable design styles.
A simple sequential divider that takes N clock cycles to calculate the result could be
used with little design complexity, where N is the bit length of the operands. Or, a
more complex combinational array divider could be utilized, which would have the
result ready in a given number of clock cycles. The former wields a small area, but its
speed, which is how few number of clock cycles it requires to calculate the result, is
low. The latter however is very fast, but it is a relatively large circuit which requires
much more area on the implementation. After considering the mentioned trade-offs,
we decided to design a circuit that is not a fully combinational array or a simple

sequential divider, but a combination of those.

4.2.1 Divider algorithm

Arithmetic circuits realize algorithms that are constructed for a desired operation. We
decided to use a combination of sequential and combinational circuits, so we needed

an algorithm that would suit this style of circuitry.

A strong candidate for a combination of sequential and combinational style of circuitry
would be pipelining of combinational parts. For a 32-bit division operation, at most 32
subtraction operations are needed. These subtractions can be executed in groups
combinationally, then these groups can be executed sequentially to achieve the final
result. The number of cascaded subtractions in a group will determine the critical path,
and the number of groups will determine the number of clock cycles required for
finalization of the operation.

The subtraction number in a group was initially chosen as 4, which means there would
be 4 32-bit cascaded subtraction operations. This means, division operations would
complete in 8 cycles. However, we quickly realized that this scheme had a very long

critical path delay. Therefore, we changed the design to 16-cycle division.

With that decision made, the algorithm has been constructed. The algorithm includes
two for blocks. In the inner for block, 2 bits of the quotient is produced and a temporary
remainder is generated to use in the next turn of the same for block. The outer for block
ensures for the inner block to repeat 16 times. The algorithm written in the style of a

programming language is given in the Figure 4.3.
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A[31:0] : Dividend

B[31:0] : Divisor

Q[31:8] : Quotient

R[31:0] : Remainder

R_temp[32:8] : Temporary Remainder

Q temp[3:0] : Temporary Quotinent Stack

R_temp = ©
for(i, 15 downto 0){
for(j, 1 downto 0){

R = {R[31:1], A[2 * i + j]}
R_temp =R - B

Q_temp[j] = R_temp[32] // Carry Out
if(Q_temp[3])

R = R_temp[31:0]
else

R=R
¥

Q[2*i+3:2=*i]=0Q temp

Figure 4.3 : Division algorithm
4.2.2 Design of the divider

The circuit that realizes the algorithm needs a block that will carry out the operations
in the inner for block. And then, that block either can be replicated 16 times and aligned
in a serial fashion, or a single block can be used 16 times with control components
helping with the adjusting of inputs for the block. The first option would make the
circuit capable of performing up to 16 division operations back to back, because a
block can take the next division operations information as input after it outputs the
previous division operation’s information to the next block. With the second option,
the circuit would be able to execute the next division operation in line after it finalizes

the current one, but in return it would be approximately 16 times smaller in space.

The latter option was chosen, because we didn’t have a specific division-heavy
application that we are planning on using the core with. Also because of division
operations being not that frequent in most of the applications, the second choice was

more logical in our case.
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With the algorithm and design style decided, a diagram is constructed for realizing the

algorithm. Figure 4.4 illustrates the design of the circuit.

Dividend
A

Q div_out
e e N
reg_Q_en

rdy

Divisor mux_A_sel

Divider Block

mux_Rin_sel

clk

] e mux_A_sel
o reg_Rin_en N Ly mux_Rin_sel
e reg_Q_en

Control Unit
= reg_Rin_en

Figure 4.4 : Circuit diagram of the divider
The circuit includes a Divider Block, a Control Unit and registers and multiplexers for

controlling the signals proper to the algorithm.

As decided, the Divider Block will be used over and over again in 16 rounds with
different inputs, and each round 2 bits of the quotient will be generated and saved. And

at the 16th round, the final remainder is ready.

4.2.2.1 Divider block

The divider block needs two arrays that will execute a subtraction on R and B, the
divisor. Each array will calculate 1 bit of the quotient and a 32-bit R. The block then
will output 2 bits of the quotient and a 32-bit remainder that is the R from the final
array. The bits of the quotient need to be saved, and the remainder will be used again

by the block at the next round. At the first round, the remainder input needs to be 0.

4.2.2.2 Control unit

The Control Unit is responsible for making sure that the rest of the circuit is operating

correctly. It controls which signals will be inputted to the Divider Block, and where
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the outputs from the Divider Block will go. The Control Unit is an Algorithmic State
Machine, and it controls the circuit by determining the values of the control signals.

The State Diagram of the circuit is given in Figure 4.5.

R1(IDLE)
mux_A_sel = 000
mux_Rin_sel = 0

rdy =0

|

start

[

. | mux_Rin_sel = round_count
reg_Rin_en =1 round_count = 0
reg_Q en=1 rdy =1
round_count = 0 1

l

Rounds > round_count == 15

mux_Rin_sel = round_count
round_count = round_count + 1

rdy =0

Figure 4.5 : State diagram of the divider
The circuit waits for the operation in the state IDLE. When the start signal is asserted,
the division operation begins and the circuit goes through 16 rounds, during where it
calculates required results and transfers them to the next round. In the final round,
which is the 16th round, it asserts a ready signal and the final result for quotient and

remainder is ready.

4.2.2.3 Testing of the initial design

Verilog code for the required modules was written, and then control components,
multiplexers and registers, were combined on a top module to construct the final

circuit.

The circuit was tested with a simple testbench, and emergent errors were corrected.

The first circuit design for the divider was thus finalized.
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4.3 The MULDIV Circuit

The initial design of the multiplier circuit is capable of handling signed operands,
because of its relatively complex operand alignment and signed 9-bit multipliers. But
the first design of the divider circuit is not able to work with signed inputs. To finalize
the multiplier and divider unit, a signed divider circuit needs to be constructed. For
fulfilling this task,

4.3.1 Signed divider circuit

For constructing a signed integer divider, a strong option from existing solutions is to
implement input and output adjuster circuit that converts signed operands to unsigned
inputs for the divider circuit, and convert unsigned result to a signed number if
necessary, respectively. These adjuster circuits are relatively simple, compared to a
possible solution that would change the design and algorithm, and can also be
configured to handle the input and output of the multiplier circuit, making it possible
to simplify the design of the multiplier circuit to an unsigned multiplier. For these
reasons, we decided to use this approach for the signed divider and also configure it to
handle the inputs for the multiplier. This decision allowed us to design a combined

multiplier/divider circuit that will be the “M” Extension to the core.

4.3.2 Design of the MULDIYV circuit

The input and output circuits were used as components together with a multiplier and
divider circuit on a newly designed top module to achieve a signed multiplier/divider
circuit. We called this circuit the “MULDIV”. The multiplier used in this design was
the renewed version of the initial signed multiplier design, which uses the same

algorithm without the addition of a sign bit.

The diagram of the design for the MULDIV is given in Figure 4.6.
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Figure 4.6 : Circuit diagram of the MULDIV
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As it can be seen from the figure, the input adjuster is the MULDIV_in block and there
are output adjusters DIV_out and MUL _out for the divider and multiplier,
respectively. Also there are multiplexers and registers, that are controlled by the
Control Unit. The Control Unit MULDIV _ctrl again is an ASM, and it realizes the

designed state diagram for the multiplication and division operations.

4.3.2.1 Input and output adjuster circuits

Input adjuster circuit MULDIV _in checks if the current instruction is a signed one,
namely MUL, MULH, MULHSU (only for the first operand, in_A), DIV or REM.
After the operands are checked whether they are negative or positive, the MSB of the
operands reveal their sign; so if it’s logic “1”, the number is negative and vice versa.
Input adjuster circuits then need to convert the negative operands to positive numbers
that will be used in the multiplier or the divider. It is done by taking the “two’s
complement” of determined operands. After converting required operands, the new
operands are outputted to the rest of the circuit. The MULDIV _in circuit also checks
if either of the operands are “0”, “1” or “-1” and expresses the result in the form of a
6-bit output signal “AB_status”. Figure 4.7 shows the bit arrangement of the signal
“AB_status”.

AB_status

B=-1 B=1 B=0 A=41 A=1 A=0

MSB LSB

Figure 4.7 : Bit arrangement of the “AB_status”
The bits in the “AB_status” arranged to become 1 if the condition that they represent
is true. This signal will be used in the control unit of the circuit, MULDIV_ctrl, for
enabling a faster outputting of the result if one of the operands is “-1”, “1” or “0”. An
output generated in one cycle is possible if at least one of the operands are “-17, “1”
or “0”, because these values are neutral or absorbing elements of multiplication and

division. More detailed information will be given there.
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Output adjuster circuit, DIV_out and MUL_out, changes the result to negative if
necessary. This is done by checking the operation and the sign of the operands, similar

to the input adjuster circuit.

4.3.2.2 Control unit

The Control Unit of the MULDIV, MULDIV_ctrl is responsible for the correct
operation of the rest of the circuit. The State Diagram that the MULDIV _ctrl realizes
is given in Figure 4.8. The states and transitions are designed so that the input adjuster
circuits work on the inputs first then transfer them to the divider and multiplier circuits,
and after the result is calculated, the output adjuster circuits work on the result and the
correct the output from DIV_out or MUL_out is selected as the final result with a

multiplexer.
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Figure 4.8 : State diagram of the MULDIV
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At the state “IDLE”, the signal “mux_fastres_sel” is checked. This signal and another
signal “fastres” is generated in the “MULDIV _ctrl” after examining the “AB_status”
signal that is produced in the “MULDIV in”. “fastres” is a 32-bit signal and it is
determined together with the “mux_fastres sel” by the fast result conditions, given as
a schematic in the Figure 4.9. For example, if “AB_status” is “000100”, meaning the
operand A is “-17, a fast result is possible because the result will be “-B” if the
instruction is “MUL”, “11111111” if the instruction is “MULH”, “MULHSU”
“MULHU”, “REM” or “REMU”, and “0” if the instruction is “DIV” or “DIVU”.
“mux_fastres sel” is then used in the MULDIV for selecting the “fastres” as the

output.
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Figure 4.9 : Fast result conditions and output arrangements
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4.3.3 Testing of the MULDIV module

After MULDIV was constructed, its functionality firstly needed to be tested. The
testing of a module with that size is a challenge, and it is an entire topic on its own.
We reviewed our options, from the ones that are more accurate and acceptable but

complex and time consuming, to the ones that are very primitive but relatively simple.

We first decided to use the programming language Python, and a library constructed
for the testing of HDL designs called “cocotb[9]. With the help of this library, it was
possible to create a testing environment written in Python, which is a very simple
language, and using a basic simulation program like Icarus Verilog. We started to
create the environment, but tackled upon problems with the simulation program Icarus
Verilog that we weren’t able to resolve. So, also considering the time we need to spend

on it, we chose not to use it.

After the failure with the decent choice of using an established testing environment,
we decided to use the Verilog language to write a testbench and test the circuit several
times with the random inputs for A and B. This option was still acceptable, because a
random number generator was available for Verilog, and our circuit was simple
enough in terms of input and outputs. We wrote a testbench that gives random inputs
between 0 and 2°2 — 1, and checks the output for each instruction, namely “MUL”,
“MULH”, “MULHU”, “MULHSU”, “DIV”, “DIVU”, “REM”, and “REMU”, and it
broadcasts a message if the testbench found an error. We can adjust how many test
cases there will be for each instruction. With the help of the fast computers at the VLSI
Lab in our faculty, we tested each instruction with 200,000 random inputs. The
testbench doesn’t examine the corner cases, which are the cases where one or both of
the operands are the smallest or the biggest number possible, specifically “0” or “232 -
1”. So, we tested the circuit for these corner cases separately in another testbench, with

smaller test cases.

After completing the test with zero errors, we were confident enough of the circuit's
functionality to move on.

4.3.4 Integration to the core

After the circuit for the whole “M” extension was finalized, it was now the time for

integrating the circuit to the rest of the core. Challenges for the integration process was
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modifying the control unit of the core for the control signals of the MULDIV, proper
handling of forwarding and hazard detection for the “M” extension instructions, and
required stalling. These challenges except stalling are trivial, because the MULDIV
circuit is similar to the ALU, so arranging the control signals other than the ones
specific for MULDIV, and organizing the forwarding and hazard detection is the same
for the instructions that use the ALU. And for the same reason, the data inputs of
MULDIV are the same with the ALU, and data output from MULDIV combines with

the one from the ALU with a multiplexer and connects to the pipeline.

The MULDIV circuit prepares the result in 4 clock cycles for the multiplication and
16 for the division, and it can output the result in 1 clock cycle if a fast result condition
is met, as it was designed and shown in the state diagram in Figure 4.9. So, if the result
is not prepared in a clock cycle, the rest of the pipeline needs to be stalled. This stalling
condition is determined with the signal “muldiv_stall”, that is generated as shown in
Figure 4.10.

muldiv_stall

muldiv_start

~muldiv_done

Figure 4.10 : Generation of the “muldiv_stall” signal
The “muldiv_stall” signal becomes logic “1” if an “M” extension instruction was in
progress in the execution stage, meaning the “muldiv_start” is logic “1”, and the signal
that indicates that the calculation in the “MULDIV” is finished, that is “muldiv_done”
IS logic “0”. This signal is then used in the top module of the core to stall the Instruction

Fetch and Decode stages of the pipeline.

With these modifications done, the “M” Extension is now added to the core, and it is
ready for the testing and the benchmarking. Figure 4.11 shows the updated diagram
with the addition of the MULDIV block.
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5. TESTING THE DESIGN

Verifying the functionality of a microprocessor is no trivial task. In the case of RISC-
V, a formal verification procedure is defined[10]. This procedure involves the
implementation of what is called a “formal interface”. Through this interface, a number
of relevant signals are monitored while the core executes instructions. The signals are

then checked if they are correct or not.

Even though this formal verification process guarantees the functionality of the design,
it is tedious and time consuming. Therefore, we took a different path for the
verification task. We wrote several programs in C language, and ran them on the core.
The test programs are quite comprehensive, but it is not guaranteed that every single
instruction is tested, nor that all existing bugs are exposed. However, it is worth noting
that we detected and fixed dozens of bugs thanks to this testing scheme. We also check

the functionality of interrupts through some of these programs.
The testing procedure consists of the following steps,
1. Development of test programs in C
2. Compilation of the test programs using the RISC-V GNU Toolchain[11]
3. Execution of the program in a simulator environment
4. Analysis of the signals and results

Bugs are detected in the last step, and the design is fixed until no bugs are left. The

details of the testing procedure are described in the following sections.

5.1 Setting up the environment for testing

The test programs can be written in any text editor. However, the compilation process

requires the RISC-V GNU Toolchain, which is only available on a Linux environment.
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5.1.1 Installing Ubuntu Linux operating system

A very popular Linux distribution is Ubuntu[12]. There are several ways to install
Ubuntu on a machine. Typically, it is setup as a virtual machine on top of a Windows
operating system, which is what we did in our case. Obviously, it can also be installed

as the main operating system, or a dual boot configuration can be utilized.

To setup a Ubuntu virtual machine, Oracle’s VirtualBox software can be used[13].
Once the setup is complete, and the virtual machine is ready, it is time to setup the

environment.

5.1.2 Installing the toolchain

In Linux operating systems, most software is installed and used through a command
line. Such a command line can be access through the Terminal application that the

operating system provides. The user can issue the commands through this interface.

In order to install the RISC-V GNU Toolchain on the system, first, the repository must
be cloned via the following command,

e git clone https://github.com/riscv/riscv-gnu-toolchain

The toolchain requires a bunch of prerequisite software, which can be installed with

the following command,

e sudo apt-get install autoconf automake autotools-dev curl python3
libmpc-dev libmpfr-dev libgmp-dev gawk build-essential bison flex
texinfo gperf libtool patchutils bc zliblg-dev libexpat-dev

Once the prerequisites are installed, current directory should be changed using the

following command,
e cd riscv-gnu-toolchain
Now, the setup must be configured. The following command should do that,

e ./configure --prefix=/opt/riscv --with-multilib-generator="rv32i-
ilp32--;rv32im-ilp32--"

The first part of the command that starts with “--prefix" sets the installation directory.
the second part that starts with “--with™ configures the installer so that both RV32I and
RV32IM libraries are installed. This is convenient because it allows the user to force
the compiler to use only RV32I instructions or RV32IM instructions. If we did not
install both of them, the compiler would always use RV32IM (or RV32l) instructions,
even if we compiled for RV321 (or RV321M).
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Finally, the toolchain can be installed by executing the following command,
e sudo make
The installation may take roughly an hour, beware. Once the installation is complete

the installation directory must be added to the PATH. In order to do that, we simply need

to modify a text file. To open that text file, following command should be executed,
e sudo nano /etc/environment

This will open the text file on the Terminal. Now, simply add the following text to the
end of the file,

e :/opt/riscv/bin

Now press CTRL+O to write the changes to file and hit Enter. Press CTRL+X to exit.

You should be able to invoke the RISC-V compiler now.

5.1.3 Installing Verilator

Verilator[14] is a free and open-source software that essentially simulates Verilog
designs. It generates a C++ class from the Verilog module, which in turn can be
instantiated in a C++ program. As Verilator can be invoked from the command line,
the simulation process can be scripted. In our project, we used this software for
automated testing. However, this software is not strictly needed, as other simulators
can also be used.

Executing the following command should install Verilator on your system,
e sudo apt-get install verilator

You should now be able to invoke Verilator from your command line.

5.1.4 Installing GTKWave

GTKWave[15] is another free and open-source software that can be used to view
simulation waveforms. It simply visualizes the waveforms generated by a simulator.
GTKWave can be used in conjunction with Verilator. Verilator can be invoked with
the necessary options to generate a waveform dump file. GTKWave can generate
waveform views from that file. Again, this software is not strictly necessary, but it can

be convenient for debugging. Following command should install the software,

e sudo apt-get install gtkwave
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You should now be able to invoke GTKWave.

5.2 Compiling a RISC-V program

We now have everything ready to compile a RISC-V program. Compilation is the
process of generating a binary file from a C program. With Verilator, the binary file
alone is enough for simulation. However, with real Verilog simulators, a memory file
must be generated from the binary file. This memory file can be loaded into the
memory of the processor in the testbench. In any case, the first step is to generate the

binary file.

Let us work on the bubble sort program provided in the Github repository of this
project. First, clone the repository with the following command,

e git clone https://github.com/yavuz650/RISC-V.git
Change directory to the bubble_sort folder,
e cd RISC-V/test/bubble_sort

As the name implies, bubble sort is a simple program that sorts an array using the
bubble sort algorithm. Of course, the source code is available in the bubble_sort.c
file.

Now, we need to compile this program into an Executable and Linkable File format,
i.e. a .elf file. Following command should do this task,

e riscv64-unknown-elf-gcc bubble_sort.c ../crt@.s -march=rv32i -
mabi=ilp32 -T ../linksc.ld -nostartfiles -ffunction-sections -fdata-

sections -Wl,--gc sections -o bubble_sort.elf

This command will generate the bubble_sort.elf file. Let us breakdown this verbose

command,
® riscv64-unknown-elf-gcc: This invokes the GNU C compiler.
e bubble _sort.c: This is the source file

e ../crto.s: This is an assembly code that performs the initialization routine.

It simply initialies the stack pointer and jumps to the main function.
e -march=rv32i: Specifies the target ISA
e -mabi=ilp32: Specifies the Application Binary Interface
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e -T ../linksc.ld: Specifies the linker script. A linker script defines the
memory regions of the processor. In this case, it has two regions: ROM and
RAM. ROM is where the instructions and the read-only data is stored. RAM is
where the run-time variables are stored. The linker uses this script to place the

instructions at appropriate memory regions.

® -—nostartfiles -ffunction-sections -fdata-sections -Wl,--gc sections:

These options are used to strip the elf file from unused and redundant code.
e -0 bubble_sort.elf: Specifies the name of the output file.

Now, we need to generate the binary file from this elf file. Following command should
do that,
e riscv64-unknown-elf-objcopy -0 binary -j .init -j .text -j .rodata
bubble_sort.elf bubble_sort.bin

This command copies the .init, .text and .rodata sections from the elf file and generates

the binary file.

The program is now compiled successfully. One last step before simulating is to
generate the .data file which will be loaded into the processor’s memory. To do that,
we have written a simple C program which is also available in the repository. This
program accepts a binary file as an input, and generates a .data file that contains the
instruction opcodes, and the read-only data. This .data file can be loaded into the

memory of the processor using the $readmem command in Verilog.

Figure 5.1 shows the C code of this program,
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int main(int argc, char *argv[])
{
if(argc = 2)
{
printf("Error! Expected a .bin file only.\n");
return -_;
}
char cmd[ 1;
FILE *infile, *outfile;
int len;
uint32 t rom[ 1:;
infile = fopen(argv[l], "rb");
fseek(infile, 0, SEEK_END) ;
len = ftell(infile);
fseek(infile, 0, SEEK_SET);
if (fread(rom, 4, len/4, infile) !'= len/4)
{
printf("Assembled file read error!\n");
fclose (infile) ;
return -_;
}
char file name[&4];
sprintf(file name,"%s",argv[.]);
sprintf(file name+strlen(argv[l])-4,".data");
outfile = fopen(file name,"wb");
for (int 1 = 0; 1 < len/f4; i+=1)
{
sprintf(cmd,"%06%", rom[i]) ;
fwrite (cmd,sizeof (char),strlen(cmd) ,ocutfile);
sprintf(cmd, " \n") ;
fwrite (cmd,sizeof (char),  ,outfile);

}

return

Figure 5.1 : C code of the ROM generator program
Following sequence of commands can be used to compile this program,

e cd ..
g++ rom_generator.c -o rom_generator
cd bubble_sort
Now use the following command to generate the .data file,
e ../rom_generator bubble_sort.bin

All the files are now prepared for simulation.

In practice, these steps are executed by a makefile. A makefile is basically a script that
is used to build programs. Such makefiles are provided in each test folder. Then,
instead of executing all the commands above, makefile can be run to do all of them at
once. Simply running the command make should be enough to invoke the makefile.

An example makefile is shown in Appendix B.
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5.3 Simulating a RISC-V program using the core

5.3.1 Developing an SoC for simulation

Before we can simulate the core, we need to attach the necessary peripherals to make
it work. For simulation purposes, a dual-port memory is enough. We simply combine
the core with the memory on a top module. This top module becomes a system-on-
chip that can simulate RISC-V binaries. In the repository, an SoC named “barebones”

is provided for this purpose.

5.3.2 Simulating with Cadence Xcelium

Xcelium is a commercial RTL compiler and simulator developed by Cadence Design
Systems. As such, this tool is not freely available to the public. In the scope of this
project, we had access to this software through the VLSI Lab at our faculty.

To simulate a program with Xcelium, we must first compile the Verilog source files.
Executing the following command while in the barebones directory should compile

the necessary source files,

e xmvlog ../../core/core.v ../../core/ALU.v ../../core/control_unit.v

../../core/forwarding unit.v ../../core/hazard_detection_unit.v

../../core/imm_decoder.v ../../core/load_store_unit.v

../../core/csr_unit.v \
../../peripherals/memory_2rw.v ../../peripherals/mtime_registers.v \

../../core/muldiv/divider_32.v ../../core/muldiv/multiplier_32.v

../../core/muldiv/MULDIV_ctrl.v ../../core/muldiv/MULDIV_in.v \

../../core/muldiv/MUL_DIV_out.v ../../core/muldiv/MULDIV_top.v
../../peripherals/debug_interface.v \

barebones_top.v barebones_top_tb.v
Then, following command should elaborate the testbench,
e xmelab -access rwc barebones_top_tb
Now, the simulation can be launched with the following command,

e xmsim -gui barebones_top_tb
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5.3.3 Simulating with Verilator

Simulating with Verilator is quite different than simulating with a traditional RTL

simulator. For Verilator, instead of a Verilog testbench, a C++ wrapper file is required.

This wrapper file acts like the testbench. In it, an object of the generated C++ class is

instantiated. Through the interface of that class, the signals are driven and read. Figure

5.2 shows the wrapper code for bubble sort,

Vbarebones top *barebones top;
vluinté4 t main time =

int main(int argc, char** argwv)

1

std::ifstream bin file("../bubble sort.bin",std::ifstream::binary);
Verilated: :commandirgs (argc, argwv) ;

Verilated: :traceEverOn (true) ;

VerilatedvVcdC* tfp = new VerilatedvedcC;

barebones top = new Vbarebones top;

bin file.seekg(0,bin file.end);

int len = bin file.tellg();

bin file.seekg(J,bin file.beg);
bin_file.read{reinterpret_cast<:ha:*>{bareboneS_top—>bareboneS_top—>memory—>mem},len};

barebones top->trace(tfp, )
tfp-»open("simx.vcd") ;
barebones top->reset i =
while (!Verilated::gotFinish())
{
if (main time > Y
barebones top->reset i

}
if ((main time % = 1) {
barebones top-»clk i

}
if ((main time % == c) {
barebones top->clk i

}

barebones top->»eval();

tfp->dump (main time) ;

main time++;

if(main time > )]

{
std::cout << "Failure - Time out...\n";
break;

}
barebones top->final();

tfp->close() ;
delete barebones top;

Figure 5.2 : C++ wrapper file for bubble sort

This wrapper file instantiates an object of VBarebones_top class, which is generated

by Verilator based on the Verilog design files. In the while loop, the signals are read

and driven, much like a Verilog testbench. Once the wrapper file is ready, Verilator

can be invoked to generate the necessary files. While in the bubble_sort directory,
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following command can be executed to invoke a script that compiles and runs the

Verilog designs using Verilator,
e ./bubble_sort_script

Once the simulation completes, waveforms can be viewed using GTKWave. To do

that, first change the directory using the following command,
e cd obj_dir

Then, launch GTKWave,
e gtkwave simx.vcd

You should now be able to view waveforms.

6. BENCHMARKS AND POST-SYNTHESIS ANALYSIS

6.1 Benchmarks

In addition to tests, we also developed simple benchmarks to quantify the advantage
of having the “M” standard extension for multiply/divide operations. We developed 4
benchmarks; 64-bit integer multiplication and division, 64-bit floating-point
multiplication and division. As RV32IM does not have native instructions for 64-bit
division and floating point operations, they are emulated on software.

Figures 6.1 to 6.4 show the benchmark programs,

main(}

Figure 6.1 : 64-bit integer multiplication code
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main(})

Figure 6.4 : 64-bit floating-point division code
All benchmark programs start with a stack initialization routine, then proceed to the
initialization of variables. These initialization routines are common to all programs,
therefore the effects on results will be the same. Then, the arithmetic operation is

performed. A benchmark ends when the result is stored to the memory.

Each program is compiled with the highest optimization level, -03, for both RV32I
and RV32IM instruction sets. The programs are simulated on Cadence Xcelium
Simulator, and the number of clock cycles are determined through the waveform

window. Table 6.1 summarizes the results,
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Table 6.1 : Benchmark results

Instruction Set
RV32I RV32IM
Benchmark
64-bit Integer Mul. 311 28
64-bit Integer Div. 972 183
64-bit Floating-point Mul. 2241 291
64-bit Floating-point Div. 3489 448

6.2 The critical path

In a clocked digital circuit, the critical path refers to the path which starts and ends
with a register, and has the longest propagation delay. This path is called the critical

path because it determines the maximum frequency of operation of the circuit.

In a typical design flow, the critical path is determined after synthesis. In this project,
Genus synthesis tool is used to generate a timing report which includes all the details

of the critical path.

We examined the critical path in two configurations: with and without the

multiply/divide unit.

Without the multiply/divide unit, the critical path turned out to be between a CSR and
a pipeline register. More specifically, the startpoint is the mstatus CSR, and the
endpoint is the pipeline register between ID and EX stages. The main reason why this
path is critical is because the mstatus register is written on the falling edge of the
clock, as is the case with all the other registers. Moreover, the important detail about
this register is that it contains the global interrupt enable bit, which is used in the
calculation of the pipeline flush signals. The calculation of the pipeline flush signals
involves several cascaded logic operations, which result in a long propagation delay.
Combining this with the fact that the path has half a clock cycle to complete, it is
natural that this path turned out to be the critical path.

The reason why we designed the registers so that they are written on the falling edge
Is because it is another form of forwarding data. If the registers were written on the

rising edge, then there would have to be additional pipeline stalls on occasions. In
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retrospect, this was a poor design choice by us. Because, such stalls would be
extremely rare, which means such a tight critical path is not worth it.

After the incorporation of the multiply/divide unit, the critical path turned out to be in
the division path. This was expected because the division algorithm initially involved
4 32-bit cascaded subtractions. At that time, a division operation took 8 cycles. After
that, we changed the algorithm so that it completed in 16 cycles, and involved 2 32-bit

cascaded subtractions. After this change, the critical path changed back to what it was

before. Figures 6.5 to 6.7 show the timing reports,

ref MULDIV DIV div_control_current_state reg[2]/CP
nl
el MULDIV_DIV reg R _reg[30]/D

Figure 6.6 : Critical path after adding multiply/divide unit

1: MET ! ps) Setup Check with Pin core@ IDEX preg_dataZ_reg[11l]/CP-=0
Gr 1
N0 re@ CSR_UNIT mstatus_reg[3]/CP

{_preg_dataZ reg[11]/D

Figure 6.7 : Critical path after changing division to 16 cycles
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6.3 Area

We also compared the change in the consumed area. Table 6.2 summarizes the results,

Table 6.2 : Area consumption

RV32I RV32IM
Area (Uum?) 106768 175450
Gate Count 7969 13203

As expected, addition of the multiply/divide unit incurs significant area consumption.
It is worth noting that we used TSMC’s 90nm general purpose ASIC cell library for

synthesis.

7. REALISTIC CONSTRAINTS AND CONCLUSIONS

Open-source hardware platforms are growing bigger every day. In this project, we
contributed to this growth by developing a well-documented, open-source RISC-V
core. The design is free to use and extend. It can be used for research purposes,

educational purposes, and even for personal projects.

7.1 Practical Application of this Project

In the simplest case, the design can be used for further research. Moreover, it can be
extended and prepared for a chip tape-out. This could be an important contribution to

the processor design initiative that is present in the country.

7.2 Realistic Constraints

7.2.1 Social, environmental and economic impact
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RISC-V is a license-free ISA. This means that companies or groups do not have to pay
for a licensing fee to produce and/or sell RISC-V processors.
7.2.2 Cost analysis

The CAD tools used in this project are not free. Simulation and synthesis tools are
quite costly. Fortunately, VLSI Lab in our faculty provided us with the necessary
software.

7.2.3 Standards

The only standard to follow in this project is the RISC-V ISA manual.

7.2.4 Health and safety concerns

This project does not involve health and safety concerns.

7.3 Future Work and Recommendations

There is an incredible amount of room for future work. To begin with, the remaining
standard extensions, such as the floating-point instruction set, can be implemented.
Supervisor mode and virtual memory can be implemented to allow for operating
systems. Instruction and Data caches can be implemented. An interface can be
provided for communication with peripherals. Last but not least, chip tape-outs can
also be done.
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APPENDIX A

set_db library {/vlsi/kits/tsmc/lib/¢0gp/TSMCHOME/digital/Front End/timing power noise/NLDM/tcbnd0gbwplét 220a/tcbn30ghwplétte.lib}

set_db information level 1l
set_db delete unloaded insts false
set_db delete_unloaded segs false

$ Reading Verilog Codes and Elaborating

read hdl -v2001 {barebones_top.v ../../core/core.v ../../core/ALU.v ../../corefcontrol unit.v ../../core/forwarding unit.v ../../core/hazard detection unit.v \
../../core/im decoder.v ../../core/load store_unit.v ../../core/csr unit.v ../../peripherals/mtime registers.v}

elaborate barebones_top

# Defining Time Constraints - ns

create_clock -period 10 -name clkinl -domain domain 1 clk i
set_clock latency -max 1 clkinl

# CLOCK UNCERTAINTY (JITIER

set_clock uncertainty -setup 1 clkinl

set_clock uncertainty -hold ! clkinl

# DELAY FROM INPUT PIN TO CLOCK

set_input_delay -clock clkinl -clock rise I [all_inputs]
set_output_delay -clock clkinl -clock rise 1 [all outputs]

set_driving cell reset i meip i -cell BUFFEDI2EWP14T
set_load 1 irqg ack o

$ Synthesizing

#set_dh operating_conditions BCCOM
set_db syn generic_effort high
set_db syn map_effort high

set_db syn opt_effort high
syn_generic barebones_top

3yn_map barebones_top

3yn_opt barchones_top

# Writing Report Files

report timing > report_time.txt
IEpoIt gates > report_gates.txt
Ieport area > report area.txt

# Writing Design Files

write_hdl barebones top -language v2001 > syn barebones top.v
write_sdf -edges check edge -design barebones top > barebones top.sdf

Figure A.1 : Synthesis script for Genus

APPENDIX B

CC32=riscv32-unknown-elf
CC64=riscv64-unknown-elf
CCFLAGS=-march=rv32i -mabi=ilp32 -03 -T ../linksc.ld -nostartfiles -ffunction-sections -fdata-sections -W1,--gc-sections -o bubble_sort.elf

build:
$(CC32)-gece bubble_sort.c ../crt@.s $(CCFLAGS)
$(CC32)-objcopy -0 binary -j .init -j .text -j .rodata bubble sort.elf bubble sort.bin
../rom_generator bubble sort.bin
cp bubble_sort.data ../memory_contents
multilib:

$(CC64)-gcc bubble_sort.c ../crt@.s $(CCFLAGS)
$(CC64)-objcopy -0 binary -j .init -j .text -j .rodata bubble_sort.elf bubble_sort.bin
../rom_generator bubble_sort.bin

cp bubble_sort.data ../memory_contents

Figure B.1 : Example makefile script
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