

ISTANBUL TECHNICAL UNIVERSITY

ELECTRICAL-ELECTRONICS FACULTY

SENIOR DESIGN PROJECT

FEBRUARY 2021

VERIFICATION OF A SERIAL PERIPHERAL INTERFACE INTELLECTUAL

PROPERTY BY USING UNIVERSAL VERIFICATION METHODOLOGY

Berkay TURGAY

ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT

ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT

FEBRUARY 2021

ISTANBUL TECHNICAL UNIVERSITY

ELECTRICAL-ELECTRONICS FACULTY

VERIFICATION OF A SERIAL PERIPHERAL INTERFACE INTELLECTUAL

PROPERTY BY USING UNIVERSAL VERIFICATION METHODOLOGY

SENIOR DESIGN PROJECT

Berkay TURGAY

040150097

Project Advisor: Prof. Dr. Sıddıka Berna ÖRS YALÇIN

BİR SERİ ÇEVRESEL ARAYÜZ FİKRİ MÜLKİYETİNİN EVRENSEL

DOĞRULAMA METHODU İLE DOĞRULANMASI

LİSANS BİTİRME TASARIM PROJESİ

Berkay TURGAY

040150097

Proje Danışmanı: Prof. Dr. Sıddıka Berna ÖRS YALÇIN

ŞUBAT, 2021

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

İSTANBUL TEKNİK ÜNİVERSİTESİ

 ELEKTRİK-ELEKTRONİK FAKÜLTESİ

iv

Berkay TURGAY

040150097

We are submitting the Senior Design Project Report entitled as “VERIFICATION OF A

SERIAL PERIPHERAL INTERFACE INTELLECTUAL PROPERTY BY USING

UNIVERSAL VERIFICATION METHODOLOGY”. The Senior Design Project Report has

been prepared as to fulfill the relevant regulations of the Electronics and Communication

Engineering Department of Istanbul Technical University. We hereby confirm that we have

realized all stages of the Senior Design Project work by ourselves and we have abided by the

ethical rules with respect to academic and professional integrity .

v

FOREWORD

I would like to thank to my mentor Prof. Dr. Sıddıka Berna Örs Yalçın who helped me

to find this project and who allowed me to collaborate with ANKASYS and guided

me throughout this project. Secondly, I would like to offer my gratitude to my other

mentor Ekrem Şahin from ANKASYS who guided me in all of my mistakes and who

helped me finish this project successfully. Without them, I would not finish this project

properly. Finally, I would like to thank to my family and friends who supported me

my entire life.

February 2021

Berkay TURGAY

vi

vii

TABLE OF CONTENTS

Page

FOREWORD .. v
TABLE OF CONTENTS ... vii
ABBREVIATIONS ... ix
LIST OF FIGURES ... x
SUMMARY ... xiii

ÖZET ... xiv
 INTRODUCTION ... 1
 BACKGROUND INFORMATION ... 2

 Verification ... 2
 Universal Verification Methodology .. 2

2.2.1 Verification Environment ... 3
2.2.2 UVM Classes .. 4
2.2.3 UVM Phases ... 5

2.2.4 Transaction Level Modeling .. 6

2.2.5 Top Block and Interface .. 7
2.2.6 Components .. 8

2.2.6.1 Transaction ... 8

2.2.6.2 Sequence and Sequencer .. 9
2.2.6.3 Driver ... 10

2.2.6.4 Monitor ... 11
2.2.6.5 Agent .. 12

2.2.6.6 Environment ... 13
2.2.6.7 Subscriber ... 14
2.2.6.8 Scoreboard.. 14

2.2.6.9 Test ... 16

 Serial Peripheral Interface ... 17
 VERIFICATION AND SIMULATION TOOLS .. 22

 Design Verification Kit .. 22
 QuestaSim .. 23

SERIAL PERIPHERAL INTERFACE INTELLECTUAL PROPERTY 24
 SPI Clock Generation ... 24
 Parallel Write Interface .. 25
 Parallel Read Interface ... 26

 VERIFICATION OF SERIAL PERIPHERAL INTERFACE

INTELLECTUAL PROPERTY BY USING

UNIVERSAL VERIFICATION METHODOLOGY 27
 Top Block and Interface ... 27
 Transaction ... 29

 Sequence and Sequencer .. 30
 Driver ... 32
 Monitor ... 40

 Agent .. 42
 Environment ... 45
 Subscriber ... 46
 Config ... 48

viii

 Test ... 50

 Simulation and Test Results ... 52

 REALISTIC CONSTRAINTS AND CONCLUSIONS 63
 Practical Application of this Project ... 63
 Realistic Constraints ... 63
6.2.1 Social, environmental and economic impact .. 64
6.2.2 Cost analysis ... 64

6.2.3 Standards ... 64
6.2.4 Health and safety concerns ... 64
 Future Work and Recommendations .. 64

REFERENCES ... 65
CURRICULUM VITAE .. 69

ix

ABBREVIATIONS

UVM : Universal Verification Methodology

SPI : Serial Peripheral Interface

DUT : Device Under Test

HDL : Hardware Description Language

OVM : Open Verification Methodology

I2C : Inter-Integrated Circuit

UART : Universal Asynchronous Receiver Transmitter

FSM : Finite State Machine

FPGA : Field Programmable Gate Array

RAM : Random Access Memory

DVKit : Design Verification Kit

IDE : Integrated Development Environment

IP : Intellectual Property

VIP : Verification Intellectual Property

x

LIST OF FIGURES

Page

 UVM Testbench Structure. .. 3
 UVM Class Tree .. 4

 UVM Phases .. 5

 Transaction transfer via TLM ports ... 6
 Connection between testbench and the DUT via interface 7

 Transaction Transfer Scheme .. 8
 Sequence-driver communication via sequencer 9
 Transaction transfer from sequence to driver .. 10
 Transaction transfer from driver to DUT .. 10
 Monitor in a testbench ... 11

 Agent class... 12
 Environment class ... 13

 Scoreboard’s connections .. 15

 Test class ... 16
 SPI Mode 0, CPOL=0, CPHA=0, CLK idle state=low 17
 SPI Mode 1, CPOL=0, CPHA=1, CLK idle state=low 18

 SPI Mode 2, CPOL=1, CPHA=0, CLK idle state=high 18
 SPI Mode 3, CPOL=1, CPHA=1, CLK idle state=high 18
 SPI diagram with all modes ... 19

 Regular SPI mode structure ... 19
 Daisy-chain mode .. 20

Figure 3.1 : DVKit interface. .. 22
Figure 3.2 : QuestaSim interface... 23
Figure 4.1 : Parallel write sequence . .. 25

Figure 4.2 : Parallel read sequence. .. 26

Figure 5.1 : Interface. .. 27
Figure 5.2 : Top block parameter and variable definitions. 27

Figure 5.3 : Top block adaptation layer and assertion instantiations. 28
Figure 5.4 : Top block adaptation layer and assetion instantiations continued. 28

Figure 5.5 : Transaction. ... 29
Figure 5.6 : Slave sequence class constructor. .. 30
Figure 5.7 : Slave sequence body task. ... 30

Figure 5.8 : Master sequence .. 31
Figure 5.9: Master driver class constructor and build phase..................................... 32

Figure 5.10 : Master driver driverOff and driver Clk functions. 33
Figure 5.11 : Master driver run phase. .. 33
Figure 5.12 : Master driver run phase continued. ... 34
Figure 5.13 : Master driver SPI mode 0. ... 34

Figure 5.14: Master driver SPI mode 1. .. 35
Figure 5.15: Master driver SPI mode 2. .. 36
Figure 5.16: Master driver SPI mode 3. .. 36

Figure 5.17 : Slave driver class constructor and build phase. 37
Figure 5.18 : Slave driver run phase. .. 38
Figure 5.19 : Slave driver SPI mode 0 and 1. ... 38
Figure 5.20 : Slave driver SPI mode 2 and 3. ... 39

xi

Figure 5.21 : Monitor class constructor and build phase. ... 40

Figure 5.22 : Monitor run phase and collect_transfer function................................. 40

Figure 5.23 : Monitor SPI mode 0 and 1. ... 41
Figure 5.24 : Monitor SPI mode 2 and 3. ... 41
Figure 5.25 : Master agent class constructor and declarations. 42
Figure 5.26 : Master agent build phase ... 42
Figure 5.27 : Master agent connect phase. .. 43

Figure 5.28 : Slave agent class constructor and declarations. 43
Figure 5.29 : Slave agent build phase. .. 43
Figure 5.30 : Slave agent connect phase. .. 44
Figure 5.31 : Environment connections. ... 45
Figure 5.32 : Subsciber write_master function. .. 46

Figure 5.33 : Subscriber write_slave function. ... 47
Figure 5.34 : Config class. .. 48
Figure 5.35 : Config class continued. ... 49

Figure 5.36 : Test class constructor and build phase. ... 50
Figure 5.37 : Test first sequence. .. 51

Figure 5.38: Test second sequence. .. 51
Figure 5.39 : Test base. ... 52

Figure 5.40 : Design loopback. ... 52
Figure 5.41 : SPI mode 0, design=master testbench=slave. 53

Figure 5.42 : SPI mode 0, design=slave testbench=master. 53
Figure 5.43 : SPI mode 0, design=master testbench=slave results. 54
Figure 5.44 : SPI mode 0, design=slave testbench=master results. 55

Figure 5.45 : SPI mode 1, design=master testbench=slave. 56
Figure 5.46 : SPI mode 1, design=slave testbench=master. 56

Figure 5.47 : SPI mode 1, design=master testbench=slave results. 57
Figure 5.48 : SPI mode 1, design=slave testbench=master results. 58

Figure 5.49 : SPI mode 2, design=master testbench=slave. 58

Figure 5.50 : SPI mode 2, design=slave testbench=master. 59

Figure 5.51 : SPI mode 2, design=master testbench=slave results. 59
Figure 5.52 : SPI mode 2, design=slave testbench=master results. 60

Figure 5.53 : SPI mode 3, design=master testbench=slave. 60
Figure 5.54 : SPI mode 3, design=slave testbench=master. 61
Figure 5.55 : SPI mode 3, design=master testbench=slave results. 61
Figure 5.56 : SPI mode 3, design=slave testbench=master results. 62

xii

xiii

VERIFICATION OF A SERIAL PERIPHERAL INTERFACE

INTELLECTUAL PROPERTY BY USING UNIVERSAL VERIFICATION

METHODOLOGY

SUMMARY

Due to increasing complexity of designed electronic systems, electronic system design

industry is trying to handle the challenges of marketing time and the quality of the

design. It is common to choose one over the other, but this compromise can be avoided.

Focusing on “verifying correctly” can increase both productivity and quality. From an

Intellectual Property (IP) to a System on Chip (SoC), successful design of any system

depends on the correct verification. From chip level to card level and finally to system

level, the cost of detecting an incorrect chip increases 10 times with each level pass.

Sometimes, deciding a correct verification methodology is not easy, and choosing the

wrong one can cause problems later. Verification IP (VIP) provides tools to make the

correct assumption.

VIP is nothing but a model that provides a user interaction tool at different levels of

abstraction of the basic design. Choosing the correct VIP, which includes identification

and verification methodology, is as difficult as choosing a design IP. Correct

methodology increases reusability. Debugging and error correcting is simple with the

correct methodology. It also improves the ability to abstract the underlying

complexity. Understanding how to build a permanent VIP is a challenge due to

changing technologies and market conditions.

Serial Peripheral Interface (SPI) is a synchronous serial communication interface. SPI

devices communicate in full duplex mode using a master-slave structure. The data

from the master or the slave is adjusted on the rising or falling edge of the clock. Master

and slave can send data simultaneously. Data is transferred between the master and the

slave and that transfer is synchronized to the clock that is created by the master. SPI

has 4 signals. These are Clock(SCLK,CLK), chip select/slave select(CS,SS), master-

in slave-out(MISO) and master-out slave-in(MOSI). MOSI and MISO are the data

lines. Throughout the communication, the data is synchronously sent and acquired via

MOSI and MISO lines, since SPI is a full-duplex interface. In SPI, one master can

communicate with multiple slaves. Master can select the specific slave to send data or

receive data from, by using the Slave Select (SS) signal.

In this project, an SPI Master-Slave Interface design will be used. For the verification

of this design, a VIP will be created by using UVM and the SPI interface will be

verified by the VIP.

xiv

BİR SERİ ÇEVRESEL ARAYÜZ FİKRİ MÜLKİYETİNİN EVRENSEL

DOĞRULAMA METHODU İLE DOĞRULANMASI

ÖZET

Günümüzde tasarlanan elektronik sistemlerin karmaşıklığının artması sebebiyle,

elektronik sistem tasarım endüstrisi pazara sunma süresi ve tasarım kalitesi zorlukları

ile baş etmeye çalışmaktadır. Birini diğerinin pahasına elde etmek çok yaygındır,

ancak bu ödün verme kaçınılmaz değildir. "Doğru doğrulamaya" odaklanmak hem

üretkenliği hem de kaliteyi artırabilir. Bireysel bir fikri mülkiyet (Intellectual Property

- IP) bloğundan bir yonga üstü sisteme (System on Chip – SoC) herhangi bir

uygulamanın başarılı bir şekilde tasarlanması, doğru doğrulamaya bağlıdır. Yonga

düzeyinden kart düzeyine ve son olarak sistem düzeyine her geçişte, hatalı bir yongayı

tespit etmenin maliyeti 10 kat artar. Bazen doğru doğrulama metodolojisini yargılamak

kolay değildir ve yanlış olanı seçmek daha sonra sorunlara neden olabilir. Doğrulama

IP'si (Verification IP - VIP) doğru yargıya varabilmek için araçlar sağlar.

VIP, temel tasarımın farklı soyutlama düzeylerinde bir kullanıcı etkileşimi aracı

sağlayan bir modelden başka bir şey değildir. Tanımlamasını ve doğrulama

metodolojisini değerlendirmeyi içeren doğru VIP'yi seçmek, bir tasarım IP'si seçmek

kadar zordur. Doğru metodoloji, yeniden kullanılabilirliği, hata ayıklama ve hata

düzeltme kolaylığını ve bakımı artırırken altta yatan karmaşıklığı soyutlama

yeteneğini geliştirir. Kalıcı bir VIP'nin nasıl oluşturulacağını anlamak, değişen

teknolojiler ve pazar koşulları göz önüne alındığında bir zorluktur.

Seri Çevresel Arayüz (Serial Peripheral Interface - SPI),senkron bir seri haberleşme

arayüzüdür. SPI, bir usta/çırak ilişkisi içinde çift yollu bir haberleşme düzeni sağlar.

Bilgi, ustanın ürettiğin bir saat sayesinde ustadan çırağa ya da çıraktan ustaya iletilecek

şekilde aktarılır. Bu iletişim, ustanın ürettiği saatin yükselen ya da alçalan kenarlarına

entegre edilmiştir. SPI, yükselen ya da alçalan kenarlarda bilgi iletimi sağlaması için

4 farklı modda çalışmaktadır. Bilgi, Usta Giriş-Çırak Çıkış(MISO) ve Usta Çıkış-

Çırak Giriş(MOSI) hatları üzerinden, eşzamanlı olarak aktarılır. Ayrıca birden fazla

çırak ile çalışmak SPI protokolünde mümkündür. Usta, Çırak Seçim(Slave Select-SS)

biti sayesinde hangi çırağa bilgi aktaracağını ya da bilgi toplayacağını seçebilir.

Bu projede, daha önceden tasarlanmış bir SPI Master-Slave arayüzü kullanılacaktır.

Daha sonra bu tasarlanmış modülün doğrulanması için bir VIP tanımlanacak ve VIP

kullanılarak SPI modülü doğrulanacaktır.

1

1. INTRODUCTION

In this project, a digital circuit design is verified by using Universal Verification Methodology

(UVM) [1]. UVM is a regulated methodology and has many advantages for the engineers and

it is very reliable. Main purpose of this project is to learn and perform the UVM methodology

and create a verification environment. Since the main goal is to create a verification

environment, a previously designed interface is used as Serial Peripheral Interface Intellectual

Property (SPI IP) in this project [2]. This SPI IP is an SPI Master-Slave interface and is designed

by using Verilog [3] and SystemVerilog [4] hardware languages. In order to create a verification

environment, SystemVerilog and UVM is learnt and implemented. The design code is examined

and the signals are defined and connections are made accordingly to the verification

environment.

The design is simulated in a simulation tool, QuestaSim [5] and tested by defining input values

and signals. Design’s simulation behavior is explained in the SPI IP section.

After that, by using UVM, a verification environment is created and the design is tested by

using the Design Verification Kit (DVKit) program [6]. QuestaSim simulation tools is also used

and two simulation results are compared. UVM’s class library, hierarchy and UVM’s phases,

as well as all the components that are created and used in the verification environment, all the

verification steps and the simulation results are explained in the Verification of SPI IP by using

UVM section.

2

2. BACKGROUND INFORMATION

2.1. Verification

The method of checking and confirming the digital circuit design works as intended is called

verification. The verification process includes building a test environment by using hardware

description languages (HDL) and simulating the design by using various simulators [7].

The main goal of the verification is detecting mistakes. Each digital circuit design has its task,

verification engineers have to check and verify that the task is completed as expected. For that,

verification engineers build a test environment to show that expected and simulated results are

matching.

Checking and confirming the digital circuit design for its accuracy and verifying its reliability

are crucial. Therefore, it is inevitable that digital system designs need to be verified.

2.2. Universal Verification Methodology (UVM)

Universal Verification Methodology (UVM) is a regulated methodology for verifying digital

circuit designs. UVM is a set of class libraries characterized using the syntax and semantics of

SystemVerilog. Its primary goal is to create verification environments that are reusable and

arranged well. Before UVM, verification languages like SystemVerilog, e [8] and Vera [9] were

used to verify designs. Also, Open Verification Methodology (OVM) were used as verification

methods [10]. However, as the complexity of the digital circuit designs increased, verification

of these systems with these methods and languages became more and more challenging.

Initially, UVM is derived from OVM and promoted by vendors like Synopsys [11], Cadence

[12] and Mentor [13]. The main advantage of UVM is the UVM class library. UVM class library

is written in SystemVerilog language and it provides particular mission for each component.

For instance, a driver class is only in charge of driving signals to the design whereas a monitor

class just monitors the design interface and does not drive signals. This feature can be achieved

with UVM’s class hierarchy. With class hierarchy, each component and sub-component have

different responsibilities and can updated separately. Creating a verification environment by

using SystemVerilog language is simple but updating and changing each component can be

hard. However, with UVM, creating and changing the verification environment are both

uncomplicated and easy. Thus, UVM class library and class hierarchy is making the verification

environments reusable and making them neat, not complex for the users.

3

2.2.1. Verification Environment

For the verification of a digital circuit design, a verification environment is needed. This

environment is called testbench and it includes all the verification components. This testbench

will communicate with the DUT (Device Under Test) by using interface. In Figure 2.1, UVM

testbench structure is shown. It also includes the interface connection between DUT and the

testbench. All the components of this testbench will be explained later. UVM class library, class

hierarchy, UVM phases will be used for the creation of the verification environment [20].

Figure 2.1: UVM Testbench Structure [20]

4

2.2.2. UVM Classes

As previously mentioned, UVM class library provides great advantages. The library makes it

easy to edit and update each component separately, without having to change the whole

testbench. A class tree of UVM classes can be seen down below in Figure 2.2.

Figure 2.2: UVM Class Tree [20]

Uvm_object class is the core class for the all UVM data and hierarchical classes. All the

components and transactions are derived from uvm_object. Its main duty is to give description

to the methods for universal applications like create, copy, compare, print and record [21].

Uvm_component class is the origin core class for UVM components. All UVM components

are derived from uvm_component. Uvm_component provides hierarchy interface to search and

travel through component hierarchy. All the verification components are derived from

uvm_component class such as uvm_driver, uvm_agent, uvm_monitor etc. Besides hierarchy

interface, uvm_component also grants phasing, reporting, transaction recording and factory

interfaces [22].

UVM components and the UVM transaction classes will be explained later.

5

2.2.3. UVM Phases

UVM phases are coordinated structures for the verification environment. Every verification

component pass through UVM phases. Every time a new component is created, the simulation

of the verification environment runs through UVM phases to build, compose and connect the

testbench component hierarchy [20]. The most essential phases can be seen in Figure 2.3.

Figure 2.3: UVM Phases [20]

Build phase creates testbench components and establish their instances.

Connect phase connects verification components, for instance, it connects driver component to

sequencer component.

Run phase is the primary phase where the simulation is carried out.

Report phase demonstrates the result of the simulation [20].

6

2.2.4. Transaction Level Modeling (TLM)

Transaction Level Modeling (TLM) is an interface structure that transfers the created

transactions between the components. This transfer is achieved by exclusive ports called TLM

interfaces. This modeling sets apart components from each other, if one component is updated,

other components that are connected to this component are not affected [44].

TLM library comes with transaction-level interface, ports, imports, exports and analysis ports.

In Figure 2.4, a simple connection between ports of components can be seen.

As an example, driver component uses a TLM port, seq_item_port, to initiate communication

with sequencer. With functions like get_next_item and item_done, this communication can be

started and finished.

Another example is in the monitor class. Monitor class uses the analysis port

(uvm_analysis_port) to call the write function. This write function essentially writes the data

that is observed in monitor to the analysis port. Any component that is connected to this analysis

port via analysis export can read the data. When monitor class calls the analysis_port.write(), it

checks all the connected exports and calls their write functions. This way scoreboard or

subscriber components can read and write the data that is observed in monitor.

Figure 2.4: Transaction transfer via TLM ports [44]

7

2.2.5. Top Block and Interface

In order to connect the testbench and DUT, two components are required. These are top block

and the interface. The top block establishes instances of the DUT and the testbench and the

interface connects them. The interface contains all the signals of the DUT. Other components

such as driver and monitor, as well as the DUT will be attached to the interface [23]. Figure 2.5

shows the simple connection between testbench and the DUT via interface.

In order to connect to interface to the DUT, virtual interface object is established in top block,

then the virtual interface is linked with the DUT that is instantiated in the top block as well.

As mentioned before, interface holds the signals, and allows the user to file and check the

transactions transferred between the testbench and the DUT in top block. Since all the data

covered in the interface, it is a simple way to establish communication this way.

Figure 2.5: Connection between testbench and DUT via interface [24]

8

2.2.6. Components

2.2.6.1. Transaction

One of the basics of the verification of a digital circuit design is to create data packages. These

data packages are sent to the DUT to be processed. The smallest of these data packages or items

are called transactions. Usually, the driver class handles signal transfers at the bit layer, but

when an 8-bit of a package is needed to be transferred to the DUT, a transaction class is needed

[25].

A transaction is a class object and it develops from uvm_transaction or uvm_sequence_item

classes. Transaction class carries all the data necessary to create the transmissions between the

other components. Transactions are the least possible amount of data can be transmitted and

can be carried out by the verification environment as can be seen in Figure 2.6.

Figure 2.6: Transaction Transfer Scheme [26]

9

2.2.6.2. Sequence and Sequencer

Sequence class is the class that creates sequences from the previously generated transactions. It

extends from uvm_sequence class. These sequences are basically data item combinations,

sequence class combines transactions in many ways to generate different outcomes. After that,

these sequences are transferred to the driver via sequencer class. Sequencer class extends from

uvm_sequencer in order to establish a communication with the driver [25]. This communication

establishment can be seen in Figure 2.7.

Figure 2.7: Sequence-driver communication via sequencer [27]

10

2.2.6.3. Driver

Driver is responsible for sending created transactions to the DUT. Driver gets those

transactions, changes them into bit-level actions, and drives the data into the DUT [28]. This

structure can be seen in Figures 2.8 and 2.9.

As seen in Figure 2.7, driver receives the transactions or sequence items from sequencer. This

communication is established via some techniques. Driver class has a uvm_seq_item_pull port

to receive transactions from sequencer. First, driver calls the get_next_item function to start the

communication. This function runs until all the transactions are transferred. After that,

item_done function is called by the driver in order to stop the communication.

Figure 2.8: Transaction transfer from sequence to driver [25]

Figure 2.9: Transaction transfer from driver to DUT [29]

11

2.2.6.4. Monitor

Monitor is a class that inspects and monitors the communication between the DUT and the

testbench. It shows the results from the DUT and displays them to the user. Monitor is a static

component, that means it does not send any transactions to any component, its only job is to

convert the signals that are sent from the DUT to purposeful data, and then these data will be

assessed by other components [30]. Monitor’s location and its connections between other

components can be seen in Figure 2.10.

Monitor class has an analysis port to allow the users to declare the data to other components

such as subscriber and scoreboard. Data is not driven by the monitor, translated data is simply

read by the subscriber or scoreboard, in order to compare and verify the result. This

communication is established via the analysis port.

Figure 2.10: Monitor in a testbench [31]

12

2.2.6.5. Agent

Agent is class that contains all the previous components, driver, monitor and transaction. In

Figure 2.11, agent class connects these components to each other and makes the connection to

the scoreboard component. It defines the component ports, such as slave and master driver

ports, it also allows the user the select the specific driver. Agent class does not need a run phase.

All the components established in the build phase and connected in the connect phase. When

the agent class is activated by UVM_ACTIVE, it starts an if statement to choose the slave or

master driver. Then the transactions are sent or received accordingly to the selected driver [32].

Figure 2.11: Agent class [33]

13

2.2.6.6. Environment

Environment class is a very simple class that acts like a capsule, it consists of agents, drivers

and all the components that are created for the verification environment as can be seen in Figure

2.12.

Agents and scoreboards/subscribers can be incorporated in test class directly but it is not an

ideal solution. Environment class is defined because of the reusability, it is easy to update the

structure, if incorporation is done in test class, it would take a lot time to upgrade the files.

Created environments can be used for multiple tests. For each test, there would be no need to

build the environment and its subcomponents from scratch [34].

Figure 2.12: Environment class [35]

14

2.2.6.7. Subscriber

Subscriber is class that has a built-in analysis port named analysis_export which provides access

to the write method for receiving transactions. Previously created monitor class has an analysis

port which contains write function. With this analysis port, transactions are transferred to

analysis components like scoreboard or subscriber. Subscriber basically acts as an audience for

the analysis port, they “subscribe” to a communicator and acquires and then prints the results

of the received transactions whenever they are published [36].

2.2.5.8. Scoreboard

Scoreboard class is created to validate and verify the design. It examines the results from the

DUT, and compares them with the anticipated results. Scoreboard obtains the transactions by

checking the monitor’s analysis port [40]. Scoreboard’s location in the testbench structure, as

well as its connection to the monitor and DUT can be seen in Figure 2.13.

Scoreboard class uses its export port to read the data from monitor’s analysis port. Monitor

class calls the analysis_port.write(), it checks all the connected exports and calls their write

functions. After that, scoreboard can analyze and verify the data.

15

Figure 2.13: Scoreboard’s connections [43]

16

2.2.6.9. Test

Test class is created to run the tests for the design. These tests are built by user and many

different tests can be applied to the design since test class contains environment class and all

the other components. That is why this method is chosen since it allows the user to reuse the

verification environment without changing the all structure [41].

As mentioned, test class capsules the environment class so many different sequences can be

carried out by the user, either in the same test via using different sequencers or operating

different tests. That way, users validate the design by running different sequence combinations.

Created tests called and carried out in top block of the testbench by using run_test function. As

specified before, with this arrangement, more than one test and different sequence combinations

can be achieved for different outcomes and the verification of the design would be more valid.

Test class encapsulates environment and other classes as can be seen in Figure 2.14.

Figure 2.14: Test class [42]

17

2.3. Serial Peripheral Interface (SPI)

Serial Peripheral Interface (SPI) is a synchronous serial communication interface. SPI devices

communicate in full duplex mode using a master-slave structure. The data from the master or

the slave is adjusted on the rising or falling clock edge. Master and slave can send data

simultaneously. SPI has 4 signals. These are Clock (SCLK, CLK), chip select/slave select (CS,

SS), master-in slave-out (MISO) and master-out slave-in (MOSI). MOSI and MISO are the data

lines. MOSI sends data from the master to the slave and MISO sends data from the slave to the

master. Clock signal is produced by the master. Data is carried between the master and the

slave, and synchronized to the clock that is created by the master. To start the SPI

communication, the master sends the clock signal and chooses the slave by activating the chip

select signal. Throughout the communication, the data is synchronously sent and acquired via

MOSI and MISO lines, since SPI is a full-duplex interface. There are 4 modes of the SPI

communication. The master can choose the clock polarity (CPOL) or the clock phase (CPHA)

to determine these modes. The CPOL bit configures the polarity of the clock signal during the

ineffective case. The CPHA bit picks the clock phase. The rising or falling clock edge is used

to examine and/or move the data [37]. SPI modes with CPOL and CPHA can be seen down

below in Figures 2.15, 2.16, 2.17 and 2.18.

Figure 2.15: SPI Mode 0, CPOL=0, CPHA=0, CLK idle state=low [37]

In SPI Mode 0, clock polarity is 0, which displays that idle state of the clock signal is low.

Clock phase is 0, which implies that the data is examined on the rising edge and then the data

is transferred on the falling edge of the clock signal as can be seen in Figure 2.15.

18

Figure 2.16: SPI Mode 1, CPOL=0, CPHA=1, CLK idle state=low [37]

In SPI Mode 1, clock polarity is 0, which displays that idle state of the clock signal is low.

Clock phase is 1, which implies that the data is examined on the falling edge and then the data

is transferred on the rising edge of the clock signal as can be seen in Figure 2.16.

Figure 2.17: SPI Mode 2, CPOL=1, CPHA=0, CLK idle state=high [37]

In SPI Mode 2, clock polarity is 1, which displays that idle state of the clock signal is high.

Clock phase is 0, which implies that the data is examined on the falling edge and then the data

is transferred on the rising edge of the clock signal as can be seen in Figure 2.17.

Figure 2.18: SPI Mode 3, CPOL=1, CPHA=1, CLK idle state=high [37]

In SPI Mode 2, clock polarity is 1, which displays that idle state of the clock signal is high.

Clock phase is 1, which implies that the data is examined on the rising edge and then the data

is transferred on the falling edge of the clock signal as can be seen in Figure 2.18.

19

An SPI diagram, including all the modes can be seen down below in Figure 2.19.

Figure 2.19: SPI diagram with all modes [38]

One SPI master can work with numerous slaves. These slaves can be linked in regular mode or

daisy-chain mode. Figure 2.20 shows the regular mode structure. In regular mode, every slave

has its own chip select signal from the master. When the chip select signal is activated by the

master, MOSI and MISO lines are ready to use for the clock and the data transfer for chosen

slave. If master activates more than one chip select, it cannot recognize which slave is sending

data and the data on MISO line becomes distorted [37].

Figure 2.20: Regular SPI mode structure [37]

20

In daisy-chain mode, in Figure 2.21, the slaves arranged such that the chip select signal for the

slaves is connected to each other and data flows from one slave to the next. In this setup, each

slave gets the exact SPI clock simultaneously. First slave obtains the data from the master and

passes on the next slave until all slaves get the data. It is not as efficient as regular mode, because

number of the clock cycles needed to send data is significantly more in daisy-chain mode [37].

Figure 2.21: Daisy-chain mode [37]

21

There are some advantages and disadvantages of SPI, compared to other communication

protocols like I2C (Inter-Integrated Circuit) [14] and UART (Universal Asynchronous Receiver

Transmitter) [15]. First, SPI has some advantages over its counterparts. Unlike UART, SPI has

no start and stop bits, data is transmitted repeatedly without disruption. SPI’s slave

communication method is not as complex as I2C’s slave communication method. SPI has

greater data transfer percentage that I2C. Also, SPI has MISO and MOSI lines, both of these

lines can be used for transmitting and receiving data simultaneously. However, SPI has some

disadvantages as well. SPI uses four wires whereas I2C and UART use two wires. Since SPI

has no start or stop bits, no confirmation on the delivery of the data, I2C has that feature. Also,

unlike UART, SPI has no parity bit so that it cannot inspect the mistakes in the data. Finally,

although SPI supports multiple slaves, it only permits one master [39].

22

3. Verification and Simulation Tools

Creating a verification environment, simulating the design and comparing the results require

some tools. In this project, an Integrated Development Environment (IDE) is needed for

developing the verification environment and for the simulations, a simulation environment is

needed. For IDE, DVKit is used and for simulator, QuestaSim is chosen.

3.1. Design Verification Kit (DVKit)

DVKit is an IDE for design and verification engineers. IDE provides engineers with extensive

tools for the software development. DVKit helps the verification engineers to handle the

verification environment which consist of SystemVerilog and UVM. It comes with an editor,

SystemVerilog Editor (SVEditor), for Verilog and SystemVerilog as well as UVM. It also

comes with C development tools and Webtools for development but these are not necessary to

create a verification environment. These tools can be activated by using the Eclipse plugin since

DVKit’s IDE is Eclipse-based [6]. Main interface of the DVKit can be seen in Figure 3.1.

Figure 3.1: DVKit interface [6]

23

3.2. QuestaSim

Questa is a verification tool that includes an integrated platform called QuestSim. Questa is

owned and developed by Mentor Graphics. QuestaSim can perform advanced verification of

electronic systems with high efficiency. Administration and debugging facilities are embedded

in QuestaSim structure [5]. It is based on ModelSim [16] tool, which is also owned by Mentor

Graphics. Main difference between ModelSim and QuestaSim is, QuestaSim supports

SystemVerilog and UVM, but ModalSim does not, which is why in this project, QuestaSim is

used for the simulations -.

QuestaSim’s main interface can be seen in Figure 3.2.

Figure 3.2: QuestaSim interface

24

4. Serial Peripheral Interface Intellectual Property (SPI IP)

An SPI Master-Slave Interface is used as SPI IP to verify in this project. This design includes

an SPI clock generation, parallel read interface and parallel write interface. Read and write

sequences can be seen down below.

The actions in the design are synchronous to two clocks, “sclk_i” and “pclk_i”. These clocks

are not parallel, they are not occurring at the same time. All actions within the center are

simultaneous to “sclk_i”. By using “sclk_i”, SPI core clock can be created. “sclk_i” is divided

by the frequency that is double the amount of the SPI SCLK line frequency. All coordinated

I/O connection actions are simultaneous to “pclk_i”. This clock is also known as high speed

clock.

This design is uncomplicated and very easy to use. It has parallel inputs and outputs that behave

like a synchronous memory I/O. It is parameterizable via generics for the data width (N), SPI

modes (CPHA and CPOL), prefetch signaling (‘PREFATCH’) and the SPI base clock division

from “sclk_i” (SPI_2X_CLK_DIV) by the user.

4.1. SPI Clock Generation

The clock creation is obtained from the high-speed “sclk_i” clock for the SPI SCLK. To

establish the SPI base clock, the center divides the source clock by the default parameter

“SPI_2X_CLK_DIV”. For the SPI 2X clock, the user must adjust the divider value, which is

twice the desired SCLK frequency.

All registers in the center are clocked by the high-speed clocks and clock enables makes the

Finite State Machine (FSM) [17] and other logics to execute at lower rates. Field Programmable

Gate Array (FPGA) [18] clock utilities such as global clock buffers are preserved by this

architecture and path delays that are created by combinational clock divider outputs are averted.

To control asynchronous clocks for the SPI and parallel interfaces, this center has asynchronous

clock domain circuitry.

25

4.2. Parallel Write Interface

The parallel interface has an input port “di_i” and an output port “do_o”. Three signals are used

to control the parallel load: “di_i, “di_req_o” and “wren_i”. “di_req_o” is a look ahead data

request line, it is used to adjust the “PREFETCH” clock cycles up front to synchronize a

pipelined memory, to give the next input data at “di_i” directly to have continuous clock at SPI

bus, to grant back-to-back continuous load.

For a pipelined sync Random Access Memory (RAM) [19], a PREFETCH of 2 cycles admits

an address creator to give the new address to the RAM in one cycle, and the RAM to answer

back in one extra cycle, in time for “di_i” to be latched by the shifter. If the user wants to use

the sequencer with a different value for PREFETCH, the default setting can be changed at

instantiation time. The “wren_i” write enable strobe must be accurate at least one setup time

before the rising edge of the last SPI clock cycle, if continuous communication is planned. If

“wren_i” is not accurate 2 SPI clock cycles after the last carried bit, the interface goes in an idle

state and declares SSEL. When the interface is idle, “wren_i” write strobe carries the data and

starts communication. “di_req_o” will strobe when arriving idle state, if a previously carried

data has already been submitted. Parallel write sequence, with “pclk_i”, “di_req_o”, “di_i” and

“wren_i”, can be seen down below in Figure 4.1.

Figure 4.1: Parallel write sequence

26

4.3. Parallel Read Interface

To clone the internal shift register data to send the “do_o” port, an internal buffer is utilized.

The central shift register is sent to the buffer at the rising edge of the SPI clock, “spi_clk”, when

a full word is obtained. “do_valid_o” signal is configured one clock after “spi_clk” to send a

synchronous memory instantly. “do_valid_o” and “pclk_i” are concurrent, on rising edges of

“pclk_i”, “do_valid_o” alters. The data at the “do_o” port contains the last word obtained while

the interface is idle. Parallel read sequence, with “spi_clk”, “pclk_i”, “do_o” and “do_valid_o”

can be seen down below in Figure 4.2.

Figure 4.2: Parallel read sequence

The propagation delay of “spi_sck_o” and “spi_mosi_o”, referenced to the internal clock is

compensated by identical path delays, but for full duplex application, the “spi_miso_i”

sampling delay establishes an setup time referenced to the “sck” signal that restricts the

interface’s high frequency.

27

5. VERIFICATION OF SERIAL PERIPHERAL INTERFACE INTELLECTUAL

PROPERTY (SPI IP) BY USING UNIVERSAL VERIFICATION METHODOLOGY

(UVM)

5.1. Top Block and Interface

For this project, the interface unit includes SCLK, MOSI, MISO, SS, RST and external clock.

These signals are defined as logics, because they are 4-state data types and also SystemVerilog

suggests that these signals should be declared as logics by the definition. Interface unit can be

seen down below in Figure 5.1.

External clock and RST are used in master driver. External clock is used for creating a clock

for the master driver and RST is used for resetting the chip/slave select signal for the master

driver.

Figure 5.1: Interface

For the top block, parameter and variable definitions such as master and slave memory are

defined in Figure 5.2.

Figure 5.2: Top block parameter and variable definitions

28

Also, adaptation layer and assertion instantiations are done. Adaptation layer is need because

the design is created by using VHDL but verification environment is created by using

SystemVerilog and UVM. Because of this, an adaptation layer is implemented. In top block,

instances of the DUT signals are created and connected to the interface. Those instance

declarations can be seen in Figures 5.3 and 5.4.

Figure 5.3: Top block adaptation layer and assertion instantiations

Figure 5.4: Top block adaptation layer and assertion instantiations continued

29

5.2. Transaction

In this SPI VIP, data packages are created with the width of 8 bits. Each data has their unique

address. These addresses are defined as 7-bits. Transaction class also has 3 modes, Read (RD),

Write (WR) and Error (ERR). MOSI and MISO data are also defined as 8-bit packages in Figure

5.5.

Figure 5.5: Transaction

30

5.3. Sequence and Sequencer

In Figures 5.6, 5.7 and 5.8, sequence class is seen. Here, created transactions are taken and put

into miso_data and mosi_data as random 12-bit packages. Then, in body task, these sequences

are requested by “req” and put into MISO_DATA and MOSI_DATA. MISO_DATA is sent to

slave driver by sequencer class. MOSI_DATA is sent to master driver by sequencer class.

For this project, two sequences classes are made for master and slave drivers. Each sequence

creates the same 12-bit packages as mentioned above. Each driver is getting data from their

unique sequences by sequencers.

Figure 5.6: Slave sequence class constructor

Figure 5.7: Slave sequence body task

31

Figure 5.8: Master Sequence

32

5.4. Driver

Driver is responsible for sending created transactions to the DUT. Driver gets those

transactions, changes them into bit-level actions, and drive the data into the DUT. For this

project, two drivers are needed for master and slave respectively.

Master driver is responsible for generating a clock to start data transmission. For each SPI

mode, master driver sends data from master to slave and disables and enables the clock and

slave select in between.

Figure 5.9: Master driver class constructor and build phase

In Figure 5.9, connections to interface, config class and transaction class are established. In

build phase, uvm_config_db is used to establish the configuration for the virtual interface, this

interface will be used in master driver to make connections to the interface signals as well as to

the DUT.

33

Figure 5.10: Master driver driverOff and driverClk functions

In Figure 5.10, driverOff and driverClk tasks are defined. driverOff task is used to reset the

chip/slave select signal and is called at the end of the run phase, after the transaction transfer

is done. driverClk task is the master driver’s clock generator, it switches the RST and

externalClock signals by waiting them 2ns times clk_period amount of time.

Figure 5.11: Master driver run phase

In Figure 5.11, run phase is started. Fork method is used in order to execute the functions

under it parallelly. RST signal is waited and then slave select signal is enabled as default. For

SCLK, if the CPOL is 0, then SCLK signal is low or 0 by default, if it is not, SCLK is high or

1.

34

Figure 5.12: Master driver run phase continued

In Figure 5.12, run phase continues as seq_item_port is used to start the communication and

receive the transaction from sequencer by using get_next_item. data_transfer_master_driver

function is called, that is the main function of the master driver and will be mentioned in the

next figure. After all the transactions are received, item_done request is called on the

seq_item_port to stop the communications. As mentioned before, driverClk task is called at

the end of the run phase.

Figure 5.13: Master driver SPI mode 0

In Figure 5.13, data_transfer_master_driver task is defined. For each SPI mode, SCLK and SS

signals are enabled and disabled with propagation delay, MOSI_DATA is written and

MOSI_DATA is read. When CPOL is 0, SCLK and externalClock are not parallel, the

behavior of these clocks will be seen in the simulation results chapter.

35

For SPI mode 0, CPOL and CPHA are 0. First, positive edge of the external clock is waited,

as mentioned before, external clock and SCLK are opposite so at the positive edge of the

external clock, SCLK is 0 or low. After that SS signal is brought down to low or 0, with that

MOSI_DATA is sent. While in for loop, negative edge of the external clock is waited and

SCLK is brought up to high or 1. Then, MISO_DATA is read. After the last data, positive

edge of the external clock is waited once again in order to bring down the SCLK signal.

Finally, in order to bring up the SS signal to high, negative edge of the external clock is

waited. For SPI mode 0, MOSI_DATA is written and MISO_DATA is read.

Figure 5.14: Master driver SPI mode 1

In Figure 5.14, SPI mode 1 can be seen. In SPI mode 1, CPOL is 0 and CPHA is 1. First,

positive edge of the external clock is waited, as mentioned before, external clock and SCLK

are opposite so at the positive edge of the external clock, SCLK is 0 or low. After that SS

signal is brought down to low or 0. In SPI mode 1, data is not written at the positive edge of

the external clock. For that, negative edge of the external clock is waited and SCLK is

brought up to high or 1. After the propagation delay, MOSI_DATA is written. At the positive

edge of the external clock, SCLK is brought down to low or 0 and MISO_DATA is read. In

order to bring up the SS signal to high or 1, negative edge of the external clock is waited. For

SPI mode 1, MOSI_DATA is written and MISO_DATA is read.

36

 Figure 5.15: Master driver SPI mode 2

In Figure 5.15, SPI mode 2 can be seen. In SPI mode 2, CPOL is 1 and CPHA is 0. As

mentioned before, SCLK and external clock are now parallel since CPOL is 1. Positive edge

of the external clock is waited and SCLK is brought up to high or 1. After that SS signal is

brought down to low or 0 in order to start the writing of MOSI_DATA. At the negative edge

of the external clock, SCLK is brought down to low or 0 and MISO_DATA is read. In order

to bring up the SCLK to high, positive edge of the external clock is waited. After that, in order

to bring up the SS to high, negative edge of the external clock is waited. And with that for SPI

mode 2, MOSI_DATA is written and MISO_DATA is read.

Figure 5.16: Master driver SPI mode 3

37

In Figure 5.16, SPI mode 3 can be seen. In SPI mode 3, CPOL and CPHA are both 1. Positive

edge of the external clock is waited to bring up SCLK to high or 1 and bring down the SS to

low or 0. Data reading or writing does not occur at positive edge of the external clock so

negative edge of the external clock is waited. SCLK is brought down to low or 1 and

MOSI_DATA is written. After that positive edge of the external clock is waited, SCLK is

brought up to high or 1, and MISO_DATA is read. In order to complete the communication

SS signal is brought up to high or 1 at the negative edge of the external clock. And with that,

for all SPI modes, reading MISO_DATA and writing MOSI_DATA are achieved.

Figure 5.17: Slave driver class constructor and build phase

Afterwards, the slave driver is created. In master driver, MISO_DATA is read. That

MISO_DATA is written in slave driver. In Figure 5.17, same definitions and configurations

from master driver can be seen.

38

Figure 5.18: Slave driver run phase

In Figure 5.18, at the run phase, transactions or sequence items are gathered from seq_item_port

by the get_next_item function. Later, sent_data_from_driver task is called. When this task is

completed, with the item_done function, driving data is done and finished.

Figure 5.19: Slave driver SPI mode 0 and 1

Like in the master driver, for each SPI mode, data is written in positive or negative edge of the

clock, depending of the SPI mode. Each edge also has a delay even if they do not sent data in

that case. For SPI mode 0, CPOL and CPHA are both 0. When SS is brought down to low,

MISO_DATA is written from transaction class as can be seen in Figure 5.19. After that positive

and negative edges of the SCLK are waited with delay time.

For SPI mode 1, CPOL is 0 and CPHA is 1. At the positive edge, after the delay, MISO_DATA

is written from transaction class as can be seen in Figure 5.6c.

39

Figure 5.20: Slave driver SPI mode 2 and 3

For SPI mode 2, CPOL is 1 and CPHA is 0. When SS is brought down to low, MISO_DATA

is written from transaction class as can be seen in Figure 5.20. After that positive and negative

edges of the SCLK are waited with delay time.

For SPI mode 3, CPOL and CPHA are both 1. At the negative edge, after the delay,

MISO_DATA is written from transaction class as can be seen in Figure 5.20.

Finally, both master and slave drivers are completed, all the modes are covered, data transfer

from master to slave and from slave to master are both achieved.

40

5.5. Monitor

All configurations defined in master and slave driver are also defined in monitor class as can

be seen Figure 5.21. In addition, a monitor port is defined from uvm_analysis_port. After all

the MISO and MOSI data is read and obtained, this port will connect the monitor to the

subscriber and or scoreboard.

Figure 5.21: Monitor class constructor and build phase

In Figure 5.22, run phase can be seen. In run phase, collect_transfer task is called. After that

collect_transfer task is written. Transaction definitions are done and bit number is derived

from config class.

Figure 5.22: Monitor run phase and collect_transfer function

41

In Figure 5.23, data reading for SPI mode 0 and 1 is achieved. In order to start the data reading,

SS needs to be low or 0. For SPI mode 0, CPOL and CPHA is 0. Positive edge of the SCLK is

waited, MISO_DATA and MOSI_DATA is read. For SPI mode 1, CPOL is 0 and CPHA is 1.

Negative edge of the SCLK is waited, MISO_DATA and MOSI_DATA is read.

Figure 5.23: Monitor SPI mode 0 and 1

In Figure 5.24, data reading for SPI mode 2 and 3 is achieved. For SPI mode 2, CPOL is 1

and CPHA 0. Negative edge of the SCLK is waited, MISO_DATA and MOSI_DATA is read.

For SPI mode 3, CPOL and CPHA are both 1. Positive edge of the SCLK is waited,

MISO_DATA and MOSI_DATA is read. At the end of the monitor class, with write function,

read transactions are sent to the monitor’s analysis port, mon_port.

Figure 5.24: Monitor SPI mode 2 and 3

42

5.6. Agent

While drivers can be selected and activated by using UVM_ACTIVE in one agent, it is better

to create two agents for master and slave specifically. Master and slave agents are very similar,

only difference is the connected driver. In Figure 5.25, master agent can be seen. An analysis

port is defined for each agent. For master agent, master driver, monitor, sequencer as well as

virtual interface and config class is defined.

Figure 5.25: Master agent class constructor and declarations

Figure 5.26: Master agent build phase

In Figure 5.26, build phase is seen. Previously defined master agent port, config class,

interface and monitor are registered. With UVM_ACTIVE, sequencer and master driver are

registered.

43

Figure 5.27: Master agent connect phase

In Figure 5.27, connect phase is seen. In connect phase, sequencer and master driver are

connected and also monitor’s analysis port is connected to master agent’s analysis port.

Figure 5.28: Slave agent class constructor and declarations

In Figure 5.28, same definitions are made and an analysis port created for the slave agent.

Figure 5.29: Slave agent build phase

44

In Figure 5.29, registrations that are done in master agent, implemented for slave agent as well.

Figure 5.30: Slave agent connect phase

In Figure 5.30, connect phase is seen. In connect phase, sequencer and slave driver are

connected and also monitor’s analysis port is connected to the slave agent’s analysis port.

45

5.7. Environment

For environment class, preexisting environment base class which is created by ANKASYS [45]

for their VIP projects, is used. In this environment class, registration of DUT agents and

subscriber are done in build phase. In connect phase, DUT agents are connected to the slave or

master agents’ analysis port and also to the subscriber’s analysis port. DUT agents are also

created by ANKASYS and act like the testbench agents, their responsibilities are identical.

In Figure 5.31, connections between DUT agents, master and slave agents and subscriber’s

master and slave write functions can be seen.

Figure 5.31: Environment connections

46

5.8. Subscriber

Multiple connections can be established, in this project, two agents and one monitor are created,

both agents are connected to the subscriber via environment class and also monitor’s analysis

port which includes write function is also connected. With write method, whenever there are

transactions in the monitor’s analysis port and write method is called, all the components that

are connected to the monitor’s analysis port can read the data. With that, subscriber’s write

method is activated and received transactions are printed as MOSI_DATA and MISO_DATA

as seen in Figure 5.32.

Figure 5.32: Subscriber write_master function

In Figure 5.32, write_master function can be seen. In this structure, design is the slave and

testbench is the master. Subscriber checks if MISO_DATA matches the slave memory. If they

match, “Transfer is successful” message is printed. Finally, both MISO and MOSI data are also

printed.

47

Figure 5.33: Subscriber write_slave function

In Figure 5.33, write_slave function can be seen. In this structure, design is the master and

testbench is the slave. Subscriber checks if MOSI_DATA matches the master memory. If they

match, “Transfer is successful” message is printed. Finally, both MISO and MOSI data are also

printed.

In this project, scoreboard class is not needed since both printing and comparing data are done

in subscriber class.

48

5.9. Config

A configuration class is needed to store the bit definitions, period and delay definitions. Bit

number amount is also defined in this class. In Figures 5.34 and 5.35, config class can be seen.

Figure 5.34: Config class

49

Figure 5.35: Config class continued

50

5.10. Test

In test class, two sequences are in one test. In Figure 5.36, master and agent sequences are

defined and registered in test class.

Figure 5.36: Test class constructor and build phase

In Figures 5.37 and 5.38, run phase is seen. Inside the run phase, fork method is used so

sequence transfers do not have to wait for each other. In Figure 5.37, 12 bits of data is sent from

slave to master. With seq.miso_data lines, 12 bits of 5 data are defined, in this case they are

‘h111,’h222, ‘h333, ‘h000 and ‘h147. In this structure verification environment acts as slave

and the design acts as master.

51

Figure 5.37: Test first sequence

Figure 5.38: Test second sequence

In Figure 5.38, verification environment acts as master and the design acts as slave. 12 bits of

5 data is sent from master to slave.

In Figure 5.2, master and slave memories are defined as variables. If design acts as slave, its

response to mosi_data that is sent from test class, must be from slave memory. For example,

‘h444 is sent from master to slave, in this case design is the slave, its response must be from

slave memory. First data in slave memory is the ‘h678, so master receives ‘h678 while sending

‘h444 to the slave. If design acts as master, master sends ‘h345 from master memory to slave

and receives ‘h111 from slave.

52

5.11. Simulation and Test Results

In order to start the simulation for each mode, SPI mode needs to be configured both in test

base class and design. In Figure 5.39, master and slave configuration are done separately. Under

setConfig, first two numbers represent CPOL and CPHA respectively and 12 is the bit number.

In this case, SPI mode 2 is activated, CPOL is 1 and CPHA is 0.

Figure 5.39: Test base

In Figure 5.40, CPOL and CPHA configurations for SPI mode 0 can be seen. This configuration

is done in loopback class of the design.

Figure 5.40: Design loopback

53

After mode selection, it is time to verify the design. All signals of design that are defined in top

block are added to the wave. In Figure 5.41, added signals for SPI mode 0 can be seen. In this

structure, testbench is the slave and design is the master. m_di_o represents the MISO data.

These MISO data are sent by the testbench in test class. m_do_o represents the master memory

and it is a response to the MISO data. In Figure 5.41, m_di_i is ‘ABC and m_do_o is ‘222. That

is the expected result, since ‘222 is the second sequence that is sent in test class and ‘ABC is in

the second place of the master memory.

Figure 5.41: SPI mode 0, design=master testbench=slave

In Figure 5.42, testbench is the master and the design is the slave. m_di_o represents the MOSI

data. These MOSI data are sent by the testbench in test class. m_do_o represents the slave

memory and it is a response to the MOSI data. In Figure 5.42, m_di_i is ‘DEF and m_do_o is

‘555. That is the expected result, since ‘555 is the second sequence that is sent in test class and

‘DEF is in the second place of the slave memory. It has a slight shift in the simulation but

console results show that the transfer is successful and communication between master and

slave is achieved.

Figure 5.42: SPI mode 0, design=slave testbench=master

Results are verified with the help of subscriber class, as Figure 5.43 and Figure 5.44 show, there

is no error and all data transfer between master and slave is successful.

54

Figure 5.43: SPI mode 0, design=master testbench=slave results

55

Figure 5.44: SPI mode 0, design=slave testbench=master results

56

In Figure 5.45, added signals for SPI mode 1 can be seen. In this structure, testbench is the slave

and design is the master. m_di_o represents the MISO data. These MISO data are sent by the

testbench in test class. m_do_o represents the master memory and it is a response to the MISO

data. In Figure 5.45, m_di_i is ‘345 and m_do_o is ‘111. That is the expected result, since ‘111

is the first sequence that is sent in test class and ‘345 is in the first place of the master memory.

Figure 5.45: SPI mode 1, design=master testbench=slave

In Figure 5.46, testbench is the master and the design is the slave for SPI mode 1. m_di_o

represents the MOSI data. These MOSI data are sent by the testbench in test class. m_do_o

represents the slave memory and it is a response to the MOSI data. In Figure 5.46, m_di_i is

‘678 and m_do_o is ‘444. That is the expected result, since ‘444 is the first sequence that is

sent in test class and ‘678 is in the first place of the slave memory.

Figure 5.46: SPI mode 1, design=slave testbench=master

Results are verified with the help of subscriber class, as Figure 5.47 and Figure 5.48 show, there

is no error and all data transfer between master and slave is successful.

57

Figure 5.47: SPI mode 1, design=master testbench=slave results

58

Figure 5.48: SPI mode 1, design=slave testbench=master results

In Figure 5.49, added signals for SPI mode 2 can be seen. In this structure, testbench is the

slave and design is the master. m_di_o represents the MISO data. These MISO data are sent

by the testbench in test class. m_do_o represents the master memory and it is a response to the

MISO data. In Figure 5.49, m_di_i is ‘345 and m_do_o is ‘111. That is the expected result,

since ‘111 is the first sequence that is sent in test class and ‘345 is in the first place of the

master memory

Figure 5.49: SPI mode 2, design=master testbench=slave

59

In Figure 5.50, testbench is the master and the design is the slave for SPI mode 2. m_di_o

represents the MOSI data. These MOSI data are sent by the testbench in test class. m_do_o

represents the slave memory and it is a response to the MOSI data. In Figure 5.50, m_di_i is

‘678 and m_do_o is ‘444. That is the expected result, since ‘444 is the first sequence that is

sent in test class and ‘678 is in the first place of the slave memory.

Figure 5.50: SPI mode 2, design=slave testbench=master

Results are verified with the help of subscriber class, as Figure 5.51 and Figure 5.52 show, there

is no error and all data transfer between master and slave is successful.

Figure 5.51: SPI mode 2, design=master testbench=slave results

60

Figure 5.52: SPI mode 2, design=slave testbench=master results

Finally, in Figure 5.53, added signals for SPI mode 3 can be seen. In this structure, testbench

is the slave and design is the master. m_di_o represents the MISO data. These MISO data are

sent by the testbench in test class. m_do_o represents the master memory and it is a response

to the MISO data. In Figure 5.53, m_di_i is ‘BBB and m_do_o is ‘333. That is the expected

result, since ‘333 is the third sequence that is sent in test class and ‘BBB is in the third place

of the master memory

Figure 5.53: SPI mode 3, design=master testbench=slave

61

In Figure 5.54, testbench is the master and the design is the slave for SPI mode 2. m_di_o

represents the MOSI data. These MOSI data are sent by the testbench in test class. m_do_o

represents the slave memory and it is a response to the MOSI data. In Figure 5.54, m_di_i is

‘CCC and m_do_o is ‘666. That is the expected result, since ‘666 is the third sequence that is

sent in test class and ‘CCC is in the third place of the slave memory.

Figure 5.54: SPI mode 3, design=slave testbench=master

Results are verified with the help of subscriber class, as Figure 5.55 and Figure 5.56 show, there

is no error and all data transfer between master and slave is successful.

Figure 5.55: SPI mode 3, design=master testbench=slave results

62

Figure 5.56: SPI mode 3, design=slave testbench=master results

63

6. REALISTIC CONSTRAINTS AND CONCLUSIONS

Verification of a digital circuit design is crucial in microelectronic industry. It is a challenge for

engineers, designing an electronic system is already a complicated process and with the

verification necessity, it becomes a burden. But verification can not be ignored, since to be able

to correct and validate a design before its release is essential. And with this verification process,

quality of the design is significantly increased.

For this objective, a verification environment is created by using SystemVerilog and UVM.

Then, an SPI Master/Slave interface is put under test. This interface is already created, since

designing and verification operations are both equally complicated. This SPI design is used as

an IP, and with the created verification environment, this whole structure becomes a VIP. The

design is tested and compared with the expected results. With the acquired results, VIP is

completed and the design is successfully verified with the created verification environment.

6.1 Practical Application of this Project

This project successfully implements a VIP for a relatively complex SPI interface. By analyzing

the design, both master and slave interfaces, connections are made in verification environment,

this created structure can be reusable and adaptable for different designs. Connection ports can

be changed in the verification environment accordingly to the design. Main purpose of the

UVM is reusability, so in this project this task is achieved.

6.2 Realistic Constraints

Most important aspect of this project is the reusability. For SPI protocol, many different designs

can be verified by using this VIP. With small changes, time and resource efficiency are

achieved. And because it is separate process from designing, both design and verification

engineers work very efficiently and they can be very productive this way. Design engineers do

not have to use their time to validate their design and can focus on only designing process.

64

6.2.1 Social, environment and economic impact

Time and resources are crucial aspects in our lives. In order to save time and resources, work

sharing is done in businesses. Each individual has its own responsibilities, resources and time

period to do the tasks. With this project, efficiency is achieved, since designing and verification

processes are both time and resource consuming. Design engineers do not have to lost in the

design by checking for small mistakes and finding them. Verification engineers can simply put

the design under test and point the mistakes to the design engineers. That way both time and

resources are saved and it has a big economic impact on the microelectronic industry.

6.2.2 Cost analysis

This design can be implemented and verified on a FPGA board. This FPGA board’s cost is the

only vital cost factor of this project. Normally, QuestaSim simulation tool licence needs to be

purchased but since ANKASYS helps the project with their licenses and tools, this aspect is not

a cost factor.

6.2.3 Standards

For implementing the verification environment, SystemVerilog and UVM standards are

followed. Connection between design and verification environment is done accordingly to SPI

protocol, since design is an SPI interface. Also, the engineering code of conduct is adopted in

this project.

6.2.4 Health and safety concerns

Creating this project does not possess any danger to any human. There is no health or safety

risks in the development process.

6.3 Future Work and Recommendations

In this project, default SPI protocol is followed. Default SPI protocol is a full-duplex model,

that means communication is established on 2 lines. In the future, this verification environment

can be altered to establish the communication on 4 lines. That means changing the default

duplex mode to quadruple mode or changing SPI to QSPI. Furthermore, this verification

environment can be altered for the I2C or UART communication protocols. I addition to one

slave interface, more than one slaves can be attached to master, since SPI protocol allows

multiple slaves. Finally, the design and verification environment can be implemented to a

FPGA board to verify the functionality of the design.

65

REFERENCES

[1] Vasudevan, S. (2020). Practical UVM: Step by step with IEEE 1800.2. R. R. Bowker.

[2] Frenzel, L. (2015). Handbook of serial communications interfaces: A comprehensive

compendium of serial digital input/Output (I/o) standards. Newnes.

[3] Thomas, D. E., Donald E., T., & Moorby, P. R. (1998). The Verilog® hardware

description language. Springer.

[4] Sutherland, S., Davidmann, S., & Flake, P. (2006). SystemVerilog for design second

edition: A guide to using SystemVerilog for hardware design and modeling. Springer Science

& Business Media.

[5] Questa® advanced simulator. (n.d.). Siemens EDA is a leader in electronic design

automation-Siemens EDA.

Retrieved January 23, 2021, from https://www.mentor.com/products/fv/questa/

[6] DVKit. (n.d). Retrieved January 23, 2021, from https://dvkit.sourceforge.net/

[7] Ciletti, M. D. (2011). Advanced digital design with the Verilog HDL.

[8] Original-E: Foundations for social virtual realities. (n.d.). Welcome to ERights.Org.

Retrieved January 23, 2021, from https://erights.org/history/original-e/index.html

[9] Vera. (2019,). Semiconductor Engineering. Retrieved January 23, 2021, from

https://semiengineering.com/knowledge_centers/languages/vera/

[10] Glasser, M. (2009). Open verification methodology cookbook. Springer.

[11] Synopsys (2021). | EDA Tools, Semiconductor IP and Application Security Solutions.

Retrieved January 23, 2021, from https://www.synopsys.com/

[12] Cadence. (n.d.). Cadence | Computational Software for Intelligent System Design™.

Retrieved January 23, 2021, from https://www.cadence.com/en_US/home.html

[13] Simulation & verification. (n.d.). Siemens EDA is a leader in electronic design

automation- Siemens EDA.

Retrieved January 23,2021, from https://www.mentor.com/products/fpga/verification-

simulation/

https://www.mentor.com/products/fv/questa/
https://dvkit.sourceforge.net/
https://erights.org/history/original-e/index.html
https://semiengineering.com/knowledge_centers/languages/vera/
https://www.synopsys.com/
https://www.cadence.com/en_US/home.html
https://www.mentor.com/products/fpga/verification-simulation/
https://www.mentor.com/products/fpga/verification-simulation/

66

[14] Paret, D., & Fenger, C. (1997). The I2C bus: From theory to practice. John Wiley & Son.

[15] Osborne, A., & Bunnell, D. (1982). An introduction to microcomputers.

Osborne/McGraw-Hill.

[16] ModelSim®. (n.d.). Siemens EDA is a leader in electronic design automation - Siemens

EDA.

Retrieved January 23, 2021, from https://www.mentor.com/products/fpga/verification-

simulation/modelsim/

[17] Wang, J., & Tepfenhart, W. (2019). Formal methods in computer science. CRC Press.

[18] Simpson, P. A. (2015). FPGA design: Best practices for team-based reuse. Springer.

[19] RAM. (2020). Computer Hope's Free Computer Help.

https://www.computerhope.com/jargon/r/ram.htm

[20] Chapter 2 – Defining a verification environment. (n.d.). https://colorlesscube.com/uvm-

guide-for-beginners/chapter-2-defining-the-verification-environment/

[21] Uvm_object. (n.d.). Verification Academy - The most comprehensive resource for

verification training. | Verification Academy. Retrieved January 23, 2021, from

https://verificationacademy.com/verification-methodology-

reference/uvm/docs_1.1c/html/files/base/uvm_object-svh.html

[22] Uvm_component. (n.d.). Verification Academy - The most comprehensive resource for

verification training. | Verification Academy. Retrieved January 23, 2021, from

https://verificationacademy.com/verification-methodology-

reference/uvm/docs_1.1b/html/files/base/uvm_component-svh.html

[23] SystemVerilog interface. (n.d.). ChipVerify. Retrieved January 23, 2021, from

https://www.chipverify.com/systemverilog/systemverilog-interface

[24] SystemVerilog interface construct. (2020). Verification Guide. Retrieved January 23,

2021, from https://verificationguide.com/systemverilog/systemverilog-interface-construct/

[25] Chapter 4 – Sequences and sequencers. (n.d.). Pedro Araújo – Random thoughts about

hardware design. Retrieved January 23, 2021, from https://colorlesscube.com/uvm-guide-for-

beginners/chapter-4-transactions-sequences-and-sequencers/

https://www.mentor.com/products/fpga/verification-simulation/modelsim/
https://www.mentor.com/products/fpga/verification-simulation/modelsim/
https://www.computerhope.com/jargon/r/ram.htm
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1c/html/files/base/uvm_object-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1c/html/files/base/uvm_object-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1b/html/files/base/uvm_component-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1b/html/files/base/uvm_component-svh.html
https://www.chipverify.com/systemverilog/systemverilog-interface
https://verificationguide.com/systemverilog/systemverilog-interface-construct/
https://colorlesscube.com/uvm-guide-for-beginners/chapter-4-transactions-sequences-and-sequencers/
https://colorlesscube.com/uvm-guide-for-beginners/chapter-4-transactions-sequences-and-sequencers/

67

[26] UVM sequences and transactions application. (2015). Universal Verification

Methodology. Retrieved January 23, 2021, from

https://www.learnuvmverification.com/index.php/2015/07/29/uvm-sequences-and-

transactions-application/

[27] UVM sequence. (2020). Verification Guide. Retrieved January 23, 2021, from

https://verificationguide.com/uvm/uvm-sequence/

[28] Chapter 5 – Driver. (n.d.). Pedro Araújo – Random thoughts about hardware design.

Retrieved January 23, 2021, from https://colorlesscube.com/uvm-guide-for-beginners/chapter-

5-driver/

[29] SystemVerilog TestBench. (2020). Verification Guide. Retrieved January 23, 2021, from

https://verificationguide.com/systemverilog-examples/systemverilog-testbench-example-01/

[30] Chapter 6 – Monitor. (n.d.). Pedro Araújo – Random thoughts about hardware design.

Retrieved January 23, 2021, from https://colorlesscube.com/uvm-guide-for-beginners/chapter-

6-monitor/

[31] UVM TestBench architecture. (2020). Verification Guide. Retrieved January 23, 2021,

from https://verificationguide.com/uvm/uvm-testbench-architecture/

[32] Chapter 7 – Agent. (n.d.). Pedro Araújo – Random thoughts about hardware design.

Retrieved January 23, 2021, from https://colorlesscube.com/uvm-guide-for-beginners/chapter-

7-agent/

[33] UVM agent. (2020). Verification Guide. Retrieved January 23, 2021, from

https://verificationguide.com/uvm/uvm-agent/

[34] UVM environment [uvm_env]. (n.d.). ChipVerify. Retrieved January 23, 2021, from

https://www.chipverify.com/uvm/uvm-environment

[35] UVM environment example. (2020). Verification Guide. Retrieved January 23, 2021,

from https://verificationguide.com/uvm/uvm-environment-example/

[36] Uvm_subscriber. (n.d.). Verification Academy - The most comprehensive resource for

verification training. | Verification Academy. Retrieved January 23, 2021, from

https://verificationacademy.com/verification-methodology-

reference/uvm/docs_1.1c/html/files/comps/uvm_subscriber-svh.html

https://www.learnuvmverification.com/index.php/2015/07/29/uvm-sequences-and-transactions-application/
https://www.learnuvmverification.com/index.php/2015/07/29/uvm-sequences-and-transactions-application/
https://verificationguide.com/uvm/uvm-sequence/
https://colorlesscube.com/uvm-guide-for-beginners/chapter-5-driver/
https://colorlesscube.com/uvm-guide-for-beginners/chapter-5-driver/
https://verificationguide.com/systemverilog-examples/systemverilog-testbench-example-01/
https://colorlesscube.com/uvm-guide-for-beginners/chapter-6-monitor/
https://colorlesscube.com/uvm-guide-for-beginners/chapter-6-monitor/
https://verificationguide.com/uvm/uvm-testbench-architecture/
https://colorlesscube.com/uvm-guide-for-beginners/chapter-7-agent/
https://colorlesscube.com/uvm-guide-for-beginners/chapter-7-agent/
https://verificationguide.com/uvm/uvm-agent/
https://www.chipverify.com/uvm/uvm-environment
https://verificationguide.com/uvm/uvm-environment-example/
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1c/html/files/comps/uvm_subscriber-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1c/html/files/comps/uvm_subscriber-svh.html

68

[37] Dhaker, P. (n.d.). Introduction to SPI interface. Retrieved January 23, 2021, from

https://www.analog.com/en/analog-dialogue/articles/introduction-to-spi-interface.html

[38] SPI communications – Slave core VHDL. (n.d.). Daniel Álvarez's Blog | Robotics,

Electronics and some Open Source Weblog. Retrieved January 23, 2021, from

https://dani.foroselectronica.es/spi-communications-slave-core-vhdl-137/

[39] Basics of the SPI communication protocol. (2018). Circuit Basics. Retrieved January 23,

2021, from https://www.circuitbasics.com/basics-of-the-spi-communication-protocol/

[40] UVM scoreboard. (n.d.). ChipVerify. Retrieved January 24, 2021, from

https://www.chipverify.com/uvm/uvm-scoreboard

[41] UVM test. (2020). Verification Guide. Retrieved January 24, 2021, from

https://verificationguide.com/uvm/uvm-test/

[42] Replace behavioral DUT with AXI-based RTL DUT in UVM test bench. (n.d.).

MathWorks. Retrieved January 24, 2021, from

https://es.mathworks.com/help/hdlverifier/ug/uvm_replace_behavioral_dut_with_axi_dut.htm

l;jsessionid=4fe8ad05c385418434977bfe9dd6

[43] From UVM to VUnit: Test benches in VHDL | ITDev. (n.d.). ITDev |.

Retrieved January 24, 2021, from https://www.itdev.co.uk/blog/uvm-vunit-test-benches-vhdl

[44] Uvm tlm. (n.d.). ChipVerify. Retrieved January 25, 2021, from

https://www.chipverify.com/uvm/tlm-preface

[45] ANKASYS. (n.d.). Retrieved January 28, 2021, from https://ankasys.com/

https://www.analog.com/en/analog-dialogue/articles/introduction-to-spi-interface.html
https://dani.foroselectronica.es/spi-communications-slave-core-vhdl-137/
https://www.circuitbasics.com/basics-of-the-spi-communication-protocol/
https://www.chipverify.com/uvm/uvm-scoreboard
https://verificationguide.com/uvm/uvm-test/
https://es.mathworks.com/help/hdlverifier/ug/uvm_replace_behavioral_dut_with_axi_dut.html;jsessionid=4fe8ad05c385418434977bfe9dd6
https://es.mathworks.com/help/hdlverifier/ug/uvm_replace_behavioral_dut_with_axi_dut.html;jsessionid=4fe8ad05c385418434977bfe9dd6
https://www.itdev.co.uk/blog/uvm-vunit-test-benches-vhdl
https://www.chipverify.com/uvm/tlm-preface
https://ankasys.com/

69

CURRICULUM VITAE

Name Surname : Berkay Turgay

Place and Date of Birth : Eminönü / 12.04.1997

E-mail : berkayturgay1@gmail.com

Berkay Turgay finished primary and high school in Istanbul. He is currently a senior year

student at Electronics and Communication Engineering in Istanbul Technical University

Electrical-Electronics Faculty. He completed his internship in ANKASYS.

