

ISTANBUL TECHNICAL UNIVERSITY

ELECTRICAL-ELECTRONICS FACULTY

MODEL BASED DESIGN AND IMPLEMENTATION OF
SECURE IOT NETWORK

USING SIMULINK

SENIOR DESIGN PROJECT

Heval Ronahi HALİTOĞLU
Oğuzhan TURAN

ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT

JUNE 2021

ISTANBUL TECHNICAL UNIVERSITY

ELECTRICAL-ELECTRONICS FACULTY

MODEL BASED DESIGN AND IMPLEMENTATION OF
SECURE IOT NETWORK

USING SIMULINK

SENIOR DESIGN PROJECT

Heval Ronahi HALİTOĞLU
(040150114)

Oğuzhan TURAN
(040150094)

ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT

Project Advisor: Prof. Dr. Sıddıka Berna ÖRS YALÇIN

JUNE 2021

We are submitting the Senior Design Project entitled as “MODEL BASED DESIGN
AND IMPLEMENTATION OF SECURE IOT NETWORK USING SIMULINK”. The
Senior Design Project Interim Report has been prepared as to fulfill the relevant reg-
ulations of the Electronics and Communication Engineering Department of Istanbul
Technical University. We hereby confirm that we have realized all stages of the Senior
Design Project Interim Report by ourselves, and we have abided by the ethical rules
with respect to academic and professional integrity .

Heval Ronahi HALİTOĞLU
(040150114)

Oğuzhan TURAN
(040150094)

v

vi

To our beloved family,

vii

viii

FOREWORD

Since the beginning of our undergraduate senior design project, we would like to offer
endless thanks to our valuable professor, Sıddıka Berna ÖRS YALÇIN, for continuing
her contact with us at every stage of the thesis and taking her time.Secondly, we would
like to offer our gratitude to our mentor Res. Assist. Mehmet Onur DEMİRTÜRK.

We would like to thank our precious teachers and friends for their vision and quality
awareness, besides engineering education at Istanbul Technical University, one of the
oldest technical universities in the world, and our families who always supported us
until we received this diploma.

June 2021 Heval Ronahi HALİTOĞLU

Oğuzhan TURAN

ix

x

TABLE OF CONTENTS

Page

FOREWORD... ix
TABLE OF CONTENTS.. xi
ABBREVIATIONS ... xiii
LIST OF TABLES .. xv
LIST OF FIGURES ..xvii
SUMMARY ... xix
ÖZET ... xxi
1. INTRODUCTION .. 1
2. INTERNET OF THINGS (IOT) ... 3

2.1 Applications of IoT... 3
2.1.1 Manufacturing .. 3
2.1.2 Transportation... 4
2.1.3 Smart Cities .. 4
2.1.4 Healthcare... 4
2.1.5 Agriculture.. 5

2.2 IoT Architecture ... 5
2.3 Security Issue of IoT .. 7

2.3.1 RC5 Cryptology Algorithm.. 7
2.3.1.1 Mathematical Background for RC5 Algorithm 7

RC5 Keys and Parameters ... 8
Key Expansion... 8
Encryption ... 10
Decryption... 11

2.4 Zigbee Communication Protocol.. 11
2.5 Programs Used to Implement Project... 11

2.5.1 MATLAB and Simulink .. 12
2.5.2 Xilinx Vivado Design Suite .. 12
2.5.3 Xilinx Vitis Platform .. 13

3. MODEL BASED IMPLEMENTATION .. 15
3.1 Designing Simulink Model with ZigBee Protocol ... 15

3.1.1 Room Area.. 15
3.1.2 RC5 Algorithm Area .. 19
3.1.3 Transmitter Area... 24
3.1.4 Reciever and Output Area .. 27

4. HARDWARE IMPLEMENTATION .. 31
4.1 Implementing Model to FPGA... 31

4.1.1 Simplfying Model... 31

xi

4.1.2 Generating MicroBlaze and UART Environment 33
4.1.3 Creating ELF File .. 35
4.1.4 Observating Results .. 39

5. CONCLUSIONS AND RECOMMENDATIONS.. 43
5.1 Practical Application of this Study... 43
5.2 Realistic Constraints ... 43

5.2.1 Social, Environmental and Economic Impact .. 43
5.2.2 Cost Analysis.. 44
5.2.3 Standards .. 44
5.2.4 Health and Safety Concerns ... 44

5.3 Future Work and Recommendations .. 44
REFERENCES.. 47
APPENDICES... 51

APPENDIX A .. 53
APPENDIX B... 58
APPENDIX C... 59

CURRICULUM VITAE... 61

xii

ABBREVIATIONS

AES : Advanced Encryption Standard
AWGN : Additive White Gaussian Noise
AXI : Advanced Extensible Interface
BPM : Beats per Minute
DES : Data Encryption Standard
ELF : Executable and Linkable Format
FPGA : Field Programmable Gate Array
HDL : Hardware Description Language
IDE : Integrated Development Environment
IEEE : The Institute of Electrical and Electronics Engineers
IETF : Internet Engineering Task Force
FPGA : Field Programmable Gate Array
IoT : Internet of Things
IP : Intellectual Property
LUT : Look-Up Table
LAN : Local Area Network
MATLAB : Matrix Labrotary
MDD : Model Driven Development
OQPSK : Offset Quadrature Phase-Shift Keying
PDF : Probability Density Function
RC5 : Rivest Cipher 5
RISC : Reduced Instruction Set Computer
RSA : Rivest-Shamir-Adleman
RTL : Register Transfer Level
UART : Universal Asynchronous Receiver Transmitter
XOR : Exclusive OR
XSA : Xilinx Shell Archive
3DES : Triple Data Encryption Standard

xiii

xiv

LIST OF TABLES

Page

Table 2.1 : Basic ZigBee Specification [1].. 11

xv

xvi

LIST OF FIGURES

Page

Figure 2.1 : IoT Architecture [2]... 6
Figure 2.2 : Representation of RC5 Algorithm... 8
Figure 2.3 : Magic Constants [3]... 9
Figure 2.4 : Pseudo Code of Key Expansion [3]... 9
Figure 2.5 : Pseudo Code of Encryption [3] ... 10
Figure 2.6 : Block Diagram of Encryption for One Round [4]............................. 10
Figure 2.7 : Pseudo Code of Decryption [3] ... 11
Figure 2.8 : Example Simulink System .. 12
Figure 2.9 : MicroBlaze System with UART.. 13
Figure 2.10: Project Types in Vitis [5] ... 14
Figure 3.1 : Room Area... 15
Figure 3.2 : Inside of the Patient Subsystem... 16
Figure 3.3 : Inside of the Temperature Subsystem.. 17
Figure 3.4 : PS Random Number Block Settings.. 17
Figure 3.5 : MATLAB Function to Generate Patient’s Data................................. 18
Figure 3.6 : Logic Behind of the Produced Data Value .. 19
Figure 3.7 : RC5 Algorithm Area ... 20
Figure 3.8 : Data-Room Selection Function Block... 20
Figure 3.9 : Parameters and Init Function Subsystem... 21
Figure 3.10: Parameters Function .. 21
Figure 3.11: S Initialize Function Block .. 22
Figure 3.12: Encryption Function Block.. 23
Figure 3.13: Data Encryption Results for 248 ... 23
Figure 3.14: Decryption Function Block ... 24
Figure 3.15: Transmitter Area.. 25
Figure 3.16: Bit Serializer Subsystem.. 25
Figure 3.17: Transmitter Block .. 26
Figure 3.18: Transmitter Selection Function Block ... 26
Figure 3.19: Receiver Area .. 27
Figure 3.20: Receiver Area .. 28
Figure 3.21: Output Area ... 28
Figure 3.22: Shift Register Subsystem... 29
Figure 3.23: D Flip Flops Subsystems ... 29
Figure 3.24: Function to Screen Data .. 30
Figure 4.1 : Simplified Model ... 31
Figure 4.2 : Model Subsystem .. 32
Figure 4.3 : Simplified Data-Room Selection Function.. 32

xvii

Figure 4.4 : Generating Code from Subsystem... 33
Figure 4.5 : Board Selection Screen in Vivado Platform 33
Figure 4.6 : MicroBlaze in Vivado.. 34
Figure 4.7 : Settings for MicroBlaze... 34
Figure 4.8 : Completed Block Design in Vivado .. 35
Figure 4.9 : Adding Exported Hardware to Vitis Platform 36
Figure 4.10: View of the Vitis Application Project .. 36
Figure 4.11: Adding Generated Folder to Vitis Platform....................................... 37
Figure 4.12: Generated Header File Model.h .. 38
Figure 4.13: C Code of checkModel .. 39
Figure 4.14: Testbench Code.. 40
Figure 4.15: Behavioral Simulation Results .. 41
Figure A.1 : Simulink Model ... 58
Figure B.1 : RTL Schematic .. 59

xviii

MODEL BASED DESIGN AND IMPLEMENTATION OF
SECURE IOT NETWORK

USING SIMULINK

SUMMARY

Internet of Things (IoT) is a network of connected sensors, computers, and digital
devices that can communicate with one another over the internet to share and
transfer data. IoT has a wide variety of applications in the fields of manufacturing,
transportation, energy, healthcare and smart building systems. According to the its
application IoT involves extra devices being connected, extra networking to connect
these devices, extra programming to direct the devices and networking and a massive
volume of extra data pouring into the internet. Each of these layers come up with
additional security issues. Consequently, IoT devices usually lack the security from
outside impacts to prevent hacking. Cryptography algorithms are widely used in
security issues. Even though use of traditional cryptosystems can improve security,
another problem arises for those implemented cryptosystems which is increase the
need of power for the processors thus makes the device less preferable. Cryptography
algorithms are also extremely resource constrained devices in terms of computing
capabilities, power and area usage.

Aim of this project is to create a model-based design and implementation of an IoT
system that uses low power processors for speed and security. The hardware-software
co-design process was utilized to make it easier to design this sensor node and decrease
engineering expenses. According to this research, IoT and its architecture were
investigated. An IoT nodes are generally consist of sensors, actuators and processors
communicate with each other to serve its application. IoT node in this project is
created for health application in health emergency service. Some data such as human
temperature and heart rate is taken from human body for analyzing and reacting
according to its data values.

For model-based design of IoT network, it has made some researches. After
project’s application is determined, Simulink is used for modeling an IoT node. IoT
nodes can communicate with usage of standard communication protocols. Zigbee
communication protocol is selected for its features such as its frequency, data rate
and range for this project. Main objective for this part was to find some applied
communication module for an example. Zigbee module had founded on Simulink
File Exchange and it is selected which provides two main operations: modulation
and demodulation. After communication protocol chosen, ideas for application were
executed. First, vital health parameters will be taken from sensors. Then, the sensor
data will be transmitted via Zigbee communication protocol and then received data
will be used to actuate some alarms for warning health care providers.

After this step, it has researched cryptographic algorithm for securing modeled IoT
node. Rivest Cipher 5 (RC5) cryptography algorithm was chosen according project’s
application; since, RC5 algorithm is fast and adaptable for different lengths of bits.

xix

Also, it can be easily manipulated to make it faster or more secure. For length of
word is selected as 32 bits for this application. Encryption and decryption algorithms
of RC5 are written as Matrix Laboratory (MATLAB) code and implemented into
Simulink blocks. The whole model is investigated and it is decided that the system
works properly. After modeling step, Embedded Coder in Simulink is utilized for
generating C code to transfer the system to software platform. Introduced code are
transferred into Xilinx Vitis platform. In Vitis, C code is written observe the system
in MicroBlaze which is Xilinx’s virtual processor. According to project’s IoT node, it
has produced an Intellectual Property (IP) structure for embed to a module. Generated
hardware module has exported into Xilinx Vivado Design Suite and system is observed
in simulation. As a result, monitorable healthcare system is created as Simulink model
and verified with MicroBlaze.

xx

SIMULINK KULLANARAK
GÜVENLİ IOT DÜĞÜMÜNÜN

MODELLEME TABANLI TASARIM VE UYGUNLANMASI

ÖZET

Nesnelerin İnterneti (IoT), verileri paylaşmak ve aktarmak için internet üzerinden
birbirleriyle iletişim kurabilen sensörler, bilgisayarlar ve dijital cihazlardan oluşan bir
ağdır. IoT, üretim, ulaşım, enerji, sağlık ve akıllı bina sistemleri alanlarında çeşitli
uygulamalara sahiptir. Bir IoT sistemi kullanılan cihazların birbiri ile bağlanmasını,
bu cihazları birbirine bağlamak için gerekli ağ yapılarını, bu ağları yönlendirmek
için programlamayı ve bunların doğurduğu büyük miktarda veriyi içerir.Bu sistemin
oluşturduğu her bir katman ek güvenlik sorunlarıyla karşılaşır. Sonuç olarak, IoT
cihazları genellikle dışarıdan gelebilecek herhangi bir saldırıya açık olup bu etkileri
azaltabilecek güvenlikten yoksundur. Kriptografi algoritmaları bu tarz güvenlik
konularında yaygın olarak kullanılmaktadır. Geleneksel şifreleme sistemlerinin
kullanılması ise güvenliği artırabilse de, uygulanan bu şifreleme sistemleri, işlemciler
için güç ihtiyacını artıran ve böylece cihazı daha az tercih edilir hale getiren başka
bir sorun ortaya çıkartır. Ayrıca kriptografi algoritmaları kullanan cihazlar bilgi işlem
yetenekleri, güç ve alan kullanımı açısından son derece kaynak kısıtlı cihazlardır.

Bu projenin amacı, hız ve güvenlik için düşük güçlü işlemciler kullanan bir IoT
sisteminin model tabanlı bir tasarımını ve uygulamasını oluşturmaktır. Bir IoT sensör
düğümünü tasarlamayı kolaylaştırmak ve mühendislik maliyetlerini azaltmak için
donanım-yazılım ortak tasarımı bir arada kullanılmıştır. Bu araştırma için IoT ve
mimarisi araştırıldı ve bir IoT sistemi genellikle, uygulamasına hizmet etmek için
birbirleriyle iletişim kuran sensörler, aktüatörler ve işlemcilerden oluşur.Bu projedeki
IoT sistemi, sağlık acil servisindeki sağlık uygulamaları için oluşturulmuştur. İnsan
vücudundan vücut sıcaklığı ve kalp atış hızı gibi bazı veriler alınarak, bu değerleri
analiz etmek ve değerlendirmek için kullanılır.

IoT ağının model tabanlı tasarımı için bazı araştırmalar yapılmıştır. Bir IoT
düğümünün modellenmesi için Simulink kullanıldı. Oluşturulan IoT düğümleri,
standart iletişim protokollerinin yardımı iletişim kurabilir. Bu proje için frekansı,
veri hızı ve aralığı gibi özellikleri nedeniyle Zigbee iletişim protokolü seçilmiştir.
Bu bölümün ana amacı olarak örnek amaçlı bazı modellenmiş iletişim modülleri
bulundu. Araştırmalar sonucu bulunan Zigbee modülü Simulink File Exchane üzerinde
kurulmuş olup kendi model yapısı içerisinde modülasyon ve demodülasyon işlemlerini
gerçekleştiren iki ana modulden oluşmaktadır.letişim protokolü seçildikten sonra
uygulama fikirleri hayata geçirilmeye başlandı. İlk olarak, sistem yapısı içerisindeki
sensörlerden hayati sağlık parametreleri alınacaktır. Ardından ise sensör verileri
Zigbee iletişim protokolü aracılığıyla iletilecek ve alınan veriler, sağlık çalışanlarını
uyarmak amacıyla bazı alarmları etkinleştirmek için kullanılacaktır.

Bu adımdan sonra modellenen IoT düğümünün güvenliğini sağlamak için kriptografik
algoritmalar araştırılmıştır. RC5 kripto algoritması hızlı olması ve farklı bit uzunlukları

xxi

için ayarlanabilmesi özelliklerinden dolayı bu projeye uygulamak amacıyla tercih
edilmiştir.RC5, oluşturulan IoT düğümünü daha hızlı veya daha güvenli hale getirmek
için kolayca veriyi manipüle edilebilir. Bu uygulamada word uzunluğu 32 bit olarak
seçilmiştir. RC5’in şifreleme ve şifre çözme algoritmaları MATLAB kodu kullanarak
yazıldı ve ardından Simulink bloklarına uygulandı. Tüm model incelenrek sistemin
çalışması incelendi. Modelleme adımından sonra, sistemi yazılım platformuna
aktarmak için Simulink’teki Embedded Coder aracı kullanılmıştır. Bu araç ile
modüllerimize ait C kodları üretimi sağlanır. Bu üretilen kodlar daha sonrsında
Xilinx Vitis platformuna aktarılır. Bu platform üzerinden bir donanım modulüne
kendi yapısını gömmek amacıyla bir IP yapısı üretilir. Oluşturulan donanım modülü
Xilinx Vivado Design Suite’e aktarılmıştır. Daha sonrasında bu yapının denenmesi
amacıyla Vivado üzerindeki görsel bir mikroişlemci olan MicroBlaze kullanılması
tercih edilmiştir. Sistemin doğru çalışıp çalışmadığını gözlemlemek için çeşitli
durumlara bağlı olarak simülasyonlar gerçekleştirilmiştir. Sonuç olarak Simulink ile
modellenen yapı ilk olarak software platformuna ardından da hardware platformuna
aktarılarak MicroBlaze ile çalışması gözlemlenmiştir.

xxii

1. INTRODUCTION

Nowadays, Internet of Things (IoT) [6] has expanded to a global infrastructure with the

number of connected devices being in multiples of the number of people worldwide.

Large communication data and inter-connected gadgets also introduce many new cases

in which breaches of privacy and information can occur. New generation Internet

of Things (IoT) applications require low power, and small area secure systems that

encrypt data.

The challenge that we wish to address, focusses on Model Driven Development (MDD)

[7] of embedded system design software and hardware and implementing them on

secure IoT applications. This project aims to create a modified version of the algorithm

that is derived from the hardware with cooperation of hardware and software to create

an improved version to ease implementation and accelerate manufacturability of the

IoT device that the algorithm will be implemented for security to create a secure,

low cost and rapidly produced IoT devices. It is used interoperation of MATLAB,

Simulink, Vitis and Vivado for this project. Field Programmable Gate Array (FPGA)

[8] is utilized to put the system on a trial and modify the algorithm on Xilinx Vivado

program to create a hardware-software hybrid system. [9]

In the second part of the thesis, information about the architecture of the internet of

things, application areas and security problems are given. In the third part, the plan of

the system to be realized is made. In the fourth chapter, the software implementation

of the system is explained, and in the fifth chapter, the hardware implementation. In

the sixth and last chapter, the results and information about future studies are given.

1

2

2. INTERNET OF THINGS (IOT)

The term of Internet of Things was first proposed by a British technologist Kevin

Ashton in 1999. IoT connects devices to the internet, allowing software to collect

data and manage these devices to improve efficiency, create new services, or achieve

its application goals [10].

IoT has been defined by different organizations and research centers over time. One of

them is defined by Internet Engineering Task Force (IETF) as “the network of physical

objects or "things" embedded with electronics, software, sensors, and connectivity to

enable objects to exchange data with the manufacturer, operator and/or other connected

devices” [11]. On the other hand, The Institute of Electrical and Electronics Engineers

(IEEE) is described “Internet of Things” on its IEEE “Internet of Things” 2014 special

report as “A network of items—each embedded with sensors—which are connected to

the Internet” [12].

Nowadays, IoT become considerable technology that offers many solutions in daily

basis. Data collected and analyzed via IoT systems can be utilized for optimization,

efficiency and management based on its applications. To understand and maintain IoT

systems, one must first understand their architectural layers.

2.1 Applications of IoT

2.1.1 Manufacturing

IoT is a real-time network of connecting sensors, computers, and digital devices

that can communicate with one another over the internet to share and transfer

data. Usage of IoT in manufacturing may help automation, efficiency, energy

management, proactive maintenance, and connected supply chain management. It can

collect data from the production environments, machinery, vehicles, and materials.

Collecting these data without any human interruption can help for automation of

workflow/processes and optimization of design and production systems [13]. On

3

the other hand, increasing energy demand in manufacturing requires to be aware of

energy usage. Tracking and associating data in real-time via IoT can supply more

efficient usage of energy. It can help also continuously observing and error diagnosing

production elements for decrease time and money that spend for maintenance.

Demand, supply and feedback information can be taken for meaningful results for

manufacturing management.

2.1.2 Transportation

As the world population continuously increasing, low-cost and efficient transportation

systems in every field play an essential role in sustainable development. Data

collected and interpreted from IoT system in transportation can used location

management, driver safety, improved traffic management, reduced time and energy

used for transportation and supply chain management [14]. IoT is possible to supply

enhancement in cost and time management for more daily basis such as street lighting,

optimized suggested routes, parking reservations, public transportation, driver and

pedestrian safety, autonomous driving [15].

2.1.3 Smart Cities

IoT can help centralized, optimized and efficient use for smart cities based on

continuous monitoring and associated data using systems, devices interoperability. IoT

smart cities application can be divided some main aspects such as traffic management,

environmental monitoring, home energy management, waste management, and etc.

Proactive traffic management is enabled by measurements and predictions from a

large number of sensor’s data, which has the potential to significantly improve

efficiency and minimize congestion [16]. It can supply information about Water Level

Management, Soil Humidity, Gas concentrations, Structural Inclinations, Lighting

Conditions, Infrared radiation [17]. Utilized / recycled waste can be determined

and reported continuously for waste management. The monitoring system can easily

be integrated via embedded sensors with a building management/automation system

to operate in order to keep the determined parameter’s value within predetermined

security/health criteria for home energy management [18].

2.1.4 Healthcare

4

IoT applications have the potential to transform reactive medical systems into proactive

wellness systems. Current medical research relies on resources that are deficient

in critical real-world data. For medical examination, it usually uses residual data,

controlled surroundings, and volunteers. Through analyzed, collected, and testing

real-time data, IoT system provide efficiently used data [19]. Real-time applications

can be exampled such as monitoring of temperature for vaccines remotely, sensors

for air quality, sleep monitor, examination of drug effectiveness, capturing vital data,

bio-metrics scanners for remote care, proactive scheduling for refilling medication, and

etc [20].

2.1.5 Agriculture

IoT systems used in agriculture is a high-tech and efficient approach for sustainable

agriculture and food production. It is a method of integrating connected devices

and cutting-edge technologies into agriculture. The basis applications are mainly

focused on climate conditions, precision farming, smart greenhouse, data analytic, and

et [21]. These systems provide efficient and optimized production in each aspects of

agriculture.

2.2 IoT Architecture

IoT architecture is generally described with five different layer in which data flows

from sensors attached to “things” through a network and eventually on to a corporate

data center or the cloud for processing, analysis and storage. All layers are can be seen

in clearly in below Figure.

5

Figure 2.1: IoT Architecture [2]

• Perception Layer is a physical layer that basically consist of sensors. These devices

take some physical information from environment; also, indicates other smart

objects in environment.

• Transmission Layer is used for transferring the sensor data from perception layer

to processing layer through a network which are wireless, 3G, Local Area Network

(LAN), Bluetooth, Zigbee.

• Processing Layer is called also middle-ware later which is used for storage,

analyzation, and processing huge amount of data which is taken from transport

layer. Databases, cloud computing, and big data processing modules are used in

this later.

• Application Layer provides application specific services are provided according to

their purpose. It can be defined various applications according to used Internet of

things, for example, smart houses, smart cities, and smart health.

• Business Layer is fulfilled for managing whole IoT systems, consist of its

applications business and user privacy [22].

6

2.3 Security Issue of IoT

The purpose of IoT is about create appropriate connections between things. It has

becoming widely usage for different area. Therefore, there is a large increase in the

number of data used and collected. These collected data are generally personal and

private. According to that, securing IoT devices and network is one of the essential

issues in these systems. Security constraints can be divided into three main topics

which are based on hardware, software and network. In these project, it focused on

hardware part. Cryptology algorithms are utilized for securing hardware part of IoT

systems. Different algorithms could be use such as Rivest-Shamir-Adleman (RSA),

Data Encryption Standard (DES), Triple DES (3DES), Advanced Encryption Standard

(AES), Twofish, Blowfish, RC2, and RC5. Each of these algorithms come with its

drawbacks which are computational and energy constraints, memory constraints and

tamper resistant packaging [23]. For this project, RC5 cryptology algorithm is used.

2.3.1 RC5 Cryptology Algorithm

2.3.1.1 Mathematical Background for RC5 Algorithm

In the last years, secure systems are more required with the development of the Internet

and IoT. Therefore, cryptographic algorithms provide protection of the data. There are

asymmetric and symmetric algorithms. For the symmetric ones such as DES, AES and

RC5’s security level depends on the key length [24]. RC5 is a simple cryptographic

algorithm which designed by Ronald L. Rivest in 1994. While process, same key

is used for encryption and decryption which makes the algorithm symmetric. It has

many parameters such as word length, key length and number of rounds. Thanks to

all parameters, RC5 can be exchanged easily faster to more secure or exact opposite.

Moreover, there are only basic operations in algorithms which makes RC5 suitable for

both hardware and software. It comprises of three parts: an encryption, a decryption

and a key expansion [3]. Fig.2.2 shows the operations of RC5 algorithm. First

operation is expanded to key K to S. Then, plain text which is the data to encrypt

is connected to encryption algorithm with the key; so, cipher text is obtained. S is

needed again since RC5 is symmetric algorithm. This time, cipher text is connected to

decryption algorithm to obtain the plain text again.

7

Figure 2.2: Representation of RC5 Algorithm

RC5 Keys and Parameters

w – word size in bits, usually 16,32 and 64.

u – w/8 which is word size in bytes.

r – number of rounds, 0 to 255.

b – number of bytes in secret key K, 0 to 255.

K – b-byte secret key.

A – low-order bit positions of input/output.

B – high-order bit positions of input/output.

S – key array which is generated from K.

L – temporary array for operations in key-expansion.

P – a magic constant which is used in key-expansion.

Q – a magic constant which is used in key-expansion.

e – 2.71828... which is base of the natural logarithm.

ϕ – 1.618. . . which is golden ratio.

c – b/u which is number of words in key.

t – 2(r+1) which is size of table S.

Key Expansion

The key expansion algorithm stands for obtaining S while filling K. It uses two constant

values which is seen in Fig.2.3. Odd function in P and Q rounds up the result to the

nearest odd integer.

8

Figure 2.3: Magic Constants [3]

When the constants are ready to use, key K is needed to copied into L array which is

K [0. . . b-1] into L [0. . . c-1] to convert key bytes to words. As a following operation,

array S is initialized with the magic constants. Finally expanded key is mixed. A

is low-order plain text and B is high-order plain text. As seen, modulus, addition,

rotation operations are used which can be easily done with typical microprocessor.

Fig.2.4 demonstrates three operations explained above.

Figure 2.4: Pseudo Code of Key Expansion [3]

9

Encryption

Input is given as two halves of 2w-bit register which equals A and B for this case. After

S[0] and S[1] assigned to A and B, new operations are done according to number of

rounds r and algorithm is repeated. Inside of the for structure, there are just exclusive

or (XOR), rotational shift, and addition operations exist. Algorithm can be seen in

Fig 2.5. Summary of encryption is seen in Fig.2.6 which represents one round. A is

treated with B with the operation XOR, then shifted left. Then key is used for A, and

the cipher text is ready for A. For B, same path is followed. At the end of the last loop

cipher texts is obtained as a result of A and B.

Figure 2.5: Pseudo Code of Encryption [3]

Figure 2.6: Block Diagram of Encryption for One Round [4]

10

Decryption

For the decryption algorithm, encryption steps are implemented back to front.

Rotational operation is made backwards which means right. This time plain texts are

achieved as results A and B.

Figure 2.7: Pseudo Code of Decryption [3]

2.4 Zigbee Communication Protocol

For this project application, ZigBee is choosen to create IoT Transmission Layer.

ZigBee is a set of high-level communication protocols based on the IEEE 802.15.4

standard. ZigBee is utilized for automation and remote control applications with a low

data rate, low power consumption, and low cost [25]. It is used for applications such as

home automation, medical device data collection, and other low-power, low-bandwidth

needs. It is intended for small-scale projects that require a wireless connection [26].

Parameters ZigBee Value
Tranmission Range(meters) 1-100

Battery Life (days) 100-1000
Network Size(of nodes) >64000

Throughput (kb/s) 20-250

Table 2.1: Basic ZigBee Specification [1]

2.5 Programs Used to Implement Project

In this section, programs and tools that are utilized for implementing the project is

investigated. All is used for modelling the system and simulating the system to check

its results.

11

2.5.1 MATLAB and Simulink

MATLAB is a platform that provides analyzing and designing systems. Key of the

program is MATLAB language which is matrix based. With MATLAB, apps can be

built, data can be analyzed and visualized, algorithms can be developed for embedded

applications and more [27]. Simulink is MATLAB and model-based design tool that

provides simulating system before hardware [28]. It ensures multidomain modeling

and simulation and reusability of this models. Also, models which are not made

in Simulink can be added for combining. Other ability of the Simulink is testing

and automatically generating C and Hardware Description Language (HDL) code that

operates the same as the model. After, it can be implemented directly to FPGA [29].

For this project, Simulink tool which is an Embedded Coder is used. Embedded Coder

generates C and C++ code from model with a code efficiency for asked processor [30].

Figure 2.8: Example Simulink System

Fig.2.8 shows an example model which is built in Simulink. It can be seen that

some constant blocks, created subsystem and display block exist. Code can be easily

generated from subsystem with this setup.

2.5.2 Xilinx Vivado Design Suite

Vivado Design Suite is a tool that enhances performance by designing, integrating and

implementing systems. With Vivado, implementations can be made faster and more

optimized by using some tools such as route and place, and all stages can be seen

[31]. Moreover, in Vivado, Register Transfer Level (RTL) schematics and behavioral

simulations can be obtained. In this project, MicroBlaze and Universal Asynchronous

12

Receiver Transmitter (UART) used together in Vivado design. MicroBlaze is Reduced

Instruction Set Computer (RISC) based soft processor for embedded applications

which ensures peripheral and memory combined with minimum cost [32]. UART

stands for carrying out data conversions that is received from peripheral device [33].

Fig.2.9 shows the system of MicroBlaze and UART system. After block design is set

with export hardware selection Xilinx Shell Archive (XSA) file is generated for the

embedded software part. XSA file has hardware specifications of processor.

Figure 2.9: MicroBlaze System with UART

2.5.3 Xilinx Vitis Platform

Vitis is one of the latest tools of Xilinx that combines all software into itself. Embedded

software applications are developed and used in embedded processors with usage of

Vitis. It includes C/C++ editor, project management, focused special tools to configure

FGPA and so on. XSA file is imported into Vitis for a platform project. In this project,

application is used as software project and it may contain more than source file. It

produces a binary output which is Executable and Linkable Format (ELF) file [5].

Fig.2.10 shows the project types in Vitis. As a result, processor system is set with

MicroBlaze and UART connected to it. Afterwards, XSA is generated and used to

create platform project.

13

Figure 2.10: Project Types in Vitis [5]

14

3. MODEL BASED IMPLEMENTATION

3.1 Designing Simulink Model with ZigBee Protocol

IoT module is built for intensive care patients. Simulink model consists of 4 main

parts: rooms for patients, RC5 algorithm, transmitter, and receiver with output. First,

room area and Simulink blocks will be explained.

3.1.1 Room Area

Model is designed to check four patient’s temperature and heart rate data one after

another. Number of patients may be increased easily after that point. Fig.3.1 shows

the exterior look of the patient’s data subsystems. While one data is transferred, other

patients’ data is set as 0. After one is completely transferred, next one shows the instant

data of the patient.

Figure 3.1: Room Area

When inside of the patient subsystem studied as in Fig.3.2, it can be seen that two more

subsystems appear which are temperature and heart rate. In that subsystems, data is

15

generated in particular sample times. MATLAB function to control values involves

levels and data according to its level that appear at the output. As seen, values display

logically for human body temperature and heart rate. There are also two clocks which

are used as enables for every patient. This clock operation provides generate patient’s

data in particular times which while is generated others are set to 0.

Figure 3.2: Inside of the Patient Subsystem

As seen in Fig.3.3, random number for temperature of human body is generated by PS

Random Number and taken by sensor. To have controlled data, controlled temperature

source block is required. S port stands for delivering the data into B port and connected

to sensor’s A port. Temperature sensor consists of three ports which are A, B and T.

A port exists for positive heat in contrast of B. T is obtained by the equation T = TA

- TB which is same with T == A.T – B.T equation [34]. To take the value only in

A port, B port is connected to thermal reference which means TB = 0. Any sensor

in Simscape library needs Solver Configuration block to obtain simulation. Sensors

have T output value as Kelvin, then the system needs PS-Simulink Converter block.

PS-converter with apply affine conversion box checked in Simulink operates Kelvin to

Celsius conversion [35]. For the heart rate system, same path is followed.

16

Figure 3.3: Inside of the Temperature Subsystem

To obtain source values which is generated by Gaussian function in PS Random

Number, parameters are set as figure. With mean = 37 and variance = 5, probability

density function is obtained which has values waving between 30 and 44. Sample time

is set as 0.8 seconds, because every bit is transferred with sample time 0.025 and 32

bits in total, which will be explained later. The settings can be seen in Fig 3.4.

Figure 3.4: PS Random Number Block Settings

To produce acceptable values for the model-based design, average values and ranges

for body temperature and heart rate are investigated. Since, body temperature changes

depends on gender, activity in a day, age etc., average values are accepted. 37°C

(98.6°F) is the mean of the temperature for humankind. Normal body temperature,

fever, low and high body temperature are main groups for ranges [36]. Again, for

the heart rate ranges, even though values are changing depends on so many variables

such as age, activity, body size etc., 60-100 beats per minute (bpm) is accepted as

17

normal [37]. For creating specific data according to taken by sensor, function block is

manipulated by if-else structure. Therefore, rate of taken vital data can give specific

data for producing output of function block. For instance, if patient has 33.9 °C

temperature and 60.5 bpm heart rate, the values fit with medical emergency level;

therefore, the last else if block is active. y = 248 is delivered as data to encrypt, as seen

in Fig.3.5. Also, there are other levels which are combinations temperature and heart

rate value. If problem is just about heart rate, 3rd level is active and data is generated.

Figure 3.5: MATLAB Function to Generate Patient’s Data

Generated data which equals y in this function is not selected randomly. Since, UART

can show 0 to 255 which is 8-bit, maximum value is set according this information.

After that, first 3-bit is arranged for rooms that provides to enhance the model to 8

patients. Next 3-bit is set for levels since there are 7 levels as seen in function for

controlling values. The last 2-bit is left for alarm depends on the level. For instance,

248 is set in Fig3.6. Room number, level and alarm equal to 1,7, and 3 respectively. At

the output part of the model, function for this operation will be investigated in details.

18

Figure 3.6: Logic Behind of the Produced Data Value

3.1.2 RC5 Algorithm Area

Second part of the model is the RC5 algorithm. For this part, MathWorks website

is checked for possibility of the prepared code for this purpose and RC5 Encryption

Algorithm [38] is found. All functions are organized and manipulated for the

model. This area consists of 4 main subparts which are data-room selection function,

encryption, decryption and subsystem for parameters and key expansion as seen in Fig

3.7. Primarily, data-room selection function will be explained. This function operates

like multiplexer. Since, the model has 4 rooms and patient’s data must be transferred

in order, this structure is needed. 2 clock signals assist for enabling data for particular

room. One clock is set to 1.6 seconds; however, other is 3.2. Since 32-bit is adapted by

the receiver in 0.8 seconds. The function has 6 inputs which are u1 to u4 data inputs

and 2 enables. Output y shows 248 as data to be input for encryption. Inside of this

block can be seen in Fig.3.8.

19

Figure 3.7: RC5 Algorithm Area

Figure 3.8: Data-Room Selection Function Block

Parameters can be seen clearly at Fig 3.9. RC5 operates two-word length; so, w is

selected as 16 to obtain 32-bit cipher. Other important parameters are b and r. Number

of rounds which is r is set 6 to make the algorithm fast. Also, b equals the byte number

of secret key K and it is selected as 8, and K array initialized with this value. P and

Q are magic constants, t is size of table, c is number of words in key are all constants

according to b, r and w. All about parameters block can be seen in Fig 3.10. There

is one difference in parameters which is studied in mathematical background of RC5

20

algorithm. As an addition, ModParam parameter exist. It has a value of 65536 to use

in other functions to be able to make mod operation according to 32-bit.

Figure 3.9: Parameters and Init Function Subsystem

Figure 3.10: Parameters Function

After that point, RC5 algorithm starts. First step is expanding secret key K which is

S Initialize block for this project as seen in Fig.3.11. S output of the function will be

used for both encryption and decryption. Also, key expansion has three main parts:

copying K to temporary array L, initializing S with magic constants and mixing the

key, as explained before. A and B is set as empty for start and assigned S[i] at the sub

key mixing part. Rotational left shift algorithm can be seen in mixing part. This part

is just put in order for prevent any run issue in Simulink. Most of the logic remains as

same as original one.

21

Figure 3.11: S Initialize Function Block

After initializing, encryption code is put in order. At this step, some additions are

made to prepared code. First of all, RC5 algorithm has 2 plain texts to be encrypted,

which are A and B. However, for this project, both of the texts are concatenated which

can be seen in line 23 in Fig3.12. Therefore, newer plain text is 32-bit. Algorithm is

implemented in for structure, which has rotational left and mod operation. Enables are

set for room and value1 and value2 is put the code for checking encrypted plain texts.

As seen in test results, first plain text is selected as 248 and the second one is 0. Then,

19619 is calculated for 248 and, 38893 is for 0. As a result, 19619 is low-order 16 bit

and 38893 is high-order 16 bit which gives 2548911267 in decimal. Test results can

be shown in Fig.3.13. While one room is selected, other rooms are 0, just to prevent

mess. The same path is followed for the rest of the data.

22

Figure 3.12: Encryption Function Block

Figure 3.13: Data Encryption Results for 248

After 32-bit cipher text is obtained, this result is transferred bit by bit which will

be explained in transmitter part. Assuming the data is successfully reached at the

input of the decryption block, low-order 16-bit and high-order 16-bit is seperated

primarily. Later, the opposite algorithm according to encryption is made, which equals

the structure in Fig 3.14. This time, rotational right is used and loop is set as r = 6 to

1. If statement has C and D. Again, they stand for checking whether the result is what

is expected or not. Moreover, bitor operation is made for the final result which will be

248 for the input 2548911267.

23

Figure 3.14: Decryption Function Block

3.1.3 Transmitter Area

After encryption, data is needed to be transmitted to receiver. For this purpose, Zigbee

module is found as said before. Transmitter area can be seen in Fig.3.15. It has

three parts: bit serializer, transmitter and transmitter selection. Every room has its

transmitter and main idea is transmitting room’s data one after another and bit by bit.

After encrypted data produced in MATLAB function, decimal number went out of the

block. Nevertheless, data is needed to transfer bit by bit. In this purpose, serializer

1D block which provides by Simulink is used and data is transferred to transmitter.

As seen in Fig.3.16, decimal number is converted to 32-bit number; therefore, parallel

data is obtained. Integer to bit converter has output of true, false, false, true, true etc.

for 32-bit and serializer delivers them bit by bit.

24

Figure 3.15: Transmitter Area

Figure 3.16: Bit Serializer Subsystem

Next part is transmitter part which is used as prepared. Fig.3.17 shows the interior look

of the transmitter subsystem. There are two different outputs and data is modulated at

this part with Offset Quadrature Phase-Shift Keying (OQPSK) block. This transmitter

is driven with a 0.025 seconds sample time.

25

Figure 3.17: Transmitter Block

Before going receiver and output side, all transmitters must be controlled because

model has only receiver. Therefore, two clocks are added to provide enabling at

particular times. For both of them set as true, first room’s data is transmitted. Again,

this function behaves like multiplexer. The reason that multiplexer block is not used is

giving errors when the model is tried to run. Since there are two different outputs that

come out from transmitter, y1 and y2 defined to be transferred out of the transmitter

selection function as can be seen in details in Fig.3.18.

Figure 3.18: Transmitter Selection Function Block

26

3.1.4 Reciever and Output Area

First part of this section is receiver area. It has Additive White Gaussian Noise

(AWGN), receiver and error calculation part as in Fig.3.19. Output y1 of the transmitter

selection function goes to AWGN before reaching receiver; since, this defines noise in

nature. After data is demodulated in receiver system, it remains as 1-bit form. For

solving output data problem, it was understood that data should be turned into bytes.

Therefore, demodulated data is sent to designed shift register that will be explained

later.

Figure 3.19: Receiver Area

Fig.3.20 shows the inside of the receiver. These blocks provide demodulation of the

data produces as Boolean value every 0.025 seconds. Error calculation part does

not work correctly since data is driven different than this area. When 0.025 seconds

value per bit is tried to change, some errors occurs and result came wrong. So, error

calculation part is passed for now.

27

Figure 3.20: Receiver Area

Second part is output area. There are 3 main parts there: shift register, function to

investigate text, and displays for room, level and alarm as in Fig.3.21.

Figure 3.21: Output Area

First of all, shift register will be handled. To obtain whole number data again, the

system requires shift register later receiver. Shift register which is available in Simulink

library gave errors for this module. Then, subsystem was created for this reason and

shift register is designed in Simulink. 32 D flip flops are connected for parallelization

of the data. The reason why we need this subsystem is holding all the bits until all of

them are received. Every Q value in FF concatenated with a block that is called “bit

concat” to obtain final result. After this process, output data is obtained immediately

28

before new data is produced at patient1 subsystem. Fig.3.22 and Fig3.23 shows the

design of the shift register and the results at 0.2 seconds. Flip flops hold the values

from least significant bit to most significant bit and Q to Q31 is connected according

to place. Clock is set to 0.025 and constant value stands for clear (!CLR) connection.

Figure 3.22: Shift Register Subsystem

Figure 3.23: D Flip Flops Subsystems

When encrypted text is obtained in 0.8 seconds, output of the shift register is sent to

decryption block to provide to system the real data. Then, the result of decryption is

connected to function to investigate data. This function is the implementation the idea

of Fig.3.6. To learn where data comes from, data u is put the operation bitand with

7 which equals 8-bit 00000111. For the next 3-bit level is defined as 56 that is 8-bit

00111000. For the alarm same logic is followed. Last of all, change detector is used

for this part. The reason behind it is seeing the results at display when clock rises at 0.8

seconds. When the first bit of the second room is transferred to shift register, display is

29

reset. Implementation of the logic into code can be seen in Fig.3.24. It separates data

into 3 parts as room, level and alarm.

Figure 3.24: Function to Screen Data

30

4. HARDWARE IMPLEMENTATION

4.1 Implementing Model to FPGA

4.1.1 Simplfying Model

The aim is generating C code from the Simulink model, then transferring the model to

FPGA. Fig.4.1 shows the model after removing transmitter,receiver and output area.

Moreover, room number is reduced to 2 to obtain fast and simple system. Final model

has just 2 data inputs, 3 enable inputs and a result output. Data types should be arranged

as like as model, otherwise some errors occur depending on this types.

Figure 4.1: Simplified Model

When Model subsystem is investigated as in Fig.4.2, it is clearly seen that there are

just 4 functions. Data1 and Data2 inputs of data-room selection function is set as

taking data from rooms. They are defined as just inputs. Real values will be given

later part of this section. Fig.4.3 shows the function of selection. Again, it has duty

of multiplexer with the simplest functional way. SInit, encryption and decryption

functions are simplified to 2 rooms and there is no more change inside of the functions.

31

Figure 4.2: Model Subsystem

Figure 4.3: Simplified Data-Room Selection Function

After all process, the model is ready to be generated C code. As in Fig.4.4, subsystem

is selected and right clicked on it. C/C++ code and Embedded Coder Quick Start

is selected, respectively. From the opening screen, settings are done for the custom

processor. Then the model is ready to transfer.

32

Figure 4.4: Generating Code from Subsystem

4.1.2 Generating MicroBlaze and UART Environment

C code is generated. This section includes checking the generated C code in FPGA.

First of all, project is created in Vivado and board is selected as seen in Fig.4.5. The

board is selected to encounter enough input and output pins and Lookup Table (LUT)

elements; moreover, this is the board that we are familiar with which worked before

for another projects.

Figure 4.5: Board Selection Screen in Vivado Platform

33

After that, Create Block Design is selected from the IP Integrator part in flow navigator

to add MicroBlaze and UART. First MicroBlaze is added as in Fig.4.6; however, some

settings are needed to be changed.

Figure 4.6: MicroBlaze in Vivado

After clicking on Run Block Automation, pop up window comes as in Fig.4.7. Local

memory is set to 64KB to avoid insufficient system for the model. Also, debug module

is set to none. Then, Vivado generates blocks automatically and make connections. In

this case, Clocking Wizard, Peripheral Advanced eXtensible Interface (AXI) Port and

local memory is generated.

Figure 4.7: Settings for MicroBlaze

Just before adding UART to the system, clock is set to single ended capable because the

model is connected to one clock. Then, UART is added and clicked on Run Connection

34

Automation. Vivado makes all proper connections between inputs and outputs as seen

in Fig.4.8. From the sources part, block design is found and right clicked on it to create

HDL wrapper. This operation exists because block design cannot be synthesized. The

wrapper is synthesized. The C code has already generated and needed to be checked.

For this purpose, as a last process of Vivado is exporting hardware to integrate software

and hardware for this stage.

Figure 4.8: Completed Block Design in Vivado

4.1.3 Creating ELF File

In Vivado, from the tools tab Launch Vitis Integrated Development Environment (IDE)

is selected and a workspace is created. When export hardware process is done, there

exist a file with .xsa extension. Later, .xsa file is selected that is like in Fig.4.9 for the

hardware and empty application project is obtained.

35

Figure 4.9: Adding Exported Hardware to Vitis Platform

So, Fig.4.10 shows the hierarchy of the Vitis application project. There are 2 main

operations as a start. First, generated code folder should be added to Includes for the

system. For this, right clicked on model-system. C/C++ general/Paths and Symbols

path is selected as in Fig.4.11 and folder is added to workspace. Second, another C file

is necessary to src tab because elf file will be generated. The c file called checkModel

is created.

Figure 4.10: View of the Vitis Application Project

36

Figure 4.11: Adding Generated Folder to Vitis Platform

Generated code is analyzed and seen that there are external inputs and outputs which

are rtU and rtY, respectively. Inputs and outputs are as same as Simulink model names.

Moreover, generated functions that are Model_initialize and Model-step is seen in

Fig.4.12. Model_step is necessary to be called in the test function because it is mainly

the C code of all operations in Simulink model. In other words, encryption, decryption

and data-room selections are buried in Model_step.

37

Figure 4.12: Generated Header File Model.h

The rest of the work is writing the proper code for observing the result in UART and

checking the system according to particular values assigned. Fig.4.13 shows the code.

All libraries that we need are added. For the UART, <xuartlite_l.h> is added as seen in

line 5. External input rtU and external output rtY are also called just before the main

function. Data1 is set to 80 and Data2 is set to 248, which assumed as room1 and

room2 data. Then, encryption and decryption blocks are enabled. To select Data1 to

transfer, enableData input is set to 0. To provide observing the results of Data1, line of

code is written as below:

• XUartLite_WriteReg(XPAR_AXI_UARTLITE_0_BASEADDR, 4, rtU.Data1);

Therefore, it is expected to see Data1 first. However, observation is not about the

checking the system as a start. The aim of this operation is to see whether any data can

be seen or not. Afterwards, it is desired to observe another value, so 24th is written and

5 is expected to be monitored. Actually, validating part starts with while loop. Inside of

the while, the function Model_step is called which has all operations that is generated

from Simulink model. To see result, this time rtY.Result is selected while data which

is particular first room is selected. Next step is to change the data when first one is

seen as a result. To provide it, if statement is built. Since, enableData is Boolean type,

when !rtu.enableData command is implemented to the system, data which is particular

38

to 2nd room is started to send. Last operation for Vitis is creating elf file from this test

code. For this, the project is built and elf file created into the workspace.

Figure 4.13: C Code of checkModel

4.1.4 Observating Results

When the operations in Vitis platform are done, it is time to write a testbench for the

system and associate elf file to the system. Fig.4.14 shows the test bench code. It is

written for the UART to control signals which is received and transferred. Reset and

clock operations are set.

39

Figure 4.14: Testbench Code

Last of all, associating elf file for both design and simulation is needed. For this

operation, in tools tab Associate ELF files is selected and generated elf file from

checkModel.c is added. To see results, Run Simulation is selected as behavioral

one. After it is simulated sufficiently, some observations are made in Fig.4.15. To

see transferred data, data_to_transfer[0:7] is investigated in simulation. 8-bit can be

observed as data. As seen, values are 80, 5, U, 248, U, 80, U, 248, respectively. So,

before the while loop in C code Data1 and 5 are assigned to be observed, first. First

two results are matched with the code. After that, Model_step function that includes

both encryption and decryption operations are called and it is started. Results remains

40

‘U’ which means ‘don’t cares’ until all operations are made and the output has new

value. While, it is seen in simulation for a particular time, enableData is set to its not.

Model_step is repeated with a starting value of 80 and after a while 80 is seen as a

result. So, while one is transferred, it is time to send the following.

Figure 4.15: Behavioral Simulation Results

As a result, to see whether designed model can be implemented on FPGA or not, model

is simplified to 2 rooms. As seen in results, it works correctly and after that point the

room number can be increased to 8 rooms for now.

41

42

5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Practical Application of this Study

The aim of this project is mainly focused on secure and efficient usage for healthcare

application of a IoT system. It can be used especially for the obtaining and using of

vital health data from the human body and depending on these data, it will be possible

to quickly reach the patient and make necessary interventions in emergency situations.

Practically, this project can improve healthcare applications in daily or emergency

basis. On the other hand, project is based on model based design. Therefore, it

decreases time and money spent on the IoT Network designing and implementing to

present it to market.

5.2 Realistic Constraints

Even though, model based design is reducing the time spent for designing, the problem

occurs mostly to do changes modeled platform into software platform. While model

becomes more complex, created code for designs is becoming more incomprehensible

and complicated. According to application, it would increase time for implementation

for some cases.

5.2.1 Social, Environmental and Economic Impact

Nowadays, Internet of Things has expanded to a global infrastructure with the number

of connected devices being in multiples of the number of people worldwide. Large

communication data and inter-connected gadgets also introduce many new ways in

which breaches of privacy and information can occur. In order to overcome the

problem of the information applied in IoT can be easily read and used for malicious

purposes, application of cryptosystems on processors used for IoT is a necessary

process. On the other hand, usage of Model Based Design will reduce the time and

money spent on the IoT Network designing to present it to market. This cooperation of

43

this two main application would create an impact for secure and low cost IoT system

for general usage.

5.2.2 Cost Analysis

The main cost factor of this project is A FPGA evaluation board that faculty

management meets. In this project, personal computers are used. In addition, it was

utilized Xilinc Vivado development environment, Xilinx Vitis Software development

environment, Matlab programming and computing platform and Matlab’s Simulink

tool are utilized for modeling, implementing and debugging. Since, these platforms

can be used free for academic purpose in our faculty, there are no other cost factor.

5.2.3 Standards

We aim to implement a system that is secure IoT healthcare applications. Thus, our

project responsible to implement safe systems. According to expected outcomes of

this project, it may include any written standard for this type research. Also, IEEE

and NIST standards were followed for the completed works. This project asserts

to be honest and realistic in stating claims or estimates based on the available data.

(IEEE-Code of Ethics) This project claims to improve the understanding of technology,

its appropriate application and potential consequences. (IEEE-Code of Ethics) This

project claims to accept responsibility in making engineering decisions consistent with

the safety, health and welfare of the public, and to disclose promptly factors that might

endanger the public/environment. (IEEE-Code of Ethics)

5.2.4 Health and Safety Concerns

The aim of this project was not to create or implement any risky or harmful products

that could damage users. It is used in IoT based products that are used in smart

healthcare systems which have many nodes required secure connection..

5.3 Future Work and Recommendations

For future works, implemented crypto algorithms can be chosen differently depending

on project application. Traditional cryptosystems are a compelling process to

implement on IoT processors since power required for implementation is substantially

44

higher than the intended levels. Overcoming this problem can be done via modifying

processors that have acceptable power consumption levels with cryptographic

operations. This aim would create an impact in economy for the information in IoT

is secure within the region of intended power consumption levels in devices that are

used.

45

46

REFERENCES

[1] B. Mihajlov and M. Bogdanoski, “Overview and analysis of the performances
of zigbee- based wireless sensor networks,” International Journal of
Computer Applications, vol. 29, p. 30, 2011.

[2] L. Xuyang, K. Lam, K. Zhu, C. Zheng, X. Li, Y. Du, L. Chunhua, and P. Pong,
“Overview of spintronic sensors, internet of things, and smart living,” 08
2016.

[3] R. Rivest, “The rc5 encryption algorithm,” in FSE, 1994.

[4] H. Gill, “Selection of parameter ‘r’ in rc5 algorithm on the basis of prime number,”
03 2014, p. 3.

[5] Getting started with the vitis software platform. [Online].
Available: https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/
vitis_embedded_getstarted.html

[6] R. Fatima, R. Manal, and M. Tomader, “Cryptography in e-health using
5g based iot: A comparison study.” New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3372938.3372955

[7] model-driven development (mdd). [Online]. Available:
https://searchsoftwarequality.techtarget.com/definition/
model-driven-development

[8] Field programmable gate array (fpga). [Online]. Available: https://www.xilinx.
com/products/silicon-devices/fpga/what-is-an-fpga.html

[9] P. Hoai Luan, T. H. Tran, T. Phan, D. Le Vu Trung, D. Lam, and Y. Nakashima,
“Double sha-256 hardware architecture with compact message expander
for bitcoin mining,” IEEE Access, vol. 8, pp. 1–1, 01 2020.

[10] H. B. S. Jankowski, J. Covello and J. Ritchie. (2014, 09) The internet of things:
Making sense of the next mega-trend. [Online]. Available: https://www.
goldmansachs.com/insights/pages/internet-of-things/iot-report.pdf

[11] ITU-T. (2012, 06) Internet of things global standards initiative. [Online].
Available: https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx

[12] A. B. R. Minerva and D. Rotond. Towards a definition of the internet of things
(iot). [Online]. Available: https://iot.ieee.org/images/files/pdf/IEEE_IoT_
Towards_Definition_Internet_of_Things_Issue1_14MAY15.pdf

47

https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/vitis_embedded_getstarted.html
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/vitis_embedded_getstarted.html
https://doi.org/10.1145/3372938.3372955
https://searchsoftwarequality.techtarget.com/definition/model-driven-development
https://searchsoftwarequality.techtarget.com/definition/model-driven-development
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://www.goldmansachs.com/insights/pages/internet-of-things/iot-report.pdf
https://www.goldmansachs.com/insights/pages/internet-of-things/iot-report.pdf
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Int ernet_of_Things_Issue1_14MAY15 .pdf
https://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Int ernet_of_Things_Issue1_14MAY15 .pdf

[13] C. Yang, W. Shen, and X. Wang, “Applications of internet of things in
manufacturing,” 2016 IEEE 20th International Conference on Computer
Supported Cooperative Work in Design (CSCWD), pp. 670–675, 2016.

[14] A. Ryzhokhin. How the iot is improving transportation
and logistics). [Online]. Available: https://ardas-it.com/
how-the-iot-is-improving-transportation-and-logistics

[15] F. Zantalis, G. Koulouras, S. Karabetsos, and D. Kandris, “A review of machine
learning and iot in smart transportation,” Future Internet, vol. 11, no. 4,
2019. [Online]. Available: https://www.mdpi.com/1999-5903/11/4/94

[16] ——, “future internet a review of machine learning and iot in smart transportation,”
Future Internet, vol. 11, 04 2019.

[17] L. Pawar, R. Bajaj, J. Singh, and V. Yadav, “Smart city iot: Smart architectural
solution for networking, congestion and heterogeneity,” 05 2019, pp.
124–129.

[18] E. Tragos, V. Angelakis, A. Fragkiadakis, D. Gundlegård, C.-S. Nechifor,
G. Oikonomou, H. Pöhls, and A. Gavras, “Enabling reliable and secure
iot-based smart city applications,” 03 2014, pp. 111–116.

[19] Real world iot applications in different domains. [Online]. Available: https:
//www.edureka.co/blog/iot-applications/#healthcare

[20] (2020, 04) Iot in healthcare – connected devices,
telemedicine and remote monitoring. [Online].
Available: https://www.embitel.com/blog/embedded-blog/
iot-in-healthcare-connected-devices-telemedicine-and-remote-monitoring

[21] 5 applications of iot in agriculture - making agriculture
smarter. [Online]. Available: https://www.biz4intellia.com/blog/
5-applications-of-iot-in-agriculture/

[22] P. Sethi and S. Sarangi, “Internet of things: Architectures, protocols, and
applications,” Journal of Electrical and Computer Engineering, vol. 2017,
pp. 1–25, 01 2017.

[23] M. M. Hossain, M. Fotouhi, and R. Hasan, “Towards an analysis of security issues,
challenges, and open problems in the internet of things,” in 2015 IEEE
World Congress on Services, 2015, pp. 21–28.

[24] T. Nie, Y. Li, and C. Song, “Performance evaluation for cast and rc5 encryption
algorithms,” in 2010 International Conference on Computing, Control and
Industrial Engineering, vol. 1, 2010, pp. 106–109.

[25] M. Kollam and B. S R, “Zigbee wireless sensor network for better interactive
industrial automation,” 12 2011, pp. 304–308.

[26] Zigbee. [Online]. Available: https://tr.wikipedia.org/wiki/ZigBee

[27] Math. graphics. programming. [Online]. Available: https://www.mathworks.com/
products/matlab.html/

48

https://ardas-it.com/how-the-iot-is-improving-transportation-and-logistics
https://ardas-it.com/how-the-iot-is-improving-transportation-and-logistics
https://www.mdpi.com/1999-5903/11/4/94
https://www.edureka.co/blog/iot-applications/#healthcare
https://www.edureka.co/blog/iot-applications/#healthcare
https://www.embitel.com/blog/embedded-blog/iot-in-healthcare-connected-devices-telemedicine-and-remote-monitoring
https://www.embitel.com/blog/embedded-blog/iot-in-healthcare-connected-devices-telemedicine-and-remote-monitoring
https://www.biz4intellia.com/blog/5-applications-of-iot-in-agriculture/
https://www.biz4intellia.com/blog/5-applications-of-iot-in-agriculture/
https://tr.wikipedia.org/wiki/ZigBee
https://www.mathworks.com/products/matlab.html/
https://www.mathworks.com/products/matlab.html/

[28] Simulation and model-based design. [Online]. Available: https://www.mathworks.
com/products/simulink.html/

[29] Simulink for system modeling and simulation. [Online]. Available: https:
//www.mathworks.com/solutions/system-design-simulation.html/

[30] Embedded coder. [Online]. Available: https://www.mathworks.com/products/
embedded-coder.html/

[31] Vivado design suite user guide. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2018_2/ug910-vivado-getting-started.pdf

[32] Microblaze. [Online]. Available: https://www.xilinx.com/products/
intellectual-property/microblazecore.html#overview

[33] Universal asynchronous receiver/transmitter (uart) for keystone devices ug.
[Online]. Available: https://www.ti.com/lit/ug/sprugp1/sprugp1.pdf

[34] Temperature sensor. [Online]. Available: https://www.mathworks.com/help/
physmod/simscape/ref/temperaturesensor.html/

[35] Ps-simulink converter. [Online]. Available: https://www.mathworks.com/help/
physmod/simscape/ref/pssimulinkconverter.html/

[36] Body temperature. [Online]. Available: https://www.healthlinkbc.ca/medical-tests/
hw198785/

[37] What should my heart rate be? [Online]. Available: https:
//www.medicalnewstoday.com/articles/235710/

[38] Rc5 encryption algorithm. [Online]. Available: https://www.mathworks.com/
matlabcentral/fileexchange/73672-rc5-encryption-algorithm/

49

https://www.mathworks.com/products/simulink.html/
https://www.mathworks.com/products/simulink.html/
https://www.mathworks.com/solutions/system-design-simulation.html/
https://www.mathworks.com/solutions/system-design-simulation.html/
https://www.mathworks.com/products/embedded-coder.html/
https://www.mathworks.com/products/embedded-coder.html/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug910-vivado-getting-started.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug910-vivado-getting-started.pdf
https://www.xilinx.com/products/intellectual-property/microblazecore.html#overview
https://www.xilinx.com/products/intellectual-property/microblazecore.html#overview
https://www.ti.com/lit/ug/sprugp1/sprugp1.pdf
https://www.mathworks.com/help/physmod/simscape/ref/temperaturesensor.html/
https://www.mathworks.com/help/physmod/simscape/ref/temperaturesensor.html/
https://www.mathworks.com/help/physmod/simscape/ref/pssimulinkconverter.html/
https://www.mathworks.com/help/physmod/simscape/ref/pssimulinkconverter.html/
https://www.healthlinkbc.ca/medical-tests/hw198785/
https://www.healthlinkbc.ca/medical-tests/hw198785/
https://www.medicalnewstoday.com/articles/235710/
https://www.medicalnewstoday.com/articles/235710/
https://www.mathworks.com/matlabcentral/fileexchange/73672-rc5-encryption-algorithm/
https://www.mathworks.com/matlabcentral/fileexchange/73672-rc5-encryption-algorithm/

50

APPENDICES

APPENDIX A: Generated Code
APPENDIX B: Representation of Simulink Model
APPENDIX C: RTL Schematics

51

52

APPENDIX A
1 / *
2 * Academic L i c e n s e − f o r use i n t e a c h i n g , academic r e s e a r c h , and mee t ing
3 * c o u r s e r e q u i r e m e n t s a t d e g r e e g r a n t i n g i n s t i t u t i o n s on ly . Not f o r
4 * government , commercia l , o r o t h e r o r g a n i z a t i o n a l use .
5 *
6 * F i l e : Model . c
7 *
8 * Code g e n e r a t e d f o r S i mu l i n k model ’ Model ’ .
9 *

10 * Model v e r s i o n : 1 .143
11 * S i mu l i nk Coder v e r s i o n : 9 . 4 (R2020b) 29− J u l −2020
12 * C / C++ s o u r c e code g e n e r a t e d on : Mon Jun 14 0 2 : 4 6 : 5 6 2021
13 *
14 * T a r g e t s e l e c t i o n : e r t . t l c
15 * Embedded hardware s e l e c t i o n : Custom P r o c e s s o r −>Custom P r o c e s s o r
16 * Code g e n e r a t i o n o b j e c t i v e s :
17 * 1 . E x e c u t i o n e f f i c i e n c y
18 * 2 . RAM e f f i c i e n c y
19 * V a l i d a t i o n r e s u l t : Not run
20 * /
21

22 # i n c l u d e " Model . h "
23

24 / * E x t e r n a l i n p u t s (r o o t i n p o r t s i g n a l s wi th d e f a u l t s t o r a g e) * /
25 ExtU r tU ;
26

27 / * E x t e r n a l o u t p u t s (r o o t o u t p o r t s f e d by s i g n a l s wi th d e f a u l t s t o r a g e) * /
28 ExtY r tY ;
29

30 / * Real − t ime model * /
31 s t a t i c RT_MODEL rtM_ ;
32 RT_MODEL * c o n s t rtM = &rtM_ ;
33

34 / * Model s t e p f u n c t i o n * /
35 vo id Mode l_s tep (vo id)
36 {
37 i n t 3 2 _ T i ;
38 i n t 3 2 _ T j ;
39 i n t 3 2 _ T k ;
40 u i n t 3 2_ T r t b _ S [1 4] ;
41 u i n t 3 2_ T L [4] ;
42 u i n t 3 2_ T A;
43 u i n t 3 2_ T B_0 ;
44 u i n t 3 2_ T X_0 ;
45 u i n t 3 2_ T q0 ;
46 u i n t 3 2_ T qY ;
47 u i n t 3 2_ T qY_0 ;
48

49 / * MATLAB F u n c t i o n : ’<S1 >/ SInı ; t ’ * /
50 f o r (i = 0 ; i < 1 4 ; i ++) {
51 r t b _ S [i] = 0U;
52 }

53

53

54 A = 0U;
55 B_0 = 0U;
56 L [0] = 0U;
57 L [1] = 0U;
58 L [2] = 0U;
59 L [3] = 0U;
60 f o r (i = 0 ; i < 8 ; i ++) {
61 j = (i n t 3 2 _ T) t r u n c ((− (r e a l _ T) i + 7 . 0) / 2 . 0) ;
62 q0 = L [j] << 8 ;
63 L [j] = q0 + / *MW: OvSatOk * / 1U;
64 i f (q0 + 1U < q0) {
65 L [(i n t 3 2 _ T) t r u n c ((− (r e a l _ T) i + 7 . 0) / 2 . 0)] = MAX_uint32_T ;
66 }
67 }
68

69 r t b _ S [0] = 47073U;
70 f o r (i = 0 ; i < 1 3 ; i ++) {
71 q0 = r t b _ S [i] ;
72 qY = q0 + / *MW: OvSatOk * / 40503U;
73 i f (q0 + 40503U < q0) {
74 qY = MAX_uint32_T ;
75 }
76

77 r t b _ S [i + 1] = qY − ((qY >> 16) << 16) ;
78 }
79

80 i = 0 ;
81 j = 0 ;
82 f o r (k = 0 ; k < 4 2 ; k ++) {
83 q0 = r t b _ S [i] ;
84 qY = q0 + / *MW: OvSatOk * / A;
85 i f (qY < q0) {
86 qY = MAX_uint32_T ;
87 }
88

89 qY_0 = qY + / *MW: OvSatOk * / B_0 ;
90 i f (qY_0 < qY) {
91 qY_0 = MAX_uint32_T ;
92 }
93

94 X_0 = qY_0 − ((qY_0 >> 16) << 16) ;
95 X_0 = X_0 << 3 | X_0 >> 1 3 ;
96 r t b _ S [i] = X_0 − ((X_0 >> 16) << 16) ;
97 A = r t b _ S [i] ;
98 q0 = L [j] ;
99 qY = q0 + / *MW: OvSatOk * / r t b _ S [i] ;

100 i f (qY < q0) {
101 qY = MAX_uint32_T ;
102 }
103

104 qY_0 = qY + / *MW: OvSatOk * / B_0 ;
105 i f (qY_0 < qY) {
106 qY_0 = MAX_uint32_T ;
107 }
108

109 X_0 = qY_0 − ((qY_0 >> 16) << 16) ;
110 q0 = r t b _ S [i] ;
111 qY = q0 + / *MW: OvSatOk * / B_0 ;

54

112 i f (qY < q0) {
113 qY = MAX_uint32_T ;
114 }
115

116 q0 = r t b _ S [i] ;
117 qY_0 = q0 + / *MW: OvSatOk * / B_0 ;
118 i f (qY_0 < q0) {
119 qY_0 = MAX_uint32_T ;
120 }
121

122 X_0 = X_0 >> (16U − (qY_0 & 15U)) | X_0 << (qY & 15U) ;
123 L [j] = X_0 − ((X_0 >> 16) << 16) ;
124 B_0 = L [j] ;
125 i = (i n t 3 2 _ T) fmod ((r e a l _ T) i + 1 . 0 , 1 4 . 0) ;
126 j = (i n t 3 2 _ T) fmod ((r e a l _ T) j + 1 . 0 , 4 . 0) ;
127 }
128

129 / * End of MATLAB F u n c t i o n : ’<S1 >/ SInı ; t ’ * /
130

131 / * MATLAB F u n c t i o n : ’<S1 >/ Data −Room S e l e c t i o n ’ i n c o r p o r a t e s :
132 * I n p o r t : ’< Root > / Data1 ’
133 * I n p o r t : ’< Root > / Data2 ’
134 * I n p o r t : ’< Root > / e n a b l e D a t a ’
135 * /
136 i f (r tU . e n a b l e D a t a) {
137 B_0 = r tU . Data1 ;
138 } e l s e {
139 B_0 = r tU . Data2 ;
140 }
141

142 / * End of MATLAB F u n c t i o n : ’<S1 >/ Data −Room S e l e c t i o n ’ * /
143

144 / * MATLAB F u n c t i o n : ’<S1 >/ E n c r y p t i o n ’ i n c o r p o r a t e s :
145 * I n p o r t : ’< Root > / e n a b l e E n c r y p t ’
146 * /
147 i = (i n t 3 2 _ T) (B_0 & 65535U) ;
148 A = i + / *MW: OvSatOk * / r t b _ S [0] ;
149 i f (A < (u in t 3 2 _ T) i) {
150 A = MAX_uint32_T ;
151 }
152

153 i = (i n t 3 2 _ T) (B_0 << 16 & 65535U) ;
154 B_0 = i + / *MW: OvSatOk * / r t b _ S [1] ;
155 i f (B_0 < (u in t 3 2 _ T) i) {
156 B_0 = MAX_uint32_T ;
157 }
158

159 f o r (i = 0 ; i < 6 ; i ++) {
160 X_0 = (A ^ B_0) >> (16U − (B_0 & 15U)) | (A ^ B_0) << (B_0 & 15U) ;
161 q0 = X_0 − ((X_0 >> 16) << 16) ;
162 j = (i n t 3 2 _ T) ((i + 1U) << 1) ;
163 qY = r t b _ S [j] + / *MW: OvSatOk * / q0 ;
164 i f (qY < q0) {
165 qY = MAX_uint32_T ;
166 }
167

168 A = qY − ((qY >> 16) << 16) ;
169 X_0 = (B_0 ^ A) >> (16U − (A & 15U)) | (B_0 ^ A) << (A & 15U) ;
170 q0 = X_0 − ((X_0 >> 16) << 16) ;

55

171 qY = r t b _ S [j + 1] + / *MW: OvSatOk * / q0 ;
172 i f (qY < q0) {
173 qY = MAX_uint32_T ;
174 }
175

176 B_0 = qY − ((qY >> 16) << 16) ;
177 }
178

179 i f (r tU . e n a b l e E n c r y p t) {
180 B_0 = B_0 << 16 | A;
181 } e l s e {
182 B_0 = 0U;
183 }
184

185 / * End of MATLAB F u n c t i o n : ’<S1 >/ E n c r y p t i o n ’ * /
186

187 / * MATLAB F u n c t i o n : ’<S1 >/ D e c r y p t i o n ’ i n c o r p o r a t e s :
188 * I n p o r t : ’< Root > / e n a b l e D e c y r p t ’
189 * /
190 A = B_0 & 65535U;
191 B_0 >>= 1 6 ;
192 f o r (i = 0 ; i < 6 ; i ++) {
193 qY = B_0 + / *MW: OvSatOk * / 65536U;
194 i f (B_0 + 65536U < B_0) {
195 qY = MAX_uint32_T ;
196 }
197

198 qY_0 = qY − / *MW: OvSatOk * / r t b _ S [((6 − i) << 1) + 1] ;
199 i f (qY_0 > qY) {
200 qY_0 = 0U;
201 }
202

203 qY = B_0 + / *MW: OvSatOk * / 65536U;
204 i f (B_0 + 65536U < B_0) {
205 qY = MAX_uint32_T ;
206 }
207

208 j = (6 − i) << 1 ;
209 q0 = qY − / *MW: OvSatOk * / r t b _ S [j + 1] ;
210 i f (q0 > qY) {
211 q0 = 0U;
212 }
213

214 X_0 = (q0 − ((q0 >> 16) << 16)) >> (A & 15U) | (qY_0 − ((qY_0 >> 16) << 16))
215 << (16U − (A & 15U)) ;
216 B_0 = (X_0 − ((X_0 >> 16) << 16)) ^ A;
217 qY = A + / *MW: OvSatOk * / 65536U;
218 i f (A + 65536U < A) {
219 qY = MAX_uint32_T ;
220 }
221

222 q0 = r t b _ S [j] ;
223 qY_0 = qY − / *MW: OvSatOk * / q0 ;
224 i f (qY_0 > qY) {
225 qY_0 = 0U;
226 }
227

228 qY = A + / *MW: OvSatOk * / 65536U;
229 i f (A + 65536U < A) {

56

230 qY = MAX_uint32_T ;
231 }
232

233 q0 = qY − / *MW: OvSatOk * / q0 ;
234 i f (q0 > qY) {
235 q0 = 0U;
236 }
237

238 X_0 = (q0 − ((q0 >> 16) << 16)) >> (B_0 & 15U) | (qY_0 − ((qY_0 >> 16) << 16))
239 << (16U − (B_0 & 15U)) ;
240 A = (X_0 − ((X_0 >> 16) << 16)) ^ B_0 ;
241 }
242

243 i f (r tU . e n a b l e D e c y r p t) {
244 qY = B_0 + / *MW: OvSatOk * / 65536U;
245 i f (B_0 + 65536U < B_0) {
246 qY = MAX_uint32_T ;
247 }
248

249 qY_0 = qY − / *MW: OvSatOk * / r t b _ S [1] ;
250 i f (qY_0 > qY) {
251 qY_0 = 0U;
252 }
253

254 qY = A + / *MW: OvSatOk * / 65536U;
255 i f (A + 65536U < A) {
256 qY = MAX_uint32_T ;
257 }
258

259 q0 = qY − / *MW: OvSatOk * / r t b _ S [0] ;
260 i f (q0 > qY) {
261 q0 = 0U;
262 }
263

264 / * O u t p o r t : ’< Root > / R e s u l t ’ * /
265 r tY . R e s u l t = (qY_0 − ((qY_0 >> 16) << 16)) << 16 | (q0 − ((q0 >> 16) << 16)) ;
266 } e l s e {
267 / * O u t p o r t : ’< Root > / R e s u l t ’ * /
268 r tY . R e s u l t = 0U;
269 }
270

271 / * End of MATLAB F u n c t i o n : ’<S1 >/ D e c r y p t i o n ’ * /
272 }
273

274 / * Model i n i t i a l i z e f u n c t i o n * /
275 vo id M o d e l _ i n i t i a l i z e (vo id)
276 {
277 / * (no i n i t i a l i z a t i o n code r e q u i r e d) * /
278 }
279

280 / *
281 * F i l e t r a i l e r f o r g e n e r a t e d code .
282 *
283 * [EOF]
284 * /

Listing A.1: Encryption.c

57

APPENDIX B

Figure A.1: Simulink Model

58

APPENDIX C

Figure B.1: RTL Schematic

59

60

CURRICULUM VITAE

Name Surname: Heval Ronahi Halitoglu

Place and Date of Birth: Van,1997

E-Mail: ronahihltgl@gmail.com

EDUCATION:

• B.Sc.: 2015-2021, Istanbul Technical University, Electric Electronic Faculty,
Electronic and Communication Department

• B.Sc.: 08.2019-02.2020 , "Angel Kanchev" University of Ruse , Electric Electronic
Faculty, Electric and Electronics Engineering Department(Exchange)

• High School: 2013-2014, Antalya Aldemir Attilla KOnuk Anatolian High School

PROFESSIONAL EXPERIENCE:

• 11.2020-Present, Part Time Employee, TÜBİTAK BİLGEM

• 06.2020-07.2020, Summer Intern, YongaTek, Verification Department

• 07.2019-08.2019, Summer Intern, TÜBİTAK, Integrated Circuit Design and
Training Laboratory(TÜTEL)

61

62

CURRICULUM VITAE

Name Surname: Oğuzhan TURAN

Place and Date of Birth: İstanbul, 1997

E-Mail: turano15@itu.edu.tr

EDUCATION:

• B.Sc.: 2015-2021, Istanbul Technical University, Electric Electronic Faculty,
Electronic and Communication Department

• B.Sc.: 2018-2019 Fall, Slovak University of Technology Erasmus Programme

• High School: 2011-2015, Adnan Menderes Anatolian High School

PROFESSIONAL EXPERIENCE:

• 06.2021-Present, Summer Intern,YONGATEK, Digital Design

• 10.2019-12.2019, Part Time Software Engineer Intern, INTERTECH

• 06.2019-07.2019, Summer Intern, INTERTECH

63

	FOREWORD
	TABLE OF CONTENTS
	ABBREVIATIONS
	LIST OF TABLES
	LIST OF FIGURES
	SUMMARY
	ÖZET
	1. INTRODUCTION
	2. INTERNET OF THINGS (IOT)
	Applications of IoT
	Manufacturing
	Transportation
	Smart Cities
	Healthcare
	Agriculture

	IoT Architecture
	Security Issue of IoT
	RC5 Cryptology Algorithm
	Mathematical Background for RC5 Algorithm

	RC5 Keys and Parameters
	Key Expansion
	Encryption
	Decryption
	Zigbee Communication Protocol
	Programs Used to Implement Project
	MATLAB and Simulink
	Xilinx Vivado Design Suite
	Xilinx Vitis Platform

	3. MODEL BASED IMPLEMENTATION
	Designing Simulink Model with ZigBee Protocol
	Room Area
	RC5 Algorithm Area
	Transmitter Area
	Reciever and Output Area

	4. HARDWARE IMPLEMENTATION
	Implementing Model to FPGA
	Simplfying Model
	Generating MicroBlaze and UART Environment
	Creating ELF File
	Observating Results

	5. CONCLUSIONS AND RECOMMENDATIONS
	Practical Application of this Study
	Realistic Constraints
	Social, Environmental and Economic Impact
	Cost Analysis
	Standards
	Health and Safety Concerns

	Future Work and Recommendations

	REFERENCES
	APPENDICES
	APPENDIX A
	APPENDIX B
	APPENDIX C

	CURRICULUM VITAE

