

ISTANBUL TECHNICAL UNIVERSITY F ELECTRICAL AND ELECTRONICS ENGINEERING

DESIGNING AND IMPLEMENTING SECURE AUTOMOTİVE NETWORK
FOR AUTONOMOUS CARS

B.Sc. THESIS

Ömer Demirci
M. Enes SOLTEKİN

Department of Electronics and Communication Engineering

Electronic and Communication Engineering

DEC 2020

ISTANBUL TECHNICAL UNIVERSITY F ELECTRICAL AND ELECTRONICS ENGINEERING

DESIGNING AND IMPLEMENTING SECURE AUTOMOTİVE NETWORK
FOR AUTONOMOUS CARS

B.Sc. THESIS

Ömer Demirci
(040160235)

M. Enes SOLTEKİN
(040150021)

Department of Electronics and Communication Engineering

Electronic and Communication Engineering

Thesis Advisor: Assoc. Prof. Dr. Sıddıka Berna Örs YALÇIN

DEC 2020

İSTANBUL TEKNİK ÜNİVERSİTESİ F ELEKTRİK-ELEKTRONİK FAKÜLTESİ

OTONOM ARAÇLAR İÇİN
GÜVENLİ HABERLEŞME AĞI TASARIMI VE GERÇEKLEMESİ

LİSANS TEZİ

Ömer Demirci
(040160235)

M. Enes SOLTEKİN
(040150021)

Elektronik ve Haberleşme Mühendisliği Anabilim Dalı

Elektronik vs Haberleşme Mühendisliği Programı

Tez Danışmanı: Assoc. Prof. Dr. Sıddıka Berna Örs YALÇIN

ARALIK 2020

Ömer Demirci and M. Enes SOLTEKİN, B.Sc. students of ITU Electrical and Elec-
tronics Engineering 040160235 , 040150021 successfully defended the thesis entitled
“DESIGNING AND IMPLEMENTING SECURE AUTOMOTİVE NETWORK
FOR AUTONOMOUS CARS”, which he/she prepared after fulfilling the require-
ments specified in the associated legislations, before the jury whose signatures are
below.

Thesis Advisor : Assoc. Prof. Dr. Sıddıka Berna Örs YALÇIN
Istanbul Technical University

Jury Members :

..............................

..............................

Date of Submission : 20 DECEMBER 2020
Date of Defense : 20 FEBRUARY 2021

iii

To my family

iv

FOREWORD

We would like to thank my supervisor Assoc. Prof. Dr. Sıddıka Berna Örs YALÇIN
for her guidance, kind advice, and help throughout our B.Sc studies.

December 2020 Ömer Demirci
. M. Enes SOLTEKİN

v

TABLE OF CONTENTS

Page

FOREWORD... v
TABLE OF CONTENTS.. vi
ABBREVIATIONS ... viii
LIST OF TABLES .. ix
LIST OF FIGURES .. x
SUMMARY ... xi
ÖZET ... xii
1. Introduction... 1
2. Foreknowledge .. 3

2.1 Controller Area Network.. 3
2.1.1 Overview .. 3
2.1.2 Controller Area Network Data Frame .. 3

2.2 Advanced Encryption Standarts (AES) .. 4
2.2.1 Encryption Process ... 5

2.2.1.1 AddRoundKey ... 6
2.2.1.2 Byte Substitution (SubBytes) .. 6
2.2.1.3 Shiftrows.. 6
2.2.1.4 MixColumns .. 7

2.3 Message Authentication Code (MAC) ... 7
2.3.1 Cipher-Message Authentication Code Generation 8

2.4 Field Programmable Gate Arrays (FPGA) ... 8
2.5 Nexys4 DDR FPGA Evaluation Board .. 9
2.6 Microblaze Soft Processor.. 10
2.7 Verilog Hardware Description Language ... 11
2.8 XILINX VIVADO .. 11

2.8.1 Creating project .. 12
2.8.2 Flow Navigator ... 13

2.9 XILINX Software Development Kit ... 14
3. Secure Onboard Communication.. 16

3.1 Secure Onboar Communication Spesifications .. 16
3.1.1 AUTOSAR.. 16
3.1.2 Protocol Data Unit ... 17
3.1.3 Freshness Value .. 17
3.1.4 Message Authentication Code Generation Algorithm 18
3.1.5 Sender ... 19

vi

3.1.6 Receiver .. 19
3.2 Literature Survey on SoC Implementation of SecOC 19

3.2.1 Worldwide .. 21
3.2.2 In Turkey .. 22
3.2.3 Litarature Analysis ... 22

4. SoC Implementation of SecOC on an FPGA ... 24
4.1 Hardware Designs of Modules ... 24

4.1.1 Advanced Encryption Standard (AES)... 24
4.1.2 Message Authentication Code Manager Module 25
4.1.3 SecOC Sender Module ... 26
4.1.4 SecOC Receiver Module .. 27
4.1.5 SecOC Top Module .. 27

4.2 Packaging Intellectual Property (IP)... 28
4.2.1 Creating a Custom Intellectual Property (IP) with IP Integrator............ 30

4.3 Software Layer ... 30
5. Conclusion And Future Works.. 33
REFERENCES.. 34
CURRICULUM VITAE... 36

vii

ABBREVIATIONS

AES : Advanced Encryption Standard
MAC : Message Authentication Code
FPGA : Field Programmable Gate Arrays
CMAC : Cipher Message Authentication Code
ECU : Electronic Control Unit
DLC : Data Length Code
ALU : Arithmetic Logic Unit
RISC : Reduced Instruction Set Computer
SecOC :Secure Onboard Communication
PDU :Protocol Data Unit
RTL :Register Transfer Logic
AUTOSAR :Automotive Open System Architecture
OBD :On - Board Diagnostic
IP :Intellectual Property
AXI :Advanced Expandable Interface

viii

LIST OF TABLES

Page

ix

LIST OF FIGURES

Page

Figure 2.1 : Standart Can Frame ... 4
Figure 2.2 : AES algorithm Schematic ... 5
Figure 2.3 : Shiftrows.. 6
Figure 2.4 : Mixcolumns ... 7
Figure 2.5 : MAC Concept .. 7
Figure 2.6 : CMAC Genaration... 8
Figure 2.7 : Nexys4 DDR.. 10
Figure 2.8 : Microblaze Structure ... 11
Figure 2.9 : Vivado Window ... 12
Figure 2.10: Vivado Environment .. 14
Figure 3.1 : SecOC in AUTOSAR Basic Software Stack 17
Figure 3.2 : PDU ... 18
Figure 3.3 : Freshness Value ... 18
Figure 3.4 : MAC Generation ... 19
Figure 3.5 : Sender Structure .. 20
Figure 3.6 : Receiver Structure ... 20
Figure 4.1 : AES RTL Schematic.. 24
Figure 4.2 : MAC Manager RTL Schematic ... 25
Figure 4.3 : MAC Manager Algorithm ... 26
Figure 4.4 : Sender Module RTL .. 27
Figure 4.5 : Receiver Module RTL ... 28
Figure 4.6 : SecOC Top Module RTL... 29
Figure 4.7 : Connecting SecOC IP with Microblaze .. 31
Figure 4.8 : Application Project and Source File ... 32

x

DESIGNING AND IMPLEMENTING SECURE AUTOMOTİVE NETWORK
FOR AUTONOMOUS CARS

SUMMARY

Thanks to the advances in technology in recent years, the development of autonomous
systems has gained momentum. With the cheaper sensors, the acceleration of the
computing platforms, and the support of the software by the communities, autonomous
systems started to be tested on vehicles with low fault tolerance.

Nowadays, autonomous vehicles have developed significantly and the margin of
error of these vehicles carrying people is quite low. Errors can be sensor-based
or computational, or they can occur intentionally when an externally accessible spy
directs the on-board computer. With this intervention from outside, the people inside
the vehicle may be injured or the accident may result in death. In this project, a system
on a chip System on Chip (SoC) was designed to prevent external intervention by using
Advanced Encryption Standarts (AES) encryption methods for data exchange between
between in-vehicle sensors and electronic control units (ECU) of autonomous vehicles.

Secure on-board communication (SecOC) with a layered structure in the literature
has been chosen to provide secure communication between in-vehicle electronic
control units (ECU). The security algorithm of this software-based system has been
implemented on Field Programmable Gate Arrays (FPGA) with verilog hardware
design language (HDL). After the hardware implementation was run, the synthesized
block was run with a program written in C using the Microblaze processor that can be
implemented on the FPGA. Finally, an application was written in the application layer
with the working blocks and tested.

xi

OTONOM ARAÇLAR İÇİN
GÜVENLİ HABERLEŞME AĞI TASARIMI VE GERÇEKLEMESİ

ÖZET

Son yıllarda teknolojide yaşanan gelişmeler sayesinde otonom sistemlerin geliştir-
ilmesi ivme kazandı. Sensörlerin ucuzlaması, hesaplama platformlarının hızlanması,
yazılımların topluluklar tarafından desteklenmesi ile birlikte otonom sistemler hata
toleransı düşük olması gereken araçlar üzerinde de test edilmeye başlandı

Günümüzde otonom araçlar önemli ölçüde gelişme kat etmiş olup, içerisinde insan
taşıyan bu vasıtaların hata payları oldukça düşüktür. Hatalar sensör veya hesaplama
tabanlı olabileceği gibi dışarıdan erişim sağlayan bir casusun araç bilgisayarını
yönlendirmesi ile bilinçli bir şekilde de meydana gelebilir. Dışarıdan gelen
bu müdahele ile araç içerisindeki kişilere zarar gelebilir yahut kaza ölüm ile
sonuçlanabilir. Bu projede otonom araçların araç içi sensörler ve elektronik kontrol
üniteleri (ECU) arasında yaptığı veri alışverişini Gelişmiş Şifreleme Standartları
(AES) kriptolama yöntemleri kullanarak dışarıdan müdaheleyi engelleyecek bir çip
üzerinde sistem Çip Üzerinde Sistem (SOC) tasarımı yapılmıştır.

Araç içi elektronik kontrol üniteleri (ECU) arası güvenli haberleşmeyi sağlamak için
literatürdeki katmanlı bir yapıya sahip güvenli yerleşik iletişim (SecOC) seçilmiştir.
Yazılım tabanlı olan bu sistemin güvenlik algoritması Alan Programlanabilir Kapı
Dizileri (FPGA) üzerinde verilog donanım tasarlama dili (HDL) ile gerçeklenmiştir.
Donanımsal gerçekleme çalıştırıldıkta sonra sentezlenen blok, FPGA üzerinde
uygulanabilen Microblaze işlemcisi kullanılarak C dilinde yazılmış bir program ile
çalıştırılmıştır. Son olarak çalışan bloklar ile uygulama katmanında bir uygulama
yazılarak test edilmiştir.

xii

1. Introduction

One of the most attractive technological development is the evolution of the

autonomous systems. The most remarkable one is the enhancements in automobile

technologies.

A standart car includes more than 70 Electronic Control Unit (ECU)’s inside it.

All these ECU’s are establishing the data transfer between car components. The

connection between these ECU’s are provided by a two-wired communication protocol

called CAN. Although there are some other protocols like FlexRay and LIN, CAN is

the price-performance protocol.

Standart Controller area network (CAN) is sufficient and reliable, however it is not

secure and accessible if there is a device connected to the CAN network physically.

A spy node connected to the car network via On-board diagnostic (OBD) port can be

able to sniff the network and manipulate it with injecting third party messages. This

security problem is not an acceptable situation in autonomous cars. An autonomous

car on the road is under a cyber attack may ends up with deadly accidents or serious

injuries. Preventing these attacks requires a secure networking inside ECU’s. SecOC,

which is released bu AUTOSAR, is one of the secure on-board solution as a software

layer. Secure Onboard Communication (SecOC) protects the network by keeping the

network freshness and authenticity, which is for the integrity and authenticity of the

messages.

This project aims to implement software based SecOC module into hardware on an

Field-programmable gate array (FPGA). Literature search reveals that SecOC is the

speedy and robust way of secure communication. The system is implemented on FPGA

and connected with a soft-processor called Microblaze.

2nd chapter is about the tools and algorithms that used in this implementation. This

includes environments, concepts, hardware and software components.

1

3rd chapter is the SecOC details, sub-blocks and explanations about SecOC.

4th and 5th chapters are about implementation on hardware and software, simulation

results and hardware results and conclusion.

2

2. Foreknowledge

This chapter summaries the tools and concepts that used in this thesis. There are basics

of concepts and definition of terminology for this thesis.

2.1 Controller Area Network

Controller Area Network (CAN) was at first made by German automotive system

provider Robert Bosch within the mid-1980s for car applications as a strategy for

empowering serial communication [1]. The objective was to form automobiles more

dependable, secure and fuel-efficient whereas reducing wiring harness weight and

complexity.

2.1.1 Overview

Controller Area Network (CAN) is an asynchronous serial communication protocol

which follows ISO 11898 standards and is widely accepted in automobiles due to

its real time performance, low price, reliability and compatibility with wide range of

devices [2]. CAN is a two wire differential bus with data rates up to 1 Mbps and offers a

very high level of robust data transfer between nodes and replaces the harness with just

2 wires. Its robust, low cost and versatile technology made CAN applicable in other

areas of applications where inter processor communication or elimination of excessive

wiring is needed. Even though it has a wide application in different areas,one of the

most important industry that uses CAN is the Automotive industry.

2.1.2 Controller Area Network Data Frame

A CAN frame consist of three basic units. First one is the ID (Identity) number, which

is the identification number of an ECU. Second part is the DLC, which stands for the

number indicates the byte number that will be transmitted with a frame. The last one

is data. There are other flags and acknowledge bits inside the frame as it can be seen

3

Figure 2.1: Standart Can Frame

from the Figure 2.1 [3]. This project mainly focuses on these three element of the CAN

frame.

2.2 Advanced Encryption Standarts (AES)

Cryptography is a type of protection for computers that converts information from Its

original form into an unreadable encrypted form. The key features that distinguish

one algorithm from another are its ability to protect data against unauthorized use

and encryption/decryption efficiency when transmitting and receiving final data [4].

Cryptographic algorithms are usually divided into two main algorithms. Symmetric

Encryption Algorithms are the first group, and Asymmetric Encryption Algorithms

are the second. The distinction between these two algorithms is that a single key

for both encryption and decryption is used by the symmetric algorithms, whereas the

asymmetric algorithms use two separate keys, i.e. One to encrypt and the other to

decrypt.

One of the most popular symmetric encryption algorithms is Advance Encryption

Standard (AES) [5]. AES was selected as a method of encrypting electronic data by

National Institute of Standard and Technology (NIST) in 2001. Now used worldwide,

this standard continues to be an active research area for implementation on both

software and hardware platforms. The features of AES are as follows:

• Symmetric key symmetric block cipher

• 128-bit data, 128/192/256-bit keys

• Stronger and faster than Triple-DES (Triple Data Encryption Standard (DES))

• Provide full specification and design details

• Software implementable in C and Java

4

All the computations are performed by AES on bytes rather than bits. Therefore the

128 bits of a plain text block are treated as 16 bytes by AES. These 16 bytes are

organized as a matrix in four columns and four rows to process.

2.2.1 Encryption Process

It is possible to break the AES encryption process into three phases: the initial round

the main round, and the final round. In various variations, all the phases use the same

sub-operations as can be seen from Figure 2.2 [6].

Figure 2.2: AES algorithm Schematic

1. Initial Round

• AddRoundKey

2. Main Rounds

• SubBytes

• ShiftRows

• MixColumns

• AddRoundKey

5

3. Final Round

• SubBytes

• ShiftRows

• AddRoundKey

2.2.1.1 AddRoundKey

The AddRoundKey operation is the only phase of AES encryption that directly

operates on the AES round key. In this operation, the input to the round is

exclusive-ored with the round key.

2.2.1.2 Byte Substitution (SubBytes)

By looking up a fixed table (S-box) provided in the design, the 16 input bytes are

substituted. The result is four rows and four columns in a matrix.

2.2.1.3 Shiftrows

Each of the matrix’s four rows is shifted to the left. Any entries that ‘fall off’ are

re-inserted on the right side of row. The change takes place as follows:

• First row is not shifted.

• Second row is shifted one (byte) position to the left.

• Third row is shifted two positions to the left.

• Fourth row is shifted three positions to the left.

• The result is a new matrix consisting of the same 16 bytes but shifted with respect

to each other. As in shown Figure 2.3 [6]

Figure 2.3: Shiftrows

6

2.2.1.4 MixColumns

Each four-byte column is now transformed using a special mathematical function. This

function takes the four bytes of one column as input and outputs four completely new

bytes, replacing the initial column. Another new matrix consisting of 16 new bytes

gives the result.As in shown Figure 2.4 [6]

Figure 2.4: Mixcolumns

2.3 Message Authentication Code (MAC)

MAC algorithm is a symmetric key cryptographic technique to provide message

authentication. For establishing MAC process, the sender and receiver share a

symmetric key. Sender and receiver both calculates the fixed-length code from data

and key. Output of this calculation called MAC .Basically, a MAC is an encrypted

checksum generated with message that is sent along with a message to ensure message

authentication . The concept can be seen from the Figure 2.5 [7].

Figure 2.5: MAC Concept

2.3.1 Cipher-Message Authentication Code Generation

7

Cipher-MAC is a technique for constructing a message authentication code from a

block cipher. The message is encrypted with a sequential block cipher algorithm to

create a chain of blocks such that each block depends on the proper encryption of the

previous block as shown in the Figure 2.6 [7]. This interdependence ensures that a

change to any of the plain text bits will cause the final encrypted block to change in

a way that cannot be predicted or counteracted without knowing the key to the block

cipher. Message is divided into fixed length sub-messages m1, m2, ... mn and last

block mx is the padded zero number of the mn last block after division.

Figure 2.6: CMAC Genaration

2.4 Field Programmable Gate Arrays (FPGA)

Field-Programmable Gate Arrays (FPGAs) are pre-fabricated silicon devices that can

be electrically programmed to become almost any kind of digital circuit or system [8].

They are formed by a two-dimensional array of programmable logic cells and managed

switches. Logic cells can be configured to implement a simple function. Besides,

connections can be established between programmable keys and logic cells. Digital

hardware is implemented by programming logic cells and switches in this way. After

the circuit is designed and synthesized using hardware description languages such as

Verilog,Very High Speed Integrated Circuit Hardware Description Language (VHDL),

the data string containing the desired logic cell and switch configuration is embedded

in the FPGA with the help of a cable .

They provide a number of compelling advantages over fixed-function Application

Specific Integrated Circuit (ASIC) technologies such as standard cells [9]. ASICs

typically take months to produce and cost the first device hundreds of thousands

to millions of dollars; FPGAs are set up in less than a second (and can also be

8

reconfigured if an error is made) and cost between a few dollars to a few thousand

dollars anywhere.

FPGAs consist of an array of programmable logic blocks, including general logic,

memory and multiplier blocks, of potentially different forms, surrounded by a

programmable routing fabric that enables programmable interconnection of blocks.

In FPGA, the "programmable" concept means an ability to program a feature into the

chip after completion of silicon manufacturing. This customization is made possible

by the programming technology, which is a method that can cause a change in the

behavior of the pre-fabricated chip after fabrication, in the “field,” where system users

create designs.

2.5 Nexys4 DDR FPGA Evaluation Board

The Nexys 4 DDR board is a complete, ready-to-use digital circuit development

platform based on the latest Artix-7™ Field Programmable Gate Array (FPGA) from

Xilinx® [10]. The Nexys A7 is the new name for our popular Nexys 4 DDR board.

The Artix-7 FPGA is optimized for high performance logic, and offers more capacity,

higher performance, and more resources than earlier designs. The appearance of the

Nexys DDR4 board can be seen in Figure 2.7 [10]

The features of the Artix-7 device can be listed as follows:

• Xilinx Artix-7 FPGA XC7A100T-1CSG324C

• 15,850 logic slices, each with four 6-input LUTs and 8 flip-flops

• 4,860 Kbits of fast block RAM

• Six clock management tiles, each with phase-locked loop (PLL)

• 240 DSP slices

• Internal clock speeds exceeding 450 MHz

• On-chip analog-to-digital converter (XADC)

• 16 user switches

9

• USB-UART Bridge

• 12-bit VGA output

• 3-axis accelerometer

• 16 user LEDs

• Two 4-digit 7-segment displays

• Micro SD card connector

• PDM microphone

• Temperature senso

• Digilent USB-JTAG port for FPGA programming and communication

Figure 2.7: Nexys4 DDR

2.6 Microblaze Soft Processor

The MicroBlaze is a 32-bit soft microprocessor core designed for Xilinx

field-programmable gate arrays (FPGA) with harward architecture [11]. For

this project, microblaze soft processor is choosen for easy of usage with ip

blocks. Microblaze supports expandable peripheral interface which is called AXI

interface [12]. AXI enables the multiple peripheral connection to the microblaze

processor . The structure of the microblaze is shown in the Figure 2.8 [11]. There

10

are 32 bit general purpose registers, ALU, program counter, instruction decoder,

instruction buffer and some special registers. Design can be expandable with some

other peripherals such that barrel shifter, multiplier and divider.

Figure 2.8: Microblaze Structure

Microblaze has a 32 bit parallel pipelined RISC (Reduced instruction set computer)

based processor [13]. There are three steps fetch decode and execute when processor

runs instructions. This procedure accelerates the processor by paralleling the

operations.

2.7 Verilog Hardware Description Language

The Verilog language provides the digital system designer with the ability to define a

digital system at a wide range of abstraction levels, while at the same time providing

access to computer-aided design software to help in the design process at these levels.

Structurally similar to the C language will be preferred in digital system design [14].

2.8 XILINX VIVADO

Xilinx Vivado Environment is an interface software used to program FPGAs developed

by Vivado Xilinx company [15]. This package, which includes many programs that

enable to make block-level design, facilitate the packaging of the designed hardware,

design hardware over Matlab, turn the code written according to a certain rule with

11

the C language into hardware, this package has managed to become a great solution

in FPGA design by eliminating the errors and accelerating as the updates arrive [16].

Thus, Xilinx has provided great convenience to designers by collecting solutions from

many areas with Vivado in one package. WebPack Edition, the free version of Vivado’s

2019.1 version, was used in this project. Vivado supports free FPGA boards such

as Artix®-7, Kintex®-7, Kintex UltraScale ™, Zynq®-7000 All Programmable SoC

[15]. It does not support old serial FPGA cards. The program automatically asks

which tools to install so that it does not take up too much space during installation.

Since the crypto design will be run with a processor in this project, the SDK tool has

been installed.

2.8.1 Creating project

It has a very simple interface compared to Vivado ISE. When the program is run It

is divided into 3 sections as quick start, tasks and learning center. A new project

is created from the quick start section as a project type, RTL project is selected for

adding Verilog/VHDL modules or IP block designs. Respectively, new source files

and if desired physical or temporal constraint files are added. Source file language as

Verilog or VHDL can be selected. The modules created in this project are written in

Verilog language. After the project type is selected, the project name is given. Then it

is selected on which FPGA board the project will be implemented. Opening window

is as in the Figure 2.9 [15]

Figure 2.9: Vivado Window

12

2.8.2 Flow Navigator

Required transactions for the project are listed in Flow Navigator. As shown in Figure

2.10 [15] There are 6 basic sections under Flow Navigator: IP Integrator, Simulation,

RTL analysis, Implementation and Program and Debug. Under Project Manager, under

Settings> General tab To be implemented on the FPGA board and with which hardware

description language it will be compiled with adjustable.

From Project Manager> Add Sources,New or existing design, simulation or constraint

files are included in the project

Under Project Manager> IP Catolog tab, Intellectual Property (IP), ready by Xilinx,

are available out of the box.Microprocessor in this project MicroBlaze Debug Module

(MDM) IP will be used as.

It can be created new IPs in IP Integrator section or block designs can be produced

with ready IPs offered by Xilinx.

In the Simulation Section, under the Run Simulation tab, behavioral, post synthesis and

Post-implementation simulations can be done with the written testbench in simulation

files. In behavioral synthesis, whether the design works functionally or not is tested.

RTL connections of the design are performed in the RTL Analysis section. How many

cells fit the design, the number of input-output ports are specified.

In the Synthesis section, it is synthesized by making high level and low level

optimizations in accordance with the design constraints. Open Synthesis Design

section time constraints can be added to the project. Likewise Project Manager>

Add Sources Time constraints file can be added from within. In addition, a synthesis

utilization report can be created to get detailed information about the resource usage in

design. At the same time, the total delays between each path can be viewed from the

report timing tab.

In the Implementation section, considering the constraints of the created design, FPGA

mapping is done on it. The hardware of the systems designed by the user detailed

information such as how much space it occupies on it, how much line delay it has, and

13

where the design will be placed in the FPGA offers. In addition, primitives to be used

on the device can be defined manually in this section.

With Generate Bitstream in Program and Debug section, bit file is created. By

connecting FPGA card from Open Hardware tab FPGA is programmed.

Figure 2.10: Vivado Environment

2.9 XILINX Software Development Kit

Software Development Kit (SDK) is an interface environment developed by Xilinx to

realize the software design of microprocessor-centric digital system designs designed

in Vivado environment [17]. In earlier versions of Xilinx’s design environments, SDK

was used together for software design and XPS to develop hardware. Later, Xilinx

included the XPS environment in Vivado and gathered all of the hardware design

processes in one place. SDK is used only for software design for designed hardware.

Libraries of the user equipment and peripheral units of the system designed in Vivado

environment are produced and the first step is taken in software design. At the same

time, the user can easily control the microprocessor by adding the libraries produced

by the SDK to the said software project.

• Feature-rich C/C++ code editor and compilation environment

14

• Project management

• Application build configuration and automatic Makefile generation

• Error navigation

• Well-integrated environment for seamless debugging and profiling of embedded

targets

Features are major features provided by SDK.

Hardware designed with HDL or schematic drawings in Vivado environment is

packaged as a special IP in Vivado environment and added together with other ready

IPs that are desired to be added to the microprocessor-centric digital system design. In

Vivado environment, the system whose hardware structure is completed is sent to the

SDK environment and the software design is made after the libraries are automatically

produced at this stage. Finally, after the hardware and the software designed to control

these hardware are completed, the hardware file with the "bit" extension containing the

hardware information and the software file with the extension "elf" are combined and

sent to the FPGA via the SDK.

15

3. Secure Onboard Communication

In this chapter, it is going to be presented Secure Onboard Communication which is

developed by AUTOSAR. SecOC concept and components of SecOC are given in

detail.

3.1 Secure Onboar Communication Spesifications

The Secure Onboar Communication (SecOC) module is responsible for generating

and verifying secure messages passed between ECUs over the in-vehicle com-

munication network [18]. The AUTOSAR SecOC specification is designed with

‘resource-efficient and practicable authentication mechanisms in mind, so that legacy

systems can also profit from it with minimal overhead. SecOC guarantees the freshness

and authenticity of a dataframe with freshness counter CMAC based authentication

mechanism.

SecOC module provides Protocol Data Unit (PDU) message integrity and

authentication. There is a MAC based encryption and freshness based protection

mechanism against replay attacks. SecOC does not provide an encrypted data. Every

ECU connected the CAN network can listen messages that broadcasted on BUS. Main

goal is the authentication of the message. Sender ECU has same pre-shared key

with the receiver and they produces same MAC and FV with same id and data. The

comparison is succeeded if exact match satisfied by receiver. Otherwise incoming data

is not meaningful and do not be used in the controller.

3.1.1 AUTOSAR

AUTOSAR is a worldwide partnership of defines standards for software archi-

tecture [18]. It is a global development partnership of automotive interested

parties founded in 2003. It pursues the objective to create and establish an

open and standardized software architecture for automotive electronic control units

16

(ECUs). Goals include the scalability to different vehicle and platform variants, the

consideration of availability and safety requirements, a collaboration between various

partners, and maintainability during the whole product life cycle.

AUTOSAR uses three layer architecture:

• Basic Software

• Runtime Environment

• Application Layer

This project focuses on Basic Software layer . The Figure 3.1 [19] shows the

organisation schematic of the SecOC inside basic software stack.

Figure 3.1: SecOC in AUTOSAR Basic Software Stack

3.1.2 Protocol Data Unit

PDU of the SecOC is shown in the Figure 3.2. The payload of the standart CAN filled

with the actual data, truncated freshness value and truncated MAC. Standart CAN

supports up to 8 bytes payload [20] .

3.1.3 Freshness Value

Freshness value is the key component for replay attacks. The Freshness value is

generated and updated in a random sequence and it is added to current PDU [20]. The

receiver updates itself by incoming freshness flags and compares it with the freshness

17

Figure 3.2: PDU

inside the receiver ECU. This process makes the system safe even if a spy node knows

the key and the message, it can not be able to manipulate receiver side without knowing

the freshness value.

Freshness value Consist of 4 parts trip counter, reset counter, message counter and

reset flag as in shown Figure 3.3 [20]. Trip counter is monotonic counter that counts

up and down according to the up and down flags produced in sender side. Reset counter

counts the reset number. Flags updates the freshness counter and reset flag resets the

freshness.

Figure 3.3: Freshness Value

3.1.4 Message Authentication Code Generation Algorithm

As shown in Figure 3.4 [21], the first step of CMAC calculation is to derive sub-keys

from the symmetric key using the sub-key generation process [21]. The message is

partitioned into a sequence of equal-sized data blocks, and AES symmetric encryption

is applied sequentially to each data block, each being XOR-ed with the previous AES

result. The MAC is obtained by truncating the last encryption result according to the

MAC length parameter. Data, id and freshness value can be used as sub-message

18

Figure 3.4: MAC Generation

blocks. Last n bits are padded with zeros until the 128 bit value achieved. Remained

AES process is done with padded n bits and sub-key output.

3.1.5 Sender

The sender part shown in the Figure 3.5 [21] takes the freshness value, data and id

values as input and converts them to the mac with mac generation block by using

shared key. The output of the sender module is the combination of data, truncated

freshness value and truncated MAC. SecOC module routes sender’s output to the CAN

driver to transmit receiver side.

3.1.6 Receiver

The receiver module schematic is given in the Figure 3.6 [21]. First, slave ECU

receives the PDU from sender ECU. PDU splits into data, FV and MAC. Second

step is comparing freshness values. After generating MAC from given inputs and

comparing with received MAC value, if both FV and MAC are matched, receiver side

authenticates the sender and allows the data to process by ECU.

3.2 Literature Survey on SoC Implementation of SecOC

19

Figure 3.5: Sender Structure

Figure 3.6: Receiver Structure

20

The combination of safety and security issues is still a main research focus and many

different projects have formed around the goal to create a secure automobile. Security

solutions for Controller Area Network (CAN) authentication were reviewed. All

studies in this field were tried to be researched and observed.Studies will be classified

under two headings.In the world and In turkey

3.2.1 Worldwide

Sigrid Gürgens and Daniel Zelle of Fraunhofer Institute, Germany, says that not

only the connections to the outside world pose new threats, also the in-vehicle

communication between ECUs, realized with bus systems like CAN, needs to be

protected against manipulation and replay of messages [22]. Multiple countermeasures

were presented in the past making use of Message Authentication Codes and specific

values to provide message freshness, most prominently AUTOSAR’s Secure Onboard

Communication (SecOC). They also researched the HMAC based authentication

procedure developed by Nürnberger and Rossow. However, they did not work on any

hardware or software implementation of SecOC in their studies .

Thomas Rosenstatter, Christian Sandberg and Tomas Olovsson says in their paper that

the CAN BUS system is one of the most common BUS technology and therefore has

become the first target of attackers [23]. In this paper, they set up a system consisting

of 2 receivers and 1 sender using Freescale MPC 5646C microcontrollers. AUTOSAR

4.3 crypto stack software module is used in this system.

Also, Qingwu Zou and her team researched Secure CAN Communication for

Automotive Applications [24]. A deeper look into the freshness and synchronization

method is carried out in their paper.In This paper refers to Infineon AURIX 32-bit

microcontrollers. The hardware setup mainly consists of three application boards of

TC234LP, one represents a sender ECU, one represents a receiver ECU, and one is

used as ‘man in the middle’ attacker ECU.

Stefan Seifert and Roman Obermaisser published a paper on providing more secure

communication for future cars [25]. They proposed a solution that also includes

FlexRay system, which is another system that provides in-vehicle communication.

As they mentioned on paper To detect attacks against the automotive networks such

21

as CAN and FlexRay, they introduce the concept of the so called ”security gateway”

which is part of the automotive architecture and is located on transition points, where

different networks connect with each other.

Ali Shuja Siddiqui, Yutian Gui Jim Plusquellic and Fareena Saqib propose a hardware

based secure and trusted framework that implements lightweight PUF based mutual

authentication and secure encryption over the insecure communication channel [26].

They emphasized the following 3 basic therates of CANBUS communication:

eavesdropping, spoofing, and unauthorized access through telematics attack. After

hardware design in Xilinx Vivado suite environment done, Experimental setup is

installed on Xilinx Kintex KC705 FPGA Evaluation Board. They made an AES-based

encryption.

In the paper they wrote, Mehmet Bozdal, Mohammad Samie and Ian Jennions stated

that the CANBUS system is very vulnerable to cyber attacks and the CANBUS system

is very critical for new generation vehicles, and they conducted a detailed research on

the measures that can be taken against this problem [27].

Giampaolo Bella, Pietro Biondi, Gianpiero Costantino, Ilaria Matteucci stated in

their articles that they developed the TOUCAN protocol to make the CANBUS

system more secure [28]. Their prototype implementation exhibits performance on

a STM32F407Disco board.

3.2.2 In Turkey

In Turkey, the number of research on CANBUS communication system shows lack of

research on this topic. Besides there are few articles about the CANBUS system,there

is no article or paper could be found regarding the SecOC protocol

3.2.3 Litarature Analysis

Many researchers mentioned in Section 3.2.1 have said that the CAN BUS system is

vulnerable. Many solutions have been proposed in this regard. In order to make the

CAN BUS line safer, the SecOC protocol developed by AUTOSAR was examined

22

in the software layer by some researcher , and even the basic CAN BUS system was

installed using microcontrollers and implemented on this setup.

In this project, the SecOC protocol was designed using Verilog hardware description

language on the Xilinx Vivado Program, tested on the designed module and checked

in simulation, and this module was produced as custom IP in Vivado and implemented

on an FPGA for the first time.

23

4. SoC Implementation of SecOC on an FPGA

This chapter mentions about implementation flow of the SecOC modules. There is

hardware and software co-design in this project. Design is also tested on an FPGA.

4.1 Hardware Designs of Modules

The implementation of the Secure Onboard Communication (SecOC) module first

started with the design of the sub-modules that make up this module, using the Verilog

hardware definition language in the vivado program. After the hardware design phase

is completed, testbench simulation modules have been written for each module to test

their accuracy.

4.1.1 Advanced Encryption Standard (AES)

Advanced Encryption Standard (AES) is used as the encryption algorithm in the

SecOC module. AES algorithm has been written by many people in verilog hardware

design language. AES module written by Kalpataru Mallick was used in this project.

The AES encryption process is described in detail in Section 2.2

Figure 4.1: AES RTL Schematic

24

Figure 4.2: MAC Manager RTL Schematic

AES module has 128 bit key and msg inputs. Also, each AES block contains ce enable

input signal. In addition, after the encryption process is completed, the 128 bit chipher

is given as a output signal. The AES encryption process consists of 10 rounds. So

when the last round is reached, the AES module sets the lastround signal. Thus, the

ce input signal of the next AES module is activated by lastround signal of previous

module.

4.1.2 Message Authentication Code Manager Module

The MAC Manager module contains 4 AES blocks. The chipher output generated by

the first AES block is used as the msg input of the other AES block. MAC Manager

module has 11 bit FV, 11bit ID, 128 bit data and 128 bit key inputs. The data coming

into the MAC module is given as msg input to the first AES block. In addition, the

key value is given as an input to each AES block. Then the ID and FV inputs coming

to the MAC block are combined in the messagesub2 section and put into xor logic

operation with the chipher, which is the output of the first AES block. The XOR output

25

Figure 4.3: MAC Manager Algorithm

is given as the msg input to the second AES block. A 106-bit 0 value is created in the

Messagesub3 section. This value is obtained by subtracting the ID and FV lengths

from 128. This method is used in classical encryption algorithms. By the way, fourth

AES module is used to generate Subkey. The 128-bit 0 value and the key are given as

input to the AES block generating subkeys. The chipher value produced by the second

AES block, subkey produced by fourth AES block and 106 bit 0 is put into the exor

logic operation. Exor output is given as msg input to the third AES block. the output

of this AES block is given as the MAC output.The algorithm of the MAC manager

module is as in Figure 4.3. The ce (chip enable) input of each AES block depends on

the lastround output of the preceding AES block and the system ce. The ce input of

the first AES block is connected to the MAC ce input. Also, the lastround output of the

last AES block is given to the lastround output of the MAC Manager module. Thus,

AES modules are activated serially.

4.1.3 SecOC Sender Module

SecOC Sender module has 11 bit FV, 11 bit ID, 128 bit data, 128 bit key and 1-bit

ce, rst inputs. Also, this module has 64-bit PDU data and lastround signal as a output.

Under the SecOC Sender module, the MAC Manager module is called as a sub module

and all inputs are given to the inputs of the MAC module. Last 21 bits of 128-bit MAC

message generated by MAC Manager are taken as temp-mac. SecOC Sender Module

26

Figure 4.4: Sender Module RTL

generates PDU (Payload Data Unit). The PDU is consists of 32 bit data, 11 bit FV

and 21 bit tempmac message. The lastround output given by the MAC Manager is also

output as the SecOC Sender module.

The data to be entered into the SecOC module is actually 32 bits. But it is padded with

a 128-bit 0 and a 128-bit value is given as data. Therefore, the last 32 bits of the data

were taken while creating the PDU.

4.1.4 SecOC Receiver Module

SecOC Receiver Module has 11 bit FV, 11 bit ID, 64 bit PDU, 128 bit key and 1 bit ce

and rst inputs.Also, has 128-bit dataout and 1-bit status as output. Under the SecOC

Receiver module, the MAC Manager module is called as a sub module. 32 bit data

is taken from the PDU data and put into padding with 128 bit 0. The MAC Manager

generates a MAC value. A temp-mac value is created again by taking the last 21 bits of

this produced MAC value. Then the tempmac value in the PDU is compared with the

newly generated this value. After FV verification is done, the module sets the status

output. In addition, the verified data is given to the data-out output.

4.1.5 SecOC Top Module

27

Figure 4.5: Receiver Module RTL

SecOC module has 128 bit data-in, 11 bit ID, 11bit FV 128 bit key, 64 bit PDU and

1 bit ce and rst inputs. Also SecOC module has 1 bit mode-select input. As a output,

SecOC module has 64 bit PDU-out,32 bit data-out and 1 bit status and last-round.

Under the SecOC module, both SecOC-receiver and SecOC-sender modules are called

as sub-modules. According to the mode-select input, it is decided which of these

sub-modules will be active. If the sender module is activated, data-in, ID, FV and key

inputs will be used and PDU will be produced as output. This generated PDU will be

given to the output of the SecOC module as PDU-out. If receiver mode is selected,

the SecOC-Receiver module will be active and PDU-in, ID, FV and key input will be

given. Verified data-out and status will be output.

4.2 Packaging Intellectual Property (IP)

Custom IP creator tool of the vivado provides IP-centric design flow that enables

the compact and reusable packaging of functions or algorithms. IP packager tool is

based on IP-XACT standart which is a unique design reuse feature. The packager tool

28

Figure 4.6: SecOC Top Module RTL
29

eligible to design an IP in any steps of the design flow and integrate it with the actual

design as system-level IP [29].

4.2.1 Creating a Custom Intellectual Property (IP) with IP Integrator

A custom AXI IP core is created in vivado projects and verilog HDL codes of the

SecOC module is integrated with that custom block. After completing the packaging,

Block design is constructed with SecOC custom IP and Microblaze as shown in the

Figure 4.7. AXI connections are completed with vivado auto-complete function.

Microblaze is the controler of SecOC module. A code written in C controls the

write-read operations of the SecOC IP’s registers. Registers have 32 bit width. This

project required 16 registers.

4.3 Software Layer

The bit stream is created with the implementation of the block design. Created

bit stream is transferred to the XSDK tool for writing a program in C language.

Application project created and a source file added to the project as shown in the

Figure 4.8. The C code basically writes the data coming from ECUs to the connected

registers of the SecOC module by addresses. After writing to the registers, the software

waits until the module finishes the operation. The results appears when the operation

succeeded.

30

Figure 4.7: Connecting SecOC IP with Microblaze
31

Figure 4.8: Application Project and Source File

32

5. Conclusion And Future Works

Autonomous vehicle’s security must be studied in a sensitive way. This field of study

is not only a data security problem, but also a matter of life or death. Autunomous

cars, autonomous airplanes and many of the self driving system must have protection

against attacks in addition to the their functionality.

This project’s goal is constructing a secure automotive CAN network by implementing

SecOC module in hardware. For this purpose, algorithm is implemented on FPGA and

then connected with a soft processor called Microblaze. Software part is written for

microblaze processor. After these steps, hardware and software co-design is completed

and tested.

Implementation of MAC Manager is completed with 4 sequential AES block. This

method occupies 4 times AES block area. This situation will be improved with adding

memory elements to the MAC and just with one AES block, same results will be taken

from MAC Manager.

There were no timing constraints in this implementation. Timing constraints will be

added after MAC Manager optimisation process is finished.

Standart 8 bit payload CAN is choosen as the protocol that will be transfer the

information. Newer CAN concepts like CANFD 64 byte payload or any other protocol

that supports more than 8 byte can be chosen for more byte transmition in a single

operation. This enables the more data transfer, more bytes of MAC and Freshness

value transmission in a single frame.

33

REFERENCES

[1] BOSCH, 1991, "BOSCH CAN Specification".

[2] ISO, 2015, "Controller area network (CAN)".

[3] Instrument, T., 2016, "Introduction to the Controller Area Network (CAN)".

[4] Hussain, S. and Zaidi, S.I.H. Fast Hardware Implementation of AES-128
Algorithm in Streaming Output Feedback Mode for Real Time Ciphering",
journal = "International Journal of Security and its Applications ", volume
=.

[5] Tutorialspoint, The Advanced Encryption Standard, https://www.
tutorialspoint.com/cryptography/advanced_
encryption_standard.htm.

[6] CommonLounge, The Advanced Encryption Standard (AES) Algorithm,
https://www.commonlounge.com/discussion/
e32fdd267aaa4240a4464723bc74d0a5.

[7] Kissell, J., 2010. Mac® Security Bible, Wiley Publishing, Inc.

[8] Kuon, I., Tessier, R. and Rose, J., 2008. FPGA Architecture: Survey and
Challenges.

[9] Ashenden, P.J., 2007. Digital Design (VHDL): An Embedded Systems Approach
Using VHDL, Morgan Kaufmann.

[10] DIGILENT, Nexys 4 DDR, https://reference.digilentinc.com/
reference/programmable-logic/nexys-4-ddr/start.

[11] XILINX, 2018, "MicroBlaze Processor Reference Guide".

[12] XILINX, 2012, "AXI Reference Guide".

[13] Churiwala, S., 2017. Designing with Xilinx® FPGAs, Springer International
Publishing.

[14] Thomas, D.E. and Moorby, P.R., 2002. The Verilog® Hardware Description
Language, Kluwer Academic Publishers.

[15] XILINX, 2020, "Vivado Design Suite User Guide".

[16] MathWorks, Design digital FPGA, SoC FPGA, or ASIC hardware, https://
www.mathworks.com/discovery/hardware-design.html.

34

[17] XILINX, 2017, "Getting Started with Xilinx SDK".

[18] AUTOSAR, 2017, "Specification of Module Secure Onboard Communication,
Classic Platform".

[19] AUTOSAR, 2017, "Specification of Secure Onboard Communication".

[20] Vector Japan Co., L., 2020, "For Beginners AUTOSAR SecOC".

[21] Sjafrie, H., 2019. Introduction to Self-Driving Vehicle Technology.

[22] Gürgens, S. and Zelle, D., 2019. A Hardware Based Solution for Freshness of
Secure Onboard Communication in Vehicles.

[23] Rosenstatter, T., Sandberg, C. and Olovsson, T., 2019, Extending AUTOSAR’s
Counter-based Solution for Freshness of Authenticated Messages in
Vehicles.

[24] Zou, Q., Chan, W.K., Gui, K.C., Chen, Q., Scheibert, K., Heidt, L. and Seow,
E., 2017, "The Study of Secure CAN Communication for Automotive
Applications".

[25] Seifert, S. and Obermaisser, R., 2014, "Secure Automotive Gateway –Secure
Communication for Future Cars".

[26] Siddiqui, A.S., Gui, Y., Plusquellic, J. and Saqib, F., 2017. A Secure
Communication Framework for ECUs Körper. (U.S.A.), Annalen der
Physik, 2(3), 1307–1313.

[27] Bozdal, M., Samie, M. and Jennions, I., 2018, "A Survey on CAN Bus Protocol:
Attacks, Challenges, and Potential Solutions".

[28] Bella, G., Biondi, P., Costantino, G. and Matteucci, I., 2019, "TOUCAN: A
proTocol tO secUre Controller Area Network".

[29] XILINX, 2018, "Creating, Packaging Custom IP Tutorial".

35

CURRICULUM VITAE

Name Surename: Ömer Demirci

Place and Date of Birth: Ordu -Turkey, 1998

E-Mail: demirciomer98@gmail.com

Education:

• B.Sc.: Istanbul Technical University

Professional Experience: 2019 - 2020 : Autonomous Systems and Robotics
Developer at Tubitak BTE

Name Surename: M. Enes SOLTEKİN

Place and Date of Birth: Mugla -Turkey, 1997

E-Mail: menessoltekin@gmail.com

Education:

• B.Sc.: Istanbul Technical University

Professional Experience: 2019 - 2020 : Autonomous Systems and Robotics
Developer at Tubitak BTE

36

