

ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICS FACULTY

MODEL BASED DESIGN AND IMPLEMENTATION OF
SECURE 10T NETWORK
USING SIMULINK

SENIOR DESIGN PROJECT

Heval Ronahi HALITOGLU
Oguzhan TURAN

ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT

JUNE 2021

ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICS FACULTY

MODEL BASED DESIGN AND IMPLEMENTATION OF
SECURE 10T NETWORK
USING SIMULINK

SENIOR DESIGN PROJECT

Heval Ronahi HALITOGLU
(040150114)
Oguzhan TURAN
(040150094)

ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT

Project Advisor: Prof. Dr. Siddika Berna ORS YALCIN

JUNE 2021

We are submitting the Senior Design Project entitled as “MODEL BASED DESIGN
AND IMPLEMENTATION OF SECURE IOT NETWORK USING SIMULINK”. The
Senior Design Project Interim Report has been prepared as to fulfill the relevant reg-
ulations of the Electronics and Communication Engineering Department of Istanbul
Technical University. We hereby confirm that we have realized all stages of the Senior
Design Project Interim Report by ourselves, and we have abided by the ethical rules
with respect to academic and professional integrity .

Heval Ronahi HALITOGLU ...oooovovoooe.
(040150114)

Oguzhan TURAN e,
(040150094)

Vi

To our beloved family,

vii

viii

FOREWORD

Since the beginning of our undergraduate senior design project, we would like to offer
endless thanks to our valuable professor, Siddika Berna ORS YALCIN, for continuing
her contact with us at every stage of the thesis and taking her time.Secondly, we would
like to offer our gratitude to our mentor Res. Assist. Mehmet Onur DEMIRTURK.

We would like to thank our precious teachers and friends for their vision and quality
awareness, besides engineering education at Istanbul Technical University, one of the
oldest technical universities in the world, and our families who always supported us
until we received this diploma.

June 2021 Heval Ronahi HALITOGLU
Oguzhan TURAN

iX

TABLE OF CONTENTS

FOREWORD

TABLE OF CONTENTS

ABBREVIATIONS

LIST OF TABLES

LIST OF FIGURES

SUMMARY

OZET
1. INTRODUCTION

2. INTERNET OF THINGS (I0T)

2.1 Applications Of TOT......ccceeviiiiiiiiiiece e
2.1.1 ManufacCturingccceevueeeiieiniieiniee e
2.1.2 TranSPOTtAtiON.......ccevueeerueeerieeriieeniteesieeesieesieeesareesieeesanee s
2.1.3 SMArt CItIES .eeuverurieiieniieeieeiteeeee ettt
2.1.4 HealthCare........coooieiiiiiiiiiiieeeieeeceeeeeee e
2.1.5 AGIICUIIUTE....uueieiiiieiiieeie et

2.2 TOT ATCRITECIUTE ...euvieniieiieeiiieieeite ettt

2.3 Security Issue of 10Tooiiiiiiiiieeee e
2.3.1 RCS5 Cryptology Algorithm.........cccceevviiiiniieennieiniienieeneen.

2.3.1.1 Mathematical Background for RC5 Algorithm

RCS5 Keys and Parametersooceeveveeienienieeneeneenieceene

Key EXPansion.........coocuieeiieeiiieeniieiieecice e
23163 % o1 5 o) 1 OSSPSR
DECTYPHON ...ttt

2.4 Zigbee Communication Protocol...........cccccevviiiiiiiiniiiiniceiieene.
2.5 Programs Used to Implement Project..........ccooevvvevviiieeenieeennnnen.
2.5.1 MATLAB and Simulinkcccccceovieimiiiiniiiniiineeeieeeee
2.5.2 Xilinx Vivado Design Suite.........cccceeveveeniieernieenieeniieenneenn
2.5.3 Xilinx Vitis Platformcccoovieiiiiniiiiniecceceee

3. MODEL BASED IMPLEMENTATION

3.1 Designing Simulink Model with ZigBee Protocol............c...........
3.1.1 ROOM AT€Q....uuiiiiiiiiiiiiiiiieeee ettt
3.1.2 RCS5 AlgOrithm Ar€acoccveeviieiniieiiieeniee e
3.1.3 TranSmitter AT€a........cccueevueeriieriiriieniieniieeieeiee e
3.1.4 Reciever and Output AT€acccevveeriuieenieeriiieenieenieeneenn

4. HARDWARE IMPLEMENTATION

4.1 Implementing Model to FPGAccccooiiiiiiiiieeeeeeeieeeee
4.1.1 Simplfying Model.......ccccocviriiiiiiiiiniiniieeceeecee e

xi

Page

ix
xi

.. Xiii

. XV

.. XVil

4.1.2 Generating MicroBlaze and UART Environmentcccccoceeveeniennnen. 33

4.1.3 Creating ELF Fileccooooiiiiiiiiiiiiieeee e 35
4.1.4 Observating ResUlLSccccueriiriiiiniiniiiiieeeeeeeeeeeeeee e 39

5. CONCLUSIONS AND RECOMMENDATIONScuuticcinnniccsssansccsssnsscsssssssccs 43
5.1 Practical Application of this Study........ccccceeiiiiiiiiiniiieee 43
5.2 RealistiC CONSLIAINESccccuviieeeiiiieeeiiireeeiieeeeeeireeeessireeeessreeeessseeeessseeeensnsees 43
5.2.1 Social, Environmental and Economic Impactcccccceevveercivennieennnnn. 43
5.2.2 COSt ANALYSIS ..eeiuiiiiiiieeiieeeite ettt 44
5.2.3 Standardscceeeeieiiiiiie e e e e e e e e e eaaeeeenns 44
5.2.4 Health and Safety CONCEINSc.ceevueeeriiririeeriieeie et 44

5.3 Future Work and Recommendationscccceceeeeeiiiiiieececcciiieeeee e, 44
REFERENCES......iiinnniiinnniicmmsiissssiessssssssssssssessssssssssssssssssssasssssssssssss 47
APPENDICES.. cestessasesssanessasesssanessnssssnanes 51
APPENDIX A .ottt ettt e e et e e et e e e e aa e e e esnbaaaeennaaeeenns 53
APPENDIX B...oooiiiiieee ettt ettt e e e e 58
APPENDIX C....oooeee ettt e eeaae e e e aaaeeeans 59
CURRICULUM VITAEoiiiinnnniccnsnnccsssnsscssssssscssssssssssssssssssssssssssssssssssssasssssss 61

Xii

ABBREVIATIONS

AES
AWGN
AXI
BPM
DES
ELF
FPGA
HDL
IDE
IEEE
IETF
FPGA
IoT

1P
LUT
LAN
MATLAB
MDD
OQPSK
PDF
RCS
RISC
RSA
RTL
UART
XOR
XSA
3DES

: Advanced Encryption Standard

: Additive White Gaussian Noise

: Advanced Extensible Interface

: Beats per Minute

: Data Encryption Standard

: Executable and Linkable Format

: Field Programmable Gate Array

: Hardware Description Language

: Integrated Development Environment
: The Institute of Electrical and Electronics Engineers
: Internet Engineering Task Force

: Field Programmable Gate Array

: Internet of Things

: Intellectual Property

: Look-Up Table

: Local Area Network

: Matrix Labrotary

: Model Driven Development

: Offset Quadrature Phase-Shift Keying
: Probability Density Function

: Rivest Cipher 5

: Reduced Instruction Set Computer

: Rivest-Shamir-Adleman

: Register Transfer Level

: Universal Asynchronous Receiver Transmitter
: Exclusive OR

: Xilinx Shell Archive

: Triple Data Encryption Standard

Xiii

X1V

LIST OF TABLES

Table 2.1 : Basic ZigBee Specification [1]

XV

Xvi

LIST OF FIGURES

Page
Figure 2.1 : I0T Architecture [2].....ccccceeoiiiieiiiieeeciee e e 6
Figure 2.2 : Representation of RCS5 Algorithm.........c.ccccoveeviiiieiiieniieeiieeee e, 8
Figure 2.3 : Magic Constants [3].......ccccoueriiiriiierienieeieeieeeee et 9
Figure 2.4 : Pseudo Code of Key Expansion [3].......ccccoeoveeriiiiiniiiniiieeniienieeeen, 9
Figure 2.5 : Pseudo Code of Encryption [3]cccceeviieeiiieniieeiieeeiee e 10
Figure 2.6 : Block Diagram of Encryption for One Round [4].......cccccoccevienrnnene. 10
Figure 2.7 : Pseudo Code of Decryption [3]ccceeviiiiniiieniiieiienieeeieeeiee e, 11
Figure 2.8 : Example Simulink SyStemc.cccccveriiieiiieniieerieeeee e 12
Figure 2.9 : MicroBlaze System with UARTccoccoiiiiiiiiiiieeeee, 13
Figure 2.10: Project Types in VItiS [S] ...cccciieiiiiriieeniieeeeeeieeeeeeeee e 14
Figure 3.1 : ROOM ATCa.....c.eeiiuiiiiiieeiiieeiie ettt et e eiee et eeseae e aeeesaaeesaeeenaneas 15
Figure 3.2 : Inside of the Patient Subsystem........c.cccccueevieniiriiinnienieneeeceeee. 16
Figure 3.3 : Inside of the Temperature Subsystem...........cccecveeerieenieeenieenieeenen. 17
Figure 3.4 : PS Random Number Block Settings.........c.ccccovuerieiiieniinienieeneenee. 17
Figure 3.5 : MATLAB Function to Generate Patient’s Data.............ccccceeveennnnen. 18
Figure 3.6 : Logic Behind of the Produced Data Valueccccoocvveniiennnnnnnen. 19
Figure 3.7 : RCS5 AlgOrithm Areacoocueeiiiiiiiiiiiiieieeeeeeeete e 20
Figure 3.8 : Data-Room Selection Function Block...........coccoeiiiiniiiiniinnnnnnnen. 20
Figure 3.9 : Parameters and Init Function Subsystem............ccccceevviveenieeniieeenen. 21
Figure 3.10: Parameters FUNCHONc.coccviiiiiiiiiieieeceesee e 21
Figure 3.11: S Initialize Function BIocKccooiiiiiiiiiiiiiiiee, 22
Figure 3.12: Encryption Function BIOCK...........cccociieviiiiiiiiniiieiieeeeee e, 23
Figure 3.13: Data Encryption Results for 248cccooiiiiiiiiiiiiieceeeeeeee, 23
Figure 3.14: Decryption Function BIOCKccocceiiiiiiiiiiniiiiiiiccceeeeee, 24
Figure 3.15: TranSmitter ATCa........ccceervreeiuieerieeeiiieenieeeiieeesieeenereesaeeenseeesseeennnens 25
Figure 3.16: Bit Serializer SUbSYSIEM......c.c.coiuiiiiiiiiiiiieiieeeeeeeee e 25
Figure 3.17: Transmitter BIOCKcooviiiiiiiiiiieecee e 26
Figure 3.18: Transmitter Selection Function BlocK...........ccccevvviiiniiiiniiieiieeen, 26
Figure 3.19: RECEIVET ATCQAcccuvieeuiiieiiieeiie ettt e stae e vee e seaeesaeeenaneas 27
Figure 3.20: ReECEIVET ATCA ..cccuviiieiiiie ettt et 28
Figure 3.21: OULPUL ATCA ..c.uveeviieeeiiieeiieeeite et eiteesree et e steeeseaeesaeeesateesnneeennnees 28
Figure 3.22: Shift Register SUbSYStemc..coceeviiriiiiiniiniiiieececce 29
Figure 3.23: D Flip FIOPS SUDSYStEMS ...cccuviiiiiiiiiiiieiiieeiicerieeeteeeee e 29
Figure 3.24: Function to Screen Dataccccveveiiiieiiieeiiieniie e 30
Figure 4.1 : Simplified Modelc.cccceriiiiiiiiiiniiiiccecceecee e 31
Figure 4.2 : Model SUDSYSIEMcovuiiiiiiiiiiieiiieeiee et 32
Figure 4.3 : Simplified Data-Room Selection Function.............cccccccvvervveeiinennnnen. 32

Xvii

Figure 4.4 : Generating Code from SubsyStem...........ceceevieiiienieniieinienieeieeenn 33
Figure 4.5 : Board Selection Screen in Vivado Platformcccccooeieeiennn.n. 33
Figure 4.6 : MicroBlaze in Vivado.......ccccceeriiieiiiiniiecieecec e 34
Figure 4.7 : Settings for MicroBlaze..........cccccooieeiiiiiiiiiiiiieieieeeeeee e 34
Figure 4.8 : Completed Block Design in Vivadoccccceeviiiinieeniieiniiienieenenn 35
Figure 4.9 : Adding Exported Hardware to Vitis Platformc.cccccevvveennenn. 36
Figure 4.10: View of the Vitis Application Project...........cccceveerieniiinienienennen. 36
Figure 4.11: Adding Generated Folder to Vitis Platform.............cccccccoviiiniinnnneen. 37
Figure 4.12: Generated Header File Model.hcccooooviiiiiiiniiiiiieceeen 38
Figure 4.13: C Code of checkModelcccouiiiiiiiiiniiiiieieeeeceeeeee e 39
Figure 4.14: Testbench Code..........cceiiviiiiiiiiiiiiecciee et 40
Figure 4.15: Behavioral Simulation Resultscccccoevviieriiiiniieiieceiee e 41
Figure A.1 : Simulink Modelccccooiiiiiiiiiiie e 58
Figure B.1 : RTL SChematiCcccceiiiiiiiiiiiiieeee e 59

xviii

MODEL BASED DESIGN AND IMPLEMENTATION OF
SECURE IOT NETWORK
USING SIMULINK

SUMMARY

Internet of Things (IoT) is a network of connected sensors, computers, and digital
devices that can communicate with one another over the internet to share and
transfer data. IoT has a wide variety of applications in the fields of manufacturing,
transportation, energy, healthcare and smart building systems. According to the its
application IoT involves extra devices being connected, extra networking to connect
these devices, extra programming to direct the devices and networking and a massive
volume of extra data pouring into the internet. Each of these layers come up with
additional security issues. Consequently, IoT devices usually lack the security from
outside impacts to prevent hacking. Cryptography algorithms are widely used in
security issues. Even though use of traditional cryptosystems can improve security,
another problem arises for those implemented cryptosystems which is increase the
need of power for the processors thus makes the device less preferable. Cryptography
algorithms are also extremely resource constrained devices in terms of computing
capabilities, power and area usage.

Aim of this project is to create a model-based design and implementation of an IoT
system that uses low power processors for speed and security. The hardware-software
co-design process was utilized to make it easier to design this sensor node and decrease
engineering expenses. According to this research, IoT and its architecture were
investigated. An IoT nodes are generally consist of sensors, actuators and processors
communicate with each other to serve its application. 10T node in this project is
created for health application in health emergency service. Some data such as human
temperature and heart rate is taken from human body for analyzing and reacting
according to its data values.

For model-based design of IoT network, it has made some researches. After
project’s application is determined, Simulink is used for modeling an IoT node. IoT
nodes can communicate with usage of standard communication protocols. Zigbee
communication protocol is selected for its features such as its frequency, data rate
and range for this project. Main objective for this part was to find some applied
communication module for an example. Zigbee module had founded on Simulink
File Exchange and it is selected which provides two main operations: modulation
and demodulation. After communication protocol chosen, ideas for application were
executed. First, vital health parameters will be taken from sensors. Then, the sensor
data will be transmitted via Zigbee communication protocol and then received data
will be used to actuate some alarms for warning health care providers.

After this step, it has researched cryptographic algorithm for securing modeled IoT
node. Rivest Cipher 5 (RCS5) cryptography algorithm was chosen according project’s
application; since, RC5 algorithm is fast and adaptable for different lengths of bits.

Xix

Also, it can be easily manipulated to make it faster or more secure. For length of
word is selected as 32 bits for this application. Encryption and decryption algorithms
of RCS5 are written as Matrix Laboratory (MATLAB) code and implemented into
Simulink blocks. The whole model is investigated and it is decided that the system
works properly. After modeling step, Embedded Coder in Simulink is utilized for
generating C code to transfer the system to software platform. Introduced code are
transferred into Xilinx Vitis platform. In Vitis, C code is written observe the system
in MicroBlaze which is Xilinx’s virtual processor. According to project’s IoT node, it
has produced an Intellectual Property (IP) structure for embed to a module. Generated
hardware module has exported into Xilinx Vivado Design Suite and system is observed
in simulation. As a result, monitorable healthcare system is created as Simulink model
and verified with MicroBlaze.

XX

SIMULINK KULLANARAK
GUVENLI 10T DUGUMUNUN
MODELLEME TABANLI TASARIM VE UYGUNLANMASI

OZET

Nesnelerin Interneti (IoT), verileri paylasmak ve aktarmak icin internet iizerinden
birbirleriyle iletisim kurabilen sensorler, bilgisayarlar ve dijital cihazlardan olusan bir
agdir. IoT, tiretim, ulasim, enerji, saglik ve akilli bina sistemleri alanlarinda cesitli
uygulamalara sahiptir. Bir [oT sistemi kullanilan cihazlarin birbiri ile baglanmasini,
bu cihazlar1 birbirine baglamak icin gerekli ag yapilarini, bu aglar1 yonlendirmek
icin programlamayi ve bunlarin dogurdugu biiyiik miktarda veriyi icerir.Bu sistemin
olusturdugu her bir katman ek giivenlik sorunlariyla kargilagir. Sonug¢ olarak, IoT
cihazlar genellikle disaridan gelebilecek herhangi bir saldirtya agik olup bu etkileri
azaltabilecek giivenlikten yoksundur. Kriptografi algoritmalar1 bu tarz giivenlik
konularinda yaygin olarak kullanilmaktadir. Geleneksel sifreleme sistemlerinin
kullanilmasi ise giivenligi artirabilse de, uygulanan bu sifreleme sistemleri, islemciler
icin gii¢ ihtiyacini artiran ve boylece cihaz1 daha az tercih edilir hale getiren bagka
bir sorun ortaya cikartir. Ayrica kriptografi algoritmalar1 kullanan cihazlar bilgi iglem
yetenekleri, gii¢ ve alan kullanim1 ac¢isindan son derece kaynak kisitli cihazlardir.

Bu projenin amaci, hiz ve giivenlik i¢in diisiik gii¢lii islemciler kullanan bir IoT
sisteminin model tabanli bir tasarimin1 ve uygulamasini olusturmaktir. Bir IoT sensor
diiglimiinii tasarlamay1 kolaylastirmak ve miihendislik maliyetlerini azaltmak icin
donanim-yazilim ortak tasarimi bir arada kullanilmistir. Bu arastirma i¢in IoT ve
mimarisi arastirildi ve bir IoT sistemi genellikle, uygulamasina hizmet etmek icin
birbirleriyle iletisim kuran sensorler, aktiiatorler ve islemcilerden olusur.Bu projedeki
IoT sistemi, saglk acil servisindeki saglik uygulamalar igin olusturulmustur. Insan
viicudundan viicut sicakli§i ve kalp atig hiz1 gibi bazi veriler alinarak, bu degerleri
analiz etmek ve degerlendirmek i¢in kullanilir.

[oT agmnin model tabanli tasarimi icin bazi aragtirmalar yapilmigtir. Bir IoT
diigiimiiniin modellenmesi i¢in Simulink kullanildi. Olusturulan IoT diigtimleri,
standart iletisim protokollerinin yardimi iletisim kurabilir. Bu proje icin frekanst,
veri hiz1 ve araligi gibi Ozellikleri nedeniyle Zigbee iletisim protokolii secilmistir.
Bu boliimiin ana amaci olarak ornek amacli bazi modellenmis iletisim modiilleri
bulundu. Arastirmalar sonucu bulunan Zigbee modiilii Simulink File Exchane iizerinde
kurulmus olup kendi model yapisi icerisinde modiilasyon ve demodiilasyon islemlerini
gerceklestiren iki ana modulden olugsmaktadir.letisim protokolii secildikten sonra
uygulama fikirleri hayata gecirilmeye baslandi. Ilk olarak, sistem yapis1 icerisindeki
sensOrlerden hayati saglik parametreleri alinacaktir. Ardindan ise sensOr verileri
Zigbee iletisim protokolii araciligiyla iletilecek ve alinan veriler, saglik calisanlarini
uyarmak amaciyla bazi alarmlar etkinlestirmek i¢in kullanilacaktir.

Bu adimdan sonra modellenen IoT diigiimiiniin giivenligini saglamak i¢in kriptografik
algoritmalar aragtirilmigtir. RC5 kripto algoritmasi hizli olmasi ve farkli bit uzunluklar

Xxi

icin ayarlanabilmesi 0zelliklerinden dolay1r bu projeye uygulamak amaciyla tercih
edilmistir.RCS, olusturulan IoT diigiimiinii daha hizli veya daha giivenli hale getirmek
icin kolayca veriyi manipiile edilebilir. Bu uygulamada word uzunlugu 32 bit olarak
secilmistir. RCS5’1n sifreleme ve sifre ¢6zme algoritmalart MATLAB kodu kullanarak
yazild1 ve ardindan Simulink bloklarina uygulandi. Tiim model incelenrek sistemin
calismast incelendi. Modelleme adimindan sonra, sistemi yazilim platformuna
aktarmak icin Simulink’teki Embedded Coder aracit kullamilmistir. Bu arac ile
modiillerimize ait C kodlar iiretimi saglanir. Bu {iretilen kodlar daha sonrsinda
Xilinx Vitis platformuna aktarilir. Bu platform {iizerinden bir donanim moduliine
kendi yapisin1 gdbmmek amaciyla bir IP yapisi diretilir. Olusturulan donanim modiilii
Xilinx Vivado Design Suite’e aktarilmistir. Daha sonrasinda bu yapinin denenmesi
amaciyla Vivado iizerindeki gorsel bir mikroislemci olan MicroBlaze kullanilmasi
tercih edilmigtir. ~ Sistemin dogru c¢alisip calismadigimi gozlemlemek icin cesitli
durumlara bagh olarak simiilasyonlar gerceklestirilmigtir. Sonu¢ olarak Simulink ile
modellenen yapi ilk olarak software platformuna ardindan da hardware platformuna
aktarilarak MicroBlaze ile calismas1 gézlemlenmigtir.

xxii

1. INTRODUCTION

Nowadays, Internet of Things (IoT) [6] has expanded to a global infrastructure with the
number of connected devices being in multiples of the number of people worldwide.
Large communication data and inter-connected gadgets also introduce many new cases
in which breaches of privacy and information can occur. New generation Internet
of Things (IoT) applications require low power, and small area secure systems that

encrypt data.

The challenge that we wish to address, focusses on Model Driven Development (MDD)
[7] of embedded system design software and hardware and implementing them on
secure [oT applications. This project aims to create a modified version of the algorithm
that is derived from the hardware with cooperation of hardware and software to create
an improved version to ease implementation and accelerate manufacturability of the
IoT device that the algorithm will be implemented for security to create a secure,
low cost and rapidly produced IoT devices. It is used interoperation of MATLAB,
Simulink, Vitis and Vivado for this project. Field Programmable Gate Array (FPGA)
[8] is utilized to put the system on a trial and modify the algorithm on Xilinx Vivado

program to create a hardware-software hybrid system. [9]

In the second part of the thesis, information about the architecture of the internet of
things, application areas and security problems are given. In the third part, the plan of
the system to be realized is made. In the fourth chapter, the software implementation
of the system is explained, and in the fifth chapter, the hardware implementation. In

the sixth and last chapter, the results and information about future studies are given.

2. INTERNET OF THINGS (I0T)

The term of Internet of Things was first proposed by a British technologist Kevin
Ashton in 1999. IoT connects devices to the internet, allowing software to collect
data and manage these devices to improve efficiency, create new services, or achieve

its application goals [10].

IoT has been defined by different organizations and research centers over time. One of
them is defined by Internet Engineering Task Force (IETF) as “the network of physical
objects or "things" embedded with electronics, software, sensors, and connectivity to
enable objects to exchange data with the manufacturer, operator and/or other connected
devices” [11]. On the other hand, The Institute of Electrical and Electronics Engineers
(IEEE) is described “Internet of Things” on its IEEE “Internet of Things” 2014 special
report as “A network of items—each embedded with sensors—which are connected to

the Internet” [12].

Nowadays, 10T become considerable technology that offers many solutions in daily
basis. Data collected and analyzed via IoT systems can be utilized for optimization,
efficiency and management based on its applications. To understand and maintain IoT

systems, one must first understand their architectural layers.

2.1 Applications of IoT

2.1.1 Manufacturing

IoT is a real-time network of connecting sensors, computers, and digital devices
that can communicate with one another over the internet to share and transfer
data. Usage of IoT in manufacturing may help automation, efficiency, energy
management, proactive maintenance, and connected supply chain management. It can
collect data from the production environments, machinery, vehicles, and materials.
Collecting these data without any human interruption can help for automation of

workflow/processes and optimization of design and production systems [13]. On

the other hand, increasing energy demand in manufacturing requires to be aware of
energy usage. Tracking and associating data in real-time via IoT can supply more
efficient usage of energy. It can help also continuously observing and error diagnosing
production elements for decrease time and money that spend for maintenance.
Demand, supply and feedback information can be taken for meaningful results for

manufacturing management.

2.1.2 Transportation

As the world population continuously increasing, low-cost and efficient transportation
systems in every field play an essential role in sustainable development. Data
collected and interpreted from IoT system in transportation can used location
management, driver safety, improved traffic management, reduced time and energy
used for transportation and supply chain management [14]. IoT is possible to supply
enhancement in cost and time management for more daily basis such as street lighting,
optimized suggested routes, parking reservations, public transportation, driver and

pedestrian safety, autonomous driving [15].

2.1.3 Smart Cities

IoT can help centralized, optimized and efficient use for smart cities based on
continuous monitoring and associated data using systems, devices interoperability. 10T
smart cities application can be divided some main aspects such as traffic management,
environmental monitoring, home energy management, waste management, and etc.
Proactive traffic management is enabled by measurements and predictions from a
large number of sensor’s data, which has the potential to significantly improve
efficiency and minimize congestion [16]. It can supply information about Water Level
Management, Soil Humidity, Gas concentrations, Structural Inclinations, Lighting
Conditions, Infrared radiation [17]. Utilized / recycled waste can be determined
and reported continuously for waste management. The monitoring system can easily
be integrated via embedded sensors with a building management/automation system
to operate in order to keep the determined parameter’s value within predetermined

security/health criteria for home energy management [18].

2.1.4 Healthcare

[oT applications have the potential to transform reactive medical systems into proactive
wellness systems. Current medical research relies on resources that are deficient
in critical real-world data. For medical examination, it usually uses residual data,
controlled surroundings, and volunteers. Through analyzed, collected, and testing
real-time data, [oT system provide efficiently used data [19]. Real-time applications
can be exampled such as monitoring of temperature for vaccines remotely, sensors
for air quality, sleep monitor, examination of drug effectiveness, capturing vital data,
bio-metrics scanners for remote care, proactive scheduling for refilling medication, and

etc [20].

2.1.5 Agriculture

IoT systems used in agriculture is a high-tech and efficient approach for sustainable
agriculture and food production. It is a method of integrating connected devices
and cutting-edge technologies into agriculture. The basis applications are mainly
focused on climate conditions, precision farming, smart greenhouse, data analytic, and
et [21]. These systems provide efficient and optimized production in each aspects of

agriculture.

2.2 I0T Architecture

IoT architecture is generally described with five different layer in which data flows
from sensors attached to “things” through a network and eventually on to a corporate
data center or the cloud for processing, analysis and storage. All layers are can be seen

in clearly in below Figure.

Business
laver

Application Smart =
layer applications

Middleware | DPatabase | [Ubiguitous computing |
layer [Cloud computing | | Decision making |

Transmission [Information }_ _
Ia}r.er transmission
Perception Physical e -
layer objects

Figure 2.1: 10T Architecture [2]

(=)

» Perception Layer is a physical layer that basically consist of sensors. These devices
take some physical information from environment; also, indicates other smart

objects in environment.

* Transmission Layer is used for transferring the sensor data from perception layer
to processing layer through a network which are wireless, 3G, Local Area Network

(LAN), Bluetooth, Zigbee.

* Processing Layer is called also middle-ware later which is used for storage,
analyzation, and processing huge amount of data which is taken from transport
layer. Databases, cloud computing, and big data processing modules are used in

this later.

» Application Layer provides application specific services are provided according to
their purpose. It can be defined various applications according to used Internet of

things, for example, smart houses, smart cities, and smart health.

* Business Layer is fulfilled for managing whole IoT systems, consist of its

applications business and user privacy [22].

2.3 Security Issue of IoT

The purpose of 10T is about create appropriate connections between things. It has
becoming widely usage for different area. Therefore, there is a large increase in the
number of data used and collected. These collected data are generally personal and
private. According to that, securing IoT devices and network is one of the essential
issues in these systems. Security constraints can be divided into three main topics
which are based on hardware, software and network. In these project, it focused on
hardware part. Cryptology algorithms are utilized for securing hardware part of IoT
systems. Different algorithms could be use such as Rivest-Shamir-Adleman (RSA),
Data Encryption Standard (DES), Triple DES (3DES), Advanced Encryption Standard
(AES), Twofish, Blowfish, RC2, and RC5. Each of these algorithms come with its
drawbacks which are computational and energy constraints, memory constraints and

tamper resistant packaging [23]. For this project, RC5 cryptology algorithm is used.

2.3.1 RCS Cryptology Algorithm

2.3.1.1 Mathematical Background for RCS Algorithm

In the last years, secure systems are more required with the development of the Internet
and IoT. Therefore, cryptographic algorithms provide protection of the data. There are
asymmetric and symmetric algorithms. For the symmetric ones such as DES, AES and
RCS5’s security level depends on the key length [24]. RCS is a simple cryptographic
algorithm which designed by Ronald L. Rivest in 1994. While process, same key
is used for encryption and decryption which makes the algorithm symmetric. It has
many parameters such as word length, key length and number of rounds. Thanks to
all parameters, RC5 can be exchanged easily faster to more secure or exact opposite.
Moreover, there are only basic operations in algorithms which makes RCS5 suitable for
both hardware and software. It comprises of three parts: an encryption, a decryption
and a key expansion [3]. Fig.2.2 shows the operations of RC5 algorithm. First
operation is expanded to key K to S. Then, plain text which is the data to encrypt
is connected to encryption algorithm with the key; so, cipher text is obtained. S is
needed again since RC5 is symmetric algorithm. This time, cipher text is connected to

decryption algorithm to obtain the plain text again.

Plain Text

| Expanded Key 5 r

Encryption | Cipher Text

Secret Key K .
Key-Expansion ‘
p Plain Text
_ . .
Cipher Text Decyrption
— >

Figure 2.2: Representation of RC5 Algorithm

RCS5 Keys and Parameters

w — word size in bits, usually 16,32 and 64.

u — w/8 which is word size in bytes.

r — number of rounds, 0 to 255.

b — number of bytes in secret key K, 0 to 255.

K — b-byte secret key.

A — low-order bit positions of input/output.

B — high-order bit positions of input/output.

S — key array which is generated from K.

L — temporary array for operations in key-expansion.

P — a magic constant which is used in key-expansion.
Q — a magic constant which is used in key-expansion.
e — 2.71828... which is base of the natural logarithm.

¢ — 1.618... which is golden ratio.

¢ — b/u which is number of words in key.

t — 2(r+1) which is size of table S.

Key Expansion

The key expansion algorithm stands for obtaining S while filling K. It uses two constant
values which is seen in Fig.2.3. Odd function in P and Q rounds up the result to the

nearest odd integer.

Py = Odd((e — 2)2%)
w = 0dd((¢ —1)27)

Figure 2.3: Magic Constants [3]

When the constants are ready to use, key K is needed to copied into L array which is
K [0...b-1] into L [0...c-1] to convert key bytes to words. As a following operation,
array S is initialized with the magic constants. Finally expanded key is mixed. A
is low-order plain text and B is high-order plain text. As seen, modulus, addition,

rotation operations are used which can be easily done with typical microprocessor.

Fig.2.4 demonstrates three operations explained above.

fori=b—1 downto 0 do
Lii/u] = (L[i/u] <« 8) + K[i];

S| =Py
fori=1tot—1do
S[i] = S[i — 1] + Qu;

A= Fi=1)
do 3 * max(t, ¢) times:

A=S8li]=(S[t]+ A+ B) < 3;
B=L[j]=(Lj]+ A+ B) < (A+ B);
| = (i + 1) mod(t);

(7 + 1) mod(e);

e, o
1

Figure 2.4: Pseudo Code of Key Expansion [3]

Encryption

Input is given as two halves of 2w-bit register which equals A and B for this case. After
S[0] and S[1] assigned to A and B, new operations are done according to number of
rounds r and algorithm is repeated. Inside of the for structure, there are just exclusive
or (XOR), rotational shift, and addition operations exist. Algorithm can be seen in
Fig 2.5. Summary of encryption is seen in Fig.2.6 which represents one round. A is
treated with B with the operation XOR, then shifted left. Then key is used for A, and
the cipher text is ready for A. For B, same path is followed. At the end of the last loop

cipher texts is obtained as a result of A and B.

A= A+ 8[0];

B = B + S{1];

fori=1to rdo
A=((A®B) %« B) + S[2x1);
B=((BaA)x A)+ S[2xi+1];

Figure 2.5: Pseudo Code of Encryption [3]

InputofRuund{ [A | B | 7
h 4
[LW
1
h 4
<<<[€
key —

 One Round

M
N

A
A
A
[)

oy

OutputofRnund{ | A | B I -

Figure 2.6: Block Diagram of Encryption for One Round [4]

10

Decryption

For the decryption algorithm, encryption steps are implemented back to front.
Rotational operation is made backwards which means right. This time plain texts are

achieved as results A and B.

for 1 = r downto 1 do
B=((B-SR2+i+1)> 4) 04
A= ((A-S[2%1]) > B)& B;

— S(1};

— 5[0];

A
II

Figure 2.7: Pseudo Code of Decryption [3]

2.4 Zighbee Communication Protocol

For this project application, ZigBee is choosen to create [oT Transmission Layer.
ZigBee is a set of high-level communication protocols based on the IEEE 802.15.4
standard. ZigBee is utilized for automation and remote control applications with a low
data rate, low power consumption, and low cost [25]. It is used for applications such as
home automation, medical device data collection, and other low-power, low-bandwidth

needs. It is intended for small-scale projects that require a wireless connection [26].

Parameters ZigBee Value
Tranmission Range(meters) 1-100
Battery Life (days) 100-1000
Network Size(of nodes) >64000
Throughput (kb/s) 20-250

Table 2.1: Basic ZigBee Specification [1]

2.5 Programs Used to Implement Project

In this section, programs and tools that are utilized for implementing the project is
investigated. All is used for modelling the system and simulating the system to check

its results.

11

2.5.1 MATLAB and Simulink

MATLAB is a platform that provides analyzing and designing systems. Key of the
program is MATLAB language which is matrix based. With MATLAB, apps can be
built, data can be analyzed and visualized, algorithms can be developed for embedded
applications and more [27]. Simulink is MATLAB and model-based design tool that
provides simulating system before hardware [28]. It ensures multidomain modeling
and simulation and reusability of this models. Also, models which are not made
in Simulink can be added for combining. Other ability of the Simulink is testing
and automatically generating C and Hardware Description Language (HDL) code that
operates the same as the model. After, it can be implemented directly to FPGA [29].
For this project, Simulink tool which is an Embedded Coder is used. Embedded Coder

generates C and C++ code from model with a code efficiency for asked processor [30].

1 P 1

1

Y

h 4
)

Display

Constant2

Subsystem

Figure 2.8: Example Simulink System

Fig.2.8 shows an example model which is built in Simulink. It can be seen that
some constant blocks, created subsystem and display block exist. Code can be easily

generated from subsystem with this setup.

2.5.2 Xilinx Vivado Design Suite

Vivado Design Suite is a tool that enhances performance by designing, integrating and
implementing systems. With Vivado, implementations can be made faster and more
optimized by using some tools such as route and place, and all stages can be seen
[31]. Moreover, in Vivado, Register Transfer Level (RTL) schematics and behavioral

simulations can be obtained. In this project, MicroBlaze and Universal Asynchronous

12

Receiver Transmitter (UART) used together in Vivado design. MicroBlaze is Reduced
Instruction Set Computer (RISC) based soft processor for embedded applications
which ensures peripheral and memory combined with minimum cost [32]. UART
stands for carrying out data conversions that is received from peripheral device [33].
Fig.2.9 shows the system of MicroBlaze and UART system. After block design is set
with export hardware selection Xilinx Shell Archive (XSA) file is generated for the

embedded software part. XSA file has hardware specifications of processor.

Diagram x AddressEditor x | AddressMap x 200
e X N ¢ Q : + | A|C|Y Default View ~

nicrobiaze 0

nma -

= o)
A—
@, MicroBlaze™ |, ue +i“

Figure 2.9: MicroBlaze System with UART

2.5.3 Xilinx Vitis Platform

Vitis is one of the latest tools of Xilinx that combines all software into itself. Embedded
software applications are developed and used in embedded processors with usage of
Vitis. It includes C/C++ editor, project management, focused special tools to configure
FGPA and so on. XSA file is imported into Vitis for a platform project. In this project,
application is used as software project and it may contain more than source file. It
produces a binary output which is Executable and Linkable Format (ELF) file [5].
Fig.2.10 shows the project types in Vitis. As a result, processor system is set with
MicroBlaze and UART connected to it. Afterwards, XSA is generated and used to

create platform project.

13

Processor

Figure 2.10: Project Types in Vitis [5]

14

3. MODEL BASED IMPLEMENTATION

3.1 Designing Simulink Model with ZigBee Protocol

IoT module is built for intensive care patients. Simulink model consists of 4 main
parts: rooms for patients, RC5 algorithm, transmitter, and receiver with output. First,

room area and Simulink blocks will be explained.

3.1.1 Room Area

Model is designed to check four patient’s temperature and heart rate data one after
another. Number of patients may be increased easily after that point. Fig.3.1 shows
the exterior look of the patient’s data subsystems. While one data is transferred, other
patients’ data is set as 0. After one is completely transferred, next one shows the instant

data of the patient.

Rooms

out1

248

Patient 1 -out2

Patient 2 i —— =

Patient 3 outd

Patient 4

Figure 3.1: Room Area

When inside of the patient subsystem studied as in Fig.3.2, it can be seen that two more

subsystems appear which are temperature and heart rate. In that subsystems, data is

15

generated in particular sample times. MATLAB function to control values involves
levels and data according to its level that appear at the output. As seen, values display
logically for human body temperature and heart rate. There are also two clocks which
are used as enables for every patient. This clock operation provides generate patient’s

data in particular times which while is generated others are set to 0.

39.19
P

Display of Body Temperature

output

Temperature

ui

P
P u2
e D
enable? out1
Function to Controlling Values
output

Heart Rate

93.85)
Ll

Display of Heart Rate

Figure 3.2: Inside of the Patient Subsystem

As seen in Fig.3.3, random number for temperature of human body is generated by PS
Random Number and taken by sensor. To have controlled data, controlled temperature
source block is required. S port stands for delivering the data into B port and connected
to sensor’s A port. Temperature sensor consists of three ports which are A, B and T.
A port exists for positive heat in contrast of B. T is obtained by the equation T = TA
- TB which is same with T == A.T — B.T equation [34]. To take the value only in
A port, B port is connected to thermal reference which means TB = 0. Any sensor
in Simscape library needs Solver Configuration block to obtain simulation. Sensors
have T output value as Kelvin, then the system needs PS-Simulink Converter block.
PS-converter with apply affine conversion box checked in Simulink operates Kelvin to

Celsius conversion [35]. For the heart rate system, same path is followed.

16

Thermal Reference fix)=0

‘ Solver
Configuration

VMY M N J

S B
B
I pym— >
PS Random Number R
Controlled Temperature SensorPS-Simulink output
Temperature Source Converter

Figure 3.3: Inside of the Temperature Subsystem

To obtain source values which is generated by Gaussian function in PS Random
Number, parameters are set as figure. With mean = 37 and variance = 5, probability
density function is obtained which has values waving between 30 and 44. Sample time
is set as 0.8 seconds, because every bit is transferred with sample time 0.025 and 32

bits in total, which will be explained later. The settings can be seen in Fig 3.4.

Block Parameters: P5 Random Mumber

PS Random Number

This block provides a normally (Gaussian) distributed random number. The output is repeatable for a given seed.
Optionally the sample time parameter can be specified as a 1 by 2 row vector with the first element setting sample
time, and the second setting sample time offset.

Source code

Settings
Parameters
Mean: |37 |
Variance: 5 |
Seed: [1 |
Sample time: 0.8 | [s ~|

Cancel Help Apply

Figure 3.4: PS Random Number Block Settings

To produce acceptable values for the model-based design, average values and ranges
for body temperature and heart rate are investigated. Since, body temperature changes
depends on gender, activity in a day, age etc., average values are accepted. 37°C
(98.6°F) 1s the mean of the temperature for humankind. Normal body temperature,
fever, low and high body temperature are main groups for ranges [36]. Again, for
the heart rate ranges, even though values are changing depends on so many variables

such as age, activity, body size etc., 60-100 beats per minute (bpm) is accepted as

17

normal [37]. For creating specific data according to taken by sensor, function block is
manipulated by if-else structure. Therefore, rate of taken vital data can give specific
data for producing output of function block. For instance, if patient has 33.9 °C
temperature and 60.5 bpm heart rate, the values fit with medical emergency level,
therefore, the last else if block is active. y = 248 is delivered as data to encrypt, as seen
in Fig.3.5. Also, there are other levels which are combinations temperature and heart

rate value. If problem is just about heart rate, 3rd level is active and data is generated.

Patient 1/Function to Controlling Values + |
1 function ¥ = fcn(ul,uz,enable,enable2)
2
3 - if (36.5 < ul) & (ul < 37.5) && (60 < u2) && (u2 < 100) && (enable —1)&& (enable2 —1)
4 $disp('Normal Level')
5= ¥y = 8;
| ik elseif (35 < ul) && (ul < 36.5) && ([60 < u2)&& (uz < 100) && (enable =1)&& (enable2 ==1)
7 %disp('Cold Level')
= ¥y = 80;
g elseif (36.5 < ul) && (ul < 37.5) && ((u2 < €0) || (u2 > 100))&& (enable ==l1)&& (cnable2 ==1)
411, $disp('Heart Rate Problem Lewvel')
TE = y = 88;
| elseif (37.5 < ul) && (ul < 39) £& [60 < u2)&& (u2 < 100)&& (enable ==1)&& (enable2 ==1)
13 gdisp('Fever Level')
Ta — ¥ = 96;
ESii= elseif (35 < ul) && (ul < 36.5) && ((u2 < 60) || (u2 > 100)) && (enable ==1)&& (enable2 ==1)
16 $disp('Cold and Heart Rate Problem Level'})
= v = 168;
18— elseif (37.5 < ul) && (ul < 39) £& ((u2 < 60) || (w2 > 100)) && (enable ==1)&& (enable2 ==1)
19 %disp('Fever and Heart Rate Problem Lewvel')
A y = 176;
2 elseif (enable ==1)&& (enable2 ==1)
22 $disp('Medical Emergency')
23 — y = 248;
24 else
e v = 0;
26 end

27
28

Figure 3.5: MATLAB Function to Generate Patient’s Data

Generated data which equals y in this function is not selected randomly. Since, UART
can show 0 to 255 which is 8-bit, maximum value is set according this information.
After that, first 3-bit is arranged for rooms that provides to enhance the model to 8
patients. Next 3-bit is set for levels since there are 7 levels as seen in function for
controlling values. The last 2-bit is left for alarm depends on the level. For instance,
248 is set in Fig3.6. Room number, level and alarm equal to 1,7, and 3 respectively. At

the output part of the model, function for this operation will be investigated in details.

18

T T T
Alarm Level Room

Figure 3.6: Logic Behind of the Produced Data Value

3.1.2 RCS Algorithm Area

Second part of the model is the RC5 algorithm. For this part, MathWorks website
is checked for possibility of the prepared code for this purpose and RC5 Encryption
Algorithm [38] is found. All functions are organized and manipulated for the
model. This area consists of 4 main subparts which are data-room selection function,
encryption, decryption and subsystem for parameters and key expansion as seen in Fig
3.7. Primarily, data-room selection function will be explained. This function operates
like multiplexer. Since, the model has 4 rooms and patient’s data must be transferred
in order, this structure is needed. 2 clock signals assist for enabling data for particular
room. One clock is set to 1.6 seconds; however, other is 3.2. Since 32-bit is adapted by
the receiver in 0.8 seconds. The function has 6 inputs which are ul to u4 data inputs
and 2 enables. Output y shows 248 as data to be input for encryption. Inside of this

block can be seen in Fig.3.8.

19

RC5 Algorithm

T
J Decrypted
—
Paramelers and Init
&Wpleuﬁxn
RC5 Decrypt
Plaintext 1
Crypted ptedText
rs1ea11267 —]
Decrypt
Crypled Plaintext 2
s Decryption
Crypied
RC5_Encrypt
. Crypied
19619

Cipher 1

Cipher 2

itn 248

Encryption

Data-Room Selection

Figure 3.7: RC5 Algorithm Area

Data-Room Selection + |
1 function v = fcnful,uZ,u3,ud4,enable,enablel)
2
it if (enable == 1)&&(enable2 == 1)
T ¥y = ul;
5
(e elseif (enable = 0)&& (enable2 = 1)
i ¥ = u:
g
2= elseif (enable = 1)&& (enable2 = Q)
118 ¥ = u3;
11
12 elsze
E = v = ud;
14
15 end
16

Figure 3.8: Data-Room Selection Function Block

Parameters can be seen clearly at Fig 3.9. RCS5 operates two-word length; so, w is
selected as 16 to obtain 32-bit cipher. Other important parameters are b and r. Number
of rounds which is r is set 6 to make the algorithm fast. Also, b equals the byte number
of secret key K and it is selected as 8, and K array initialized with this value. P and
Q are magic constants, t is size of table, ¢ is number of words in key are all constants
according to b, r and w. All about parameters block can be seen in Fig 3.10. There

is one difference in parameters which is studied in mathematical background of RC5

20

algorithm. As an addition, ModParam parameter exist. It has a value of 65536 to use

in other functions to be able to make mod operation according to 32-bit.

>4
r
» 3)
.;(2)MudParam
w
w
w
c c
b b
K K
RC5_Initialize s
RC5_Parameterd’ Lo
Q Q
t ‘ l t
ModParam - ModParam
L ‘ S Initialize

Parameters

Figure 3.9: Parameters and Init Function Subsystem

| Parameters and Init/Parameters .f + |
¥ function [w,c,b,K,5,P,Q,t,ModParam, r]= RCS_Pararc.ete:rs|
Pt W= D18 Ef* word size in bita *f
B r = &6; %* number of rounds */f
T b = 8; %/* number of bytes in key */
e c = 4; %I/* number Wwords in key = ceil (8*b/w)
G = { REE B G-t size of table 5 = 2*{r+l) words
T e=2.7182813828 ga
= gr=1.61803358
g
A= ModParam=uint32 (2°w) ;
11
12— P=uint3z (({e-2}*2"w); %¥Magic P Constant
R O—uint32 { (gr-2) *2"*w+2"w); %EMagic Q Constant
14 % PlainText=uint32 (zeros{l,2)); %Empty
o= S=uint32{zeros(1l,t})): &S5ub-Key /E
lé
Tl E=uint32 (ones(l,b)}: %Eey
18
15 end

Figure 3.10: Parameters Function

After that point, RC5 algorithm starts. First step is expanding secret key K which is
S Initialize block for this project as seen in Fig.3.11. S output of the function will be
used for both encryption and decryption. Also, key expansion has three main parts:
copying K to temporary array L, initializing S with magic constants and mixing the
key, as explained before. A and B is set as empty for start and assigned S[i] at the sub
key mixing part. Rotational left shift algorithm can be seen in mixing part. This part
is just put in order for prevent any run issue in Simulink. Most of the logic remains as

same as original one.

21

| Parameters and Init/S Initialize | + |
3 function S-RC5_Initialize (w,c,b,K,S,P,Q,t, ModParan)
4 $#codegen
Gil= u=w/8;
B A=uint32 (0);
o= B=uint32 (0);
o= L=uint32 (zeros(l,c)): $Empty Variable
2,
10 ¥Converting secret key K from bytes to words.
R = for i={b-1):-1:0
2 = L{fix({i/u)+1l)= bitshifc (L(fix(i/u)+1),8) + K(i+l):
13 end
14
15
16 ey S5 using magic constans P and Q
=
18 =
O = S5{i+l)=mod(5(i)+Q,ModParam); %32bit e gdre mod al
20 end
21
22 %5ub-key mixing.
2 i=0;
24 — 3=0;
25 = for E0:3%t=-1
26 — X=mod (5 (i+1) +A+B,ModParam) ;
2 5(i+l)= mod(bitor(bitshift (X,bitand (3, (w-1))),bitsra (X,w-bitand (3, (w-1))}))),ModParam);
28 — A=5(i+1):
29
30 = X=mod (L({j+1)+A+B,MModParam) ;
31— L(j+1)=mod (bitor (bitshift (X, bitand ((R+B), (w-1))),bitsra (X,w-bitand((A+B), (w-1)))) ,ModParam) ;
32 = B=L({j+1);
33
34 - i=mod((i+l),t);
35 — J=mod((j+1},c):
36
37
38 end

Figure 3.11: S Initialize Function Block

After initializing, encryption code is put in order. At this step, some additions are
made to prepared code. First of all, RC5 algorithm has 2 plain texts to be encrypted,
which are A and B. However, for this project, both of the texts are concatenated which
can be seen in line 23 in Fig3.12. Therefore, newer plain text is 32-bit. Algorithm is
implemented in for structure, which has rotational left and mod operation. Enables are
set for room and valuel and value?2 is put the code for checking encrypted plain texts.
As seen in test results, first plain text is selected as 248 and the second one is 0. Then,
19619 is calculated for 248 and, 38893 is for 0. As a result, 19619 is low-order 16 bit
and 38893 is high-order 16 bit which gives 2548911267 in decimal. Test results can
be shown in Fig.3.13. While one room is selected, other rooms are 0, just to prevent

mess. The same path is followed for the rest of the data.

22

Encryption |+

1 function [CryptedTextl,CryptedText2,CryptedText3,CryptedTextd, valuel,value2]=RC5_Encrypt (enable,enableZ, S,w,ModParam, r, PlainText)
2

3 - | A=uint32(0);

4 - | B=uint3z(0);

5 — | control = uint32(65535);

6 — | PlainTextl = bitand(PlainText,control);

7 - | PlainText2 = bitand(bitshift (PlainText,16),control);

9 - | A = PlainTexcl + 5(1);
10 - | B = PlainText2 + 5(2):
11
1z - [for i=l:r
13
14 - Result_A=mod (bitor (bitshift (bitxor (A,B),bitand (B, (w-1))),bitsra (bitxor (&,B),w-bitand (B, (w-1)})),ModParam) :
15 - A= mod(Result_& + S(2*i+l),ModParam):
16 - Result_B=mod (bitor (bitshift (bitxor (B,A),bitand (A, (w-1))),bitsra (bitxor (B,A),w-bitand (&, (w-1)})),ModParam) :
17 - B= mod (Result_B + S(2*i+2),ModParam):
18
18 end
20
21 — | if (enable == 1)&&(enable2 == 1)
22
23 - CryptedTextl = bitor (A, bitsll(B,16)) :
24 - valuel = &;
25 — valus2 = B;
26 — CryptedTextz = uint32(0);
27 - CryptedText3 = uint32(0):
28 - CryptedTextd = uint32(0):
29

Figure 3.12: Encryption Function Block

Command Window

> RCS Test

RCS Encryption Algorithm Test Code
Plaintext: 248 0

CryptedText: 18619 38883
DecryptedText: 248 O

YRk dDecryption process 18 success. EFW

Figure 3.13: Data Encryption Results for 248

After 32-bit cipher text is obtained, this result is transferred bit by bit which will
be explained in transmitter part. Assuming the data is successfully reached at the
input of the decryption block, low-order 16-bit and high-order 16-bit is seperated
primarily. Later, the opposite algorithm according to encryption is made, which equals
the structure in Fig 3.14. This time, rotational right is used and loop is set as r = 6 to
1. If statement has C and D. Again, they stand for checking whether the result is what
is expected or not. Moreover, bitor operation is made for the final result which will be

248 for the input 2548911267.

23

Decryption +

L function [DecryptedText,DecryptedTextl,DecryptedText2] = RCS_Decrvpt (S,r,w,ModParam, Cryptedlext, enable)
2

e control = uint32 (65535);

£ CryptedTextl = bitand (CryptedText,control);

= CryptedText2 = bitand(bitsra (CryptedText,16),control);

€

7- | A= CryptedTextl:

e B = CryptedText2;

°

10 - for i=r:-1:1

1

Tl Result B = mod (bitor (bitsra((mod (ModParam+B-5(2%i+2) ,ModParam)),bitand (&, (w-1))),bitshift ((mod (ModParam+B-S (2%i+2) ,ModParam)),w-bitand (&, (w-1)})),ModParam);
13 - B = bitxor (Result_B,A);

14 = Result 2 = mod(bitor (bitsra((mod(ModParam+A-5(2%i+1),ModParam)),bitand (8, (w-1))),bitshift ((mod (ModParam+A-5(2*i+1),ModParam)), w-kitand (B, (w-1)})},ModPazam);
15 - A = bitxor (Result_&,B):

16

17 end

18

18 = if (enable == 1)

20

21 - G=mod (ModParam+B-5 (2) ,ModParam) ;

Pl D=mod (MedParam+A-5 (1), ModParam) ;

2 DecryptedTexcl = D:

24 - DecryptedText2 = C:

255 DeczyptedText = bitor(D , bitsll(C,18));

26

27 else

ZHE DecryptedText = uint32 (0);

29 - DecryptedTextl = uint3z(0);

(= DecryptedText2 = uint32(0);

31 end
'

Figure 3.14: Decryption Function Block

3.1.3 Transmitter Area

After encryption, data is needed to be transmitted to receiver. For this purpose, Zigbee
module is found as said before. Transmitter area can be seen in Fig.3.15. It has
three parts: bit serializer, transmitter and transmitter selection. Every room has its
transmitter and main idea is transmitting room’s data one after another and bit by bit.
After encrypted data produced in MATLAB function, decimal number went out of the
block. Nevertheless, data is needed to transfer bit by bit. In this purpose, serializer
1D block which provides by Simulink is used and data is transferred to transmitter.
As seen in Fig.3.16, decimal number is converted to 32-bit number; therefore, parallel
data is obtained. Integer to bit converter has output of true, false, false, true, true etc.

for 32-bit and serializer delivers them bit by bit.

24

‘Serializer, Transmitter and Transmitter Selection

Tx Data
Zigbee
| OrypledText S5 B Input Data Transmitter 1
: ' true PN Sequence
Transmitier 1
Bit Senializer
enable
Tx Data nabled
L Zighee - 1
[Tryp 5 | Input Data Transmitter m Lo
PN Sequence pt
Transmitteri = 4
Bit Serializer! P2 fen
ud
p3 y2
Tx Data ud
ZFighee
| CryptedText & P Input Data Transmitter pa
3 G PM Sequence
Transmitter Selection
Transmitter2
Bit Serializer2
Tx Data
Zighee
| CryptedTe B ¥ Input Data TrErESn'IiitEl
PN Sequence
Transmitterd
Bit Serializerd

Figure 3.15: Transmitter Area

Converter

@ > Integer to Bit
12548911267

CryptedText

true |
false
ifalse
| true
|false

Y
)

I trug | :

Serializer1D

Figure 3.16: Bit Serializer Subsystem

Next part is transmitter part which is used as prepared. Fig.3.17 shows the interior look

of the transmitter subsystem. There are two different outputs and data is modulated at

this part with Offset Quadrature Phase-Shift Keying (OQPSK) block. This transmitter

is driven with a 0.025 seconds sample time.

25

Input i
Ug?;glae{rm Bipolar to TN
Converter Unipolar » oapsk ———»{(1)
Converter Tx
Unipolar to
PN Sequence L Bipolar
Generator Conpveﬂﬂr

Figure 3.17: Transmitter Block

Before going receiver and output side, all transmitters must be controlled because
model has only receiver. Therefore, two clocks are added to provide enabling at
particular times. For both of them set as true, first room’s data is transmitted. Again,
this function behaves like multiplexer. The reason that multiplexer block is not used is
giving errors when the model is tried to run. Since there are two different outputs that
come out from transmitter, y1 and y2 defined to be transferred out of the transmitter

selection function as can be seen in details in Fig.3.18.

Transmitter Selection +
1 function [¥l,y¥2]= fcn(enable,enablel, ul,pl,ul,p,ul,p3,ud,ps)
2
3- if (enable ==]1)&5& (enable2 ==])
4
5= ¥l = mi;
B = y2 = pl:
7
o = elseif (enable == () && (2nable2 == 1)
9
10— ¥yl = u2;
11 = y2 = p2;
12
13 = elseif (enable = 1l)&& (enable2 = Q)
14
13 = yl = u3i;
5 = yZ = p3;
17
18 else
19
20 = ¥l = u4;
21 = yZ = p4;
22
23 end
24
25 end

Figure 3.18: Transmitter Selection Function Block

26

3.1.4 Reciever and Output Area

First part of this section is receiver area. It has Additive White Gaussian Noise
(AWGN), receiver and error calculation part as in Fig.3.19. Output y1 of the transmitter
selection function goes to AWGN before reaching receiver; since, this defines noise in
nature. After data is demodulated in receiver system, it remains as 1-bit form. For
solving output data problem, it was understood that data should be turned into bytes.

Therefore, demodulated data is sent to designed shift register that will be explained

later.
Receiver
Error Calculation
0.3748
> Tx
Error Rate >
R Caleulation =
=X 3.502e+05
Raw BER
BER
— AWGN
Rx Data
Zighee

i Demodulated Data ——
Receiver RandomintegerGenerator

» PN Sequence

Receiverl

Figure 3.19: Receiver Area

Fig.3.20 shows the inside of the receiver. These blocks provide demodulation of the
data produces as Boolean value every 0.025 seconds. Error calculation part does
not work correctly since data is driven different than this area. When 0.025 seconds
value per bit is tried to change, some errors occurs and result came wrong. So, error

calculation part is passed for now.

27

wWwVWL—
y Unipolar to
Oopsk | —pDisassemblel o o Bipolar -
Converter
@A o~ i
\/
Bipolar to
L Unipolar
Converter

Figure 3.20: Receiver Area

Second part is output area. There are 3 main parts there: shift register, function to

investigate text, and displays for room, level and alarm as in Fig.3.21.

Output
P
% . Room Mumber
—» 0 BitConcatpl » v
| | fzsassiazen ‘ y2 .
» don w3 \—
Shift Register _ Level
Discrete
3
u e
b
@_ Alarm
Change Detector

Figure 3.21: Output Area

First of all, shift register will be handled. To obtain whole number data again, the
system requires shift register later receiver. Shift register which is available in Simulink
library gave errors for this module. Then, subsystem was created for this reason and
shift register is designed in Simulink. 32 D flip flops are connected for parallelization
of the data. The reason why we need this subsystem is holding all the bits until all of
them are received. Every Q value in FF concatenated with a block that is called “bit

concat” to obtain final result. After this process, output data is obtained immediately

28

before new data is produced at patient]l subsystem. Fig.3.22 and Fig3.23 shows the
design of the shift register and the results at 0.2 seconds. Flip flops hold the values
from least significant bit to most significant bit and Q to Q31 is connected according

to place. Clock is set to 0.025 and constant value stands for clear (!CLR) connection.

Q H
ai
Q2
Q3
O)>—p a4
— o5
> a8

Q15 ———»(1)
Clock. . e p| Coneat f==
Q7 BitConcat

D Flip Flops

Figure 3.22: Shift Register Subsystem

] J
CLK »D 4 o»lp >0
true Q = false
cir 0P P CLK P - CLK
B icLr QP plicr QP cr QP

Figure 3.23: D Flip Flops Subsystems

When encrypted text is obtained in 0.8 seconds, output of the shift register is sent to
decryption block to provide to system the real data. Then, the result of decryption is
connected to function to investigate data. This function is the implementation the idea
of Fig.3.6. To learn where data comes from, data u is put the operation bitand with
7 which equals 8-bit 00000111. For the next 3-bit level is defined as 56 that is 8-bit
00111000. For the alarm same logic is followed. Last of all, change detector is used
for this part. The reason behind it is seeing the results at display when clock rises at 0.8

seconds. When the first bit of the second room is transferred to shift register, display is

29

reset. Implementation of the logic into code can be seen in Fig.3.24. It separates data

into 3 parts as room, level and alarm.

I. Screen Function | 4= |
1 function [¥1l,¥2,¥3]= fcn({u,enable)
2
i e room = uint32 (7) !
= level = uint32 (56);
i [alarm = uint32 (152) ;
&
e if (enmable == 1)
8
K ¥l = bitand{u,room) + 1;
S = v2 = (bitsrl (bitand(u,level),3)):
1 ¥v3 = (bitsrl (bitand(u,alarm),&))
12
T2 else
14
T ¥l = uint32(0) ;
i (= y2 = uint32 (0);
15 ¥3 = uint32 (0} :
8
15, end
20 end

Figure 3.24: Function to Screen Data

30

4. HARDWARE IMPLEMENTATION

4.1 Implementing Model to FPGA

4.1.1 Simplfying Model

The aim is generating C code from the Simulink model, then transferring the model to
FPGA. Fig.4.1 shows the model after removing transmitter,receiver and output area.
Moreover, room number is reduced to 2 to obtain fast and simple system. Final model
has just 2 data inputs, 3 enable inputs and a result output. Data types should be arranged

as like as model, otherwise some errors occur depending on this types.

4
G o v
enableEncrypt
uint32
'l Datat
uint32
Data1
uint32 uint32
2 Data2 Result H
b2 e A S
Data2 Result
boolean
(5 enableDecyrpt
boolean
enableDecyrpt
boolean
3 enableData
boolk

enableData Mode!

Figure 4.1: Simplified Model

When Model subsystem is investigated as in Fig.4.2, it is clearly seen that there are
just 4 functions. Datal and Data2 inputs of data-room selection function is set as
taking data from rooms. They are defined as just inputs. Real values will be given
later part of this section. Fig.4.3 shows the function of selection. Again, it has duty
of multiplexer with the simplest functional way. Slnit, encryption and decryption

functions are simplified to 2 rooms and there is no more change inside of the functions.

31

ROC5_Initialize

boolean

enbieEnarypt s

enabisEncrypt

=)

y P i 1
RC5_Encrypt RC5_Decrypt 2 Result

Figure 4.2: Model Subsystem
Model/Data-Room Selection 0 | =+
il function y= fcn(ul,u2,enableData)
2
i uint32 ul:;
o i uint32 u;
=
= if (enableData — 1)
i i " | -
g
9 else
i = ¥ = uz;
il
12 end
13
14
15 end

Figure 4.3: Simplified Data-Room Selection Function

After all process, the model is ready to be generated C code. As in Fig.4.4, subsystem
is selected and right clicked on it. C/C++ code and Embedded Coder Quick Start
is selected, respectively. From the opening screen, settings are done for the custom

processor. Then the model is ready to transfer.

32

Signals & Ports L4

Requirements

———— W enaneEnerynt .
[xcieery Maodel Advisor 4

Data
a3}

Fixed-Point Tool...

Dataz
wnia)

| Identify Modeling Clones 4
= on:m:puocym(
Maodel Transformer 4
————Mlenaneces
bociean|
Mot C/C++ Code Y 3 Embedded Cader Quick Start
HDL Code ' @ Code Generation Advisor
Block Parameters (Subsystem) @ Build This Subsystem
Properties Export Functions
Help Generate S-Function
Mavigate To C/C++ Code
Open Subsystem Report

Figure 4.4: Generating Code from Subsystem

4.1.2 Generating MicroBlaze and UART Environment

C code is generated. This section includes checking the generated C code in FPGA.
First of all, project is created in Vivado and board is selected as seen in Fig.4.5. The
board is selected to encounter enough input and output pins and Lookup Table (LUT)
elements; moreover, this is the board that we are familiar with which worked before

for another projects.

% New Project

Default Part
Choose a default Xilinx part or board for your project [

Parts | Boards

Reset All Filters

Category: | All v Package: fogf76 v Temperature: All Remaining v

Family: Artix-7 ~ Speed: All Remaining ~ Static power. All Remaining ~

Search: | G- >

Part /O Pin Count Available I0Bs LUTElements FlipFlops Block RAMs UltraRAMs DSPs GbTransceivers GTPE2T
Xc7a200tfbgB76-3 676 400 134600 269200 365 o 740 8 8
xc7a200tfbgB76-2 676 400 134600 269200 365 o 740 8 8
XC73200tfbgB76-21 676 400 134600 269200 365 1] 740 8 8
XC73200tbgs76-1 676 400 134600 268200 365 1] 740 8 8
xc7a200tifbgb76-1L 676 400 134600 269200 365 o 740 8 8

< >

oy

i

Figure 4.5: Board Selection Screen in Vivado Platform

33

After that, Create Block Design is selected from the IP Integrator part in flow navigator

to add MicroBlaze and UART. First MicroBlaze is added as in Fig.4.6; however, some

settings are needed to be changed.

BLOCK DE SIGN - design_1+
Sources | Design x Signals
[cIE-NE- |

design_1

> % microblaze_0 (MicroBlaze:11.0,

Block Properties

¥ microblaze_0

Name: microblaze_0

Parentname: design_1

2R Diagram x AddressEditor x | AddressMap x

o Q XE O Q + E|2|Clya Default View v
Designer Assistance available. Run Block Automation
microblaze_0
|I|+ NTERRUPT
|||+ pesus . o= ows +||
7 oox MicroBlaze ™ weji
F Reset

MicroBlaze

Figure 4.6: MicroBlaze in Vivado

After clicking on Run Block Automation, pop up window comes as in Fig.4.7. Local

memory is set to 64KB to avoid insufficient system for the model. Also, debug module

is set to none. Then, Vivado generates blocks automatically and make connections. In

this case, Clocking Wizard, Peripheral Advanced eXtensible Interface (AXI) Port and

local memory is generated.

%% Run Block Automation X

Automatically make connections in your design by checking the boxes of the blocks to connect. Select a block on the left to display its configuration options on the right.

[+ ¥ microblaze_0

(2)
st

Description

~ [All Automation (1 out of 1 selected)

MicroBlaze connection automation generates local memory of selected size, and caches can be configured
MicroBlaze Debug Module, Peripheral AXI Interconnect, Interrupt Controller, a clock source, Processor System Reset
are added and connected as needed. A preset MicroBlaze configuration can also be selected

Information about the options can be found in the tooltips.

Options
Preset Nane v
Local Memary 64KB ~
Local Memory ECC Mone v
Cache Configuration None v
Debug Module None v

Peripheral AX| Port Enabled w

New Clocking Wizard +

[Interrupt Contraller

Clock Connection

Figure 4.7: Settings for MicroBlaze

Just before adding UART to the system, clock is set to single ended capable because the

model is connected to one clock. Then, UART is added and clicked on Run Connection

34

Automation. Vivado makes all proper connections between inputs and outputs as seen
in Fig.4.8. From the sources part, block design is found and right clicked on it to create
HDL wrapper. This operation exists because block design cannot be synthesized. The
wrapper is synthesized. The C code has already generated and needed to be checked.
For this purpose, as a last process of Vivado is exporting hardware to integrate software

and hardware for this stage.

Diagram x Address Ed|

tor x| AddressMap x 200
e X & ¢/ Q s + E A2/Clg Defautt View v

ricrotiaze 0

)
|
) piim

o MicroBlaze =+

Figure 4.8: Completed Block Design in Vivado

4.1.3 Creating ELF File

In Vivado, from the tools tab Launch Vitis Integrated Development Environment (IDE)
is selected and a workspace is created. When export hardware process is done, there
exist a file with .xsa extension. Later, .xsa file is selected that is like in Fig.4.9 for the

hardware and empty application project is obtained.

35

New Application Project

Platform
Note: A platform project will be generated automatically in workspace for the selected XSA, It ¢2n be customized later,

Select a platform from repository (7] Create a new platform from hardware (XSA)

Hardware Specification
C:\Users\Turan! Desktop h 1 _wiapperxsa

vek190
k180

2c702
XSA File: |2¢708
2cut02

Platform name: | design_1_wrapper

@ < Back Next > Finish Cancel

Figure 4.9: Adding Exported Hardware to Vitis Platform

So, Fig.4.10 shows the hierarchy of the Vitis application project. There are 2 main
operations as a start. First, generated code folder should be added to Includes for the
system. For this, right clicked on model-system. C/C++ general/Paths and Symbols
path is selected as in Fig.4.11 and folder is added to workspace. Second, another C file
is necessary to src tab because elf file will be generated. The c file called checkModel

1s created.

[ﬁ-ExpiorE_'f E@] E%Iﬁﬂ L=

H design_1_wrapper
W |E| model_systern [design_1_wrapper]
w :[:*_:} model [standalone_microblaze 0]
Gt Includes
= src
Q; _ide
“% model.prj
£ model_system.sprj

Figure 4.10: View of the Vitis Application Project

36

«

type filter text Paths and Symbols =R - 8
Resource
Builders

w C/C++ Build Configuration: |Debug [Active] ~ | Manage Configurations...

Build Variables
Environment

Project References
Refactoring History
Run/Debug Settings

Show built-in values
ﬁ.&f Import Settings...

T =

?Se Export Settings...

Logging @ Includes # Symbols E Libraries (™ Library Paths (2 Source Location & References
Settings =
Add directory path X
Teol Chain Editor Languages s Add...
w C/C++ General GNU C Directary: i
it...
Code Analy=ic s | C\Users\Turan\Desktop'\Model_ert_rtw ‘
Documentation Delete
File Types [JAdd to all configurations b
Formatter [J Add to all languages Export
Indexer [J (= I1s a workspace path (i
Language Mappings - .
File system... Move Up
Paths and Symbols G
Preprocesser Include Pat oK Cancel I | Move Down
Project Natures @ "Preprocessor Inc

Validation
= s Restore Defaults Apply
@' Apply and Close Cancel

Figure 4.11: Adding Generated Folder to Vitis Platform

Generated code is analyzed and seen that there are external inputs and outputs which
are rtU and rtY, respectively. Inputs and outputs are as same as Simulink model names.
Moreover, generated functions that are Model_initialize and Model-step is seen in
Fig.4.12. Model_step is necessary to be called in the test function because it is mainly
the C code of all operations in Simulink model. In other words, encryption, decryption

and data-room selections are buried in Model_step.

37

/* External inputs (root inport signals with default storage) */
7= typedef struct {

43 boolean_T enableEncrypt; /* '"<Root>/enableEncrypt’
45 uint32 T Datal; /* "<Root>/Datal” */

5 uint32_T Data2; /* '"<Root>/Datal’ */

51 booclean T enableDecyrpt; /* "<Root>/enableDecyrpt’
52 booclean_T enableData; /* "<Root>/enableData’ */
53 |} ExtU;

55 /* External outputs (root outports fed by signals with default storage) */
562 typedef struct {

57 uint32_T Result; /* '"<Root>/Result’ */

58 |} ExtY;

59

68 /* Real-time Model Data Structure */

615 struct tag RTM {

62 const char T * volatile errorStatus;

63 };

65 /* External inputs (root inport signals with default storage) */
66 extern ExtlU rtl;

68 [* External outputs (root outports fed by signals with default storage) */
6% extern Ext¥Y rtY;

70

71 /* Model entry point functions */

72 extern void Model initialize(void);

73 extern void Model step(void);]

Figure 4.12: Generated Header File Model.h

The rest of the work is writing the proper code for observing the result in UART and
checking the system according to particular values assigned. Fig.4.13 shows the code.
All libraries that we need are added. For the UART, <xuartlite_l.h> is added as seen in
line 5. External input rtU and external output rtY are also called just before the main
function. Datal is set to 80 and Data2 is set to 248, which assumed as rooml and
room?2 data. Then, encryption and decryption blocks are enabled. To select Datal to
transfer, enableData input is set to 0. To provide observing the results of Datal, line of

code is written as below:

» XUartLite_ WriteReg(XPAR_AXI_UARTLITE_0_BASEADDR, 4, rtU.Datal);

Therefore, it is expected to see Datal first. However, observation is not about the
checking the system as a start. The aim of this operation is to see whether any data can
be seen or not. Afterwards, it is desired to observe another value, so 24th is written and
5 is expected to be monitored. Actually, validating part starts with while loop. Inside of
the while, the function Model_step is called which has all operations that is generated
from Simulink model. To see result, this time rtY.Result is selected while data which
is particular first room is selected. Next step is to change the data when first one is
seen as a result. To provide it, if statement is built. Since, enableData is Boolean type,

when !rtu.enableData command is implemented to the system, data which is particular

38

to 2nd room is started to send. Last operation for Vitis is creating elf file from this test

code. For this, the project is built and elf file created into the workspace.

& model_system “¢ model [[£] checkModel.c &3 "@ Maodel.c T Model.h
#include <stddef.h>
#include <math.h:
#include <stdlib.h>
#include <xparameters.h:>
#include <xuartlite 1.h>
#include "rtwtypes.h”
#include <stdic.h>
#include "Model.h™
#include "Model.c™

[T T R B YR R S RV o]

ExtlU rtU;

ExtY rtY;

wrygrerygn
Pl P b

= int main(){

rtU.Datal = 50;
rtU.Dataz = 248;
rtU.enableDecyrpt = 1;
rtU.enableEncrypt = 1;

rtU.enablebata = @;
XUartLite WriteReg(XPAR AXT UARTLITE @ BASEADDR, 4, rtU.Datal);
XUartlite WriteReg(XPAR_AXT UARTLITE @ BASEADDR, 4, 5);
while(1){

Model_step();

XUartlLite_WriteReg(XPAR_AXT_UARTLITE @ BASEADDR, 4,rtY.Result);

if((rtY.Result == rtU.Data2) || (rtY.Result == rtU.Datal))
{
rtU.enableData = !rtU.enableData;
}
}

return rtY.Result;

Figure 4.13: C Code of checkModel

4.1.4 Observating Results

When the operations in Vitis platform are done, it is time to write a testbench for the
system and associate elf file to the system. Fig.4.14 shows the test bench code. It is
written for the UART to control signals which is received and transferred. Reset and

clock operations are set.

39

GO S T o T T N o N % A oS T 6 T o I o

[T]

=3

Last of all,

use ieee.std logic 1164.all;

entity deaign_l_wrapper tb is
end design 1 wrapper th;

architecture tb of design 1 wrapper_tb is

component design 1 wrapper
port {clk_100MH=z : in std logic:
reset @ in std legic;
r3232 uart_rxd : in std logic;
rs232_uart_txd : out std logic):
end component;

aignal clk_lO00MH=z : 8td legic := '0';
gignal reset : std logic;

gignal ra232 uart_rxd : std logic;

gignal rs232_uart_txd : std logic;

constant TbPeriod : time == 10 ns; -- EDIT Put right period her

begin

dut : design_l wrapper

port map {clk_100MH=z =» clk_l00MH=z,
reset =» reset,
ra232_uart_rxd =»> ra232_uart_ rxd,
r3232 uart txd => ra232 uart txd);

clk 100MHz <

= not clk 100MHz after TbPeriod/2:

stimuli : process
begin

reset <= "'1";
wait for 2*TbPeriod;

reset <= '0";
wait for 2%TbPeriod;

waits
end process;

Figure 4.14: Testbench Code

associating elf file for both design and simulation is needed. For this
operation, in tools tab Associate ELF files is selected and generated elf file from
checkModel.c is added. To see results, Run Simulation is selected as behavioral
one. After it is simulated sufficiently, some observations are made in Fig.4.15. To
see transferred data, data_to_transfer[0:7] is investigated in simulation. 8-bit can be
observed as data. As seen, values are 80, 5, U, 248, U, 80, U, 248, respectively. So,
before the while loop in C code Datal and 5 are assigned to be observed, first. First
two results are matched with the code. After that, Model_step function that includes

both encryption and decryption operations are called and it is started. Results remains

40

‘U’ which means ‘don’t cares’ until all operations are made and the output has new
value. While, it is seen in simulation for a particular time, enableData is set to its not.
Model_step is repeated with a starting value of 80 and after a while 80 is seen as a

result. So, while one is transferred, it is time to send the following.

Figure 4.15: Behavioral Simulation Results

As aresult, to see whether designed model can be implemented on FPGA or not, model
is simplified to 2 rooms. As seen in results, it works correctly and after that point the

room number can be increased to 8 rooms for now.

41

42

5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Practical Application of this Study

The aim of this project is mainly focused on secure and efficient usage for healthcare
application of a IoT system. It can be used especially for the obtaining and using of
vital health data from the human body and depending on these data, it will be possible
to quickly reach the patient and make necessary interventions in emergency situations.
Practically, this project can improve healthcare applications in daily or emergency
basis. On the other hand, project is based on model based design. Therefore, it
decreases time and money spent on the [oT Network designing and implementing to

present it to market.

5.2 Realistic Constraints

Even though, model based design is reducing the time spent for designing, the problem
occurs mostly to do changes modeled platform into software platform. While model
becomes more complex, created code for designs is becoming more incomprehensible
and complicated. According to application, it would increase time for implementation

for some cases.

5.2.1 Social, Environmental and Economic Impact

Nowadays, Internet of Things has expanded to a global infrastructure with the number
of connected devices being in multiples of the number of people worldwide. Large
communication data and inter-connected gadgets also introduce many new ways in
which breaches of privacy and information can occur. In order to overcome the
problem of the information applied in IoT can be easily read and used for malicious
purposes, application of cryptosystems on processors used for 10T is a necessary
process. On the other hand, usage of Model Based Design will reduce the time and

money spent on the IoT Network designing to present it to market. This cooperation of

43

this two main application would create an impact for secure and low cost IoT system

for general usage.

5.2.2 Cost Analysis

The main cost factor of this project is A FPGA evaluation board that faculty
management meets. In this project, personal computers are used. In addition, it was
utilized Xilinc Vivado development environment, Xilinx Vitis Software development
environment, Matlab programming and computing platform and Matlab’s Simulink
tool are utilized for modeling, implementing and debugging. Since, these platforms

can be used free for academic purpose in our faculty, there are no other cost factor.

5.2.3 Standards

We aim to implement a system that is secure IoT healthcare applications. Thus, our
project responsible to implement safe systems. According to expected outcomes of
this project, it may include any written standard for this type research. Also, IEEE
and NIST standards were followed for the completed works. This project asserts
to be honest and realistic in stating claims or estimates based on the available data.
(IEEE-Code of Ethics) This project claims to improve the understanding of technology,
its appropriate application and potential consequences. (IEEE-Code of Ethics) This
project claims to accept responsibility in making engineering decisions consistent with
the safety, health and welfare of the public, and to disclose promptly factors that might

endanger the public/environment. (IEEE-Code of Ethics)

5.2.4 Health and Safety Concerns

The aim of this project was not to create or implement any risky or harmful products
that could damage users. It is used in IoT based products that are used in smart

healthcare systems which have many nodes required secure connection..

5.3 Future Work and Recommendations

For future works, implemented crypto algorithms can be chosen differently depending
on project application. Traditional cryptosystems are a compelling process to

implement on IoT processors since power required for implementation is substantially

44

higher than the intended levels. Overcoming this problem can be done via modifying
processors that have acceptable power consumption levels with cryptographic
operations. This aim would create an impact in economy for the information in 1oT
is secure within the region of intended power consumption levels in devices that are

used.

45

46

REFERENCES

[1] B. Mihajlov and M. Bogdanoski, “Overview and analysis of the performances
of zigbee- based wireless sensor networks,” International Journal of
Computer Applications, vol. 29, p. 30, 2011.

[2] L. Xuyang, K. Lam, K. Zhu, C. Zheng, X. Li, Y. Du, L. Chunhua, and P. Pong,
“Overview of spintronic sensors, internet of things, and smart living,” 08
2016.

[3] R. Rivest, “The rc5 encryption algorithm,” in FSE, 1994.

[4] H. Gill, “Selection of parameter ‘r’ in rc5 algorithm on the basis of prime number,”
03 2014, p. 3.

[5] Getting started with the Vitis software platform. [Online].
Available: https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/
vitis_embedded_getstarted.html

[6] R. Fatima, R. Manal, and M. Tomader, “Cryptography in e-health using
Sg based iot: A comparison study” New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3372938.3372955

[7] model-driven development (mdd). [Online]. Available:
https://searchsoftwarequality.techtarget.com/definition/
model-driven-development

[8] Field programmable gate array (fpga). [Online]. Available: https://www.xilinx.
com/products/silicon-devices/fpga/what-is-an-fpga.html

[9] P. Hoai Luan, T. H. Tran, T. Phan, D. Le Vu Trung, D. Lam, and Y. Nakashima,
“Double sha-256 hardware architecture with compact message expander
for bitcoin mining,” IEEE Access, vol. 8, pp. 1-1, 01 2020.

[10] H. B. S. Jankowski, J. Covello and J. Ritchie. (2014, 09) The internet of things:
Making sense of the next mega-trend. [Online]. Available: https://www.
goldmansachs.com/insights/pages/internet-of-things/iot-report.pdf

[11] ITU-T. (2012, 06) Internet of things global standards initiative. [Online].
Available: https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx

[12] A. B. R. Minerva and D. Rotond. Towards a definition of the internet of things
(iot). [Online]. Available: https://iot.ieee.org/images/files/pdf/IEEE_IoT_
Towards_Definition_Internet_of_Things_Issuel_14MAY 15.pdf

47

https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/vitis_embedded_getstarted.html
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/vitis_embedded_getstarted.html
https://doi.org/10.1145/3372938.3372955
https://searchsoftwarequality.techtarget.com/definition/model-driven-development
https://searchsoftwarequality.techtarget.com/definition/model-driven-development
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://www.goldmansachs.com/insights/pages/internet-of-things/iot-report.pdf
https://www.goldmansachs.com/insights/pages/internet-of-things/iot-report.pdf
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Int ernet_of_Things_Issue1_14MAY15 .pdf
https://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Int ernet_of_Things_Issue1_14MAY15 .pdf

[13] C. Yang, W. Shen, and X. Wang, “Applications of internet of things in
manufacturing,” 2016 IEEE 20th International Conference on Computer
Supported Cooperative Work in Design (CSCWD), pp. 670-675, 2016.

[14] A. Ryzhokhin. How the iot is improving transportation
and logistics). [Online]. Available: https://ardas-it.com/
how-the-iot-is-improving-transportation-and-logistics

[15] F. Zantalis, G. Koulouras, S. Karabetsos, and D. Kandris, “A review of machine
learning and iot in smart transportation,” Future Internet, vol. 11, no. 4,
2019. [Online]. Available: https://www.mdpi.com/1999-5903/11/4/94

[16] ——, “future internet a review of machine learning and iot in smart transportation,”
Future Internet, vol. 11, 04 2019.

[17] L. Pawar, R. Bajaj, J. Singh, and V. Yadav, “Smart city iot: Smart architectural
solution for networking, congestion and heterogeneity,” 05 2019, pp.
124-129.

[18] E. Tragos, V. Angelakis, A. Fragkiadakis, D. Gundlegard, C.-S. Nechifor,
G. Oikonomou, H. Pohls, and A. Gavras, “Enabling reliable and secure
iot-based smart city applications,” 03 2014, pp. 111-116.

[19] Real world iot applications in different domains. [Online]. Available: https:
/Iwww.edureka.co/blog/iot-applications/#healthcare

[20] (2020, 04) Iot in healthcare - connected devices,
telemedicine and remote monitoring. [Online].
Available: https://www.embitel.com/blog/embedded-blog/
iot-in-healthcare-connected-devices-telemedicine-and-remote-monitoring
[21] 5 applications of 1ot in agriculture - making agriculture
smarter. [Online]. Available: https://www.biz4intellia.com/blog/

5-applications-of-iot-in-agriculture/

[22] P. Sethi and S. Sarangi, “Internet of things: Architectures, protocols, and

applications,” Journal of Electrical and Computer Engineering, vol. 2017,
pp- 1-25, 01 2017.

[23] M. M. Hossain, M. Fotouhi, and R. Hasan, “Towards an analysis of security issues,
challenges, and open problems in the internet of things,” in 2015 IEEE
World Congress on Services, 2015, pp. 21-28.

[24] T. Nie, Y. L1, and C. Song, “Performance evaluation for cast and rc5 encryption
algorithms,” in 2010 International Conference on Computing, Control and
Industrial Engineering, vol. 1, 2010, pp. 106—109.

[25] M. Kollam and B. S R, ‘“Zigbee wireless sensor network for better interactive
industrial automation,” 12 2011, pp. 304-308.

[26] Zigbee. [Online]. Available: https://tr.wikipedia.org/wiki/ZigBee

[27] Math. graphics. programming. [Online]. Available: https://www.mathworks.com/
products/matlab.html/

48

https://ardas-it.com/how-the-iot-is-improving-transportation-and-logistics
https://ardas-it.com/how-the-iot-is-improving-transportation-and-logistics
https://www.mdpi.com/1999-5903/11/4/94
https://www.edureka.co/blog/iot-applications/#healthcare
https://www.edureka.co/blog/iot-applications/#healthcare
https://www.embitel.com/blog/embedded-blog/iot-in-healthcare-connected-devices-telemedicine-and-remote-monitoring
https://www.embitel.com/blog/embedded-blog/iot-in-healthcare-connected-devices-telemedicine-and-remote-monitoring
https://www.biz4intellia.com/blog/5-applications-of-iot-in-agriculture/
https://www.biz4intellia.com/blog/5-applications-of-iot-in-agriculture/
https://tr.wikipedia.org/wiki/ZigBee
https://www.mathworks.com/products/matlab.html/
https://www.mathworks.com/products/matlab.html/

[28] Simulation and model-based design. [Online]. Available: https://www.mathworks.
com/products/simulink.html/

[29] Simulink for system modeling and simulation. [Online]. Available: https:
/lwww.mathworks.com/solutions/system-design-simulation.html/

[30] Embedded coder. [Online]. Available: https://www.mathworks.com/products/
embedded-coder.html/

[31] Vivado design suite user guide. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2018_2/ug910-vivado-getting-started.pdf

[32] Microblaze. [Online]. Available: https://www.xilinx.com/products/
intellectual-property/microblazecore.html#overview

[33] Universal asynchronous receiver/transmitter (uart) for keystone devices ug.
[Online]. Available: https://www.ti.com/lit/ug/sprugp1/sprugpl.pdf

[34] Temperature sensor. [Online]. Available: https://www.mathworks.com/help/
physmod/simscape/ref/temperaturesensor.html/

[35] Ps-simulink converter. [Online]. Available: https://www.mathworks.com/help/
physmod/simscape/ref/pssimulinkconverter.html/

[36] Body temperature. [Online]. Available: https://www.healthlinkbc.ca/medical-tests/
hw198785/

[37] What should my heart rate be? [Online]. Available: https:
/lwww.medicalnewstoday.com/articles/235710/

[38] Rc5 encryption algorithm. [Online]. Available: https://www.mathworks.com/
matlabcentral/fileexchange/73672-rc5-encryption-algorithm/

49

https://www.mathworks.com/products/simulink.html/
https://www.mathworks.com/products/simulink.html/
https://www.mathworks.com/solutions/system-design-simulation.html/
https://www.mathworks.com/solutions/system-design-simulation.html/
https://www.mathworks.com/products/embedded-coder.html/
https://www.mathworks.com/products/embedded-coder.html/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug910-vivado-getting-started.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug910-vivado-getting-started.pdf
https://www.xilinx.com/products/intellectual-property/microblazecore.html#overview
https://www.xilinx.com/products/intellectual-property/microblazecore.html#overview
https://www.ti.com/lit/ug/sprugp1/sprugp1.pdf
https://www.mathworks.com/help/physmod/simscape/ref/temperaturesensor.html/
https://www.mathworks.com/help/physmod/simscape/ref/temperaturesensor.html/
https://www.mathworks.com/help/physmod/simscape/ref/pssimulinkconverter.html/
https://www.mathworks.com/help/physmod/simscape/ref/pssimulinkconverter.html/
https://www.healthlinkbc.ca/medical-tests/hw198785/
https://www.healthlinkbc.ca/medical-tests/hw198785/
https://www.medicalnewstoday.com/articles/235710/
https://www.medicalnewstoday.com/articles/235710/
https://www.mathworks.com/matlabcentral/fileexchange/73672-rc5-encryption-algorithm/
https://www.mathworks.com/matlabcentral/fileexchange/73672-rc5-encryption-algorithm/

50

APPENDICES

APPENDIX A: Generated Code
APPENDIX B: Representation of Simulink Model
APPENDIX C: RTL Schematics

51

52

20

36

51

APPENDIX A

/%

* Academic License — for use in teaching , academic research, and meeting
% course requirements at degree granting institutions only. Not for
% government, commercial, or other organizational use.

sk

%+ File: Model.c

£

% Code generated for Simulink model ’Model .

*

%+ Model version : 1.143

%+ Simulink Coder version : 9.4 (R2020b) 29-Jul -2020

% C/C++ source code generated on : Mon Jun 14 02:46:56 2021

sk

*+ Target selection: ert.tlc

#+ Embedded hardware selection: Custom Processor—>Custom Processor

% Code generation objectives:

* 1. Execution efficiency

* 2. RAM efficiency

% Validation result: Not run

*/

#include "Model.h"

/% External inputs (root inport signals with default storage) =/
ExtU rtU;

/+ External outputs (root outports fed by signals with default storage)
ExtY rtY;

/% Real—-time model =/
static RT MODEL rtM_;
RT MODEL xconst rtM = &rtM_;

/% Model step function =/
void Model_step (void)
{
int32_ T 1i;
int32_T j;
int32_T k;
uint32_T rtb_S[14];
uint32_T L[4];
uint32 T A;
uint32_ T B _0;
uint32_T X 0;
uint32_T q0;
uint32_T qY;
uint32_T qY_O;

/+ MATLAB Function: ’<S1>/SInıt° =/
for (i = 0; i < 14; i++) {

rtb_S[i] = 0U;
1

53

%/

54 A = 0U;

55 B_0 = 0U;
ss L[0] = 0OU;
57 L[1]
58 L[2] = 0OU;
59 L[3] = 0U;

(=)

|
S
S

60 for (i = 0; 1 < 8; i++) {

61 j = (int32_T)trunc ((=(real_T)i + 7.0) / 2.0);

62 q0 = L[j] << 8§;

63 L[j] = q0 + /«MW:OvSatOk =/ 1U;

64 if (q0 + 1U < q0) {

65 L[(int32_T)trunc ((—=(real_T)i + 7.0) / 2.0)] = MAX_ uint32_T;
66 }

67 }

69 rtb_S[0] = 47073U;
70 for (i = 0; 1 < 13; i++) {
71 q0 = rtb_ST[i];

7 qY = q0 + /«MW:OvSatOk=/ 40503U;
73 if (q0 + 40503U < q0) {

74 qY = MAX uint32_T;

75 }

76

7 rtb_S[i + 1] = qY = ((qY >> 16) << 16);
8 }

79

80 i = 0;

81 j = 0;

82 for (k = 0; k < 42; k++) {

83 q0 = rtb_ST[i];

84 qY = q0 + /«MW:OvSatOk=/ A;

85 if (qY < q0) {

86 qY = MAX uint32_T;

87 }

88

89 qY_0 = qY + /+«MW:OvSatOk«/ B_0;

90 if (qY 0 < qY) {

91 Y_0 = MAX uint32_T;

9 }

93

04 X 0 =qY_0 - ((qY_0 >> 16) << 16);
95 X0=X0<<3 1 X 0> 13;

96 rtb_S[i] = X 0 — ((X_0 >> 16) << 16);
97 A = rtb_S[i];

% g0 = L[jl;

99 qY = q0 + /«MW:OvSatOk=/ rtb_S[i];

100 if (qY < q0) {
101 qY = MAX uint32_T;

102 }

103

104 qY 0 = qY + /=MW:OvSatOk=/ B_0;

105 if (qY_0 < qY) {

106 qY_0 = MAX_uint32_T,;

107 }

108

109 X 0 =9qY_0 - ((qY_0 >> 16) << 16);

110 q0 = rtb_ST[i];
1 qQY = q0 + /«MW:OvSatOk=/ B_0;

54

12 if (qY < q0) {

13 qY = MAX uint32_T;

14 }

15

116 q0 = rtb_S[i];

17 qY_0 = q0 + /+MW:OvSatOk=/ B_0;

18 if (qY_0 < q0) {

19 qY_0 = MAX_uint32_T;

120 }

121

122 X 0=X0>> (16U - (qY_0 & 15U)) | X 0 << (qY & 15U);
123 L[j] = X0 - ((X_0 > 16) << 16);

124 B0 =1L[j];

125 i = (int32_T)fmod((real_T)i + 1.0, 14.0);
126 j = (int32_T)fmod((real_T)j + 1.0, 4.0);
127 }

129 /% End of MATLAB Function: ’<S1>/SInıt’° =/

1 /+ MATLAB Function: ’<S1>/Data—Room Selection’ incorporates:
) % Inport: '<Root>/Datal’

: #* Inport: ’<Root>/Data2’
34 #* Inport: '<Root>/enableData’

36 if (rtU.enableData) {
37 B 0 = rtU.Datal ;

38 } else {

39 B_0 = rtU.Data2;

140 }

1
1
1
135 #/
1
1
1
1

142 /% End of MATLAB Function: ’<S1>/Data—Room Selection’ =/

144 /+ MATLAB Function: °'<S1>/Encryption’ incorporates:
145 #* Inport: '<Root>/enableEncrypt’

146 %/

147 i = (int32_T)(B_0 & 65535U);

148 A =1 + /«MW:OvSatOk=/ rtb_S[O0];

149 if (A< (uint32_T)i) {

150 A = MAX_ uint32_T;

151 }

152

53 i = (int32_T)(B_0 << 16 & 65535U);

154 B_ 0 =1 + /«MW:OvSatOk=/ rtb_S[1];
155 if (B_O < (uint32_T)i) {

156 B_0 = MAX_uint32_T;

157 }

158

159 for (1 = 0; i < 6; i++) {

160 X 0= (A" B0 > (16U - (B_.O & 15U)) | (A" B_0) << (B_0 & 15U);
161 g0 = X 0 - ((X_0 > 16) << 16);

162 j = (int32_T) ((i + 1U0) << 1);

163 qY = rtb_S[j] + /+«MW:O0vSatOk=/ q0;
164 if (qY < q0) {

165 qY = MAX uint32_T

166 }

167

168 A =qY - ((qY >> 16) << 16);

169 X 0 = (B 0"A) > (16U - (A & 15U)) | (B_O » A) << (A & 15U);
170 g0 = X 0 - ((X_0 > 16) << 16);

55

174

176
177
178
179

180

224
225
226
227
228

229

qY = rtb_S[j + 1] + /«MW:OvSatOk=/ qO;

if (qY < q0) {
qY = MAX_ uint32_T;
}

B 0 =qY - ((qY >> 16) << 16);

}

if (rtU.enableEncrypt) ({
B 0O =B 0 << 16 | A;

} else {
B_0 = 0U;

}

/+ End of MATLAB Function :

/+ MATLAB Function: ’'<S1>/Decryption’
* Inport: ’<Root>/enableDecyrpt’

%/
A =B 0 & 65535U;
B 0 >>= 16;
for (i = 0; i < 6; i++) {

qY = B_0 + /+«MW:OvSatOk=/ 65536U;

if (B_O + 65536U < B_0) {
qY = MAX_ uint32_T;
}

o]

qY_0

if (q > qY) {
qY_ 0U;

1

o =
I o

qY = B_0 + /+«MW:OvSatOk=/ 65536U;

if (B_O + 65536U < B_0) {
qY = MAX uint32_T;
}

j =06 -1) << 1;

"<S1>/Encryption’ =/

incorporates:

q0 = qY — /=MW:OvSatOk=/ rtb_S[j + 1];

if (q0 > qY) |
q0 = 0U;
}

X 0= (q0 - ((g0 >> 16) << 16)) >> (A & 15U0) |

<< (16U - (A & 15U));

B 0= (X0 - ((X_0> 16) << 16)) " A;
qY = A + /+MW: OvSatOk:=/ 65536U;

if (A + 65536U < A) {
qY = MAX uint32_T;
}

q0 = rtb_S[j1;

qY_0 = qY - /+«MW:OvSatOk«/ qO0;

if (qY_0 > qY) {
qY_0 = 0U;
}

qY = A + /+MW:OvSatOk:=/ 65536U;

if (A + 65536U < A) {

56

Y - /+#MW:OvSatOk=/ rtb_S[((6 - 1) << 1) + 1];

(qY_0 = ((qY_0 >> 16) << 16))

258
259
260
261

262

264
265
266
267
268
269
270
271
272
274
275
276
277
278
279
280
281
282
283

284

}

qY = MAX_uint32_T;

}

q0 = qY - /«MW:OvSatOk=/ qO;
if (g0 > qY) {

q0 = 0U;
}

X 0 = (q0 — ((g0 >> 16) << 16)) >> (B_0 & 15U)

<< (16U - (B_0 & 15U));
A= (X0 - ((X0 > 16) << 16)) ~ B_O0;

if (rtU.enableDecyrpt) {
qY = B_0 + /+«MW:OvSatOk=/ 65536U;
if (B_O + 65536U < B_0) {

qY = MAX_ uint32_T;

}

/%

}

/%

{

}

A
Na}

(=N
o e

(1]8)

)

Y - /+«MW:OvSatOk=/ rtb_S[1];
> qY) {

qY = A + /=MW:OvSatOk=/ 65536U;
it (A + 65536U < A) {
qY = MAX_ uint32_T;

}

q0 = qY - /=MW:OvSatOk=/ rtb_S[0];
if (q0 > qY) {

q0 = 0U;
}

/% Outport:
rtY . Result
else {

/% Outport:
rtY . Result

’<Root>/Result’ =/

(qY_0 — ((qY_0 >> 16) << 16)) << 16

’<Root>/Result’ =/
0U;

End of MATLAB Function: ’<S1>/Decryption’

Model initialize function =/
void Model_initialize (void)

/+ (no initialization code required) =/

}

File trailer

[EOF]

for generated code.

Listing A.1: Encryption.c

57

%/

(qY_0 — ((gY_0 >> 16) << 16

(g0 — ((g0 >> 16) << 16));

APPENDIX

B

. [él
- | RN
, ==
“! [5 |
g | i |F g4 i g4 i
oLt |
I []]: NN AT A A

[T}

1
AT

Figure A.1: Simulink Model

58

APPENDIX C

g
i
HE
]
¥ i
i
B
o
S

Figure B.1: RTL Schematic

59

60

CURRICULUM VITAE

Name Surname: Heval Ronahi Halitoglu
Place and Date of Birth: Van,1997

E-Mail: ronahihltgl @gmail.com

EDUCATION:

* B.Sc.: 2015-2021, Istanbul Technical University, Electric Electronic Faculty,
Electronic and Communication Department

* B.Sc.: 08.2019-02.2020, "Angel Kanchev" University of Ruse , Electric Electronic
Faculty, Electric and Electronics Engineering Department(Exchange)

* High School: 2013-2014, Antalya Aldemir Attilla KOnuk Anatolian High School

PROFESSIONAL EXPERIENCE:
s 11.2020-Present, Part Time Employee, TUBITAK BILGEM

* 06.2020-07.2020, Summer Intern, YongaTek, Verification Department

* 07.2019-08.2019, Summer Intern, TUBITAK, Integrated Circuit Design and
Training Laboratory(TUTEL)

61

62

CURRICULUM VITAE

Name Surname: Oguzhan TURAN

Place and Date of Birth: Istanbul, 1997

E-Mail: turanol5@itu.edu.tr

EDUCATION:

* B.Sc.: 2015-2021, Istanbul Technical University, Electric Electronic Faculty,
Electronic and Communication Department

* B.Sc.: 2018-2019 Fall, Slovak University of Technology Erasmus Programme
* High School: 2011-2015, Adnan Menderes Anatolian High School

PROFESSIONAL EXPERIENCE:
* 06.2021-Present, Summer Intern,YONGATEK, Digital Design

* 10.2019-12.2019, Part Time Software Engineer Intern, INTERTECH

¢ 06.2019-07.2019, Summer Intern, INTERTECH

63

	FOREWORD
	TABLE OF CONTENTS
	ABBREVIATIONS
	LIST OF TABLES
	LIST OF FIGURES
	SUMMARY
	ÖZET
	1. INTRODUCTION
	2. INTERNET OF THINGS (IOT)
	Applications of IoT
	Manufacturing
	Transportation
	Smart Cities
	Healthcare
	Agriculture

	IoT Architecture
	Security Issue of IoT
	RC5 Cryptology Algorithm
	Mathematical Background for RC5 Algorithm

	RC5 Keys and Parameters
	Key Expansion
	Encryption
	Decryption
	Zigbee Communication Protocol
	Programs Used to Implement Project
	MATLAB and Simulink
	Xilinx Vivado Design Suite
	Xilinx Vitis Platform

	3. MODEL BASED IMPLEMENTATION
	Designing Simulink Model with ZigBee Protocol
	Room Area
	RC5 Algorithm Area
	Transmitter Area
	Reciever and Output Area

	4. HARDWARE IMPLEMENTATION
	Implementing Model to FPGA
	Simplfying Model
	Generating MicroBlaze and UART Environment
	Creating ELF File
	Observating Results

	5. CONCLUSIONS AND RECOMMENDATIONS
	Practical Application of this Study
	Realistic Constraints
	Social, Environmental and Economic Impact
	Cost Analysis
	Standards
	Health and Safety Concerns

	Future Work and Recommendations

	REFERENCES
	APPENDICES
	APPENDIX A
	APPENDIX B
	APPENDIX C

	CURRICULUM VITAE

