ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICS FACULTY

VERIFICATION OF A SERIAL PERIPHERAL INTERFACE INTELLECTUAL
PROPERTY BY USING UNIVERSAL VERIFICATION METHODOLOGY

SENIOR DESIGN PROJECT

Berkay TURGAY

ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT

FEBRUARY 2021

ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICS FACULTY

VERIFICATION OF A SERIAL PERIPHERAL INTERFACE INTELLECTUAL
PROPERTY BY USING UNIVERSAL VERIFICATION METHODOLOGY

SENIOR DESIGN PROJECT

Berkay TURGAY
040150097

ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT

Project Advisor: Prof. Dr. Siddika Berna ORS YALCIN

FEBRUARY 2021

ISTANBUL TEKNIiK UNiVERSITESI

ELEKTRIK-ELEKTRONIK FAKULTESI

BiR SERi CEVRESEL ARAYUZ FiKRI MULKIYETININ EVRENSEL
DOGRULAMA METHODU iLE DOGRULANMASI

LiSANS BITIRME TASARIM PROJESI

Berkay TURGAY
040150097

Proje Damismani: Prof. Dr. Siddika Berna ORS YALCIN

ELEKTRONIK VE HABERLESME MUHENDISLiGi BOLUMU

SUBAT, 2021

We are submitting the Senior Design Project Report entitled as “VERIFICATION OF A
SERIAL PERIPHERAL INTERFACE INTELLECTUAL PROPERTY BY USING
UNIVERSAL VERIFICATION METHODOLOGY™. The Senior Design Project Report has
been prepared as to fulfill the relevant regulations of the Electronics and Communication
Engineering Department of Istanbul Technical University. We hereby confirm that we have
realized all stages of the Senior Design Project work by ourselves and we have abided by the
ethical rules with respect to academic and professional integrity .

Berkay TURGAY e,
040150097

FOREWORD

I would like to thank to my mentor Prof. Dr. Siddika Berna Ors Yal¢in who helped me
to find this project and who allowed me to collaborate with ANKASYS and guided
me throughout this project. Secondly, | would like to offer my gratitude to my other
mentor Ekrem Sahin from ANKASY'S who guided me in all of my mistakes and who
helped me finish this project successfully. Without them, | would not finish this project
properly. Finally, I would like to thank to my family and friends who supported me
my entire life.

February 2021 Berkay TURGAY

Vi

TABLE OF CONTENTS

Page
FOREWORD ...ttt ettt s e e s eb e e s bt e s s ba e e st teeanbeeeeans \Y;
TABLE OF CONTENTS ...ttt ettt re e srae st sra s e Vil
ABBREVIATIONS ...ttt s sb e e sbae e s nbae e iX
LIST OF FIGURES ... oottt eae s X
0L A 1 O Xiii
OZET oottt Xiv
1. INTRODUCTION .ottt sbt s s eba e s ba e sbae e snee e 1
2. BACKGROUND INFORMATIONoooiiiiecee ettt 2
2 BV L= 41 {07 1 1o o TR 2
2.2 Universal Verification Methodology ..., 2
2.2.1 Verification ENVIFONMENTcveiiiiiiiiiie ettt 3
2.2.2 UVIM ClIASSES ..ottt ettt ettt e s bte s e s et a e e s s baan e e s earaee s 4
2.2.3UVIM PRASESvoiiiiiiiiitiii ettt ettt s eabae e eaes 5
2.2.4 Transaction Level Modeling ... 6
2.2.5 Top Block and INtErface..........cccocveeiieii i 7
2.2.6 COMPONENLS ..ottt ne e 8
A T80 R I =11 Y T £ o O 8
2.2.6.2 SEqUENCE AN SEQUENCETveueereeiesieste sttt 9
A T T B T4 /=Y RO 10
A ST\, [0 11 (o 11
2.2.6.5 AQBNT ..ot 12
A I T = 0 \ZT 0] 2] 0 1=] o 13
2.2.6.7 SUDSCIIDEIviiiiiii e 14
A SRS B Tol0] =] 010 T 1o FE 14
2.2.8.9 TSt .t aans 16
2.3 Serial Peripheral INterfaceccoooeieiiiii e 17
3. VERIFICATION AND SIMULATION TOOLS........ccc oot 22
3.1 Design VerifiCation Kit.........ccoouiiiiiiiieieseeseseee s 22
3.2 QUESTASIIM .ottt et sreereens 23
4.SERIAL PERIPHERAL INTERFACE INTELLECTUAL PROPERTY 24
O] o IO 0T S 1=l T =1 o] o PRI 24
4.2 Parallel WIIte INtErTaCEoveveiieieee et 25
4.3 Parallel Read INtEIrfaCecueeicuiiiiciii et 26
5. VERIFICATION OF SERIAL PERIPHERAL INTERFACE
INTELLECTUAL PROPERTY BY USING
UNIVERSAL VERIFICATION METHODOLOGYcccceevvveveenee. 27
5.1 Top Block and INterfacec.ccueieieieiiiiie e 27
T I - 0157 (o3 {0 I 29
5.3 SeqUENCE AN SEOUENCETeeeiieieiieete sttt sttt neeenes 30
BT B 1 1] 32
ST AV, (0] 111 (o 40
S0 AN e 42
IR =1 11V 10 0] 101) S 45
TR 0 Yo | o1 46
5.9 CONTIG ettt bbb s 48

Vii

o R 1= T 50

5.11 Simulation and Test RESUIES........cveiiiiiiiiiiiee s 52
6. REALISTIC CONSTRAINTS AND CONCLUSIONS.........ccooviiiieeeiee 63
6.1 Practical Application of this Project..........ccccovviiiniiiiinie i 63
6.2 REAIISTIC CONSIIAINTS.viivieiiieieciie et 63
6.2.1 Social, environmental and economMIC IMPACLccccveveeveeiieiieeneeiieenn, 64
6.2.2 COSE ANAIYSIS ...t 64
6.2.3 STANTAIUSeeviiiieieie e 64
6.2.4 Health and safety CONCEIMNSc.coviiiiiiiiiriee e 64

6.3 Future Work and RecommEeNndations...........ccocuverinieierinne e 64
REFERENGCES.ottt ettt e e e naa e 65
CURRICULUM VITAE ..ottt 69

viii

ABBREVIATIONS

UVM
SPI
DUT
HDL
OVM
12C
UART
FSM
FPGA
RAM
DVKit
IDE
IP
VIP

: Universal Verification Methodology
: Serial Peripheral Interface

: Device Under Test

: Hardware Description Language

: Open Verification Methodology

. Inter-Integrated Circuit

: Universal Asynchronous Receiver Transmitter
: Finite State Machine

: Field Programmable Gate Array

: Random Access Memory

: Design Verification Kit

. Integrated Development Environment
. Intellectual Property

: Verification Intellectual Property

LIST OF F

Figure 2.1 :
Figure 2.2 :
Figure 2.3 :
Figure 2.4 :
Figure 2.5 :
Figure 2.6 :
Figure 2.7 :
Figure 2.8 :
Figure 2.9 :

Figure 2.10 :

Figure 2.11

Figure 2.12 :
Figure 2.13 :
Figure 2.14 :
Figure 2.15 :
Figure 2.16 :
Figure 2.17 :
Figure 2.18 :
Figure 2.19 :
Figure 2.20 :

Figure 2.21
Figure 3.1 :
Figure 3.2 :
Figure 4.1 :
Figure 4.2 :
Figure 5.1 :
Figure 5.2 :
Figure 5.3 :
Figure 5.4 :
Figure 5.5 :
Figure 5.6 :
Figure 5.7 :
Figure 5.8 :
Figure 5.9:
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16

Figure 5.17 :
Figure 5.18 :
Figure 5.19 :
Figure 5.20 :

IGURES
Page
UVM TeSthench StrUCTUIE..........ccveoiiieieee e 3
UVIM ClSS TTEE....ueeiieieeiteeie ettt ettt ettt ne e 4
UVIM PRaSES......cuviiiieie ettt st nne e 5
Transaction transfer via TLIM POItS.........cooviieieieieieienceeseeeeee, 6
Connection between testbench and the DUT via interface 7
Transaction Transfer SChemMe ... 8
Sequence-driver communication Via SEQUENCETcccverveeveieervesieesnens 9
Transaction transfer from sequence to driver...........ccocveiiniiinieneenn 10
Transaction transfer from driver to DUTccccccieiiiie e, 10
Monitor iN @ teSthENCNcveiiee 11
D AGENT CIASS...eveeieie e 12
ENVIFONMENT CIASSvveveeeiecieee e 13
Scoreboard’s CONNECLIONSuvieeiiiiireeeiiiie e e 15
TESE CIASS ..ot 16
SPI Mode 0, CPOL=0, CPHA=0, CLK idle state=low 17
SPI Mode 1, CPOL=0, CPHA=1, CLK idle state=low 18
SPI1 Mode 2, CPOL=1, CPHA=0, CLK idle state=high...................... 18
SP1 Mode 3, CPOL=1, CPHA=1, CLK idle state=high...................... 18
SPI diagram with all modes............ccceeveiiiiiiicce e, 19
Regular SPI mode StrUCTUIe..........ccooviiiiiiirieeee e, 19
: Daisy-Chain MOGE........cccoiiiiiiiee e 20
DVKIt INTEITACE. ..veiieeeie et 22
QUESTASIM INTEITACE.ccveicie e e 23
Parallel WIite SEQUENCEocuiiiiieiee e 25
Parallel read SEQUENCE.ccveeviiieiieee et 26
INEEITACE. .. eeeiei e 27
Top block parameter and variable definitions.ccccccovevviiiinennenn, 27
Top block adaptation layer and assertion instantiations........................ 28
Top block adaptation layer and assetion instantiations continued. 28
LI L0 ST- T 1 oo TSR 29
Slave sequence Class CONSIIUCLON.ccveiverieiieieee e 30
Slave sequence DoAY tasK. ..o 30
MASEET SEQUENCEvvveeieiieeiiiee et stee et et e e st e et e e anneeeanes 31
Master driver class constructor and build phase............ccccociiiiinennen, 32
: Master driver driverOff and driver CIk functions.c..ccccceevvenen. 33
2 Master driver run PRESE.ccooiiireriie e 33
: Master driver run phase continued.ccccoveveeiececie s, 34
: Master driver SPIMOUE O......coveeviieiieese e 34
 Master driver SPIMOCE L.......coovioiiiiiecic e 35
- Master driver SPIMOUE 2......c..ooveiieicie e 36
 Master driver SPIMOAe 3.......ooovioie e 36
Slave driver class constructor and build phase...........c.ccccoiiiiinnnn, 37
Slave driver run Phase. ..o 38
Slave driver SPImode 0 and 1.cccooovevvevieiieie e 38
Slave driver SPImode 2 and 3. ... 39

Figure 5.21 :
Figure 5.22 :
Figure 5.23 :
Figure 5.24 :
Figure 5.25 :
Figure 5.26 :
Figure 5.27 :
Figure 5.28 :
Figure 5.29 :
Figure 5.30 :
Figure 5.31 :
Figure 5.32 :
Figure 5.33 :
Figure 5.34 :
Figure 5.35 :
Figure 5.36 :
Figure 5.37 :

Figure 5.38

Figure 5.39 :
Figure 5.40 :
Figure 5.41 :
Figure 5.42 :
Figure 5.43 :
Figure 5.44 :
Figure 5.45 :
Figure 5.46 :
Figure 5.47 :
Figure 5.48 :
Figure 5.49 :
Figure 5.50 :
Figure 5.51 :
Figure 5.52 :
Figure 5.53 :
Figure 5.54 :
Figure 5.55 :
Figure 5.56 :

Monitor class constructor and build phase.ccocviiiiniiiiiieenn, 40
Monitor run phase and collect_transfer function.............c.ccccccevveenen. 40
Monitor SPImode 0 and 1.ccoovieiiiiiiieeecceee e 41
Monitor SPImode 2 and 3.ccooeiiiiiiiee 41
Master agent class constructor and declarations.ccccceevvevivenne. 42
Master agent build phase...........cocevveiiie i, 42
Master agent CONNECt PhaSE.ccooviiiiriiieieee e 43
Slave agent class constructor and declarations..............cccceeeveveinennen, 43
Slave agent build Phase. ..., 43
Slave agent CONNECE PRESE.eevvveieiieiice e 44
ENVIroNmMeNt CONNECLIONS.coveiieieieiieie e 45
Subsciber write_master funCtion.cccceevieevi i, 46
Subscriber write_slave FUNCHION. ..., 47
CONTIQ CIASS. v 48
Config Class CONLINUEM.ccoiiiiiiiiiieeee e 49
Test class constructor and build phase.ccccooveveiieieccecc e 50
TSt ISt SEQUENCE. ... 51
- TSt SECONU SEQUENCE. ...ocvveieeeieceieite ettt ste et e nneene 51
TESE DASE. .veeeieeie ettt nes 52
DeSIigN 100PDACK.ccviiieiieie e 52
SPI mode 0, design=master testbench=slave.ccccceecervvervrrurrnes, 53
SPI mode 0, design=slave testbench=master.ccccceevverrrvrenes, 53
SPI mode 0, design=master testbench=slave results.c...cc.c...... 54
SPI mode 0, design=slave testbench=master results.c...c..c....... 55
SPI mode 1, design=master testbench=slave.ccccceccervvrrvrrrrnen, 56
SPI mode 1, design=slave testbench=master.cccceeverrrrnenes, 56
SPI mode 1, design=master testbench=slave results.c...cc.c...... 57
SPI mode 1, design=slave testbench=master results.c...c..c....... 58
SPI mode 2, design=master testbench=slave.ccccceecervvrrvrrurrnen, 58
SPI mode 2, design=slave testbench=master.ccccceeverrrrrrnnes, 59
SPI mode 2, design=master testbench=slave results.c...cc.c....... 59
SPI mode 2, design=slave testbench=master results.c.......... 60
SPI mode 3, design=master testbench=slave.c.cccoecvrvvercvrrrrnen, 60
SPI mode 3, design=slave testbench=master.ccccevverrrrvuenes, 61
SPI mode 3, design=master testbench=slave results.c.......... 61
SPI mode 3, design=slave testbench=master results.c...c.co...... 62

Xi

xii

VERIFICATION OF A SERIAL PERIPHERAL INTERFACE
INTELLECTUAL PROPERTY BY USING UNIVERSAL VERIFICATION
METHODOLOGY

SUMMARY

Due to increasing complexity of designed electronic systems, electronic system design
industry is trying to handle the challenges of marketing time and the quality of the
design. It is common to choose one over the other, but this compromise can be avoided.
Focusing on “verifying correctly” can increase both productivity and quality. From an
Intellectual Property (IP) to a System on Chip (SoC), successful design of any system
depends on the correct verification. From chip level to card level and finally to system
level, the cost of detecting an incorrect chip increases 10 times with each level pass.
Sometimes, deciding a correct verification methodology is not easy, and choosing the
wrong one can cause problems later. Verification IP (VIP) provides tools to make the
correct assumption.

VIP is nothing but a model that provides a user interaction tool at different levels of
abstraction of the basic design. Choosing the correct VIP, which includes identification
and verification methodology, is as difficult as choosing a design IP. Correct
methodology increases reusability. Debugging and error correcting is simple with the
correct methodology. It also improves the ability to abstract the underlying
complexity. Understanding how to build a permanent VIP is a challenge due to
changing technologies and market conditions.

Serial Peripheral Interface (SPI) is a synchronous serial communication interface. SPI
devices communicate in full duplex mode using a master-slave structure. The data
from the master or the slave is adjusted on the rising or falling edge of the clock. Master
and slave can send data simultaneously. Data is transferred between the master and the
slave and that transfer is synchronized to the clock that is created by the master. SPI
has 4 signals. These are Clock(SCLK,CLK), chip select/slave select(CS,SS), master-
in slave-out(MISO) and master-out slave-in(MOSI). MOSI and MISO are the data
lines. Throughout the communication, the data is synchronously sent and acquired via
MOSI and MISO lines, since SPI is a full-duplex interface. In SPI, one master can
communicate with multiple slaves. Master can select the specific slave to send data or
receive data from, by using the Slave Select (SS) signal.

In this project, an SP1 Master-Slave Interface design will be used. For the verification
of this design, a VIP will be created by using UVM and the SPI interface will be
verified by the VIP.

Xiii

BiR SERi CEVRESEL ARAYUZ FiKRi MULKIYETININ EVRENSEL
DOGRULAMA METHODU iLE DOGRULANMASI

OZET

Giliniimilizde tasarlanan elektronik sistemlerin karmasikliginin artmasi sebebiyle,
elektronik sistem tasarim endiistrisi pazara sunma siiresi ve tasarim kalitesi zorluklari
ile bag etmeye calismaktadir. Birini digerinin pahasia elde etmek ¢ok yaygindir,
ancak bu 6diin verme kaginilmaz degildir. "Dogru dogrulamaya" odaklanmak hem
iiretkenligi hem de kaliteyi artirabilir. Bireysel bir fikri miilkiyet (Intellectual Property
- IP) blogundan bir yonga iistii sisteme (System on Chip — SoC) herhangi bir
uygulamanin basarili bir sekilde tasarlanmasi, dogru dogrulamaya baghdir. Yonga
diizeyinden kart diizeyine ve son olarak sistem diizeyine her geciste, hatal1 bir yongay1
tespit etmenin maliyeti 10 kat artar. Bazen dogru dogrulama metodolojisini yargilamak
kolay degildir ve yanlis olan1 segmek daha sonra sorunlara neden olabilir. Dogrulama
IP'si (Verification IP - VIP) dogru yargiya varabilmek i¢in araglar saglar.

VIP, temel tasarimin farkli soyutlama diizeylerinde bir kullanici etkilesimi araci
saglayan bir modelden baska bir sey degildir. Tanimlamasim1i ve dogrulama
metodolojisini degerlendirmeyi igeren dogru VIP'yi se¢mek, bir tasarim IP'si segmek
kadar zordur. Dogru metodoloji, yeniden kullanilabilirligi, hata ayiklama ve hata
diizeltme kolayligint ve bakimi artirirken altta yatan karmasikligi soyutlama
yetenegini gelistirir. Kalic1 bir VIP'nin nasil olusturulacagini anlamak, degisen
teknolojiler ve pazar kosullar1 goz ontine alindiginda bir zorluktur.

Seri Cevresel Arayiiz (Serial Peripheral Interface - SPI),Senkron bir seri haberlesme
araylziidiir. SPI, bir usta/cirak iliskisi i¢inde ¢ift yollu bir haberlesme diizeni saglar.
Bilgi, ustanin iirettigin bir saat sayesinde ustadan ¢iraga ya da ¢iraktan ustaya iletilecek
sekilde aktarilir. Bu iletisim, ustanin tirettigi saatin ytlikselen ya da alcalan kenarlarina
entegre edilmistir. SPI, ylikselen ya da algalan kenarlarda bilgi iletimi saglamasi i¢in
4 farkli modda calismaktadir. Bilgi, Usta Giris-Cirak Cikis(MISO) ve Usta Cikis-
Cirak Girig(MOSI) hatlan iizerinden, eszamanli olarak aktarilir. Ayrica birden fazla
cirak ile calismak SPI protokoliinde miimkiindiir. Usta, Cirak Se¢im(Slave Select-SS)
biti sayesinde hangi ¢iraga bilgi aktaracagini ya da bilgi toplayacagini secebilir.

Bu projede, daha onceden tasarlanmis bir SPI Master-Slave arayiizii kullanilacaktir.
Daha sonra bu tasarlanmis modiiliin dogrulanmasi i¢in bir VIP tanimlanacak ve VIP
kullanilarak SPI modiilii dogrulanacaktir.

Xiv

1. INTRODUCTION

In this project, a digital circuit design is verified by using Universal Verification Methodology
(UVM) [1]. UVM is a regulated methodology and has many advantages for the engineers and
it is very reliable. Main purpose of this project is to learn and perform the UVM methodology
and create a verification environment. Since the main goal is to create a verification
environment, a previously designed interface is used as Serial Peripheral Interface Intellectual
Property (SPI IP) in this project [2]. This SPI IP is an SPI Master-Slave interface and is designed
by using Verilog [3] and SystemVerilog [4] hardware languages. In order to create a verification
environment, SystemVerilog and UVM is learnt and implemented. The design code is examined
and the signals are defined and connections are made accordingly to the verification

environment.

The design is simulated in a simulation tool, QuestaSim [5] and tested by defining input values

and signals. Design’s simulation behavior is explained in the SPI IP section.

After that, by using UVM, a verification environment is created and the design is tested by
using the Design Verification Kit (DVKit) program [6]. QuestaSim simulation tools is also used
and two simulation results are compared. UVM’s class library, hierarchy and UVM’s phases,
as well as all the components that are created and used in the verification environment, all the
verification steps and the simulation results are explained in the Verification of SPI IP by using
UVM section.

2. BACKGROUND INFORMATION

2.1. Verification

The method of checking and confirming the digital circuit design works as intended is called
verification. The verification process includes building a test environment by using hardware

description languages (HDL) and simulating the design by using various simulators [7].

The main goal of the verification is detecting mistakes. Each digital circuit design has its task,
verification engineers have to check and verify that the task is completed as expected. For that,
verification engineers build a test environment to show that expected and simulated results are

matching.

Checking and confirming the digital circuit design for its accuracy and verifying its reliability
are crucial. Therefore, it is inevitable that digital system designs need to be verified.

2.2. Universal Verification Methodology (UVM)

Universal Verification Methodology (UVM) is a regulated methodology for verifying digital
circuit designs. UVM is a set of class libraries characterized using the syntax and semantics of
SystemVerilog. Its primary goal is to create verification environments that are reusable and
arranged well. Before UVM, verification languages like SystemVerilog, e [8] and Vera [9] were
used to verify designs. Also, Open Verification Methodology (OVM) were used as verification
methods [10]. However, as the complexity of the digital circuit designs increased, verification
of these systems with these methods and languages became more and more challenging.
Initially, UVM is derived from OVM and promoted by vendors like Synopsys [11], Cadence
[12] and Mentor [13]. The main advantage of UVM is the UVM class library. UVM class library
is written in SystemVerilog language and it provides particular mission for each component.
For instance, a driver class is only in charge of driving signals to the design whereas a monitor
class just monitors the design interface and does not drive signals. This feature can be achieved
with UVM’s class hierarchy. With class hierarchy, each component and sub-component have
different responsibilities and can updated separately. Creating a verification environment by
using SystemVerilog language is simple but updating and changing each component can be
hard. However, with UVM, creating and changing the verification environment are both
uncomplicated and easy. Thus, UVM class library and class hierarchy is making the verification

environments reusable and making them neat, not complex for the users.

2

2.2.1. Verification Environment

For the verification of a digital circuit design, a verification environment is needed. This
environment is called testbench and it includes all the verification components. This testbench
will communicate with the DUT (Device Under Test) by using interface. In Figure 2.1, UVM
testbench structure is shown. It also includes the interface connection between DUT and the
testbench. All the components of this testbench will be explained later. UVM class library, class
hierarchy, UVM phases will be used for the creation of the verification environment [20].

Top

Test

Env

Scoreboard
Agent
—
Monitor Sequencer
DUT Interface > Driver
I

Figure 2.1: UVM Testbench Structure [20]

2.2.2. UVYM Classes

As previously mentioned, UVM class library provides great advantages. The library makes it
easy to edit and update each component separately, without having to change the whole

testbench. A class tree of UVM classes can be seen down below in Figure 2.2.

uvm_void

uvm_object

uvm_transaction uvm_report_object uvm_phase uvm_configuration

uvm_sequence_item
uvm_component

uvm_sequence

|

uvm_sequencer uvm_monitor uvrmn_scoreboard uvm_test

uvm_driver uvm_agent uvm_env

Figure 2.2: UVM Class Tree [20]

Uvm_object class is the core class for the all UVM data and hierarchical classes. All the
components and transactions are derived from uvm_object. Its main duty is to give description

to the methods for universal applications like create, copy, compare, print and record [21].

Uvm_component class is the origin core class for UVM components. All UVM components
are derived from uvm_component. Uvm_component provides hierarchy interface to search and
travel through component hierarchy. All the verification components are derived from
uvm_component class such as uvm_driver, uvm_agent, uvm_monitor etc. Besides hierarchy
interface, uvm_component also grants phasing, reporting, transaction recording and factory

interfaces [22].

UVM components and the UVM transaction classes will be explained later.

2.2.3. UVM Phases

UVM phases are coordinated structures for the verification environment. Every verification
component pass through UVM phases. Every time a new component is created, the simulation
of the verification environment runs through UVM phases to build, compose and connect the

testbench component hierarchy [20]. The most essential phases can be seen in Figure 2.3.

build_phase

connect_phase

l

run_phase

|

report_phase

Figure 2.3: UVM Phases [20]
Build phase creates testbench components and establish their instances.

Connect phase connects verification components, for instance, it connects driver component to

sequencer component.
Run phase is the primary phase where the simulation is carried out.

Report phase demonstrates the result of the simulation [20].

2.2.4. Transaction Level Modeling (TLM)

Transaction Level Modeling (TLM) is an interface structure that transfers the created
transactions between the components. This transfer is achieved by exclusive ports called TLM
interfaces. This modeling sets apart components from each other, if one component is updated,
other components that are connected to this component are not affected [44].

TLM library comes with transaction-level interface, ports, imports, exports and analysis ports.

In Figure 2.4, a simple connection between ports of components can be seen.

As an example, driver component uses a TLM port, seq_item_port, to initiate communication
with sequencer. With functions like get_next_item and item_done, this communication can be

started and finished.

Another example is in the monitor class. Monitor class uses the analysis port
(uvm_analysis_port) to call the write function. This write function essentially writes the data
that is observed in monitor to the analysis port. Any component that is connected to this analysis
port via analysis export can read the data. When monitor class calls the analysis_port.write(), it
checks all the connected exports and calls their write functions. This way scoreboard or

subscriber components can read and write the data that is observed in monitor.

component A component B

Figure 2.4: Transaction transfer via TLM ports [44]

2.2.5. Top Block and Interface

In order to connect the testbench and DUT, two components are required. These are top block
and the interface. The top block establishes instances of the DUT and the testbench and the
interface connects them. The interface contains all the signals of the DUT. Other components
such as driver and monitor, as well as the DUT will be attached to the interface [23]. Figure 2.5

shows the simple connection between testbench and the DUT via interface.

In order to connect to interface to the DUT, virtual interface object is established in top block,
then the virtual interface is linked with the DUT that is instantiated in the top block as well.

As mentioned before, interface holds the signals, and allows the user to file and check the
transactions transferred between the testbench and the DUT in top block. Since all the data

covered in the interface, it is a simple way to establish communication this way.

/
TestBench | interface buUT

L | lr.-"

Figure 2.5: Connection between testbench and DUT via interface [24]

2.2.6. Components
2.2.6.1. Transaction

One of the basics of the verification of a digital circuit design is to create data packages. These
data packages are sent to the DUT to be processed. The smallest of these data packages or items
are called transactions. Usually, the driver class handles signal transfers at the bit layer, but
when an 8-bit of a package is needed to be transferred to the DUT, a transaction class is needed
[25].

A transaction is a class object and it develops from uvm_transaction or uvm_sequence_item
classes. Transaction class carries all the data necessary to create the transmissions between the
other components. Transactions are the least possible amount of data can be transmitted and

can be carried out by the verification environment as can be seen in Figure 2.6.

Sequence

Transactigns

request

Sequencer buT

-

0

response

Figure 2.6: Transaction Transfer Scheme [26]

2.2.6.2. Sequence and Sequencer

Sequence class is the class that creates sequences from the previously generated transactions. It
extends from uvm_sequence class. These sequences are basically data item combinations,
sequence class combines transactions in many ways to generate different outcomes. After that,
these sequences are transferred to the driver via sequencer class. Sequencer class extends from
uvm_sequencer in order to establish a communication with the driver [25]. This communication

establishment can be seen in Figure 2.7.

uvim__sequence

UVM_SEQUENCER (] UVM_DRIVER

III seq_item seq_item

Figure 2.7: Sequence-driver communication via sequencer [27]

2.2.6.3. Driver

Driver is responsible for sending created transactions to the DUT. Driver gets those
transactions, changes them into bit-level actions, and drives the data into the DUT [28]. This

structure can be seen in Figures 2.8 and 2.9.

As seen in Figure 2.7, driver receives the transactions or sequence items from sequencer. This
communication is established via some techniques. Driver class has a uvm_seq_item_pull port
to receive transactions from sequencer. First, driver calls the get_next_item function to start the
communication. This function runs until all the transactions are transferred. After that,

item_done function is called by the driver in order to stop the communication.

Transaction #3

Transaction #2

Transaction #1 | ——| Sequencer | —| Driver

Sequence

Figure 2.8: Transaction transfer from sequence to driver [25]

TestBench_Top

test
env
interfaee
generator » DUT

Figure 2.9: Transaction transfer from driver to DUT [29]
10

2.2.6.4. Monitor

Monitor is a class that inspects and monitors the communication between the DUT and the
testbench. It shows the results from the DUT and displays them to the user. Monitor is a static
component, that means it does not send any transactions to any component, its only job is to
convert the signals that are sent from the DUT to purposeful data, and then these data will be
assessed by other components [30]. Monitor’s location and its connections between other

components can be seen in Figure 2.10.

Monitor class has an analysis port to allow the users to declare the data to other components
such as subscriber and scoreboard. Data is not driven by the monitor, translated data is simply
read by the subscriber or scoreboard, in order to compare and verify the result. This

communication is established via the analysis port.

test

eny
scoreboard
7N\
2
agent =
sequencer

)
¥

N S

buy

Figure 2.10: Monitor in a testbench [31]

11

2.2.6.5. Agent

Agent is class that contains all the previous components, driver, monitor and transaction. In
Figure 2.11, agent class connects these components to each other and makes the connection to
the scoreboard component. It defines the component ports, such as slave and master driver
ports, it also allows the user the select the specific driver. Agent class does not need a run phase.
All the components established in the build phase and connected in the connect phase. When
the agent class is activated by UVM_ACTIVE, it starts an if statement to choose the slave or

master driver. Then the transactions are sent or received accordingly to the selected driver [32].

b
agent - _
E%g uence I
L |
sequencer

@

O A
monitor driver

Figure 2.11: Agent class [33]

12

2.2.6.6. Environment

Environment class is a very simple class that acts like a capsule, it consists of agents, drivers
and all the components that are created for the verification environment as can be seen in Figure
2.12.

Agents and scoreboards/subscribers can be incorporated in test class directly but it is not an
ideal solution. Environment class is defined because of the reusability, it is easy to update the
structure, if incorporation is done in test class, it would take a lot time to upgrade the files.
Created environments can be used for multiple tests. For each test, there would be no need to

build the environment and its subcomponents from scratch [34].

cuy
scoreboard
¥
agent -
w
N —
wmenitor driver

Figure 2.12: Environment class [35]

13

2.2.6.7. Subscriber

Subscriber is class that has a built-in analysis port named analysis_export which provides access
to the write method for receiving transactions. Previously created monitor class has an analysis
port which contains write function. With this analysis port, transactions are transferred to
analysis components like scoreboard or subscriber. Subscriber basically acts as an audience for
the analysis port, they “subscribe” to a communicator and acquires and then prints the results

of the received transactions whenever they are published [36].
2.2.5.8. Scoreboard

Scoreboard class is created to validate and verify the design. It examines the results from the
DUT, and compares them with the anticipated results. Scoreboard obtains the transactions by
checking the monitor’s analysis port [40]. Scoreboard’s location in the testbench structure, as

well as its connection to the monitor and DUT can be seen in Figure 2.13.

Scoreboard class uses its export port to read the data from monitor’s analysis port. Monitor
class calls the analysis_port.write(), it checks all the connected exports and calls their write

functions. After that, scoreboard can analyze and verify the data.

14

Scoreboard

Figure 2.13: Scoreboard’s connections [43]

15

2.2.6.9. Test

Test class is created to run the tests for the design. These tests are built by user and many
different tests can be applied to the design since test class contains environment class and all
the other components. That is why this method is chosen since it allows the user to reuse the
verification environment without changing the all structure [41].

As mentioned, test class capsules the environment class so many different sequences can be
carried out by the user, either in the same test via using different sequencers or operating
different tests. That way, users validate the design by running different sequence combinations.

Created tests called and carried out in top block of the testbench by using run_test function. As
specified before, with this arrangement, more than one test and different sequence combinations
can be achieved for different outcomes and the verification of the design would be more valid.

Test class encapsulates environment and other classes as can be seen in Figure 2.14.

Top
Test
Env
Scoreboard
Agent
Monitor Sequencer

Axl ',.1 ¥

RTL ¢ Interface Driver
put [N

Figure 2.14: Test class [42]

16

2.3. Serial Peripheral Interface (SPI)

Serial Peripheral Interface (SPI) is a synchronous serial communication interface. SPI devices
communicate in full duplex mode using a master-slave structure. The data from the master or
the slave is adjusted on the rising or falling clock edge. Master and slave can send data
simultaneously. SPI has 4 signals. These are Clock (SCLK, CLK), chip select/slave select (CS,
SS), master-in slave-out (MISO) and master-out slave-in (MOSI). MOSI and MISO are the data
lines. MOSI sends data from the master to the slave and MISO sends data from the slave to the
master. Clock signal is produced by the master. Data is carried between the master and the
slave, and synchronized to the clock that is created by the master. To start the SPI
communication, the master sends the clock signal and chooses the slave by activating the chip
select signal. Throughout the communication, the data is synchronously sent and acquired via
MOSI and MISO lines, since SPI is a full-duplex interface. There are 4 modes of the SPI
communication. The master can choose the clock polarity (CPOL) or the clock phase (CPHA)
to determine these modes. The CPOL bit configures the polarity of the clock signal during the
ineffective case. The CPHA bit picks the clock phase. The rising or falling clock edge is used
to examine and/or move the data [37]. SPI modes with CPOL and CPHA can be seen down
below in Figures 2.15, 2.16, 2.17 and 2.18.

n1:S_\é - - - - T T T - ;i}_

o 1

Figure 2.15: SPI Mode 0, CPOL=0, CPHA=0, CLK idle state=low [37]

In SPI Mode 0, clock polarity is 0, which displays that idle state of the clock signal is low.
Clock phase is 0, which implies that the data is examined on the rising edge and then the data

is transferred on the falling edge of the clock signal as can be seen in Figure 2.15.

17

Figure 2.16: SPI Mode 1, CPOL=0, CPHA=1, CLK idle state=low [37]

In SPI Mode 1, clock polarity is 0, which displays that idle state of the clock signal is low.
Clock phase is 1, which implies that the data is examined on the falling edge and then the data

is transferred on the rising edge of the clock signal as can be seen in Figure 2.16.

nCS If_
el alalalalalalalias
= =T LW b LT W =

MISD
OuBA

Hi-Z

1 o L 1 1

Figure 2.17: SP1 Mode 2, CPOL=1, CPHA=0, CLK idle state=high [37]

In SPI Mode 2, clock polarity is 1, which displays that idle state of the clock signal is high.
Clock phase is 0, which implies that the data is examined on the falling edge and then the data

is transferred on the rising edge of the clock signal as can be seen in Figure 2.17.

oo T\ n

—_f__/__/j_f__/__/__;’__; _/

Figure 2.18: SPI Mode 3, CPOL=1, CPHA=1, CLK idle state=high [37]

In SPI Mode 2, clock polarity is 1, which displays that idle state of the clock signal is high.
Clock phase is 1, which implies that the data is examined on the rising edge and then the data

is transferred on the falling edge of the clock signal as can be seen in Figure 2.18.

18

An SPI diagram, including all the modes can be seen down below in Figure 2.19.

CPOL=0 __ MU e
SCK cpol=1—vrrrurnmnrnr—

SS — ~

Cycle # DA X Yy aysYe 78X
CPHA=0 MISO Z 1T 1 3y a5 ey 7 1Bz
MOSIZ 1T Y s yaysYyey70e)=

Cycle # | R R S -0 0 E 8D

CPHA=1 misoDOIiIsisielslsliYsls
MOSI O I I XTSI 7By

Figure 2.19: SPI diagram with all modes [38]

One SPI master can work with numerous slaves. These slaves can be linked in regular mode or
daisy-chain mode. Figure 2.20 shows the regular mode structure. In regular mode, every slave
has its own chip select signal from the master. When the chip select signal is activated by the
master, MOSI and MISO lines are ready to use for the clock and the data transfer for chosen
slave. If master activates more than one chip select, it cannot recognize which slave is sending
data and the data on MISO line becomes distorted [37].

SPI cs3
Master Cs2 *
Y
csi »{CS cs cs
»{ SCLK SPI =1 SCLK SPI » SCLK SPI
»1SDI Slave »1SDI Slave »1SDI Slave
15P° Apas1412 ~1°P° apasi412 ™1°P° apasia12
SCLK
MosI
MISO

Figure 2.20: Regular SPI mode structure [37]

19

In daisy-chain mode, in Figure 2.21, the slaves arranged such that the chip select signal for the
slaves is connected to each other and data flows from one slave to the next. In this setup, each
slave gets the exact SPI clock simultaneously. First slave obtains the data from the master and
passes on the next slave until all slaves get the data. It is not as efficient as regular mode, because

number of the clock cycles needed to send data is significantly more in daisy-chain mode [37].

SPI P~ _
>
Master cs CS S?Pl
dave
SCLK * | SCLK
MOSI »~1 SDI
SDI

+—>»CS
SPI
¢— | SCLK Slave

SDO

SDI

SPI
»| SCLK Slave

«—— SDO

Figure 2.21: Daisy-chain mode [37]

20

There are some advantages and disadvantages of SPI, compared to other communication
protocols like 12C (Inter-Integrated Circuit) [14] and UART (Universal Asynchronous Receiver
Transmitter) [15]. First, SPI has some advantages over its counterparts. Unlike UART, SPI has
no start and stop bits, data is transmitted repeatedly without disruption. SPI’s slave
communication method is not as complex as [12C’s slave communication method. SPI has
greater data transfer percentage that 12C. Also, SPI has MISO and MOSI lines, both of these
lines can be used for transmitting and receiving data simultaneously. However, SPI has some
disadvantages as well. SPI uses four wires whereas 12C and UART use two wires. Since SPI
has no start or stop bits, no confirmation on the delivery of the data, 12C has that feature. Also,
unlike UART, SPI has no parity bit so that it cannot inspect the mistakes in the data. Finally,

although SPI supports multiple slaves, it only permits one master [39].

21

3. Verification and Simulation Tools

Creating a verification environment, simulating the design and comparing the results require
some tools. In this project, an Integrated Development Environment (IDE) is needed for
developing the verification environment and for the simulations, a simulation environment is

needed. For IDE, DVKIit is used and for simulator, QuestaSim is chosen.
3.1. Design Verification Kit (DVK:it)

DVK:it is an IDE for design and verification engineers. IDE provides engineers with extensive
tools for the software development. DVKit helps the verification engineers to handle the
verification environment which consist of SystemVerilog and UVM. It comes with an editor,
SystemVerilog Editor (SVEditor), for Verilog and SystemVerilog as well as UVM. It also
comes with C development tools and Webtools for development but these are not necessary to
create a verification environment. These tools can be activated by using the Eclipse plugin since
DVK:it’s IDE is Eclipse-based [6]. Main interface of the DVKit can be seen in Figure 3.1.

Ranzur brsa facenmpiace ubus_sceampla bh - OVKIE - =
Fa e Fjart Fan Wieme Help
¥ s oy = LERT] L ¥
b3 Froguct Exploce 1 A= |
- -

B %= 1] wvmadza * Leubobbar £ umnbelle B

include "ubus exznple scoreboz
“inelude "ubus master seq Lib.sy
vpiandle ns; “include "ubus example master seq lib.sv”
5 wpl value value 5 = { wpilIntvsl, {8} & Inelude "ubus slave seq Lib.sv
ns = wpi handle by mamel

(PLI_BYTES*] “uwm_pkg::UVH_HOL_MAX_WIDTH", 8);

] static int uem_hdl_max_width(}
.:. i

if(ms == 4] I
return 1824; /= If mothing clse is defincd /¢ CLASS: ubus example tb
G Make e acs B !
UAH_HOME = hed class wbus_cxample_th extends uvm_onvi
include ../ /.. /MakeTile. ves £ Provide implementations of virtwal methor
“uvm_component_utils{ubus_sxemple_(h)
all: comp run A uhus envirannent
ubus_env ihusd;
Canp:
o) - o g
0 e
Daacnpss —— i
L T DR o [21

Figure 3.1: DVKit interface [6]

22

3.2. QuestaSim

Questa is a verification tool that includes an integrated platform called QuestSim. Questa is
owned and developed by Mentor Graphics. QuestaSim can perform advanced verification of
electronic systems with high efficiency. Administration and debugging facilities are embedded
in QuestaSim structure [5]. It is based on ModelSim [16] tool, which is also owned by Mentor
Graphics. Main difference between ModelSim and QuestaSim is, QuestaSim supports
SystemVerilog and UVM, but ModalSim does not, which is why in this project, QuestaSim is

used for the simulations -.

QuestaSim’s main interface can be seen in Figure 3.2.

Questa Sim 10.6b
File Edit View Compile Simulate Add Source Tools Layout Bookmarks Window Help

B-FEcE s RBD2|0- na-\\m R S2EQH|| W - te= B woiARBAS AR tat) %2 2
Layout [Simulate JH ColumnLayout [Default JHCEQ < f. QH oo i ﬂy”;\{},\ﬂ]ﬂHNQﬁJJ J RS 3
43 sim - Default # & x| | §a Objects
¥|Instance |Design unit _|Design unit type \Tw Category |Visibility |Total coverage |Assertions hit |A
=8 uvm_root uvm_root SVClassitem TB Component +acc=<.
(& uvm_test_top qspitest SVClassitem T8 Component +acc==<.
= o top toplfast) Module DU Instance tacc=< 100.0% 4
&) 8 gen_qspi_master ifs[0] toplfast) ViGenerateBlock - +acc=<
(8 gen_qspi_ifs[1] toplfast) ViGenerateBlock - +acC=<...
s} 8 gen_qspi_ifs[0] toplfast) ViGenerateBlock - +accm<..
i #anonblk#31584#128+#... toplfast) Statement - +acc=<... = J
o4 ALO AL(fast) Module DU Instance +acC=<.., 100.0% 4 -
2} 8 assertion_top_inst assertions_t... Module DU Instance +acc=<.
- #INITIAL#97 toplfast) Process - Face=<...
& #INITIAL#104 top(fast) Process - tacc=<..,
& #INITIAL#109 toplfast) Process - FacC=<...
& #ASSIGN#144 toplfast) Process = +acc=<..,
@ #ASSIGN#145 toplfast) Pocess +acc=< e g
J »
ILllrlryx B Memory List #] & sim « [JJE — >l ﬁwmu [h] uvm_root.svh 4
omrge—"— oo
L] U\ﬂ! N‘ARKING H 0
* UVH ERROR : 0
® UVM_FATAL : 0
¥ ++ Report counts by td
* [Questa UVM] 2
* [RNTST] 1
* [TEST_DONE] 1
[_item] s

uestasinl0.6b/questasin/1inux/. . /verilog_src/uvm-1.1d/src/base/uvm_root.svh(430)

iy 51m10.6b/questasim/1inux/. . /verilog_src/uvm-1.1d/src/base/uvm root.svh line 430

VsIM 5>

Now: 500 us Detta: 54 [sim:/top/#INTIAL#97 [File is in read only modet Ln: 430 Cok 0 | READ |

Figure 3.2: QuestaSim interface

23

4. Serial Peripheral Interface Intellectual Property (SPI IP)

An SPI Master-Slave Interface is used as SPI IP to verify in this project. This design includes
an SPI clock generation, parallel read interface and parallel write interface. Read and write

sequences can be seen down below.

The actions in the design are synchronous to two clocks, “sclk i” and “pclk i”. These clocks
are not parallel, they are not occurring at the same time. All actions within the center are
simultaneous to “sclk i”. By using “sclk i”, SPI core clock can be created. “sclk i’ is divided
by the frequency that is double the amount of the SPI SCLK line frequency. All coordinated
I/O connection actions are simultaneous to “pclk 1. This clock is also known as high speed

clock.

This design is uncomplicated and very easy to use. It has parallel inputs and outputs that behave
like a synchronous memory 1/O. It is parameterizable via generics for the data width (N), SPI
modes (CPHA and CPOL), prefetch signaling (‘PREFATCH’) and the SPI base clock division
from “sclk i’ (SPI 2X CLK DIV) by the user.

4.1. SPI Clock Generation

The clock creation is obtained from the high-speed “sclk i” clock for the SPI SCLK. To
establish the SPI base clock, the center divides the source clock by the default parameter
“SPI 2X CLK_DIV”. For the SPI 2X clock, the user must adjust the divider value, which is
twice the desired SCLK frequency.

All registers in the center are clocked by the high-speed clocks and clock enables makes the
Finite State Machine (FSM) [17] and other logics to execute at lower rates. Field Programmable
Gate Array (FPGA) [18] clock utilities such as global clock buffers are preserved by this
architecture and path delays that are created by combinational clock divider outputs are averted.
To control asynchronous clocks for the SP1 and parallel interfaces, this center has asynchronous

clock domain circuitry.

24

4.2. Parallel Write Interface

The parallel interface has an input port “di_i” and an output port “do_o”. Three signals are used
to control the parallel load: “di i, “di req o” and “wren i”. “di req o” is a look ahead data
request line, it is used to adjust the “PREFETCH” clock cycles up front to synchronize a
pipelined memory, to give the next input data at “di_i” directly to have continuous clock at SPI

bus, to grant back-to-back continuous load.

For a pipelined sync Random Access Memory (RAM) [19], a PREFETCH of 2 cycles admits
an address creator to give the new address to the RAM in one cycle, and the RAM to answer
back in one extra cycle, in time for “di_i” to be latched by the shifter. If the user wants to use
the sequencer with a different value for PREFETCH, the default setting can be changed at
instantiation time. The “wren_i” write enable strobe must be accurate at least one setup time
before the rising edge of the last SPI clock cycle, if continuous communication is planned. If
“wren_i” is not accurate 2 SPI clock cycles after the last carried bit, the interface goes in an idle
state and declares SSEL. When the interface is idle, “wren_i”” write strobe carries the data and
starts communication. “di_req_o” will strobe when arriving idle state, if a previously carried
data has already been submitted. Parallel write sequence, with “pclk i”, “di_req o”, “di_i” and

“wren_i”, can be seen down below in Figure 4.1.

pclk i 7 el N e N N N N -- parallel interface clock
di req o / \ vus -- 'di req o' asserted on rising edge of 'pclk i
di i old data X new data ::: -- user circuit loads data on 'di i' at next ‘pclk i' rising edge

wren_ i / \ e -- user strobes 'wren_i' for one cycle of ‘pclk i

Figure 4.1: Parallel write sequence

25

4.3. Parallel Read Interface

To clone the internal shift register data to send the “do 0 port, an internal buffer is utilized.
The central shift register is sent to the buffer at the rising edge of the SPI clock, “spi_clk”, when
a full word is obtained. “do_valid o signal is configured one clock after “spi_clk” to send a
synchronous memory instantly. “do_valid 0” and “pclk i” are concurrent, on rising edges of
“pclk 17, “do_valid o” alters. The data at the “do_0” port contains the last word obtained while
the interface is idle. Parallel read sequence, with “spi_clk”, “pclk i”, “do 0 and “do_valid o0”

can be seen down below in Figure 4.2.

spi clk bitl \ / bitN \ _/bitN-1\ /bitN-2_ ... -- internal spi 2x base clock

pclk i _./ \./ N/ _/ N/ N/ _/ _/ _... --parallel interface clock (may be async to sclk i)
... --1) rx data is transferred to 'do_buffer reg’

do o old data X new data vy ST after last rx bit, at rising 'spi clk®

do valid o / \ ... --2) 'do_valid o' strobed for 2 'pclk i' cycles

on the 3rd ‘pclk i' rising edge.

Figure 4.2: Parallel read sequence

The propagation delay of “spi_sck 0” and “spi_mosi_o”, referenced to the internal clock is
compensated by identical path delays, but for full duplex application, the “spi miso i”
sampling delay establishes an setup time referenced to the “sck” signal that restricts the

interface’s high frequency.

26

5. VERIFICATION OF SERIAL PERIPHERAL INTERFACE INTELLECTUAL
PROPERTY (SPI IP) BY USING UNIVERSAL VERIFICATION METHODOLOGY
(UVM)

5.1. Top Block and Interface

For this project, the interface unit includes SCLK, MOSI, MISO, SS, RST and external clock.
These signals are defined as logics, because they are 4-state data types and also SystemVerilog
suggests that these signals should be declared as logics by the definition. Interface unit can be

seen down below in Figure 5.1.

External clock and RST are used in master driver. External clock is used for creating a clock
for the master driver and RST is used for resetting the chip/slave select signal for the master

driver.

| interface ifQspi;

logic SCLK;

logic MOSI;

logic MISO;

logic SS;

logic RST;

logic externalClock;

endinterface: ifQspi

Figure 5.1: Interface

For the top block, parameter and variable definitions such as master and slave memory are
defined in Figure 5.2.

56 / Rk kiR bbbk Rk ok Rk Rk Rk kR ok ook Rk ko ok
| e ORIop ol ok gopoy PARAMETER' DEFINITIONS ¥ e raoesemieq i sieopiop el ol gopsop o
,, /
39 parameter CLOCK PERIOD 100MHZ = 10;
M parameter CLOCK PERIOD 16MHZ = 62.5;
11
126 /¥ FEXERXEREREERE R R AR EREREREEXE R TR R R R R RS E R R R R R R E R R R R ok
13 | YIRS RO R VARTABLE| DEFINITIONS ¥ r S o g siang ko
} | SRR RO RO RSO R R OR R /

bit clk100Mhz;

bit clkl6Mhz;

bit rstn;

bit assertion_check clk125M;

bit m wren i;

bit s wren i;

51 bit [11:0] master memory [5] = {12'h345, 12'hABC, 12'hBBB, 12'h159, 12'h222};
52 bit [11:0] slave memory [5] = {12'h678, 12'hDEF, 12'hCCC, 12'h260, 12'h333};
T bit [11:0] m di i;

54 bit [11:0] s di_i;

! bit m di req o;

bit s di req o;

int counter;

Figure 5.2: Top block parameter and variable definitions
27

Also, adaptation layer and assertion instantiations are done. Adaptation layer is need because
the design is created by using VHDL but verification environment is created by using
SystemVerilog and UVM. Because of this, an adaptation layer is implemented. In top block,
instances of the DUT signals are created and connected to the interface. Those instance

declarations can be seen in Figures 5.3 and 5.4.

61 AL AL 0O(

62 .m_clk i(clk1l0OMhz),

63 .s_clk i(clk1l00Mhz),

64 .m_pclk i(clk1l06Mhz),

65 .m_rst i (m_rstn),

€ .m_spi miso i(gspi miso[0]),

7 .5 spi miso o(gqspi master miso[0]),
.m di i(m di i),
.5 di 1(s di 1),

7 .m_wren_i(m wren i),

1 .S _wren_i(s wren i),

/2 .m _spi ssel o(qgspi ss[0]),

.m_spi sck o(qspi sck[0O]),

74 .m_spi mosi o(gspi mosi[0]),

g .5 spi ssel i(gspi master ss[0]),

76 .5 _spi sck i(gqspi_master sck[O]),

/ .5 spi mosi i(gspi master mosi[0]),

.m di req o(m di req o),

.5 di_req o(s_di req o),

80 .m_wren_ack o(),

81 .S _wr_ack o(),

82 .m_do_valid o(),

Figure 5.3: Top block adaptation layer and assertion instantiations

.m_do_o(),
: .s_do_valid of(),
85 .s do o(),
36 .m_do_transfer_o(),
.m_wren_o(),
.m_rx _bit reg of(),
3 .m_state_dbg of),
o] .m_core clk of(),
91 .m_core_n_clk o(),
92 .m_sh_reg dbg o(),
0: .s _do transfer o(),
04 .S_wren_o(),
95 .5_rx_bit reg of(),
06 .s _state dbg of)
97)i

09 assertions_top assertion_top_inst();

Figure 5.4: Top block adaptation layer and assertion instantiations continued

28

5.2. Transaction

In this SPI VIP, data packages are created with the width of 8 bits. Each data has their unique
address. These addresses are defined as 7-bits. Transaction class also has 3 modes, Read (RD),
Write (WR) and Error (ERR). MOSI and MISO data are also defined as 8-bit packages in Figure
5.5.

1 class qgspi transaction #(datawidth=12,
addrwidth=7) extends uvm_sequence item;

typedef enum {WR,RD,ERR} mod;

rand bit [datawidth-1:0] MOSI_DATA;
rand bit [datawidth-1:0] MISO DATA;

9 randc mod MODE;

11 int m_bit number;

12

13

14

15 “uvm_object_utils_begin(qspi_ transaction)

16 “uvm_field_int(MOSI_DATA, UVM ALL ON|UVM_NOPACK)
17 ‘uvm_field_int(MISO DATA, UVM ALL ON|UVM NOPACK)
18

“uvm_object_utils_end

21= function new (string name = "");

22 super.new(name) ;

23 “uvm_info(get full name(),$psprintf(uvm object value str(this)),0);
24 endfunction

26 endclass

Figure 5.5: Transaction

29

5.3. Sequence and Sequencer

In Figures 5.6, 5.7 and 5.8, sequence class is seen. Here, created transactions are taken and put
into miso_data and mosi_data as random 12-bit packages. Then, in body task, these sequences
are requested by “req” and put into MISO_DATA and MOSI_DATA. MISO_DATA is sent to

slave driver by sequencer class. MOSI_DATA is sent to master driver by sequencer class.

For this project, two sequences classes are made for master and slave drivers. Each sequence
creates the same 12-bit packages as mentioned above. Each driver is getting data from their

unique sequences by sequencers.

1= class qspi sequence extends uvm sequence #(gqspi transaction);
) “uvm_object_utils(qgspi sequence)

qspi transaction # (DATAWIDTH, ADDRWIDTH) req;

int num transactions; // number of transactions, the value set from spi test

randc bit [11:0] miso data;
int bitstosent = 12;

11 ////7 Class Constructor /7//7/

3= function new (string name = "");
] super.new(name) ;

req = qspi transaction# (DATAWIDTH, ADDRWIDTH)::type id::create("req");
req.print();
endfunction

20 ///// Body Task /////

Figure 5.6: Slave sequence class constructor

22= task body;

23 begin

24 req.MISO DATA = miso data;

25 req.m _bit number = bitstosent;
26 “uvm_send(req)

end

29 end
30 end
31 endtask:body

! endclass:qspi sequence

Figure 5.7: Slave sequence body task

30

l-class gqspi sequence master extends uvm_sequence #(qspi transaction);
2 ‘uvm_object_utils(gqspi sequence master)

3

4 gspi_transaction # (DATAWIDTH, ADDRWIDTH) req;

5

6 int num_transactions; // number of transactions, the value set from spi test
7

8 randc bit [11:0] mosi data;

9 int bitstosent = 12;

10

11 ///// Class Constructor //////

12

13= function new (string name = "");

14 super.new(name) ;

15

16 req = gqspi_transaction# (DATAWIDTH, ADDRWIDTH)::type id::create("req");
17 req.print();

18 endfunction

19

20 ///// Body Task /////

21

22= task body;

23 begin

24 req.MOSI DATA = mosi data;

25 req.m_bit number = bitstosent;

26 “uvm_send(req)

27 end

Figure 5.8: Master Sequence

31

5.4. Driver

Driver is responsible for sending created transactions to the DUT. Driver gets those
transactions, changes them into bit-level actions, and drive the data into the DUT. For this

project, two drivers are needed for master and slave respectively.

Master driver is responsible for generating a clock to start data transmission. For each SPI
mode, master driver sends data from master to slave and disables and enables the clock and

slave select in between.

l=class gspi_masterDriver extends uvm _driver #(qspi_transaction);
“uvm_component_utils(qspi_masterDriver);

} virtual ifQspi m ifQspi;
‘ gspiConfig m config;
qspi_transaction m_qspi_transaction;

//// Class Constructor ////

10= function new(string name, uvm component parent);
1 super.new(name, parent);
endfunction:new

14 //// Build Phase ///////

176 function void build phase(uvm phase phase);
uvm config db#(virtual ifQspi)::get(this, "", "m ifQspi", m ifQspi);

endfunction:build phase

Figure 5.9: Master driver class constructor and build phase

In Figure 5.9, connections to interface, config class and transaction class are established. In
build phase, uvm_config_db is used to establish the configuration for the virtual interface, this
interface will be used in master driver to make connections to the interface signals as well as to
the DUT.

32

//// driverOff to reset the Chip Select ////
task driverOff();
m_ifQspi.SS <= '1;
m_ifQspi.MOSI <= 'bO;
m_ifQspi.RST <= 'bO;
endtask:driverOff
///// Master Driver's Clock ////
}= task driverClk;
m_ifQspi.RST=0;
m_ifQspi.externalClock <= 0;
#(m_config.clk period*2*1ns) m ifQspi.RST <= ~m_ifQspi.RST;

forever begin
#(m_config.clk period*2ns) m_ifQspi.externalClock <= ~m_ifQspi.externalClock; end

endtask:driverClk

Figure 5.10: Master driver driverOff and driverClk functions

In Figure 5.10, driverOff and driverCIk tasks are defined. driverOff task is used to reset the
chip/slave select signal and is called at the end of the run phase, after the transaction transfer
is done. driverClk task is the master driver’s clock generator, it switches the RST and

externalClock signals by waiting them 2ns times clk_period amount of time.

/////7 Run Phase //////

task run_phase(uvm_phase phase);

fork
begin
wait(m_ifQspi.RST);
“uvm_info(get type name(), $psprintf("reset finished"), UVM LOW)
m ifQspi.SS <='bl;
if(m config.m cpol == 0)
m ifQspi.SCLK <='b0;
else
m ifQspi.SCLK <='bl;

Figure 5.11: Master driver run phase

In Figure 5.11, run phase is started. Fork method is used in order to execute the functions
under it parallelly. RST signal is waited and then slave select signal is enabled as default. For
SCLK, if the CPOL is 0, then SCLK signal is low or 0 by default, if it is not, SCLK is high or
1.

33

forever begin
59 seq_item port.get next item(req);

61 if (!$cast(m_gspi_transaction, req))
“uvm_fatal(get type name(), "Failed to cast the requested transaction")

data_transfer _master driver;
seq_item port.item done();
end
end
driverClk;
join_none
endtask: run_phase

Figure 5.12: Master driver run phase continued

In Figure 5.12, run phase continues as seq_item_port is used to start the communication and
receive the transaction from sequencer by using get_next_item. data_transfer_master_driver
function is called, that is the main function of the master driver and will be mentioned in the
next figure. After all the transactions are received, item_done request is called on the

seq_item_port to stop the communications. As mentioned before, driverClk task is called at

the end of the run phase.

task data transfer master driver();

case (m_config.m cpol)
0: begin
case(m config.m cpha)
0: begin
@(posedge m_ifQspi.externalClock);
m ifQspi.SCLK <='b0;
#1ns;
m ifQspi.SS <= 'b0O;
#1ns;
for(int i = m_qgspi transaction.m bit number - 1; i >= 0; --i) begin
m_ifQspi.MOSI <=m _qspi_transaction.MOSI DATA[i];
@(negedge m ifQspi.externalClock);
m_ifQspi.SCLK <='bl;
#1ns;
m _gspi transaction.MISO DATA[i] <= m ifQspi.MISO;
@(posedge m_ifQspi.externalClock);
m_ifQspi.SCLK <='b0;
end
@(negedge m_ifQspi.externalClock);
m ifQspi.SS <= 'bl;
#1ns;

end

Figure 5.13: Master driver SPI mode 0

In Figure 5.13, data_transfer_master_driver task is defined. For each SPI mode, SCLK and SS
signals are enabled and disabled with propagation delay, MOSI_DATA is written and
MOSI_DATA is read. When CPOL is 0, SCLK and externalClock are not parallel, the

behavior of these clocks will be seen in the simulation results chapter.

34

For SPI mode 0, CPOL and CPHA are 0. First, positive edge of the external clock is waited,
as mentioned before, external clock and SCLK are opposite so at the positive edge of the
external clock, SCLK is 0 or low. After that SS signal is brought down to low or 0, with that
MOSI_DATA is sent. While in for loop, negative edge of the external clock is waited and
SCLK is brought up to high or 1. Then, MISO_DATA is read. After the last data, positive
edge of the external clock is waited once again in order to bring down the SCLK signal.
Finally, in order to bring up the SS signal to high, negative edge of the external clock is
waited. For SPI mode 0, MOSI_DATA is written and MISO_DATA is read.

1: begin
@(posedge m_ifQspi.externalClock);
m _ifQspi.SCLK <="h0;

#1ns;

m_ifQspi.SS <= 'bO;

#1ns;

for(int i = m gspi transaction.m bit number - 1; i >= 0; --i) begin

@(negedge m_ifQspi.externalClock);
m ifQspi.SCLK <='bl;
#1ns;
m_ifQspi.MOSI <= m_qspi_transaction.MOSI_DATA[i];
@(posedge m_ifQspi.externalClock);
m_ifQspi.SCLK <='b0;
#1ns;
m _qspi transaction.MISO DATA[i] <= m _ifQspi.MISO;
end
@(negedge m_ifQspi.externalClock);
m_ifQspi.SS <= 'bl;
end
endcase
end

Figure 5.14: Master driver SPI mode 1

In Figure 5.14, SPI1 mode 1 can be seen. In SPI mode 1, CPOL is 0 and CPHA is 1. First,
positive edge of the external clock is waited, as mentioned before, external clock and SCLK
are opposite so at the positive edge of the external clock, SCLK is 0 or low. After that SS
signal is brought down to low or 0. In SPI mode 1, data is not written at the positive edge of
the external clock. For that, negative edge of the external clock is waited and SCLK is
brought up to high or 1. After the propagation delay, MOSI_DATA is written. At the positive
edge of the external clock, SCLK is brought down to low or 0 and MISO_DATA is read. In
order to bring up the SS signal to high or 1, negative edge of the external clock is waited. For
SPI mode 1, MOSI_DATA is written and MISO_DATA is read.

35

118 1: begin

119 case(m config.m cpha)

1 0: begin
@(posedge m ifQspi.externalClock);
m ifQspi.SCLK <='bl;

123 #1ns;
124 m ifQspi.SS <= 'bO;
125 #1ns;
€ for(int i = m_gspi_transaction.m _bit number - 1; i >= 0; --i) begin

m ifQspi.MOSI <= m qspi transaction.MOSI DATA[i];
@(negedge m ifQspi.externalClock);
m_ifQspi.SCLK <='b0;
#1ns;
m gspi transaction.MISO DATA[i] <= m ifQspi.MISO;
@(posedge m_ifQspi.externalClock);
133 m ifQspi.SCLK <='bl;
134 end
135 @(negedge m_ifQspi.externalClock);
3¢ m ifQspi.SS <= 'bl;
end

Figure 5.15: Master driver SPI mode 2

In Figure 5.15, SPI mode 2 can be seen. In SPI mode 2, CPOL is 1 and CPHA is 0. As
mentioned before, SCLK and external clock are now parallel since CPOL is 1. Positive edge
of the external clock is waited and SCLK is brought up to high or 1. After that SS signal is
brought down to low or 0 in order to start the writing of MOSI_DATA. At the negative edge
of the external clock, SCLK is brought down to low or 0 and MISO_DATA is read. In order
to bring up the SCLK to high, positive edge of the external clock is waited. After that, in order
to bring up the SS to high, negative edge of the external clock is waited. And with that for SPI
mode 2, MOSI_DATA is written and MISO_DATA is read.

138 1: begin
139 @(posedge m_ifQspi.externalClock);
] m_ifQspi.SCLK <='bl;

#1ns;

m_ifQspi.SS <= 'b0O;

#1ns;

for(int i = m gspi transaction.m bit number - 1; i >= 0; --i) begin

@(negedge m_ifQspi.externalClock);
m_ifQspi.SCLK <='b0;
#1ns;
m_ifQspi.MOSI <= m_qgspi_transaction.MOSI DATA[i];
@(posedge m_ifQspi.externalClock);
m_ifQspi.SCLK <='bl;
#1ns;
m_qspi_transaction.MISO DATA[i] <= m_ifQspi.MISO;
end
@(negedge m_ifQspi.externalClock);
m_ifQspi.SS <= 'bl;
end
endcase
end
endcase
1 endtask
61 endclass

Figure 5.16: Master driver SPI mode 3

36

In Figure 5.16, SPI mode 3 can be seen. In SPI mode 3, CPOL and CPHA are both 1. Positive
edge of the external clock is waited to bring up SCLK to high or 1 and bring down the SS to
low or 0. Data reading or writing does not occur at positive edge of the external clock so
negative edge of the external clock is waited. SCLK is brought down to low or 1 and
MOSI_DATA is written. After that positive edge of the external clock is waited, SCLK is
brought up to high or 1, and MISO_DATA is read. In order to complete the communication
SS signal is brought up to high or 1 at the negative edge of the external clock. And with that,
for all SPI modes, reading MISO_DATA and writing MOSI_DATA are achieved.

1= class qspi slaveDriver extends uvm driver #(qspi transaction);
“uvm_component_utils(qspi_slaveDriver)

virtual ifQspi m ifQspi;
qspiConfig m config;
gspi_transaction m_qgspi_transaction;

//// Class Constructor ////

function new(string name, uvm_component parent);
super.new(name, parent);
endfunction:new

//// Build Phase ///////

function void build phase(uvm phase phase);
uvm_config db#(virtual ifQspi)::get(this, "", "m_ifQspi", m_ifQspi)

endfunction:build phase

Figure 5.17: Slave driver class constructor and build phase

Afterwards, the slave driver is created. In master driver, MISO _DATA is read. That
MISO_DATA is written in slave driver. In Figure 5.17, same definitions and configurations

from master driver can be seen.

37

////// Run Phase //////

task run _phase(uvm phase phase);
forever begin
seq_item_port.get_next_item(req); //get sequence item and send data to DUT

NN NNNN

if (!$cast(m gspi transaction, req))
31 “uvm_fatal(get_type name(), "Failed to cast the requested transaction")

sent data from driver;
seq item port.item done();
end
endtask: run_phase

Figure 5.18: Slave driver run phase

In Figure 5.18, at the run phase, transactions or sequence items are gathered from seq_item_port
by the get_next_item function. Later, sent_data_from_driver task is called. When this task is

completed, with the item_done function, driving data is done and finished.

if (!'m _ifQspi.SS) begin
case (m_config.m_cpol)

0: begin
case(m config.m cpha)
0: begin
for(int i = m_gspi_transaction.m bit number - 1; i >= 0; --i) begin
#(m config.m holdTime);
m ifQspi.MISO= m qspi transaction.MISO DATA[i];
@(posedge m ifQspi.SCLK);
#(m_config.m_holdTime);
@(negedge m_ifQspi.SCLK);
end
end
1: begin
for(int i = m_gspi_transaction.m bit number - 1; i >= 0; --i) begin
@(posedge m_ifQspi.SCLK);
#(m config.m holdTime);
m_ifQspi.MISO= m_qspi_transaction.MISO DATA[1i];
@(negedge m_ifQspi.SCLK);
#(m config.m holdTime);
end
end
endcase
end

Figure 5.19: Slave driver SPI mode 0 and 1

Like in the master driver, for each SPI mode, data is written in positive or negative edge of the
clock, depending of the SPI mode. Each edge also has a delay even if they do not sent data in
that case. For SPI mode 0, CPOL and CPHA are both 0. When SS is brought down to low,
MISO_DATA is written from transaction class as can be seen in Figure 5.19. After that positive

and negative edges of the SCLK are waited with delay time.

For SPI mode 1, CPOL is 0 and CPHA is 1. At the positive edge, after the delay, MISO_DATA

is written from transaction class as can be seen in Figure 5.6c.

38

1: begin
case(m_config.m cpha)
0: begin
for(int i = m_gspi_ transaction.m bit number - 1; i >= 0; --i) begin

#(m_config.m _holdTime);

m_ifQspi.MISO= m_qgspi_transaction.MISO DATA[i];

@(negedge m_ifQspi.SCLK);

#(m_config.m _holdTime);

@(posedge m_ifQspi.SCLK);

end
end
1: begin
for(int i = m_gspi transaction.m bit number - 1; i >= 0; --i) begin
@(negedge m_ifQspi.SCLK);
#(m_config.m_holdTime);
m_ifQspi.MISO= m_qgspi transaction.MISO DATA[i];
@(posedge m_ifQspi.SCLK);
#(m_config.m_holdTime);
end
end
endcase
end
endcase
end
endtask

Figure 5.20: Slave driver SPI mode 2 and 3

For SPI mode 2, CPOL is 1 and CPHA is 0. When SS is brought down to low, MISO_DATA
is written from transaction class as can be seen in Figure 5.20. After that positive and negative

edges of the SCLK are waited with delay time.

For SPI mode 3, CPOL and CPHA are both 1. At the negative edge, after the delay,

MISO_DATA is written from transaction class as can be seen in Figure 5.20.

Finally, both master and slave drivers are completed, all the modes are covered, data transfer

from master to slave and from slave to master are both achieved.

39

5.5. Monitor

All configurations defined in master and slave driver are also defined in monitor class as can
be seen Figure 5.21. In addition, a monitor port is defined from uvm_analysis_port. After all
the MISO and MOSI data is read and obtained, this port will connect the monitor to the

subscriber and or scoreboard.

-class qspi monitor extends uvm monitor;

“uvm_component_utils(qspi_monitor)

virtual ifQspi m_ifQspi;

uvm_analysis port #(gqspi transaction) mon port;

qspi_transaction #(DATAWIDTH, ADDRWIDTH) m gspi_transaction;

gspiConfig m config;

//// Class Constructor ////

function new(string name, uvm_component parent);
super.new(name,parent);

endfunction

///// Build Phase /////

= function void build phase (uvm phase phase);
mon_port= new("mon_port",this);

uvm_config db#(virtual ifQspi)::get(this, "", "m ifQspi", m _ifQspi);

endfunction:build phase

Figure 5.21: Monitor class constructor and build phase

In Figure 5.22, run phase can be seen. In run phase, collect_transfer task is called. After that
collect_transfer task is written. Transaction definitions are done and bit number is derived

from config class.

/7171777 Run Phase //////

virtual task run_phase (uvm_phase phase);
forever begin
collect_transfer();
end
endtask

task collect transfer();
gspi_transaction #(DATAWIDTH, ADDRWIDTH) m_gspi_transaction= gspi_transaction #(DATAWIDTH, ADDRWIDTH)::type id::create("m gspi_transaction"]

@(negedge m_ifQspi,.SS);
m_qspi_transaction.m_bit number = m_config.m bit number;
#(m_config.m holdTime);

Figure 5.22: Monitor run phase and collect_transfer function

40

In Figure 5.23, data reading for SPI mode 0 and 1 is achieved. In order to start the data reading,
SS needs to be low or 0. For SPI mode 0, CPOL and CPHA is 0. Positive edge of the SCLK is
waited, MISO_DATA and MOSI_DATA is read. For SPI mode 1, CPOL is 0 and CPHA is 1.
Negative edge of the SCLK is waited, MISO_DATA and MOSI_DATA is read.

if(!m ifQspi.SS) begin
case (m_config.m_cpol)

0:begin
case(m_config.m cpha)
0:begin
for(int i = m_gspi_transaction.m bit number - 1; i >= 0; --i) begin
@(posedge m ifQspi.SCLK);
m_qspi_transaction.MISO DATA[i]=m ifQspi.MISO;
m gspi transaction.MOSI DATA[i]=m ifQspi.MOSI;
end
end
1:begin
for(int i = m gqspi_transaction.m bit number - 1; i >= 0; --i) begin
@(negedge m_ifQspi.SCLK);
m_qspi transaction.MISO DATA[i]=m ifQspi.MISO;
m_qspi transaction.MOSI DATA[i]=m ifQspi.MOSI;
end
end
endcase
end

Figure 5.23: Monitor SPI mode 0 and 1

In Figure 5.24, data reading for SPI mode 2 and 3 is achieved. For SPI mode 2, CPOL is 1
and CPHA 0. Negative edge of the SCLK is waited, MISO_DATA and MOSI_DATA is read.
For SPI mode 3, CPOL and CPHA are both 1. Positive edge of the SCLK is waited,
MISO_DATA and MOSI_DATA is read. At the end of the monitor class, with write function,

read transactions are sent to the monitor’s analysis port, mon_port.

1:begin

case(m_config.m cpha)
0:begin
for(int i = m_qgspi_transaction.m_bit_number - 1; i >= 0; --i) begin
@(negedge m ifQspi.SCLK);
m_qspi_transaction.MISO DATA[i]=m_ifQspi.MISO;
m_qspi_transaction.MOSI_DATA[i]=m_ifQspi.MOSI;
end
end
1:begin
for(int i = m gspi transaction.m bit number - 1; i >= 0; --i) begin
@(posedge m_ifQspi.SCLK);
m_qspi_transaction.MISO DATA[i]=m_ifQspi.MISO;
m qspi transaction.MOSI DATA[i]=m ifQspi.MOSI;
end
end
endcase
end
endcase

end
mon_port.write(m_gspi_transaction);

endtask
endclass

Figure 5.24: Monitor SPI mode 2 and 3

41

5.6. Agent

While drivers can be selected and activated by using UVM_ACTIVE in one agent, it is better
to create two agents for master and slave specifically. Master and slave agents are very similar,
only difference is the connected driver. In Figure 5.25, master agent can be seen. An analysis
port is defined for each agent. For master agent, master driver, monitor, sequencer as well as

virtual interface and config class is defined.

1= class qspi masterAgent extends uvm agent;
2 “uvm_component_utils(qspi_masterAgent)

4 uvm_analysis_port#(gspi_transaction) masterAgent_port;
gspi monitor monitor;

gqspi_masterDriver masterDriver;
uvm_sequencer #(qspi_transaction) m_sequencer;

Q virtual ifQspi m_ifQspi;
10 gspiConfig m _qspiConfig;
11
12 /// Class Constructor ///
13
14 function new(string name,uvm component parent);
1 super.new(name,parent);
16 m _gspiConfig = qspiConfig::type id::create("m gspiConfig");
17 m_gspiConfig.setConfig();
18 endfunction
19

Figure 5.25: Master agent class constructor and declarations

////// Build Phase /////
3= function void build phase(uvm phase phase);

25 masterAgent port=new("masterAgent port", this);

2 monitor=qspi monitor::type id::create("monitor", this);
monitor.m config = m qspiConfig;

monitor.m_ifQspi m_ifQspi;

if(is active == UVM ACTIVE) begin
m_sequencer=uvm_sequencer #(qspi_ transaction)::type id::create("m sequencer",this);
masterDriver=qspi_masterDriver::type id::create("masterDriver",this);
3 masterDriver.m config = m_gspiConfig;
34 masterDriver.m _ifQspi m_ifQspi;

35

end
endfunction: build phase

Figure 5.26: Master agent build phase

In Figure 5.26, build phase is seen. Previously defined master agent port, config class,
interface and monitor are registered. With UVM_ACTIVE, sequencer and master driver are

registered.

42

40 //// Connect Phase /////

41

42

43= function void connect phase(uvm phase phase);

44 masterDriver,seq_item port.connect(m sequencer.seq_item export); //connect m sequencer to the driver
45 monitor.mon port.connect(masterAgent port); //// connect monitor to agent port
46

47 endfunction:connect_phase

48

19

50 endclass

Figure 5.27: Master agent connect phase

In Figure 5.27, connect phase is seen. In connect phase, sequencer and master driver are

connected and also monitor’s analysis port is connected to master agent’s analysis port.

1= class qspi_slaveAgent extends uvm agent;
2 “uvm_component_utils(qspi_slaveAgent)

uvm_analysis port#(qspi_transaction) slaveAgent port;

OB WK

qspi_slaveDriver slaveDriver;
qspi_monitor monitor;

0~

o

9 uvm_sequencer #(qspi_transaction) m_sequencer;

10 wirtual ifQspi m_ifQspi;

11 qspiConfig m_qspiConfig;

12

13 /// Class Constructor ///

14

15= function new(string name,uvm_component parent);
16 super.new(name,parent);

17 m_qspiConfig = gspiConfig::type id::create("m qspiConfig");
8 m_qspiConfig.setConfig();

19 endfunction

20

21

Figure 5.28: Slave agent class constructor and declarations

In Figure 5.28, same definitions are made and an analysis port created for the slave agent.

////// Build Phase /////

N NN
- W N

function void build phase(uvm phase phase);

N
w

N
o

slaveAgent port=new("slaveAgent port", this);

27 monitor=qspi monitor::type id::create("monitor", this);

28 monitor.m config = m qspiConfig;

29 monitor.m_ifQspi = m_ifQspi;

30

31 if(is_active == UVM_ACTIVE) begin

32 m sequencer=uvm sequencer #(qspi transaction)::type id::create("m sequencer",this);
33 slaveDriver=qspi slaveDriver::type id::create("slaveDriver",this);
34 slaveDriver.m_config = m_gspiConfig;

35 slaveDriver.m_ifQspi = m_ifQspi;

36

37 end

38 endfunction: build phase

39

10

Figure 5.29: Slave agent build phase

43

In Figure 5.29, registrations that are done in master agent, implemented for slave agent as well.

11 //// Connect Phase /////
12

function void connect phase(uvm phase phase);
slaveDriver.seq_item_port.connect(m_sequencer.seq_item_export); //connect m_sequencer to the driver

monitor.mon port.connect(slaveAgent port); //// connect monitor to agent port

}
}
}
17
} endfunction:connect_phase
}

;L endclass
Figure 5.30: Slave agent connect phase

In Figure 5.30, connect phase is seen. In connect phase, sequencer and slave driver are

connected and also monitor’s analysis port is connected to the slave agent’s analysis port.

44

5.7. Environment

For environment class, preexisting environment base class which is created by ANKASYS [45]
for their VIP projects, is used. In this environment class, registration of DUT agents and
subscriber are done in build phase. In connect phase, DUT agents are connected to the slave or
master agents’ analysis port and also to the subscriber’s analysis port. DUT agents are also

created by ANKASYS and act like the testbench agents, their responsibilities are identical.

In Figure 5.31, connections between DUT agents, master and slave agents and subscriber’s

master and slave write functions can be seen.

m_dut_agents.m _qspi agent[0].slaveAgent port.connect(m qspi subscriber sample.analysis imp_ slave);
m_dut_agents.m_gspi_master_agent[0O].masterAgent_port.connect(m_qgspi_subscriber_sample.analysis_imp_master);

Figure 5.31: Environment connections

45

5.8. Subscriber

Multiple connections can be established, in this project, two agents and one monitor are created,
both agents are connected to the subscriber via environment class and also monitor’s analysis
port which includes write function is also connected. With write method, whenever there are
transactions in the monitor’s analysis port and write method is called, all the components that
are connected to the monitor’s analysis port can read the data. With that, subscriber’s write
method is activated and received transactions are printed as MOSI_DATA and MISO_DATA

as seen in Figure 5.32.

16= function void qgspi subscriber sample::write master(gspi_transaction t);
bit [11:0] slave memory [5] = {12'h678, 12'hDEF, 12'hCCC, 12'h260, 12'h333}
if (!$cast(m_gspi_transaction master, t))
return;
if(m gspi transaction master.MISO DATA==slave memory[master counter])
“uvm_info(get_full_name(), $psprintf("Transfer is successful"), UVM_LOW)
else

“uvm_error(get full name(), $psprintf(“Transfer failed"))
master_counter++;

if (master counter == 5)
master_counter = 0;

“uvm_info(get full name(), $psprintf("m qspi transaction master.MISO DATA = %h",m qspi_transaction master.MISO DATA), UVM LOW)
“uvm_info(get_full_name(), $psprintf("m_gspi_transaction_master.MOSI_DATA = %h",m_gspi_transaction_master.MOSI_DATA), UVM_LOW)
endfunction

Figure 5.32: Subscriber write_master function

In Figure 5.32, write_master function can be seen. In this structure, design is the slave and
testbench is the master. Subscriber checks if MISO_DATA matches the slave memory. If they
match, “Transfer is successful” message is printed. Finally, both MISO and MOSI data are also
printed.

46

function void qspi subscriber sample::write slave(qspi transaction t);
bit [11:0] master_memory [S5] = {12'h345, 12'hABC, 12'hBBB, 12'h159, 12'h222};
if (!$cast(m gspi_transaction slave, t))
return;
if(m gspi_transaction slave.MOSI DATA==master memory[slave counter])
“uvm_info(get full name(), $psprintf("Transfer is successful™), UVM LOW)
else
‘uvm_error(get_full_name(), $psprintf(“Transfer failed"))
slave counter++;

if (slave_counter == 5)
slave_counter = 0;

“uvm_info(get full name(), $psprintf("m qspi transaction slave.MISO DATA = %h",m gspi_transaction slave.MISO DATA), UVM_LOW)
“uvm_info(get full name(), $psprintf("m gspi transaction slave.MOSI DATA = %h",m gspi_transaction slave.MOSI DATA), UVM LOW)

9 endfunction

Figure 5.33: Subscriber write_slave function

In Figure 5.33, write_slave function can be seen. In this structure, design is the master and
testbench is the slave. Subscriber checks if MOSI_DATA matches the master memory. If they
match, “Transfer is successful” message is printed. Finally, both MISO and MOSI data are also

printed.

In this project, scoreboard class is not needed since both printing and comparing data are done

in subscriber class.

47

5.9. Config

A configuration class is needed to store the bit definitions, period and delay definitions. Bit

number amount is also defined in this class. In Figures 5.34 and 5.35, config class can be seen.

11 “ifndef gspiConfig

12 “define gspiConfig

13

14 class gspiConfig extends uvm _object;

15 bit m_cpol = 0;

16 bit m_cpha = 0;

17 int m bit number = “DEFAULT_DATA_TRANSFER_SIZE;
18 time m_holdTime = 60ns;

19 time clk period = 10ns;

20= “uvm_object_utils_begin(gspiConfig)

21 “uvm_field_int(m cpol, UVM ALL ON)

22 “uvm_field_int(m cpha, UVM_ALL_ON)

23 “uvm_field_int(m holdTime, UVM ALL ON)

24 “uvm_field_int(m _bit number, UVM _ALL ON)

25 “uvm_field_int(clk period, UVM ALL ON)

26 ‘uvm_object_utils_end

27

28 extern function new(string name = "gspiConfig");
29

30= extern virtual function void setConfig(

31 bit a cpol = 0,

32 bit a cpha = 0,

33 int a bit number = “DEFAULT_DATA_TRANSFER_SIZE,
34 time a holdTime = 60Ons,

35 time a clk period = 10ns

36);

37 endclass : qspiConfig

Figure 5.34: Config class

48

38

39= function gspiConfig::new (string name = "gspiConfig");
40 super.new(name) ;

41 endfunction : new

42

43= function void gspiConfig::setConfig(

44 bit a cpol = 0,

45 bit a cpha = 0,

46 int a bit number = “DEFAULT_DATA_TRANSFER_SIZE,

47 time a holdTime = 60ns,
48 time a clk period = 10ns
49)i

50

51 m cpol = a cpol;

52 m cpha = a cpha;

53 m bit number = a bit number;
54 m _holdTime = a holdTime;

55 clk period = a clk period;
56 endfunction : setConfig

57

58 “endif

Figure 5.35: Config class continued

49

5.10. Test

In test class, two sequences are in one test. In Figure 5.36, master and agent sequences are

defined and registered in test class.

-class gspi_test extends test_base;
“uvm_component_utils(qspi_test)

4 qspi_sequence seq;
gqspi sequence master seq master;
///// Class Constructor ////
)= function new(string name, uvm component parent);
super .new(name,parent);
endfunction
4 ///// Build Phase /////
6= function void build phase(uvm phase phase);
super.build phase(phase);
endfunction
///// Run Phase ////
2= task run_phase(uvm phase phase);

24 phase.raise objection(this);

seq =gspi_sequence::type id::create("seq");
seq master =gspi sequence master::type id::create("seq master");

Figure 5.36: Test class constructor and build phase

In Figures 5.37 and 5.38, run phase is seen. Inside the run phase, fork method is used so
sequence transfers do not have to wait for each other. In Figure 5.37, 12 bits of data is sent from
slave to master. With seq.miso_data lines, 12 bits of 5 data are defined, in this case they are
‘h111,’h222, ‘h333, ‘h000 and ‘h147. In this structure verification environment acts as slave

and the design acts as master.

50

29 fork
30 repeat(1l) begin
seq.randomize();
seq.bitstosent = 12;
3 seq.miso_data = 'h111;
34 seq.start(m anka env.m env.m dut agents.m qspi agent[0].m sequencer);
35 seq.miso data = 'h222;
‘ seq.start(m_anka env.m env.m dut agents.m qspi agent[0].m sequencer);
seq.miso data = 'h333;
38 seq.start(m_anka env.m env.m dut agents.m qspi agent[0].m sequencer);
39 seq.miso data = 'h000;
seq.start(m_anka env.m env.m dut agents.m qspi agent[0].m sequencer);
seq.miso data = 'hl47;
seq.start(m_anka env.m env.m dut agents.m qspi agent[0].m sequencer);
end

Figure 5.37: Test first sequence

45 repeat(1l) begin

46 seq master.randomize();

47 seq master.bitstosent = 12;

48 seq_master.mosi_data = 'h444;

49 seq master.start(m anka env.m env.m dut agents.m qspi master agent[©].m sequencer);
50 seq _master.mosi data = 'h555;

51 seq_master.start(m_anka_env.m _env.m_dut_agents.m_qspi_master_agent[©].m sequencer);
52 seq_master.mosi_data = 'h666;

53 seq master.start(m anka env.m env.m dut agents.m qspi master agent[0].m sequencer);
54 seq master.mosi data = 'h777;

55 seq_master.start(m_anka_env.m_env.m_dut_agents.m_qspi_master_agent[©].m_sequencer);
56 seq master.mosi data = 'h888;

57 seq master.start(m anka env.m env.m dut agents.m qspi master agent[0].m sequencer);

Figure 5.38: Test second sequence

In Figure 5.38, verification environment acts as master and the design acts as slave. 12 bits of

5 data is sent from master to slave.

In Figure 5.2, master and slave memories are defined as variables. If design acts as slave, its
response to mosi_data that is sent from test class, must be from slave memory. For example,
‘h444 is sent from master to slave, in this case design is the slave, its response must be from
slave memory. First data in slave memory is the ‘h678, so master receives ‘h678 while sending
‘h444 to the slave. If design acts as master, master sends ‘h345 from master memory to slave

and receives ‘h111 from slave.

51

5.11. Simulation and Test Results

In order to start the simulation for each mode, SPI mode needs to be configured both in test
base class and design. In Figure 5.39, master and slave configuration are done separately. Under
setConfig, first two numbers represent CPOL and CPHA respectively and 12 is the bit number.
In this case, SPI mode 2 is activated, CPOL is 1 and CPHA is 0.
316
31
31 foreach (m env _config.m gspi config[i]) begin
1

“ifdef USED ANKA VIP
m env_config.m qspi config[i].setConfig

> "ifdef USED QSPI
7 function void test base::do qspi config();

(1,
0,
? 12,
324 1ns,
325 10ns);

326 “endif
32 end

329 foreach (m _env config.m qspi master config[i]) begin
330 “ifdef USED ANKA VIP
' m env_config.m qspi master config[i].setConfig
(1,

0,

12,

1ns,

10ns);

N5 WN

10

“endif
end
endfunction

Figure 5.39: Test base

In Figure 5.40, CPOL and CPHA configurations for SP1 mode 0 can be seen. This configuration
is done in loopback class of the design.
28 entity spi loopback is

29 Generic (
30 N : positive := 12;

31 CPOL : std logic := '0';

32 CPHA : std logic := '0';

33 PREFETCH : positive := 2;

34 SPI 2X CLK DIV : positive := 5

_‘[. .
35);

Figure 5.40: Design loopback

52

After mode selection, it is time to verify the design. All signals of design that are defined in top
block are added to the wave. In Figure 5.41, added signals for SPI mode O can be seen. In this
structure, testbench is the slave and design is the master. m_di_o represents the MISO data.
These MISO data are sent by the testbench in test class. m_do_o represents the master memory
and it is a response to the MISO data. In Figure 5.41, m_di_iis ‘ABC and m _do o is ‘222. That
is the expected result, since ‘222 is the second sequence that is sent in test class and ‘ABC is in

the second place of the master memory.

-
-3
-4
-

m_clk_i

+ m_spi_ssel_o
“+ m_spi_sck_o
“. m_spi_mosi_o
£ m_spi_miso_i
“« m_di_req_o

B mdii

B-“. m_do_o

4

Figure 5.41: SPI mode 0, design=master testbench=slave

In Figure 5.42, testbench is the master and the design is the slave. m_di_o represents the MOSI
data. These MOSI data are sent by the testbench in test class. m_do_o represents the slave
memory and it is a response to the MOSI data. In Figure 5.42, m_di_iis ‘DEF and m_do_o is
‘555. That is the expected result, since ‘555 is the second sequence that is sent in test class and
‘DEF is in the second place of the slave memory. It has a slight shift in the simulation but
console results show that the transfer is successful and communication between master and

slave is achieved.

£ sclki

£ s spi_ssel i
£

-4

s_spi_sck_i

s_spi_mosi_i
'+ 5_spi_miso_o

“ 5 di_reg_o
e sdii
B’.s5doo

4

Figure 5.42: SPI mode 0, design=slave testbench=master

Results are verified with the help of subscriber class, as Figure 5.43 and Figure 5.44 show, there

is no error and all data transfer between master and slave is successful.

53

nka_e;v.m_env.m_qapi_aubscrj_ber_aample] Transfer is successful
UVM_INFO /storage/projects/verificati®n projects/santez/santez
nka env.m env.m _gspi subscriber sample] m gspi transaction slave
U'V‘H INFO /storuge/projectsiverlticationjrojects/santezfaantez
nka env.m env.m gspl subscriber sample] m gspi transaction slave
LWM INFO /storage/projectsiverlfication_projects/santez/santez
UVM_INFO /storage/projects/verification projects/santez/santez_ qspl/veriflcatlon.
ka_env -m_env.m gspl subscriber sample] Transfer is successful
UVM_INFO /storage/projects/verification projects/santez/santezg
nka_env.m env.m gspl subscriber sample] m gspi transaction slave
L UVH INFO /stornge/projects;’verif1cntionjrojects/snntez/santez
nka_env.m _env.m gspl_ subscriber sample] m gspi_transaction slave
lN'M INFO /atorage/projectsiverlfication_projectEl/sa.ntezlslantez qsp.
an INFO /storage/projects/verification projects/santez/santez gspi/verification,
nka _env.m env.m gspl subscriber sample] Transfer is successful
L UVH INFO fstorage/projectsiverlticationjrojects7santez?aanfez
nka env.m env.m gspl subscriber sample] m gspi transaction slaveMISO DATA = 333
an INFO /storage,’projectsiverlfication_projects/santez/santez gspi/verificatio
nka env.m env.m gspi subscriber sample] m gspi transaction_ slave
U\m INFO /storage/projectsiverlficationjrojects/santezlaantez
U'V'M INFO /storage/projects/verification projects/santez/santez . qsplfverlfication.
anka_env .m_env.m gspi subscriber sample] Transfer is successful
UVM_INFO /storage/projects/verification projeCts/Santez/santez g
anka env.m env.m gspl subscriber sample] m gspi transaction slave

L U\m INFO /stornge/projects;’verit1cationjrojects/snntez/aantez 1= z .
UV‘H_INE‘O /storage/projectsfver.lticationjrojects/snntezfsantez_qsplfverlfication.
anka_env.m env.m gspl subscriber sample] Transfer is successful

an INFO [storage/projectsiverification_projects/santez/santez gso ation
anka env.m _env.m gspi subscriber sample] m gspi_transaction_slave

MISO DATA = 147
spi/verificatio
a.nka env.m env.m qspj_ subacr]_ber aample] m qapi tranaactlon alave H{)SI DATJ\ = 222

UV‘H INFO /storage/projectsiverlticationjrojects/santezfaantez

Figure 5.43: SPI mode 0, design=master testbench=slave results

54

UVM_INFO

/storage/projects/verification projects/santez/santez gspi/verification/Du

_anka_env.m _env.m gspi_subscriber sample] Transfer is successful

t UVH INFO

anka env.m env.m gspl subscriber sample] m gspl transaction masten.

N UVH INFO

_anka_env.m env.m gspi subscriber sample] m gspi_transaction mastei.

UVM INFO
UVM_INFO
m ank.a env
UVM_INFO

m_ anka env.

UVH INFO

m_anka_e nv.

UVM_INFO
UVH INFO

anka env
UVH INFO
m_anka_e nv
UVH INFO

anka env.

i UVH INFO
UVH INFO
m_ anka env
UVH INFO

m ank.a env.

UVH INFO

m_ anka env.

UVM_INFO
UVM_INFO

m_anka_env.

UVM_INFO

anka env.

UVH INFO

m_anka_e nv.m |

.m_env.m gspi subscriber sample] m gspi transaction masterjMISO DATA =

fstorage!projectsfverlficntion_projects?snnfez?aanfez Lk -

HISQ_DATA = 678
pi/verification/us
MOSI DATR = 444

fstoragefprojectsiverlfication_projectsfsantezfsantez q

fstoragefprojectsfverlficution_projectsfsuntezfsantez LE, -
/storage/projects/verification projects/santez/santez qspifverlfication!Du1

.m_env.m gspi subscriber sample] Transfer is successful

/storage/projects/verification projects/santez/santez_gspilyc :
m_env.m gspi_subscriber sample| m gspi_transaction mastex].MISO DATA = def
fstorageiprojectsiverlfication_projectafsantezfsantez gsgjl /verification/D
m_env.m gspl subscriber sample] m gspi_transaction master].MOSI DATA = 555
/storage/projects/verification projects/santez/santez_gsg
/storage/projects/verification projects/santez/santez . qspifverification!Du\

.m env.m gspl subscriber sample] Transfer is successful

fstoragefprojectsiverlfication_projects!santezfsantez gsp
ccc
fstorage!projectsfverlficntion_projects!snntezfaantez gsp /verification/D
m env.m gspl subscriber sample] m gspi transaction masterjMOSI DATA = 666
fstoragefprojectsiverlfication_projectsfsantezfsantez gspl/ver
/storage/projects/verification projects/santez/santez qspifverification!Du\

.m_env.m _gspl subscriber sample] Transfer is successful

jatorage]projectsiverlfication_pro ects/santez/santez gsp

fstorageiprojectsiverlfication_projectafsantezfsantez gqsprT™
/storage/projects/verification projects/santez/santez qspifverificationfﬂuw
m_env.m_gspi subscriber sample] Transfer is successful

fstorage!projectsfverlfication_ﬁ?EEEE?E?::EEEE?E:EEEE‘&s-

Figure 5.44: SP1 mode 0, design=slave testbench=master results

55

In Figure 5.45, added signals for SPI mode 1 can be seen. In this structure, testbench is the slave
and design is the master. m_di_o represents the MISO data. These MISO data are sent by the
testbench in test class. m_do_o represents the master memory and it is a response to the MISO

data. In Figure 5.45, m di iis ‘345 and m do ois ‘111. That is the expected result, since ‘111

is the first sequence that is sent in test class and ‘345 is in the first place of the master memory.

Figure 5.45: SPI mode 1, design=master testbench=slave

In Figure 5.46, testbench is the master and the design is the slave for SPI mode 1. m_di_o
represents the MOSI data. These MOSI data are sent by the testbench in test class. m_do_o
represents the slave memory and it is a response to the MOSI data. In Figure 5.46, m_di_i is
‘678 and m_do_o is ‘444. That is the expected result, since ‘444 is the first sequence that is

sent in test class and ‘678 is in the first place of the slave memory.

£ sclki

< s _spi_ssel i
£ s _spi_sck_i
£ s _spi_mosi_i
“a 5_Spi_miso_o

o< sdii
S

Figure 5.46: SPI mode 1, design=slave testbench=master

Results are verified with the help of subscriber class, as Figure 5.47 and Figure 5.48 show, there

is no error and all data transfer between master and slave is successful.

56

mw ow Ul"l._l.l‘l'\l i BI-ULGIHC,! FLUJC\.- way VCLJ.LLI-ELLUII_HLUJ“ LDy oaAuLve Ly ﬂﬂlll-c.ﬁ_liﬂtlJ.j’ VOLALAdLAOLLUVIL UUY
_anka_env.m env.m gspi_subscriber sample] Transfer is successful

UVM_INFO fstorage,’projects!veriﬂcationm Oje = ===
a.nka env.m env.m gspl subscriber sample] m gspl transaction slavejMISO DATA = 111

UVH INFO .’storage.’projecta."verit.I.catlon_projectsfaantezfaantez qeTr
U'VH INFO /storage/projects/verification projects/santez/santez qapifverificationfnuv
_anka_env.m env.m gspi_subscriber sample] Transfer is successful

* UVH INFO .’storage.’projecta,"\rerJ.ﬂ-::ation_projectm‘aantez.7santez q

UVM_ INH} fstoragefprojects,"verJ.ﬂ-::ation_project:fsantez,-’santez q
UVH INFO /storage/projects/verification projects/santez/santez_gspi/verification/Duv
a.nka env.m env.m gspl subscriber sample] Transfer i1s successful
UVM_INFO /storage/projects/verification PPCjects/santez/santez g .
_anka_env.m env.m gspi subscriber sample] m gspi transaction slave.MISO DATA =

333

* UVH INFD fstoragefpro]ects!veriflcation_projectsfsanteziaantez . T - -
UVM_INFO /storage/projects/verification projects/santez/santez . qspifverificationfDuv
m_ anka env.m env.m gspl subscriber sample] Transfer is successful
U'VH INFO istorage!prujecta!veriflcation_pm e =
m_anka env.m env.m gspi_subscriber sample] m gspi_transaction slav..HISO DATR OUD
UVM_INFO /storage/projects/verification projects/santez/santez qdpi/verification/Dfv
m_ anka env.m env.m gspi subscriber sample] m gspi_ transaction_slavel.MOSI DATA = 159
UVH INFO ,’storage,’prujects,«'verifJ_catlon_projectafsanteziaantez q :
UVH INFO /storage/projects/verification projects/santez/santez qapi!verification!Duv
m_anka env.m env.m gspi_subscriber sample] Transfer is successful
UVH INFO fstoragefprojecta!verit1cat10n_ﬁ?ETEEE;7;;EEEE7EEEfEE-E5
m anka env.m env.m gspli subscriber sample] m gspl transaction slaveMISO DATA = 147
1 UVM_ INFO fstoragefpro]ectsiverifLcation_projectsfsanteziaantez gsfi/verification/Thv
m_anka_env. m_env.m qspi subacriber aample] m qspi transactlnn slave MOSI_DATA = 222

Figure 5.47: SPI mode 1, design=master testbench=slave results

57

UVM_INFO /storage/projects/verification projects/santez/santez_gspi/verification/Duv/SCO

.m_anka env.m env.m gspi subscriber sample] Transfer is successful

UVM_INFO fstoragefprojectsfveriflcation_prcjects?santez;santez gsp
<M anka env.m env.m _gspl subscriber sample] m gspli transaction masterf MISO DATA = 678

UVM INFO fstoraqefprojectsfverification_projectsfsantezfsantez gspifverification/DuvfSCO
_anka_env .m_env.m gspi subscriber sample] m gspi transaction masterj MOSI DATA = 444
UVM_INFO /storage/projects/verification projects/santez/santez_gspf (QSP
UVM_INFO /storage/projects/verification projects/santez/santez gspi/verification/Duv/SCO
M anka env.m env.m gspl subscriber sample] Transfer is successful
UVM INFO a’s-te:nra.g[ea’;:«r‘:njm=.-::t3fveri.fJ.r.'e;.t.1-:nn_pr::ajf.-r.'ﬁ?mana‘:zc_[sp'.l.pf -

m_ anka env.m _env.m gspli subscriber sample] m gspil_ transaction mastergMISO DATA = def

SCOl

UVM INFO !storage{proje:tsfverif1cat1on_projects!santezfsantez qspi /s B SP
UVM INFO /storage/projects/verification projects/santez/santez_ qspi}verifLcaticn!Duv!SCO
M anka env.m env.m gspl subscriber sample] nafer is successful

UVM INFO fstoraqefprojectsfverification_projectsfsantezfsantez gspl/
.m_anka_env .m_env.m gspi subscriber sample] m gspi transaction mastergMISO DATA =

=4 £4 =244 ni"l'\.nr}'ﬂ'co:

.M aaka_env.m_env.m_qspi_subscriber_sample] m_qspl_transacticn_ﬁaste 666

B
#
P
B
P
#
P
B
#
P
#
P
w
p.m_ MOSI DATA =
UVM_INFO /storage/projects/verification projects/santez/santez gspi/

UVM_INFO /storage/projects/verification projects/santez/santez_gspi/verification/Duv/SCO
p.m_ anka env.m env.m gspi subscriber sample] Transfer is successful

UVM INFO fstorage/projectsfveriflcation_projects?sanfez?sanfez qspl/
p-m_ anka env.m env.m gspl subscriber sample] m gspi transaction masterMISO DATA = 260
UVM_ INFO !storaqe{projectsfverif1cat1cn_projectsfsantezisantez gspi/ferification/Duv/BCo
P-m_ anka env.m env.m gspi subscriber sample] m gspi_ transaction master]MOSI _DATA = 777
UVM_ INFO fstoragefprojEcts!verification_projectslsantez/santez QS Pl / Tttt tmibiinll) S P
UVM_INFD /storage/projects/verification projects/santez/santez_gspi/verification/Duv/8CO
p.-m_anka env.m env.m gspl subscriber sample] Transfer is_successful

UVM_INFO /storagefprojectsfverification_prcjects?santez;santez gspi/
p-m_ anka env.m env.m gspl subscriber sample] m gspi transaction mastergMISO DATA = 333
UVH INFO fstoraqefprojectsfverification_projectsfsantezfsantez gspi/ferification/Duv/pCoO
p.m_anka_env .m_env.m gspi subscriber sample] m gspi transaction masterf MOSI DATA = 888

sCO

Figure 5.48: SPI mode 1, design=slave testbench=master results

In Figure 5.49, added signals for SPI mode 2 can be seen. In this structure, testbench is the
slave and design is the master. m_di_o represents the MISO data. These MISO data are sent
by the testbench in test class. m_do_o represents the master memory and it is a response to the
MISO data. In Figure 5.49, m_di_11is ‘345 and m_do_o is ‘111. That is the expected result,
since ‘111 is the first sequence that is sent in test class and ‘345 is in the first place of the

master memory

{ N

CPOL

CPHA

m_clk_i

'« m_spi_ssel o

“a m_spi_sck_o
“a m_spi_mosi_o
£ m_spi_miso_i

8-“~ m_do o

Figure 5.49: SPI mode 2, design=master testbench=slave

58

In Figure 5.50, testbench is the master and the design is the slave for SPI mode 2. m_di_o
represents the MOSI data. These MOSI data are sent by the testbench in test class. m_do_o
represents the slave memory and it is a response to the MOSI data. In Figure 5.50, m_di_i is
‘678 and m_do o is ‘444. That is the expected result, since ‘444 is the first sequence that is

sent in test class and ‘678 is in the first place of the slave memory.

{ 5_spi_ssel_i
£ s spi_sck_i

i s spi_mosi i
‘s 5_spi_miso_o
B sdii
=¥ s doo

Figure 5.50: SPI mode 2, design=slave testbench=master

Results are verified with the help of subscriber class, as Figure 5.51 and Figure 5.52 show, there

is no error and all data transfer between master and slave is successful.

UVM_INFO /storage/projects/verification projects/santez/santez gspi/verification/Du
_anka_env.m_env.m gspi_subscriber sample] Transfer is successful

¥ UVM INFO !storage!projects!verification_prcjects?santez;santez -

] UVM INFO fstoragefprojectsfveriflcation_prc]ectsr‘santez.’santez s .
UVH INFO /storage/projects/verification projects/santez/santez qspi/verificatlonwa
_anka_env .m_env.m gspli subscriber sample] Transfer is successful

UVM_INFO ."stora.gefprojects:’verificationm g 2
_anka env.m env.m gspl subscriber sample] m gspil transaction_slavef MISO DATA = 222
UVM INFO fstoragefprojectsfveriflcat1Dn_prcjects!santez!santez o:pi/v;rificatlon u
anka env.m env.m gspi subscriber sample] m gspi transaction slavef MOSI DATA = abc
t U‘VM INFO fstoragea‘projects.-’\rerJ.f].cat1on_projects!santezisantez s -

UVM INFO /storage/projects/verification projects/santez/santez_ qspip’veriflcatlom’Dw
anka _env.m env.m gspl subscriber sample] Transfer is successful

UVM_INFO /storage/projects/verification projects/santez/santez (epere o
_anka env.m _env.m gspi subscriber sample] m _gspi_ transaction_slave.MISO DATA = 333

¥ UVH:INFD Tstoragefprgjectsfverificat1on_pEojec?sfsantez;saﬁtez_ 2l T
UVM_INFO /storage/projects/verification projects/santez/santez_gspi/verification/Duw
m_anka env.m env.m gspi_subscriber sample] Transfer is successful

UVM_INFO fstoragefprojects!verificatiDn_ﬁ;E?EE?;7;;EE;;7;;;?E;-as
m anka env.m env.m gspl subscriber sample] m gspi transaction slavejMISO DATA = 000

UVM_INFO ."stora.gea‘projects.f\rerJ.f].cat1on_projects!santezisantez qspi/verification/Df
m_anka env.m env.m gspi subscriber sample] m gspi transaction slavejMOSI_DATA = 1359
ﬁ_UVM_TNFO fstoragefprojectsfveriflcat1Dn_prcjects!santez!santez qs :
UVM_INFQO /storage/projects/verification projects/santez/santez qspifverificationfnu
m_anka env.m _env.m gspi subscriber sample] Transfer is successful

UVM_INFO r’storager’projectsfveriflcation_pmqs e
m anka env.m env.m gspl subscriber sample] m gspl transaction slavegMIS0 DATA = 147

UVM_INFO fstoraqefprojects.n'veriﬂcatic:-n_prc:jectsfsantez;’santez qspi/verification/
m_anka env.m_env.m _gspi_subscriber sample] m_gspi_transaction slavejMOSI DATA = 222

Figure 5.51: SPI mode 2, design=master testbench=slave results

59

* UVM_INFO /storage/projects/verification projects/santez/santez_gspi/verification/Duv/S(
5. anka env.m env.m gspl subscriber sample] Transfer is successful
UVH INFO fstoragefprojectsfverificat1on_pfE?EE?E?EEE?EE7EEETEE‘E§p
-m_ anka env.m env.m gspi subscriber sample] m gspi transaction maste
UVM INFO (storageJprojectsfverification_prcjectsfsantezfsantez gsp
s) anka env.m env.m gspl subscriber sample] m gspi transaction maste
UVH INFO fstoragefprojects!verification_projectsisantezfsantez qsp DE
UVH INFO /storage/projects/verification projects/santez/santez_gspi/verification/Duv/S(
p.m_ anka env.m env.m gspl subscriber sample] Transfer is successful
UVH INFO fstoragefprojects!Verificat1Dn_proTEE?E?EEE%EE?E:E?EE-Egpi
p-m anka env.m env.m gspl subscriber sample] m gspi transaction mastegy.MISO DATA = def
UVM INFO fstorage!projects!verif1catLcn_projects!santez!santez gspifverification/Duv
p.m_ anka env.m env.m gspl subscriber sample] m qspi transaction mastefy.MOSI DATA = 555
UVH INFO fstoragefprojects!verificat1Dn_projectsisantez/santez gspi
UVH INFO /storage/projects/verification projects/santez/santez_ qspifverificationiDuv!S(
p.m_ anka env.m env.m gspl subscriber sample] Transfer is successful
UVM INFO (storageJprojectsfverification_prcjects;santez;santez gspi
p- m_anka env.m env.m gspl subscriber sample] m gspi transaction master. MISO DATA = ccc
UVM_INFO fstoragefprojects!verification_projectsisantezfsantez gspi/frerification/Duv/fs(
P- _anka env.m env.m gspi subscriber sample] m gspi transaction mastex]. MOSI DATA = 666
UVM_INFO (storage!projectsfverification_prcjectsfsantezfsantez gspi DE
UVH INFO /storage/projects/verification projects/santez/santez qspi/veriflcatloniDuviS(
P
#
p-m

HISD_DATA = 678
verification/Duv/B(
HOSI_DATA = 444

_anka env.m env.m gspl subscriber sample] Transfer is successful

UVM_INFO fstorage!projects!verif1cat10n_projects:santez:santez gspi/

p.m_ anka env.m env.m gspl subscriber sample] m gspi transaction master|MOSI _DATA = rT?
UVM INFO !storage!projects!verif1catLcn_projectsiaantez!santez gspi/ -
UVM INFO /storage/projects/verification projects/santez/santez qspi/veriflcatlcn/DuvaC
p-m | anka env.m env.m gspl subscriber sample] Transfer is successful

UVM_INFO /storage/projects/verification prdjects/santez/santez gspi/
p.m_ anka env.m env.m gspl subscriber sample] m gspi transaction masterjMISO DATA = 333

UVM_ INFO (storage!projectsfverification_prcjectsfsantezfsantez qspi/ erification/Duv]s(
p- m_anka_env .m env.m gspl subscriber sample] m gspl transaction masterjMOSI DATA = 888

Figure 5.52: SPI mode 2, design=slave testbench=master results

Finally, in Figure 5.53, added signals for SPI mode 3 can be seen. In this structure, testbench
is the slave and design is the master. m_di_o represents the MISO data. These MISO data are
sent by the testbench in test class. m_do_o represents the master memory and it is a response
to the MISO data. In Figure 5.53, m_di iis ‘BBB and m_do o is ‘333. That is the expected
result, since ‘333 is the third sequence that is sent in test class and ‘BBB is in the third place

of the master memory

Figure 5.53: SPI mode 3, design=master testbench=slave

60

In Figure 5.54, testbench is the master and the design is the slave for SPI mode 2. m_di_o
represents the MOSI data. These MOSI data are sent by the testbench in test class. m_do_o
represents the slave memory and it is a response to the MOSI data. In Figure 5.54, m_di_i is
‘CCC and m_do_ o is ‘666. That is the expected result, since ‘666 is the third sequence that is

sent in test class and ‘CCC is in the third place of the slave memory.

L s clk_i
L s_spi_sseli
{ s spiscki

{ s_spi_mosii
4 § Spi_miso o
0L sdii

Figure 5.54: SPI mode 3, design=slave testbench=master

Results are verified with the help of subscriber class, as Figure 5.55 and Figure 5.56 show, there

is no error and all data transfer between master and slave is successful.

UVM_INFO /storage/projects/verification projects/santez/santez gspi/verification/Duv/S(
anka env.m env.m gspl subscriber sample] Transfer is successful
UVH INFO fstorage;’projects}\reriﬂcatlcnm = = - SV / S(
anka _env.m env.m gspi subscriber sample] m gspi transaction slavep MISO DATA = 111
+ UVH INFO fstoragefprojectsfverification_projectsfsantezfsantez gbpi/verification/Puv/s(
anka _env.m env.m gspl subscriber sample] m gspl transaction slavej MOSI DATA = 345
UVM_INFO fstorage;‘projects}\reriﬂcat1cn_projectsfsantez,fsantez o .
a UW! INFO /storage/projects/verification projects/santez/santez_ qspif’veriflcatlom‘Duv!S(
anka _env.m env.m gspi subscriber sample| Transfer is successful
] UVH INFO /storager’projects!verificatlon_m e wariedies
anka _env.m_env.m gspl subscriber sample] m_gspl transaction_slave.MISO DATA = 222
UVM INFO .fstoragef’projectsfveriflcatlon_projecta!'santez."santez piz’venflcatlon Duv / S(
anka _env.m env.m gspi subscriber sample]| m gspil transaction slave.MOSI DATA = abc
UVH INFO fstoragefprojects!verificatiDn_projects!santezisantez ey IP/Qt
UVH INFO /storage/projects/verification projects/santez/santez qspi;’veriflcation!Duv!S{
_anka_env -m_env.m gspi_subscriber sample] Transfer dis successiul
UVM_INFO /storage/projects/verification projects/santez/santez g
anka env.m env.m gspl subscriber sample] m gspl transaction slaveMIS0 DATA = 333
N UVH INFO fstorage!projectsfverification_projects!santez;’santez qfpi/verificationfpuv/s(
anka env.m env.m gspil subsacriber sample] m gspli transaction slaveMOSI DATA = bbb
* UVM:INFO 75tora§efprajectsfveri?ication_p;cjecgsfsantezfsa;tez_q - VIP/Q!
UVM_INFO /storage/projects/verification projects/santez/santez gspi/verification/Duv/S(
m_anka env.m _env.m spi_subscriber sample] Transfer is successful
UVM_INFO !storagea’projects,‘ver1fication_projectsfsantez:santez g
m_anka_env.m env.m gspi subscriber sample] m gspi transaction slavef MISO DATA = 000
ﬁ_UVH_ENFD fstoragefprojects!verification_projects!santez[aantez q i/verification/
m_anka env.m_env.m gspi_subscriber sample] m_gspi_transaction slaveg MOSI DATA = 159
UVM_INFO /storage/projects/verification_projects/santez/santez_g
UVM_INFO /storage/projects/verification projects/santez/santez_gspi/verification/Duv/S(
m anka env.m env.m gspl subscriber sample] Transfer is successful
UVM_INFO fstorage!projectsfverification_projects:santez;’santez (5 rissitptiviideaetddemrndli 1 v/ S(
m_anka env.m_env.m _gspi_subscriber sample] m_gspil_transaction_slavej MISO DATA = 147
UVM_INFO /storage/projects/verification projects/santez/santez gspi/verification/guv/S(
m anka env.m env.m gspl subscriber sample] m gspli transaction slavej MOSI DATA = 222

puwv / 5(

Duv/ S(

Figure 5.55: SPI mode 3, design=master testbench=slave results

61

UVM_INFO /storage/projects/verification projects/santez/santez_gspi/verification/Duv/SCO

m anka env.m_env.m _gspi_subscriber sample] er is successful
UVH INFO !storage!projectsfverificatlon_projectsfsantezfaantez gspi i

I ank,a env.m env.m gspl subscriber sample] m gspi transaction masterjMISO DATA = 678

U‘m{ INFO ,‘storagea’projectsfverificatlon_projectsfsantezlsantez gspi verification/DuvgSCO

M anka env.m env.m gspl subscriber sample] m gspi transaction masterjMOSI DATA = 444

UV'I'[INFO fstorage!projects;’veritication_projectsfsantezlsantez gspi

UVH INFO /storage/projects/verification projects/santez/santez ¢ qapiiverificationlnuwsco

p.m anka env.m env.m gspl subscriber sample] Transfer is successful

UVM_INFO /storuge/project:lf'verif1cat10n_projectsf:|antcz;:lantez gspi/)

UEH_INFO ,’stEruge.r’ErojeEtaf'\rerific;tion_proj;ctsf;antezfuanteg_qspi -
UVM_INFO /storage/projects/verification projects/santez/santez_gspi/verification/Duv/SCO
.m anka env.m env.m gspl subscriber sample] Transfer is successful

UVM_ INFO fstoragefpro]ectsfverificatlon_proiecfs?5anEez?santez qspi/

UVH INFO .‘storagefprojects,fverificatlon_projects;‘santezfsantez gspi/ver
U‘U‘H INFO /storage/projects/verification projects/santez/santez_ qspif\rerificntionmuv,fsco
M anka env.m env.m gspi subscriber sample] Transfer is successful

UVH INFO /storage/projects/verification _promii
_anka_env .m_env.m gspl subscriber sample] m gspi transaction maste
UVM_INFO /storage/projects/verification projects/santez/santez_gspi
M anka env.m env.m gspl subscriber sample] m gspi_transaction maste
UVH INFO fstorage!projectafveriticatlon_projectafsantez}aantez gspi
UVH INFO /storage/projects/verification projects/santez/santez i qspi!verification.fnuv.fsco
p-m_ anka env.m _env.m gspi subscriber sample] Transfer is successful

UVH INFO /storage!projects!veriticatlon_promﬂ
p-m_ anka env.m env.m gspl subscriber sample] m gspl transaction masterjMISO DATA = 333
U‘m{ INFO ,‘storage;’projectsfverificatlon_prujects.fsantezfsantez qspi/ erification/Duv/pCO
p- m_anka_env .m_env.m gspl subscriber sample] m gspi transaction masterjMOSI DATA = 888

s»'u*va'css'ua"u*'uas

Figure 5.56: SPI mode 3, design=slave testbench=master results

62

6. REALISTIC CONSTRAINTS AND CONCLUSIONS

Verification of a digital circuit design is crucial in microelectronic industry. It is a challenge for
engineers, designing an electronic system is already a complicated process and with the
verification necessity, it becomes a burden. But verification can not be ignored, since to be able
to correct and validate a design before its release is essential. And with this verification process,

quality of the design is significantly increased.

For this objective, a verification environment is created by using SystemVerilog and UVM.
Then, an SPI Master/Slave interface is put under test. This interface is already created, since
designing and verification operations are both equally complicated. This SPI design is used as
an IP, and with the created verification environment, this whole structure becomes a VIP. The
design is tested and compared with the expected results. With the acquired results, VIP is

completed and the design is successfully verified with the created verification environment.
6.1 Practical Application of this Project

This project successfully implements a VIP for a relatively complex SPI interface. By analyzing
the design, both master and slave interfaces, connections are made in verification environment,
this created structure can be reusable and adaptable for different designs. Connection ports can
be changed in the verification environment accordingly to the design. Main purpose of the
UVM is reusability, so in this project this task is achieved.

6.2 Realistic Constraints

Most important aspect of this project is the reusability. For SPI protocol, many different designs
can be verified by using this VIP. With small changes, time and resource efficiency are
achieved. And because it is separate process from designing, both design and verification
engineers work very efficiently and they can be very productive this way. Design engineers do

not have to use their time to validate their design and can focus on only designing process.

63

6.2.1 Social, environment and economic impact

Time and resources are crucial aspects in our lives. In order to save time and resources, work
sharing is done in businesses. Each individual has its own responsibilities, resources and time
period to do the tasks. With this project, efficiency is achieved, since designing and verification
processes are both time and resource consuming. Design engineers do not have to lost in the
design by checking for small mistakes and finding them. Verification engineers can simply put
the design under test and point the mistakes to the design engineers. That way both time and

resources are saved and it has a big economic impact on the microelectronic industry.
6.2.2 Cost analysis

This design can be implemented and verified on a FPGA board. This FPGA board’s cost is the
only vital cost factor of this project. Normally, QuestaSim simulation tool licence needs to be
purchased but since ANKASYS helps the project with their licenses and tools, this aspect is not

a cost factor.
6.2.3 Standards

For implementing the verification environment, SystemVerilog and UVM standards are
followed. Connection between design and verification environment is done accordingly to SPI
protocol, since design is an SPI interface. Also, the engineering code of conduct is adopted in

this project.
6.2.4 Health and safety concerns

Creating this project does not possess any danger to any human. There is no health or safety

risks in the development process.
6.3 Future Work and Recommendations

In this project, default SPI protocol is followed. Default SPI protocol is a full-duplex model,
that means communication is established on 2 lines. In the future, this verification environment
can be altered to establish the communication on 4 lines. That means changing the default
duplex mode to quadruple mode or changing SPI to QSPI. Furthermore, this verification
environment can be altered for the 12C or UART communication protocols. | addition to one
slave interface, more than one slaves can be attached to master, since SPI protocol allows
multiple slaves. Finally, the design and verification environment can be implemented to a
FPGA board to verify the functionality of the design.

64

REFERENCES
[1] Vasudevan, S. (2020). Practical UVM: Step by step with IEEE 1800.2. R. R. Bowker.

[2] Frenzel, L. (2015). Handbook of serial communications interfaces: A comprehensive

compendium of serial digital input/Output (I/0) standards. Newnes.

[3] Thomas, D. E., Donald E., T., & Moorby, P. R. (1998). The Verilog® hardware

description language. Springer.

[4] Sutherland, S., Davidmann, S., & Flake, P. (2006). SystemVerilog for design second
edition: A guide to using SystemVerilog for hardware design and modeling. Springer Science

& Business Media.

[5] Questa® advanced simulator. (n.d.). Siemens EDA is a leader in electronic design

automation-Siemens EDA.

Retrieved January 23, 2021, from https://www.mentor.com/products/fv/questa/

[6] DVKIit. (n.d). Retrieved January 23, 2021, from https://dvKkit.sourceforge.net/

[7] Ciletti, M. D. (2011). Advanced digital design with the Verilog HDL.

[8] Original-E: Foundations for social virtual realities. (n.d.). Welcome to ERights.Org.

Retrieved January 23, 2021, from https://erights.org/history/original-e/index.html

[9] Vera. (2019,). Semiconductor Engineering. Retrieved January 23, 2021, from

https://semiengineering.com/knowledge centers/languages/vera/

[10] Glasser, M. (2009). Open verification methodology cookbook. Springer.

[11] Synopsys (2021). | EDA Tools, Semiconductor IP and Application Security Solutions.

Retrieved January 23, 2021, from https://www.synopsys.com/

[12] Cadence. (n.d.). Cadence | Computational Software for Intelligent System Design™.,

Retrieved January 23, 2021, from https://www.cadence.com/en_US/home.html

[13] Simulation & verification. (n.d.). Siemens EDA is a leader in electronic design

automation- Siemens EDA.

Retrieved January 23,2021, from https://www.mentor.com/products/fpga/verification-

simulation/

65

https://www.mentor.com/products/fv/questa/
https://dvkit.sourceforge.net/
https://erights.org/history/original-e/index.html
https://semiengineering.com/knowledge_centers/languages/vera/
https://www.synopsys.com/
https://www.cadence.com/en_US/home.html
https://www.mentor.com/products/fpga/verification-simulation/
https://www.mentor.com/products/fpga/verification-simulation/

[14] Paret, D., & Fenger, C. (1997). The 12C bus: From theory to practice. John Wiley & Son.

[15] Osborne, A., & Bunnell, D. (1982). An introduction to microcomputers.
Osborne/McGraw-Hill.

[16] ModelSim®. (n.d.). Siemens EDA is a leader in electronic design automation - Siemens
EDA.

Retrieved January 23, 2021, from https://www.mentor.com/products/fpga/verification-

simulation/modelsim/

[17] Wang, J., & Tepfenhart, W. (2019). Formal methods in computer science. CRC Press.
[18] Simpson, P. A. (2015). FPGA design: Best practices for team-based reuse. Springer.

[19] RAM. (2020). Computer Hope's Free Computer Help.
https://www.computerhope.com/jargon/r/ram.htm

[20] Chapter 2 — Defining a verification environment. (n.d.). https://colorlesscube.com/uvm-

guide-for-beginners/chapter-2-defining-the-verification-environment/

[21] Uvm_object. (n.d.). Verification Academy - The most comprehensive resource for
verification training. | Verification Academy. Retrieved January 23, 2021, from
https://verificationacademy.com/verification-methodology-

reference/uvm/docs 1.1c/html/files/base/uvm object-svh.html

[22] Uvm_component. (n.d.). Verification Academy - The most comprehensive resource for
verification training. | Verification Academy. Retrieved January 23, 2021, from

https://verificationacademy.com/verification-methodology-

reference/uvm/docs 1.1b/html/files/base/uvm component-svh.html

[23] SystemVerilog interface. (n.d.). ChipVerify. Retrieved January 23, 2021, from

https://www.chipverify.com/systemverilog/systemverilog-interface

[24] SystemVerilog interface construct. (2020). Verification Guide. Retrieved January 23,

2021, from https://verificationguide.com/systemverilog/systemverilog-interface-construct/

[25] Chapter 4 — Sequences and sequencers. (n.d.). Pedro Aratijo — Random thoughts about
hardware design. Retrieved January 23, 2021, from https://colorlesscube.com/uvm-guide-for-

beginners/chapter-4-transactions-sequences-and-sequencers/

66

https://www.mentor.com/products/fpga/verification-simulation/modelsim/
https://www.mentor.com/products/fpga/verification-simulation/modelsim/
https://www.computerhope.com/jargon/r/ram.htm
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1c/html/files/base/uvm_object-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1c/html/files/base/uvm_object-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1b/html/files/base/uvm_component-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1b/html/files/base/uvm_component-svh.html
https://www.chipverify.com/systemverilog/systemverilog-interface
https://verificationguide.com/systemverilog/systemverilog-interface-construct/
https://colorlesscube.com/uvm-guide-for-beginners/chapter-4-transactions-sequences-and-sequencers/
https://colorlesscube.com/uvm-guide-for-beginners/chapter-4-transactions-sequences-and-sequencers/

[26] UVM sequences and transactions application. (2015). Universal Verification
Methodology. Retrieved January 23, 2021, from

https://www.learnuvmverification.com/index.php/2015/07/29/uvm-sequences-and-

transactions-application/

[27] UVM sequence. (2020). Verification Guide. Retrieved January 23, 2021, from

https://verificationguide.com/uvm/uvm-sequence/

[28] Chapter 5 — Driver. (n.d.). Pedro Aratijo — Random thoughts about hardware design.

Retrieved January 23, 2021, from https://colorlesscube.com/uvm-guide-for-beginners/chapter-

5-driver/

[29] SystemVerilog TestBench. (2020). Verification Guide. Retrieved January 23, 2021, from
https://verificationguide.com/systemverilog-examples/systemverilog-testbench-example-01/

[30] Chapter 6 — Monitor. (n.d.). Pedro Aratijo — Random thoughts about hardware design.
Retrieved January 23, 2021, from https://colorlesscube.com/uvm-guide-for-beginners/chapter-

6-monitor/

[31] UVM TestBench architecture. (2020). Verification Guide. Retrieved January 23, 2021,
from https://verificationguide.com/uvm/uvm-testbench-architecture/

[32] Chapter 7 — Agent. (n.d.). Pedro Aratijo — Random thoughts about hardware design.
Retrieved January 23, 2021, from https://colorlesscube.com/uvm-guide-for-beginners/chapter-

7-agent/

[33] UVM agent. (2020). Verification Guide. Retrieved January 23, 2021, from

https://verificationquide.com/uvm/uvm-agent/

[34] UVM environment [uvm_env]. (n.d.). ChipVerify. Retrieved January 23, 2021, from

https://www.chipverify.com/uvm/uvm-environment

[35] UVM environment example. (2020). Verification Guide. Retrieved January 23, 2021,

from https://verificationguide.com/uvm/uvm-environment-example/

[36] Uvm_subscriber. (n.d.). Verification Academy - The most comprehensive resource for
verification training. | Verification Academy. Retrieved January 23, 2021, from

https://verificationacademy.com/verification-methodology-

reference/uvm/docs 1.1c/html/files/comps/uvm subscriber-svh.html

67

https://www.learnuvmverification.com/index.php/2015/07/29/uvm-sequences-and-transactions-application/
https://www.learnuvmverification.com/index.php/2015/07/29/uvm-sequences-and-transactions-application/
https://verificationguide.com/uvm/uvm-sequence/
https://colorlesscube.com/uvm-guide-for-beginners/chapter-5-driver/
https://colorlesscube.com/uvm-guide-for-beginners/chapter-5-driver/
https://verificationguide.com/systemverilog-examples/systemverilog-testbench-example-01/
https://colorlesscube.com/uvm-guide-for-beginners/chapter-6-monitor/
https://colorlesscube.com/uvm-guide-for-beginners/chapter-6-monitor/
https://verificationguide.com/uvm/uvm-testbench-architecture/
https://colorlesscube.com/uvm-guide-for-beginners/chapter-7-agent/
https://colorlesscube.com/uvm-guide-for-beginners/chapter-7-agent/
https://verificationguide.com/uvm/uvm-agent/
https://www.chipverify.com/uvm/uvm-environment
https://verificationguide.com/uvm/uvm-environment-example/
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1c/html/files/comps/uvm_subscriber-svh.html
https://verificationacademy.com/verification-methodology-reference/uvm/docs_1.1c/html/files/comps/uvm_subscriber-svh.html

[37] Dhaker, P. (n.d.). Introduction to SPI interface. Retrieved January 23, 2021, from

https://www.analog.com/en/analog-dialogue/articles/introduction-to-spi-interface.html

[38] SPI communications — Slave core VHDL. (n.d.). Daniel Alvarez's Blog | Robotics,
Electronics and some Open Source Weblog. Retrieved January 23, 2021, from

https://dani.foroselectronica.es/spi-communications-slave-core-vhdl-137/

[39] Basics of the SPI communication protocol. (2018). Circuit Basics. Retrieved January 23,

2021, from https://www.circuitbasics.com/basics-of-the-spi-communication-protocol/

[40] UVM scoreboard. (n.d.). ChipVerify. Retrieved January 24, 2021, from

https://www.chipverify.com/uvm/uvm-scoreboard

[41] UVM test. (2020). Verification Guide. Retrieved January 24, 2021, from

https://verificationguide.com/uvm/uvm-test/

[42] Replace behavioral DUT with AXI-based RTL DUT in UVM test bench. (n.d.).
MathWorks. Retrieved January 24, 2021, from
https://es.mathworks.com/help/hdlverifier/ug/uvm_replace behavioral_dut with_axi_dut.htm
I;jsessionid=4fe8ad05c385418434977bfe9dd6

[43] From UVM to VUnit: Test benches in VHDL | ITDev. (n.d.). ITDev |.
Retrieved January 24, 2021, from https://www.itdev.co.uk/blog/uvm-vunit-test-benches-vhdl

[44] Uvm tim. (n.d.). ChipVerify. Retrieved January 25, 2021, from

https://www.chipverify.com/uvm/tim-preface

[45] ANKASYS. (n.d.). Retrieved January 28, 2021, from https://ankasys.com/

68

https://www.analog.com/en/analog-dialogue/articles/introduction-to-spi-interface.html
https://dani.foroselectronica.es/spi-communications-slave-core-vhdl-137/
https://www.circuitbasics.com/basics-of-the-spi-communication-protocol/
https://www.chipverify.com/uvm/uvm-scoreboard
https://verificationguide.com/uvm/uvm-test/
https://es.mathworks.com/help/hdlverifier/ug/uvm_replace_behavioral_dut_with_axi_dut.html;jsessionid=4fe8ad05c385418434977bfe9dd6
https://es.mathworks.com/help/hdlverifier/ug/uvm_replace_behavioral_dut_with_axi_dut.html;jsessionid=4fe8ad05c385418434977bfe9dd6
https://www.itdev.co.uk/blog/uvm-vunit-test-benches-vhdl
https://www.chipverify.com/uvm/tlm-preface
https://ankasys.com/

CURRICULUM VITAE

Name Surname : Berkay Turgay
Place and Date of Birth : Eminénii / 12.04.1997

E-mail : berkayturgayl@gmail.com

Berkay Turgay finished primary and high school in Istanbul. He is currently a senior year
student at Electronics and Communication Engineering in Istanbul Technical University
Electrical-Electronics Faculty. He completed his internship in ANKASYS.

69

