

ISTANBUL TECHNICAL UNIVERSITY F INSTITUTE OF SCIENCE AND TECHNOLOGY

LOW-POWER GENERAL PURPOSE PROCESSOR DESIGN
AND INSTRUCTION SET EXTENSION FOR AES

M.Sc. THESIS

Muhammed ŞAİROĞLU

Department of Electronics and Communication Engineering

Electronic Engineering

Thesis Advisor: Assoc. Prof. Dr. Sıddıka Berna Örs YALÇIN

MARCH 2020

ISTANBUL TECHNICAL UNIVERSITY F INSTITUTE OF SCIENCE AND TECHNOLOGY

LOW-POWER GENERAL PURPOSE PROCESSOR DESIGN
AND INSTRUCTION SET EXTENSION FOR AES

M.Sc. THESIS

Muhammed ŞAİROĞLU
(504171254)

Department of Electronics and Communication Engineering

Electronic Engineering

Thesis Advisor: Assoc. Prof. Dr. Sıddıka Berna Örs YALÇIN

MARCH 2020

İSTANBUL TEKNİK ÜNİVERSİTESİ F FEN BİLİMLERİ ENSTİTÜSÜ

DÜŞÜK GÜÇ TÜKETİMLİ GENEL AMAÇLI İŞLEMCİ TASARIMI
VE AES İÇİN KOMUT KÜMESİ GENİŞLETİLMESİ

YÜKSEK LİSANS TEZİ

Muhammed ŞAİROĞLU
(504171254)

Elektronik ve Haberleşme Mühendisliği Anabilim Dalı

Elektronik Mühendisliği Programı

Tez Danışmanı: Assoc. Prof. Dr. Sıddıka Berna Örs YALÇIN

MART 2020

Muhammed ŞAİROĞLU, a M.Sc. student of ITU Institute of Science and Tech-
nology 504171254 successfully defended the thesis entitled “LOW-POWER GEN-
ERAL PURPOSE PROCESSOR DESIGN AND INSTRUCTION SET EXTEN-
SION FOR AES”, which he/she prepared after fulfilling the requirements specified in
the associated legislations, before the jury whose signatures are below.

Thesis Advisor : Assoc. Prof. Dr. Sıddıka Berna Örs YALÇIN
Istanbul Technical University

Jury Members : Asst. Prof. Ayşe Yılmazer Metin
Istanbul Technical University

Asst. Prof. Tuba Ayhan
MEF University

..............................

Date of Submission : 27 March 2020
Date of Defense : 6 April 2020

v

To my family

vii

FOREWORD

I would like to thank my supervisor Assoc. Prof. Dr. Sıddıka Berna Örs YALÇIN for
her guidance, kind advice, and help throughout my M.Sc studies.

I am also grateful to Panasonic Life Solutions Turkey company for giving me the
opportunity to complete my studies along with my work.

March 2020 Muhammed ŞAİROĞLU
Embedded Software Engineer

ix

x

TABLE OF CONTENTS

Page

FOREWORD... ix
TABLE OF CONTENTS.. xi
ABBREVIATIONS ... xiii
LIST OF TABLES .. xv
LIST OF FIGURES ..xvii
SUMMARY ... xix
ÖZET ... xxi
1. INTRODUCTION .. 1

1.1 The Era of Low-Power Devices.. 1
1.2 Choosing the Right Architecture for Low-Power Applications 2

1.2.1 Application-specific integrated circuit (ASIC)....................................... 2
1.2.2 General-purpose processor (GPP) .. 2
1.2.3 Application-specific instruction set processor (ASIP) 3

1.3 The Advanced Encryption Standard (AES).. 5
1.3.1 Cipher process .. 6

1.3.1.1 SubBytes transformation ... 7
1.3.1.2 ShiftRows transformation .. 8
1.3.1.3 MixColumns transformation.. 9
1.3.1.4 AddRoundKey transformation... 9

1.3.2 Key expansion process ... 10
1.4 ASIP Designing Guideline ... 12

2. GENERAL-PURPOSE PROCESSOR DESIGN... 13
2.1 The Instruction Set ... 13
2.2 The Data Path ... 15

2.2.1 The arithmetic logic unit .. 15
2.2.2 The register file... 16
2.2.3 The data memory.. 17

2.3 The Control Unit... 17
2.3.1 The instruction memory ... 18
2.3.2 The program counter .. 18
2.3.3 The control state machine... 18

2.4 Improving the General-Purpose Processor Design... 19
2.4.1 Pipeline hazards handling... 20

2.4.1.1 Structural hazards .. 20
2.4.1.2 Data hazards... 20

xi

2.4.1.3 Control hazards.. 21
2.5 The Assembler.. 22
2.6 Simulations ... 23

2.6.1 Simulation method.. 23
2.6.2 Simulation results ... 23

2.7 Chapter Conclusion .. 25
3. EXTENDING THE INSTRUCTION SET FOR AES..................................... 27

3.1 Rules for Extending the Instruction Set.. 27
3.2 Design Flow of the Extended Instruction Set... 27

3.2.1 Dividing the algorithm into several independent functions.................... 27
3.2.2 Implementing the functions of the algorithm in C 27
3.2.3 Translating the C code to assembly code for our processor 29
3.2.4 Drawing the CFGs of the assembly code and examining them to

figure out which instructions to be added... 29
3.2.5 Finding candidate instructions in a CFG and converting them into a

new instruction ... 29
3.3 Adding New Instructions for AES Functions... 31

3.3.1 Adding new instructions for sbox_1 function .. 32
3.3.2 Adding new instructions for sbox_2 function .. 37
3.3.3 Adding new instructions for mix_col function....................................... 42

3.4 The Extended Instruction Set ... 46
3.5 Simulations Results .. 47
3.6 Comparing the Proposed Work with Previous Works 48

4. CONCLUSION ... 51
REFERENCES.. 53
CURRICULUM VITAE... 55

xii

ABBREVIATIONS

AES : Advanced Encryption Standard
ALU : Arithmetic Logic Unit
ASIC : Application-Specific Integrated Circuit
ASIP : Application-Specific Instruction Set Processor
CFG : Control Flow Graph
DES : Data Encryption Standard
FPGA : Field Programmable Gate Arrays
GF : Galois Field
GPP : General-Purpose Processor
HEX : Hexadecimal numeral system
IM : Instruction Memory
IoT : Internet of Things
IR : Instruction Register
NOP : No Operation Instruction
PC : Program Counter
RAM : Random Access Memory
VHDL : Very High Speed Integrated Circuit Hardware Description Language

xiii

xiv

LIST OF TABLES

Page

Table 1.1 : A comparison between GPP, ASIP and ASIC 3
Table 1.2 : Key length round combinations in AES.. 6
Table 2.1 : The instruction set of the designed processor 14
Table 2.2 : Comparison between the designed processors and Xilinix Pi-

coBlaze processor ... 23
Table 2.3 : The performance results of the non-pipelined and the pipelined

processors for the multiplication program ... 24
Table 2.4 : The performance results of the non-pipelined and the pipelined

processors for the modular multiplication program............................ 25
Table 3.1 : sbox_1 function simulation results.. 35
Table 3.2 : sbox_2 function simulation results.. 41
Table 3.3 : mix_col function simulation results .. 44
Table 3.4 : The extended instruction set of the designed ASIP............................. 46
Table 3.5 : Performance simulation results of the designed GPP and the

designed ASIP for AES functions... 46
Table 3.6 : Comparison of the designed GPP and the designed ASIP

simulation results .. 48

xv

xvi

LIST OF FIGURES

Page

Figure 1.1 : Figure illustrates examples of widely-used low-power electronic
devices... 1

Figure 1.2 : Energy flexibility trade-off for several embedded systems
architectures .. 3

Figure 1.3 : AES state array input and output... 5
Figure 1.4 : AES SubBytes transformation... 7
Figure 1.5 : AES affine transformation ... 7
Figure 1.6 : AES S-box table .. 8
Figure 1.7 : AES ShiftRows transformation ... 8
Figure 1.8 : AES MixColumns transformation ... 9
Figure 1.9 : AES AddRoundKey transformation .. 10
Figure 1.10: AES key expansion process... 11
Figure 1.11: Figure illustrates the set ASIP designing guideline........................... 12
Figure 2.1 : The data path diagram ... 15
Figure 2.2 : The ALU diagram.. 16
Figure 2.3 : The register file diagram.. 16
Figure 2.4 : The data memory diagram... 17
Figure 2.5 : The control unit diagram in the non-pipelined processor.................. 17
Figure 2.6 : The state diagram of the control state machine in the

non-pipelined processor .. 18
Figure 2.7 : The control unit diagram in the pipelined processor 19
Figure 2.8 : The state diagram of the control state machine in the pipelined

design .. 20
Figure 2.9 : The developed assembler user interface .. 22
Figure 3.1 : An example of GCC CGFs.. 30
Figure 3.2 : The CFG of sbox_1 function ... 33
Figure 3.3 : The RTL model of AMB instruction ... 34
Figure 3.4 : The RTL model of SHLXOR instruction .. 35
Figure 3.5 : The CFG of sbox_1 function after using AMB and SHLXOR

instructions.. 36
Figure 3.6 : The CFG of sbox_2 function ... 38
Figure 3.7 : The RTL model of DEG instruction .. 39
Figure 3.8 : The CFG of sbox_2 function after using DEG instruction................ 40
Figure 3.9 : The CFG of mix_col function ... 43
Figure 3.10: The CFG of mix_col function after using AMB and SHLXOR

instructions.. 45

xvii

xviii

LOW-POWER GENERAL PURPOSE PROCESSOR DESIGN
AND INSTRUCTION SET EXTENSION FOR AES

SUMMARY

In the last years, there has been a big growth in the demand for portable electronic
devices. Most of these devices need to operate on a thrifty energy budget and they
must be designed to work under extreme energy constraints for a long time. Also, a
lot of smart devices need to communicate with the outer world and with other devices,
and all these communications must be secure. These requirements have increased the
investments in developing low-power integrated circuits with encryption capabilities.

In this thesis, a low-power general purpose processor design is presented. Then the
processor design is improved by extending the instruction set with instructions for the
Advanced Encryption Standard (AES).

In chapter one, many embedded systems architectures for low-power applications are
introduced, then the Advanced Encryption Standard is explained.

In chapter two, the designed processor’s instruction set is given, and its architecture
is explained in detail. Then the processor architecture is improved by adding many
pipeline stages. Pipeline hazards are handled without complicating the processor
architecture. Both processor designs (the non-pipelined and the pipelined) were
tested with simple programs to compare its performances. The pipelined processor
showed better results in terms of the required clock cycles to finish test programs, the
throughput and the consumed energy. Both processor designs were also compared with
the well-known Xilinx PicoBlaze processor. The pipelined processor beat PicoBlaze
according to the maximum clock rate and dynamic on chip power.

In chapter three, The AES algorithm is implemented in Assembly language and is
run on the pipelined processor. Then AES algorithm code is investigated using its
control flow graphs. New instructions are added to the standard instruction set by
combining related and sequential instructions from the algorithm code and creating
new instructions that solves software problems faster. It is showed that the added
instructions reduced the required time to finish AES encryption to 52% and the
consumed power to 37% without having a significant increase in the architecture size.

xix

xx

DÜŞÜK GÜÇ TÜKETİMLİ GENEL AMAÇLI İŞLEMCİ TASARIMI
VE AES İÇİN KOMUT KÜMESİ GENİŞLETİLMESİ

ÖZET

Son yıllarda, taşınabilir elektronik cihazlara olan talepte büyük bir artış olmuştur. Bu
cihazların çoğunun enerji tasarrufu yapabilmesi ve bu şekilde uzun süre çalışabilecek
şekilde tasarlanması gerekmektedir. Ayrıca, birçok akıllı cihazın dış dünyayla ve
diğer cihazlarla iletişim kurması gerekmektedir ve tüm bu iletişim güvenli şekilde
sağlanmalıdır. Bu gereksinimler, şifreleme özelliklerine sahip düşük güçlü entegre
devrelerin geliştirilmesine yönelik yatırımları artırmıştır.

Bu tezde genel amaçlı kullanılabilecek düşük güçlü işlemci tasarımı sunulmuştur.
Daha sonra, işlemcinin komut seti Gelişmiş Şifreleme Standardı (AES) için yeni
talimatlarla genişletilerek geliştirilmiştir.

Birinci bölümde düşük güçlü uygulamalar için birçok gömülü sistem mimarisi
tanıtılmış, ardından Gelişmiş Şifreleme Standardı (AES) anlatılmıştır.

İkinci bölümde, tasarlanmış işlemcinin komut seti verilmiş ve mimarisi ayrıntılı
olarak anlatılmıştır. Daha sonra birçok boru hattı aşaması eklenerek işlemci
mimarisi geliştirilmiştir. Boru hattı tehlikeleri, işlemci yapısını karmaşıklaştırmadan
giderilmiştir. Her iki işlemcinin tasarımları (boru hattı olmayan ve boru hattı
olan), performanslarını karşılaştırmak için basit programlarla test edilmiştir. Boru
hattı işlemcisi test programlarını bitirmek için gereken saat döngüleri, verimleri ve
tüketilen enerjileri açısından daha iyi sonuçlar vermiştir. Her iki işlemci de herkes
tarafından bilinen Xilinx PicoBlaze işlemcisi ile karşılaştırılmıştır. Boru hattı işlemcisi,
PicoBlaze işlemcisini dinamik gücü ve maksimum saat hızı açısından yenmiştir.

Üçüncü bölümde, AES algoritması Assembly dilinde yazılmıştır ve boru hattı
işlemcisinde çalıştırılmıştır. Daha sonra kontrol akış grafiğini kullanarak AES
algoritma kodu incelenmiştir. Algoritma kodunda birbirine bağlı ve art arda gelen
komutlar birleştirilerek ve yazılım problemlerini daha hızlı çözebilen yeni komutlar
oluşturarak standart komut setine yeni komutlar eklenmiştir. Eklenen komutlar,
işlemcinin mimari boyutunda önemli bir artış yapmadan AES şifrelemesini bitirmek
için gereken süreyi 52%’ye ve tüketilen enerjiyi 37%’ye düşürdüğü gösterilmiştir.

xxi

xxii

1. INTRODUCTION

1.1 The Era of Low-Power Devices

Nowadays, Portable electronic devices are widely used in everyone daily life, and they

are getting involved in our lives more and more. These devices majorly depends on

rechargeable batteries, and the low power consumption in these devices translates to

longer run time on a full charged battery, and higher number of charge cycles until the

end of useful battery life. These are very important end user care-about. Also, low

power translates to less heat dissipation which means fewer cooling parts and smaller

designs.

Low power consumption is becoming more important in portable electronic devices

markets as many users started to choose devices with better battery life and smaller

size over devices with higher performance and capabilities.

Figure 1.1: Figure illustrates examples of widely-used low-power electronic devices.
(a) pacemaker, (b) IoT sensor, (c) wireless headphones, (d) POS terminal,
(e) smartwatch

1

Berna
Vurgu
Bu başlığa gerek yok.

Berna
Vurgu
küçük harf

Berna
Yapışkan Not
referans

Berna
Vurgu
gerek yok

Berna
Vurgu
gerek yok

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
ref

1.2 Choosing the Right Architecture for Low-Power Applications

When electronic engineers are asked to design a low-power device, they are faced with

a myriad of core technologies, all claiming to best save power for a given application.

So how do they know which one will meet their energy consumption requirements?

The next section examines the benefits of the different architectures and compare the

design trade-offs between them.

1.2.1 Application-specific integrated circuit (ASIC)

As the name implies, ASIC is an integrated circuit chip manufactured for a particular

use, not for general-purpose use. Some examples of ASIC chip include a battery

charging circuit in a mobile phone, high-efficiency bitcoin miner, video decoder etc.

ASICs offer high application-specific performance because the designer can tune

hardware gates specific to the target application. Furthermore, ASICs can achieve

decent power efficiency when the design is specifically targeted for power efficiency

However, ASIC solutions suffer from their lack of flexibility as they cannot be

reprogrammed to implement new algorithms. This means that only a single application

or specification can be supported, and a separate ASIC is needed for each new

application and specification. In addition, the cost of building new ASIC chips using

latest manufacturing technology is increasingly high, particularly for relatively small

quantities.

1.2.2 General-purpose processor (GPP)

A general-purpose processor is capable of performing many different functions under

the direction of instructions. The general-purpose processor can execute another task,

if a different set of instructions are given.

General-purpose processor based solutions have the advantage of being off-the-shelf

and less expensive. However, higher power and area consumption, and lower

speed performance are potential disadvantages for GPP compared to more

2

Berna
Yapışkan Not

Berna
Vurgu
Başlıkta kısaltma olmaz.

Berna
Yapışkan Not
uzun hal buraya

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
.

Berna
Vurgu
çıkar

Berna
Yapışkan Not
(GPP)

Berna
Yapışkan Not
ref

application-specific implementations, because they target a broad range of embedded

applications.

1.2.3 Application-specific instruction set processor (ASIP)

ASIP is application dependent instruction processors. It is used for processing the

various instruction set inside a combinational circuit of an embedded system.

The idea of ASIP is to get the best out of general-purpose processor programmability

while at the same time trying to offer performance efficiency as high as ASIC’s.

The primary approach is to maximize the design domain of the microarchitecture by

actively adding particular instructions.

This specialization of the core provides a trade-off between the flexibility of a GPP and

the good performance and power consumption of an ASIC.

Table 1.1 gives a comparison between GPP, ASIP and ASIC according to the

performance, flexibility, power consumption and reusing. Figure 1.2 depicts the

tradeoff between energy-efficiency and flexibility for several architecture paradigms.

Table 1.1: A comparison between GPP, ASIP and ASIC

ASIC GPP ASIP
Performance Very high Low High
Flexibility Poor Excellent Good
Power Small Large Medium
Reuse Poor Excellent Good

Figure 1.2: Energy flexibility trade-off for several embedded systems architectures [1]

3

Berna
Vurgu
çıkar

Berna
Yapışkan Not
uzun hal

Berna
Yapışkan Not
ref

ASIP is a good architecture choice for low-power applications when the flexibility is

a required feature or when the application is too complex to be done as a dedicated

hardware.

4

Berna
Yapışkan Not
Buraya sen bu tezde ne yapıyorsun bir paragraf ile anlat.
sonra chapter x'de şu var chapter y de bu var de

1.3 The Advanced Encryption Standard (AES)

AES is an encryption standard accepted by the United States government. It is also

known as Rijndael cipher. As DES (the Data Encryption Standard) [2] algorithm

became weak and lost its reliability in the face of developing technology, NIST (the

National Institute of Standards and Technology) organized a competition in order to set

a new encryption standard. Two Belgian researchers Joan Daemen and Vincent Rijmen

won the competition with their Rijndael algorithm. NIST published AES as U.S. (FIPS

197) standard [3] on November 26, 2001 after a long standardization and verification

process. AES provides higher reliability, and it also has advantages in terms of being

easy to implement compared to the DES.

Although the algorithm supports different key and block size, the standard includes

128-bit, 192-bit or 256-bit key lengths with a fixed 128-bit block size. In AES, 128-bit

data blocks are considered as 4 words, each consisting of 32-bit. When starting the

encryption process with AES, the 128-bit, 4-word data block is written into the state

array and all the necessary operations during the algorithm are performed using this

array. After the last operation of encryption, the final version of the state array is

written to the output array.

For example; as illustrated in Figure 1.3, the input data block that consists of {in_0,

in_1 ... in_15} bytes is written to the state array and all necessary operations are

performed on this array. After the operations are completed, the encrypted data is

copied to the output as {out_0, out_1, . . . , out_15} byte array.

Figure 1.3: AES state array input and output

5

Berna
Vurgu
Yeni bir chapter aç. Orada olsun.

AES'i başlıktan kaldır.

Berna
Yapışkan Not
uzun hal

Berna
Yapışkan Not
ref

Berna
Vurgu
equation olmalı

Berna
Vurgu
equation

Berna
Yapışkan Not
ref

The AES algorithm generally consists of two processes, the first process is cipher

process, and the second process is key expansion process.

The algorithm has a repetitive structure, in cipher process, the round transformations

are repeated many times depending on the length of the key. The number of rounds

according to the key length is given in Table 1.2.

Table 1.2: Key length round combinations in AES

AES Type Key length Number of Rounds
AES-128 128 10
AES-192 192 12
AES-256 256 14

1.3.1 Cipher process

At the start of this process, the input data block is copied to the state array, then four

different byte-oriented transformations are applied on the state. They are:

• SubBytes: byte substitution using a substitution table (S-box),

• ShiftRows: shifting rows of the state array by different offsets,

• MixColumns: mixing the data within each column of the state array,

• AddRoundKey: adding a round key to the state.

These transformations are described in details in the following subsections.

Cipher process for 128-bit key length is described in pseudocode in Code 1.1.

Code 1.1: Cipher process pseudocode

Cipher (byte in[16], byte out[16], byte expanded_key [176])
{

byte state [16] = in;
AddRoundKey(state, expanded_key,0);
for (round = 1; round <= 9; round++)
{

SubByte(state);
ShiftRows(state);
MixColumns(state);
AddRoundKey(state, expanded_key, round);

}

6

Berna
Vurgu
gerek yok

Berna
Vurgu
Bold

Berna
Vurgu

Berna
Vurgu

Berna
Vurgu

Berna
Yapışkan Not
ref

SubByte(state);
ShiftRows(state);
AddRoundKey(state, expanded_key, 10);
Out = state;

}

1.3.1.1 SubBytes transformation

SubBytes transformation is a non-linear operation that is performed on each byte of

the state independently as shown in Figure 1.4. In this function each byte in the state

array is replaced with a byte from an 8-bit substitution box (S-box). The output of this

function is different for each different input.

Figure 1.4: AES SubBytes transformation

S-box values can be obtained in two stages. The first stage is finding the multiplicative

inverse of the input in the finite field GF(28). The polynomial used to define this

field is p(x) = x8 + x4 + x3 + x+ 1. 0 is mapped to itself because it doesn’t have a

multiplicative inverse. The second stage is applying an affine transformation which

can be described as multiplying and adding the output of the previous stage (as a

polynomial over GF(28)) with constant matrices. Figure 1.5 illustrates this operation.

Figure 1.5: AES affine transformation

7

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
ref

Berna
Vurgu
does not

Berna
Vurgu
fazla parantez

Berna
Yapışkan Not
ref

S-box can be implemented in different ways. Some implementation methods are

examined in detail in section 3.2.2

S-box output for each possible input is given in Figure 1.6 in hexadecimal

representation.

Figure 1.6: AES S-box table

1.3.1.2 ShiftRows transformation

In ShiftRows transformatıon, all the rows are shifted, except for the first row of the

state matrix. Row 2 is shifted one byte, row 3 is shifted two bytes, and the last row is

shifted three bytes. The block diagram of ShiftRows is given in Figure 1.7.

Figure 1.7: AES ShiftRows transformation

8

Berna
Vurgu
Section

Berna
Yapışkan Not
.

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
ref

1.3.1.3 MixColumns transformation

MixColumns transformation is performed independently on each column in the state

matrix. While performing this operation, each column is considered as a polynomial

in GF(28) and multiplied modulo x4 +1 with a fixed polynomial a(x), given by

a(x) = 3∗ x3 + x2 + x+2

MixColumns transformation can also be performed as a matrix multiplication. Let

s′(x) = a(x)∗ s(x)

Where s(x) is the state column before the transformation and s’(x) is the new

state column after the transformation. Figure 1.8 illustrates the MixColumns

transformation.

Figure 1.8: AES MixColumns transformation

1.3.1.4 AddRoundKey transformation

In AddRoundKey transformation, the state matrix is XORed with a 128-bit round key

matrix that is generated in key expansion process before. Key expansion process will

be examined in detail in the next section. The general diagram of the AddRoundKey

transformation is given in Figure 1.9.

9

Berna
Vurgu
gerek yok

Berna
Yapışkan Not
equation number?

Berna
Yapışkan Not
equation number?

Berna
Yapışkan Not
equation number?

Berna
Vurgu
equation

Berna
Vurgu
equation

Berna
Yapışkan Not
ref

Figure 1.9: AES AddRoundKey transformation

1.3.2 Key expansion process

The AES algorithm takes the K key array and generates the necessary key blocks

for each round. These key blocks are also known as the round keys. The AES

algorithm can work with different key lengths, but since the length of the state is

fixed at 128-bit, the generated round keys length is 128-bit too. The round key

is used in AddRoundKey transformation which is the last transformation in round

transformations. Key expansion process generates a total of 4∗(number of rounds +1)

words: the AES algorithm requires an initial set of 4 words, and each of the rounds

requires 4 words of key block. The resulted expanded key is an array of 4-bytes words

with length equals to 4∗ (number of rounds +1).

The Key Expansion process for 128-bit key length is described in pseudocode in

Code 1.2.

Code 1.2: Key Expansion Process pseudocode

KeyExpansion(byte key[16], word expanded_key[44])
{

for (j = 0; j < 4; j++)
{

expanded_key[j] = word(key[4*j+0], key[4*j+1], key[4*j+2], key[4*j+3]);
}
for (j=4; j < 44; j++)
{

word temp = expanded_key[j-1];
if (j % 4 == 0)
{

temp = SubWord(RotWord(temp)) ^ Rcon[j/4];
}

10

Berna
Yapışkan Not
ref

Berna
Vurgu
equation

Berna
Vurgu
equation

Berna
Vurgu
equation

Berna
Yapışkan Not
ref

expanded_key[j] = expanded_key[j-4] ^ temp;
}

}

SubWord function applies SubBytes transformation on a four-byte input word and

produce an output word. RotWord function applies a cyclic permutation on a four-byte

input word [b0, b1, b2, b3] and returns the word [b1, b2, b3, b0]. Rcon is the round

constant word array, it consists of values given by [2(j−1) in GF(28) , 0, 0, 0] where j

starts at 1. Figure 1.10 illustrates AES key expansion process for a 128-bit key.

Figure 1.10: AES key expansion process

11

Berna
Vurgu
equation

Berna
Vurgu
equation

Berna
Vurgu
equation

Berna
Yapışkan Not
ref

1.4 ASIP Designing Guideline

Before starting to design an ASIP for AES, we set a guideline to follow. It includes the

following rules:

(a) Build the design from scratch: This makes us fully knowing the design details,

and when power and area analyses are done, we can easily track the problematic

components and fix them.

(b) Build it as simple as possible: We have to avoid any complexity in the design as

possible. Complex designs cause more power consumption, larger chip area and

slower clock rate.

(c) Build a general-purpose processor then extend its instruction set: Starting an

ASIP project with making a general-purpose processor before adding the extended

instructions gives you a chance to test and verify your design before the things mix

up. Also, it helps you to know the effect of the extended instructions on the total

design according to the power consumption and operating frequency.

Figure 1.11: Figure illustrates the set ASIP designing guideline

12

Berna
Vurgu
Başka bir chapter

veya

Bir sonraki bölümün başına

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
ref

2. GENERAL-PURPOSE PROCESSOR DESIGN

The first step we took in designing a general-purpose processor was determining its

instruction set, then according to the determined instruction set a data path and a

control unit is designed.

After finishing our first design we found that we can improve it by pipelining it. To

be sure that the added pipeline stages don’t cause losses in power consumption and

operating frequency, many tests were done, and its results are reported. Next sections

will explain in details the processor design, the made improvements, simulation steps

and the applied tests.

2.1 The Instruction Set

The processor has 24 different instructions which have the same width 18 bit. The

first 5 bits of each instruction are used for the operation code and the other bits usage

differs. The instruction set is listed and explained in Table 2.1.

LOD operation is used to load a register with a specific value. FTC operation is used

to fetch data from the data memory to a register, and STR operation is used to store

data into the data memory from a register. MOV operation is used to load a register

with a value from another register.

There are 7 different jump instructions. Each one of them is used to jump to an absolute

address or a relative address. The relative address is coded as 11-bit signed value so it

can be jumped +2047 instruction forward or -2048 instruction backward at a time.

There is also "No Operation" instruction that has no effect on the registers or the data

memory and it can be used as a delay slot especially after and before jump instructions

in the enhanced processor.

13

Berna
Vurgu
for design of a

Berna
Vurgu
was

Berna
Vurgu
introducing pipeline to its datapath

Berna
Yapışkan Not
In order to be

Berna
Vurgu
do not

Berna
Yapışkan Not
Buraya düşük güç hedeflediğimiz için RISC mimarisi seçtik. Sadece base intructionları ekledik demelisin.

Berna
Vurgu
neyle the same?

Berna
Vurgu
neden 5-bit

Berna
Vurgu
Bunları liste halinde ver.

Berna
Vurgu
neden 11 bit

Berna
Yapışkan Not
Buraya bir computer architecture kitabından bir işlemcinin iç yapısını gösteren resim koymalısın. Burada neleri nasıl tasarladığını bu resme referans vererek yapmalısın.

Table 2.1: The instruction set of the designed processor

Instruction Function Code
Registers and Data Memory Operations

LOD Rx,Value Rx = Value 00000 rrrr 0vvvvvvvv
FTC Rx,[N] [N] = Rx 00001 rrrr 0nnnnnnnn
FTC Rx,[R15] [R15] = Rx 00001 rrrr 100000000
STR [N],Rx Rx = [N] 00010 rrrr 0nnnnnnnn
STR [R15],Rx Rx = [R15] 00010 rrrr 100000000
MOV Rd,Rs Rd = Rs 00011 dddd 00000ssss

Jump Operations

JMP Add
Unconditional Jump
to direct address 00100 0 aaaaaaaaaaaa

JMP Rel
Unconditional Jump
to relative address 00100 1 eeeeeeeeeeee

JZ/JE Add Jump if zero / equal 00101 0 aaaaaaaaaaaa
JZ/JE Rel Jump if zero / equal 00101 1 eeeeeeeeeeee

JNZ/JNE Add
Jump if non zero /
not equal 00110 0 aaaaaaaaaaaa

JNZ/JNE Rel
Jump if non zero /
not equal 00110 1 eeeeeeeeeeee

JC/JB Add
Jump if carry/
below 00111 0 aaaaaaaaaaaa

JC/JB Rel
Jump if carry/
below 00111 1 eeeeeeeeeeee

JNC/JAE Add
Jump if not carry /
above or equal 01000 0 aaaaaaaaaaaa

JNC/JAE Rel
Jump if not carry /
above or equal 01000 1 eeeeeeeeeeee

JA Add Jump if above 01001 0 aaaaaaaaaaaa
JA Rel Jump if above 01001 1 eeeeeeeeeeee

JBE Add
Jump if below
or equal 01010 0 aaaaaaaaaaaa

JBE Rel
Jump if below
or equal 01010 1 eeeeeeeeeeee

ALU Operations
AND Rd,Ry.Rz Rd = Ry & Rz 01011 dddd 0zzzz yyyy
OR Rd,Ry,Rz Rd = Ry | Rz 01100 dddd 0zzzz yyyy
XOR Rd,Ry,Rz Rd = Ry ^Rz 01101 dddd 0zzzz yyyy
NOT Rd,Ry Rd = ∼Ry 01110 dddd 00000 yyyy
SHL Rd,Ry Rd = Ry<<1 01111 dddd 00000 yyyy
SHR Rd,Ry Rd = Ry>>1 10000 dddd 00000 yyyy
ROL Rd,Ry Rd = Ry rol 1 10001 dddd 00000 yyyy
ROR Rd,Ry Rd = Ry ror 1 10010 dddd 00000 yyyy
ADD Rd,Ry,Rz Rd = Ry + Rz 10011 dddd 0zzzz yyyy
INC Rd,Ry Rd = Ry + 1 10100 dddd 00000 yyyy
SUB Rd,Ry,Rz Rd = Ry - Rz 10101 dddd 0zzzz yyyy
DEC Rd,Ry Rd = Ry - 1 10110 dddd 00000 yyyy

CMP Ry,Rz
Compare Rz
with Ry 10111 0000 0zzzz yyyy

NOP No operation 11111 1111 11111 1111

14

All other instructions are ALU operations. Some of them have 2 operands and some

of them have 3 operands. The destination register of all ALU operations can be one of

the source register/s or a different register.

2.2 The Data Path

The data path is a set of functional units that carry out data processing operations.

Its diagram is shown in Figure 2.1. The data memory and the register file have a

clock input to synchronize the writing operations. However, reading operations are not

synchronized so the memory cell or the register value will be shown on the output data

bus as soon as its address is on the address bus.

Figure 2.1: The data path diagram

2.2.1 The arithmetic logic unit

The one byte-wide arithmetic logic unit (ALU) performs all processor calculations,

including:

• bitwise logic operations such as AND, OR, XOR and NOT

• shift and rotate operations

• basic arithmetic operations such as addition, subtraction, increment and decrement

• arithmetic compare

The ALU also gives the status of the executed ALU operation result. The status signals

are carry-out and zero. The carry-out flag state changes with arithmetic operations

15

Berna
Yapışkan Not
uzun hal

Berna
Yapışkan Not
ref

Berna
Vurgu
uzun halini ALU'nun ilk geçtiği yerde vermelisin.

Berna
Vurgu
bunları büyük harf ile başlat veya başka font ile yaz.

Berna
Vurgu

only (ADD, INC, SUB, DEC, CMP) while the zero flag state changes with all ALU

operations. The ALU diagram is shown in Figure 2.2.

Figure 2.2: The ALU diagram

2.2.2 The register file

The register file of the designed processor has 16 8-bit wide general-purpose registers

and they are designated as R0, R1, .., R15. Its diagram is shown in Figure 2.3. Register

file input data can be from another register, data memory, ALU operation result or a

LOD instruction value. The fifteenth register’s value can be used as a pointer to a

location in the data memory so there is a bus mapped directly to it.

Figure 2.3: The register file diagram

16

Berna
Vurgu
neden 16 neden 8-bit

2.2.3 The data memory

The data memory is a simple 256-byte RAM. Its diagram is shown in Figure 2.4.

Thanks to the 2-way MUX on the address input, The data memory’s 8-bit address can

be specified by the control unit to be either a direct address from an instruction, or an

indirect address from the content of the fifteenth register (R15) of the register file.

Figure 2.4: The data memory diagram

2.3 The Control Unit

The diagram of the control unit and its all sub units is shown in Figure 2.5.

Figure 2.5: The control unit diagram in the non-pipelined processor

17

Berna
Yapışkan Not
uzun hal

Berna
Vurgu
thanks olmaz

Berna
Vurgu

2.3.1 The instruction memory

The designed processor can execute up to 4096 instructions from a single block RAM.

Each instruction is 18-bit wide. The output data of the instruction memory (IM) is

connected to instruction register (IR) that is used to hold the instruction for the control

state machine.

2.3.2 The program counter

The program counter (PC) points to the next instruction to be executed. According

to the control signals that come from the control state machine, the next instruction

address can be a specific absolute address, a relative address, the instruction just after

the current instruction or the first instruction in the instruction memory. If the 12-bit

PC reaches the top of the memory at 0xFFF, it rolls over to location 0x000.

2.3.3 The control state machine

The control state machine has 3 states: Initialize, Fetch and Execute. In Initialize

state the program counter is cleared. In Fetch state the instruction register is loaded

with an instruction from the instruction memory and the program counter increases its

counter. In Execute state the instruction in the instruction register is executed after it

is decoded, and all control signals and addresses are set. The transition between these

states is shown in Figure 2.6.

Figure 2.6: The state diagram of the control state machine in the non-pipelined
processor

18

2.4 Improving the General-Purpose Processor Design

Our aim in this work is to reduce the average clock cycles number that is required to

finish executing one instruction. In the previous design two clock cycles were required

to execute an instruction and the processor cannot process more than one instruction at

the same time.

In the enhanced design a three-stage pipeline was implemented. The first stage is

represented by the instruction memory and the program counter. The second stage is

represented by the control state machine. The last stage is represented by the data path.

In the first stage an instruction is fetched from the instruction memory and loaded to

the instruction register. In the second stage the fetched instruction is decoded and the

control signals of the data path and the program counter are produced then loaded to

state registers. In the third stage the instruction is executed and stored. The new control

unit diagram is shown in Figure 2.7.

Figure 2.7: The control unit diagram in the pipelined processor

Fetch and Execute states of the former processor’s control state machine are merged

into one new state “Run” in the new pipelined processor. The new state diagram is

shown in Figure 2.8. In this new state an instruction is decoded and executed while a

new instruction is fetched from the instruction memory at the same cycle. Although

an instruction requires three clock cycles to fully processed in this design, the average

19

Berna
Vurgu
average clock cycle ne demek?

Berna
Vurgu
Neden önceki tasarımda 2 saat darbesi alıyordu? Ne yaptık ki düştü? Neden bir defada sadece bir instruction vardı? Ne gelişti?

Berna
Yapışkan Not
resim koy. Pipeline stage leri resimde göster

clock cycles number that is required to finish executing one instruction became one

clock cycle, this is because the processor processes three instructions at the same time.

This makes our processor relatively fast among 8-bit processors.

Figure 2.8: The state diagram of the control state machine in the pipelined design

2.4.1 Pipeline hazards handling

In every pipelined processor architecture there are three types of hazards can be

occurred. They are structural hazards, data hazards and control hazards. In order

to keep the processor design as simple as possible no new hardware units are wanted

to be added, and all hazards are avoided without complicating the processor structure.

2.4.1.1 Structural hazards

Structural hazards arise from resource conflicts when the hardware cannot support all

possible combinations of instructions simultaneously in overlapped execution [4]. In

our pipeline design two instructions cannot be executed in the ALU at the same time

so this type of hazards cannot be occurred in the processor.

2.4.1.2 Data hazards

Data hazards arise when an instruction depends on the results of a previous instruction

in a way that is exposed by the overlapping of instructions in the pipeline [4]. In our

pipeline design this can happen when a jump instruction’s condition depends on the

result of the instruction that is being executed at the same time. We can avoid this

problem by adding a delay represented by a NOP instruction before each conditional

jump instruction.

20

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
Buraya hazar ları sadece program yazarken yok ettiğini donanım olarak hazard hadler tasarlamadığını söylemelisin.

2.4.1.3 Control hazards

Control hazards arise from the pipelining of instructions that change the PC [4]. In

our pipeline design this can happen when a jump instruction will be executed but the

instruction register is already loaded with the next instruction and the PC is pointing

to the instruction that comes after them. A simple way to solve this problem is adding

two NOP instructions after each jump instruction.

21

2.5 The Assembler

A simple assembler program has been developed with C# to help us in writing test

programs. The used assembler user interface is shown in Figure 2.9. This assembler is

capable of:

• Giving meaningful and clear error messages if the entered assembly code has some

syntax errors.

• Saving assembly codes to a file and opening a previously saved one.

• Showing the cursor position as line and character number.

• Translating the assembly code to HEX code or VHDL code (to be used in

instruction memory).

• Adding delay instructions (NOP) automatically if the target is the pipelined

processor.

Also, the assembler C# code is written in a way makes adding new instructions to

decode is so easy.

Figure 2.9: The developed assembler user interface

22

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
uzun hal

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
uzun hal

Berna
Yapışkan Not
Buraya hazar önleme için assembler bu işi yapıyor deemelisin. Yani assembler sadece text based makina diline çevirmez, data deepndency analizi de yapmayı becerir demelisin

2.6 Simulations

2.6.1 Simulation method

Both designs were described with Very High Speed Integrated Circuit Hardware

Description Language (VHDL) [5] and then implemented and simulated in Xilinx

Vivado Environment [6]. First of all, the maximum clock frequency of the designs

was found. Then the Switching Activity Interchange Format (SAIF) [7] files were

generated by running “Post-Implementation Timing Simulation”. The generated SAIF

files is used in Vivado power reports to give more accurate results. In simulation steps

we verified the processors behavior.

2.6.2 Simulation results

Both designs were compared with Xilinx PicoBlaze processor [8] according to

instruction memory size, RAM size, maximum clock rate and power consumption.

All processors were tested on Xilinx Spartan 7 Series XC7S6 FPGA. The test results

are shown in Table . 2.2.

Table 2.2: Comparison between the designed processors and Xilinix PicoBlaze
processor

Processor Non-pipelined Pipelined Xilinx PicoBlaze
Instruction mem. 4K 4K 4K
RAM 256 byte 256 byte 256 byte
Maximum clock rate 110 MHz 155 MHz 135 MHz
Dynamic on-chip power 0.006 W 0.007 W 0.008 W

Both designs consume less power than PicoBlaze processor. The non-pipelined

processor has a lower maximum frequency than PicoBlaze processor’s maximum

frequency, but the pipelined processor’s maximum frequency is higher. This is because

of the pipeline stages which allow to cut the delay of the critical paths in the processor.

Two simple programs were used to test the non-pipelined and the pipelined processors.

The first program calculates the multiplication of two numbers from the data memory

then writes the result to it. The second program calculates the modular multiplication

23

Berna
Vurgu
Yeni chapter.
Implementation Results başlık olsun

Berna
Yapışkan Not
Bu chpater da şunu bunu anlatacağım demelisim

Berna
Vurgu
ilk geçtiği yerde yazmalısın

Berna
Vurgu
Bu başlık implementation olmalı

Berna
Yapışkan Not
neden picoblaze anlatmalısın

Berna
Yapışkan Not
Buraya bir deneme programının gerçekleme süresi ve bu süre ile ortalama güç çarpıldığında enerjisini de hesaplayıp satırları ekler misin?

((A * B) mod N, where A, B < N) of numbers from the data memory and returns the

result to it too. Algorithm 1 and Algorithm 2 demonstrate the used algorithms in these

programs.

Algorithm 1 Multiplication program
1: procedure MULTIPLY(C = A×B)
2: C← 0
3: for i← B : 0 do
4: C←C+A
5: end for
6: end procedure

Algorithm 2 Modular multiplication program
procedure MODULAR MULTIPLICATION(C = A∗B mod N)

2: C← 0
for i← k−1 : 0 do

4: C←C×2
if C > N then

6: C←C−N
end if

8: C←C+bi×A
if C > N then

10: C←C−N
end if

12: end for
end procedure

The required number of cycles to finish these two programs, the throughput and the

energy consumption at the maximum frequency for the non-pipelined and the pipelined

designs are reported in Table 2.3 and Table 2.4.

Table 2.3: The performance results of the non-pipelined and the pipelined processors
for the multiplication program

Multiplication program Non-pipelined processor Pipelined processor
Clock cycles 34 28
Throughput 24.6 Mbit/s 42.2 Mbit/s
Energy 1.8 nW/s 1.2 nW/s

The pipelined processor finished both programs with clock cycles less than the

non-pipelined processor, and its throughput and energy results are better because it

can operate at higher frequency.

24

Berna
Vurgu
equation

Berna
Yapışkan Not
less

Table 2.4: The performance results of the non-pipelined and the pipelined processors
for the modular multiplication program

Modular multiplication program Non-pipelined processor Pipelined processor
Clock cycles 198 196
Throughput 4.2 Mbit/s 6 Mbit/s
Energy 10.2 nW/s 8.8 nW/s

2.7 Chapter Conclusion

The first step in our ASIP project was making a general-purpose processor. We

designed a simple general-purpose processor by determining its standard instruction

set then implementing its data path and control unit using VHDL in Vivado

Environment. Then we improved our design by pipelining it. Pipeline hazards

are avoided without complicating the processor structure. Finally, we compared

the simulation results of both designs with Xilinx PicoBlaze processor. Both

designs consumed less power than PicoBlaze processor, and the pipelined processor’s

maximum frequency was higher than PicoBlaze processor’s maximum frequency.

Also, the pipelined design finished testbench programs with clock cycles less than

the non-pipelined design and consumed less energy.

25

26

3. EXTENDING THE INSTRUCTION SET FOR AES

3.1 Rules for Extending the Instruction Set

Before starting to extend the instruction set of the designed processor, we had to put

some rules to ensure that the added instructions don’t turn our processor away from

the goals of this project. These rules are:

• The added instructions cannot be too complex, else it will lead to a long-time delay

and reduce the efficiency of the entire system.

• New instructions shouldn’t add new massive hardware, else the power consumption

in the processor will increase significantly.

• The opcodes and the operands of an added instruction must fit with the original

instructions codes structure and cannot be longer than them.

3.2 Design Flow of the Extended Instruction Set

Our extended instruction set design flow consists of 5 steps, they are:

3.2.1 Dividing the algorithm into several independent functions

We divided the AES algorithm to many independent functions. They are round

transformations functions (SubBytes - ShiftRows - MixColumns - AddRoundKey),

KeyExpanstion function, and S-box function.

3.2.2 Implementing the functions of the algorithm in C

We wrote the C code for each AES function and test it separately then we combined

them and verified the whole algorithm. The inputs of the algorithm which are the initial

state and the cypher key are fed to the algorithm from RAM. The expanded key and

the output state of the algorithm are stored to RAM too.

27

Berna
Vurgu
uzun hal

Berna
Yapışkan Not
bu chapter da şunu bunu anlatacağım yazmalısın

Berna
Vurgu
do not

Berna
Vurgu
Bunu iyi anlatman lazım. Aslında ALU içindeki critical path in artacağını ve saat frekansının düşeceğini söylüyorsun.

Berna
Vurgu
should not

Berna
Vurgu
sil

Berna
Vurgu
sil

Berna
Vurgu

Berna
Vurgu
Bir SubBytes diyorsun, sonra S-box diyorsun. Dikkat et

Berna
Vurgu
cipher

There are several ways to implement S-box function. One of them is hardcoding the

S-box table into RAM. We avoided this way because our processor RAM size is 256

bytes and sbox table size is 256 bytes too, this gives us no room to use RAM for another

purpose.

On the other hand, S-box function output can be generated by getting the multiplicative

inverse in Galois Field GF(28) = GF(2)[x]/(x8 + x4 + x3 + x+ 1) of the input then

applying the following affine transformation.

Where [b7, b6, . . . , b1, b0] is the multiplicative inverse and [s7, s6, . . . , s1, s0] is the

S-box output as a vector.

The transformation can be simplified to be easy to implement in C language as in the

next formula.

s = b ^ (b <<< 1) ^ (b <<< 2) ^ (b <<< 3) ^ (b <<< 4) ^ 99

Where b is the multiplicative inverse of the S-box input, s is the S-box output, ^ is the

bitwise xor operator and <<< is the bitwise rotate left operator.

Calculating the multiplicative inverse in GF(28) can be done in different ways [9].

The easiest way is multiplying the input with every element in the field until the result

of the multiplication operation is one. Then the multiplicative inverse is found. This is

a brute-force search. However, this method suffers from poor performance and a high

running time because in the worst case it is required to examine every number in the

field. Another way to find the multiplicative inverse is using the extended Euclidean

algorithm [10]. This algorithm shows better performance and shorter running time

than the previous way.

28

Berna
Vurgu
Bunu hardcodinf değil de tabloyu olduğu gibi RAM olduğunu söylemelisin. Hangi tablo olduğunu da burada göstermelisin. Bu tablonun nasıl oluşturulduğunu söylemelisin.

Berna
Vurgu
yazım şekli hep aynı olsun. yukarıda farklı

Berna
Yapışkan Not
equation number

Berna
Vurgu
equation

Berna
Vurgu
equation

Berna
Vurgu
equation

Berna
Yapışkan Not
equation number

Berna
Vurgu
equation

Berna
Vurgu
equation

Berna
Vurgu
equation

Berna
Vurgu
equation

Berna
Vurgu
Bu bahsettiğin algoritmayı buraya koy

Berna
Vurgu
Neden? Algoritma üzerinden anlat

Berna
Vurgu
Algoritmayı buraya koy. Neden daha iyi anlat

Berna
Vurgu
Bunun da formülünü yaz.

Berna
Vurgu
multiplicat,ve inverse of what?

Berna
Vurgu
AES starndardında olduğu gibi buraya aktar.

Berna
Vurgu
Neden?

In this study, both methods along with MixColumns transformation are implemented

in C and examined, then many new instructions are added.

3.2.3 Translating the C code to assembly code for our processor

All C language programs have to be converted into the low-level realities of the

processors’ digital hardware, and our program is not an exception. As there is no

compiler to do this job for us, we translated the C code to assembly code by hand.

3.2.4 Drawing the CFGs of the assembly code and examining them to figure out

which instructions to be added

Control flow graph (CFG) is a representation of all paths that could be traversed by

a program during its execution, using graph notations [11]. Basically, CFGs are

mostly used in both code static analysis and compiler implementation and applications.

We used CFGs in finding sequential instructions that can be combined and complex

sequence of instructions that is created to do one job and can be simplified with

hardware components.

Before starting drawing CFGs we examined many compiler-generated CFGs then we

chose GCC CFGs to be a template for ours. An example of GCC CFG is shown in

Figure 3.1

To generate a CFG for a C code in GCC we have to add this compiler option

-fdump-tree-all-graph

Then the compiler will generate many dot files for the compiled code. Dot is a plain

text graph description language; it defines a graph but not the layout of the graph. We

used Graphviz [12] (an open source graph visualization software) to convert dot files

to visualized data like PNG images.

3.2.5 Finding candidate instructions in a CFG and converting them into a new

instruction

The candidate instructions should be frequently invoked instructions during the

program life cycle, else the consequences of adding a new instruction like the increase

29

Berna
Vurgu
MixColumn için nasıl bir algoritma ve program yazdığını anlat.

Berna
Vurgu
Bu ne demek?

Berna
Yapışkan Not
ref

Berna
Vurgu
başlıkta kısaltma olmaz

CFG mi DFG mi?

Berna
Yapışkan Not
uzun hal?

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
GCC CFG nasıl üretilir anlatmalısın

Berna
Vurgu
farklı font

Berna
Yapışkan Not
uzun hal

Berna
Vurgu
başlıklar çok uzun

Berna
Vurgu
başlıklar çok uzun

Figure 3.1: An example of GCC CGFs

30

in power consumption and the decrease in operating frequency will beat the gains

which is the decrease in the run time.

First, the new instructions are built as RTL models, then it’s described in VHDL

language and added to the processor’s ALU. After that, the added instructions

functionality is verified by performing behavioral simulation and the required clock

cycles to finish the program is measured. Finally, the simulation results are analyzed

and reported.

3.3 Adding New Instructions for AES Functions

The AES algorithm is divided to the next functions:

• KeyExpansion function: since this function will be called only once during the life

cycle of the AES encryption program and its run time is short relative to the whole

program run time, it’s not efficient to add instructions for this function exactly.

However, this function calls S-box function that will be discussed later and adding

new instructions for S-box function leads to an enhancement in this function run

time.

• AddRoundKey function: this function uses simple xor instruction only. It’s a

primitive instruction and cannot be reduced.

• SubBytes function: this function replaces every byte in a state with its S-box

equivalent. As discussed before, S-box operation relies on finding the multiplicative

inverse in Rijndael’s GF which can be implemented in different ways. Firstly,

we implemented “sbox_1” function that uses the brute search method and added

new instructions for it. However, even though the added instructions reduced the

required clock cycles to finish the function, its run time still too long relative to

the other functions. So, we decided to shift to another method. “sbox_2” function

uses the extended Euclidean algorithm and it gives more satisfying results and more

reasonable run-time overhead.

• ShiftRows function: this function does many byte swap operations, and no new

instruction can reduce its work at least in our processor architecture.

31

Berna
Yapışkan Not
uzun hal

Berna
Vurgu
only

Berna
Vurgu
daha önce tartışılan yere referans ver.

Berna
Vurgu
böyle birşey yok. Equation olarak GF(2^8) yaz.

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
Algoritmayı burada göster. Neden brute force olduğunu söyle.
referans ver

Berna
Yapışkan Not
ref
algoritmayı burada göster

• MixColumns function: this function multiplies each column (sequential four bytes)

in an AES state with a constant matrix in Rijndael’s GF. We found that the added

instructions for “sbox_1” function can be used for this function too.

3.3.1 Adding new instructions for sbox_1 function

sbox_1 function takes an input “a” and returns its S-box output. Its C code is given in

Code 3.1. This code relies on a property that says: for a number p and its multiplicative

inverse q in GF, multiplying p with 3 and dividing q with 3 gives another multiplicative

inverse pair.

Code 3.1: The C code of sbox_1 function

#define ROTL8(x,shift) ((uint8_t) ((x) << (shift)) | \
((x) >> (8 - (shift))))

uint8_t sbox_1(uint8_t a)
{

/* 0 is a special case since it has no inverse */
if (a == 0)

return 0x63;

uint8_t p = 1, q = 1;
/* loop invariant: p * q == 1 in the Galois field */
do {

/* multiply p by 3 */
p = p ^ (p << 1) ^ (p & 0x80 ? 0x1B : 0);
/* divide q by 3 (equals multiplication by 0xf6) */
q ^= q << 1;
q ^= q << 2;
q ^= q << 4;
q ^= q & 0x80 ? 0x09 : 0;

} while (p != a);
/* compute the affine transformation */
return q ^ ROTL8(q,1) ^ ROTL8(q,2) ^ ROTL8(q,3) ^ ROTL8(q,4) ^ 0x63;

}

We translated this code to assembly and drew a CFG for it. The CFG is given in

Figure 3.2.

Then we searched where we can add a new instruction. We found that we can add one

in place of the instructions that are in the red rectangular. These instructions are used

to reset a register if the most significant bit of another register is 1. The new instruction

ANDs a register (Rz) with the most significant bit of another register (Ry). It has the

32

Berna
Yapışkan Not
anlattıın yere referans

Berna
Vurgu

Berna
Vurgu
equation

Berna
Vurgu
equation

Berna
Vurgu

Berna
Vurgu

Berna
Vurgu

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
shown in Fig. 3.2

Figure 3.2: The CFG of sbox_1 function

33

same job of the old instructions. The new instruction name is “AMB” (And with most

Significant Bit) and its assembly code is shown below.

AMB Rd, Ry, Rz

Some examples of the output of this instruction are given below

Ry = 0x47 (01000111), Rz = 0x1B, Rd = (00000000) & 0x1B = 0x00

Ry = 0x91 (10010001), Rz = 0x09, Rd = (11111111) & 0x09 = 0x09

The RTL model of this instruction in our ALU can be done by adding a multiplexer to

the input of the already existed AND gate. This multiplexer selects the input according

to the opcode of the executed instruction. The RTL model is shown in Figure 3.3.

Figure 3.3: The RTL model of AMB instruction

The next instruction that we added to sbox_1 function is “SHLXOR”. It replaces the

two instructions that are surrounded with green rectangular “SHL” and “XOR”. These

two instructions come four times sequentially in sbox_1 assembly code and the new

instruction combines its works. It shifts a register (Ry) to left one bit and then XORs it

with another register (Rz). “SHLXOR” instruction Assembly code and two examples

explain its work is given below

SHLXOR Rd,Ry,Rz

Ry = 0x40, Rz = 0x01, Rd = 0x81

Ry = 0x91, Rz = 0xFF, Rd = 0xDD

The RTL model of the new instruction can be presented by a new multiplexer on the

input of the already existed XOR gate. This multiplexer selects XOR gate’s first input

from a normal register or from the existed shift-left circuit output according to executed

instruction opcode. The new RTL model is shown in Figure 3.4

34

Berna
Vurgu
başka bir font

Berna
Vurgu
Buna Fig. 3.2 nin neresine bakarak karar verdin? Neden?

Berna
Vurgu
başka bir font

Figure 3.4: The RTL model of SHLXOR instruction

The CFG of sbox_1 function after adding AMB and SHLXOR instructions is shown

in Figure 3.5.

Two programs are written to test sbox_1 function on the pipelined processor. In both

programs, a 16-byte state has been fed to the function 10 times. The first program

doesn’t use the added instructions and the second one does. The code size and the

required clock cycles to finish both programs are reported in Table 3.1.

Table 3.1: sbox_1 function simulation results

Pipelined processor Pipelined processor after adding AMB and SHLXOR
Clock cycles 861,793 510,183
Program size 61 44

The added instructions caused a 40% decrease in clock cycles and 27% decrease in

code size.

35

Berna
Vurgu
does not

Berna
Yapışkan Not
max saat frekansı sütünu aç.

bunu yapabilmek için gerçeklemede time constraint yazarak max ferekansa kadara gerçeklemeyi zorlaman lazım.

saat peryodu ve clock cycle i çarparak bir şifreleme süresini bul. Bunun için de bir sütun aç.

Bu iki sütuna göre de karşılaştırma yap.

Figure 3.5: The CFG of sbox_1 function after using AMB and SHLXOR instructions

36

3.3.2 Adding new instructions for sbox_2 function

sbox_2 function is used to replace the inefficient sbox_1 function. In sbox_2 function

the extended Euclidean algorithm is implemented to find the multiplicative inverse of

the input in in Rijndael’s GF. Its C code is given in code 3.2

Code 3.2: The C code of sbox_2 function

#define ROTL8(x,shift) ((uint8_t) ((x) << (shift)) | \
((x) >> (8 - (shift))))

unsigned char degree (unsigned char a)
{

unsigned char res = 0xff;
do
{

res++;
a >>= 1;

} while (a != 0);
return res;

}

unsigned char sbox_2 (unsigned char a)
{

unsigned char temp;
unsigned char u = a;
unsigned char v = 0x1b;
unsigned char g1 = 1;
unsigned char g2 = 0;
char j = degree(u) - 8;
while (u != 1)
{

if (j < 0)
{

temp = u;
u = v;
v = temp;
temp = g1;
g1 = g2;
g2 = temp;
j = -j;

}
u ^= v << j;
g1 ^= g2 <<j;
j= degree(u) - degree(v);

}
return g1 ^ ROTL8(g1,1) ^ ROTL8(g1,2) ^ ROTL8(g1,3) ^ ROTL8(g1,4) ^ 0x63;

}

The code is translated to assembly and its CFG is given in Figure 3.6

37

Berna
Vurgu
neden sbox_1 inefficient. İlk olarak 1 ve 2 yi karşılaştırman gerekir.

Berna
Yapışkan Not
daha önce algoritayı anlattığın yere referans ver.

Berna
Vurgu

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
ref

Figure 3.6: The CFG of sbox_2 function

38

After investigating the CFG we found that we can add an instruction to find the degree

of a polynomial in Rijndael’s GF and use it instead of the code block that is surrounded

in red rectangular. The new instruction “DEG” takes two operands only (Rd and Ry).

It finds the degree of the source register (Ry) and stores it in the destination register

(Rd). Its assembly code and three examples explain its work are given below.

DEG Rd, Ry

Ry = 0x0A, Rd = 0x03

Ry = 0xF7, Rd = 0x07

Ry = 0x01, Rd = 0x00

The RTL model of the new instruction can be described as 7 2-to-1 multiplexers

connected in series where each multiplexer’s zero input is connected to the output

of the previous one and the first multiplexer zero input is connected to “0” (as 8-bit

vector). The one input of the multiplexers is connected to constant vector which its

value is the multiplexer order (1, 2, . . . ,7). The selector pin of the (i)’th multiplexer

is connected to the (i+1)’th bit of the source register Ry. The output of the last

multiplexer is the result of DEG instruction. The RTL model of this instruction is

given in Figure 3.7

Figure 3.7: The RTL model of DEG instruction

The CFG of sbox_2 function after adding DEG instruction is shown in Figure 3.8.

Note: “v_shifted = v << j” and “g2_shifted = g2 << j” statements in the CFGs are

not real instructions. They are actually implemented using a loop because our shift

instructions shift only by one. The loop code is represented in this way just to make the

39

Berna
Vurgu

Berna
Vurgu

Figure 3.8: The CFG of sbox_2 function after using DEG instruction

40

CFG clearer. No new instruction is added for shifting by a variable number because

the required hardware (a barrel shifter circuit) has a massive area and leads to large

power consumption.

As in sbox_1 function, two programs are written to test sbox_2 function on the

pipelined processor. In both programs, a 16-byte state has been fed to the function

10 times. The first program doesn’t use “DEG” instruction and the second one does.

The code size and the required clock cycles to finish both programs are reported in

Table 3.2

Table 3.2: sbox_2 function simulation results

Pipelined processor Pipelined processor after adding DEG
Clock cycles 106,873 46,033
Program size 85 64

The added “DEG” instruction caused a 56% decrease in clock cycles and 24% decrease

in code size.

41

Berna
Yapışkan Not
Daha önceki tablo için yazdıklarım bunun için de gerçerli.

3.3.3 Adding new instructions for mix_col function

mix_col function multiplies each column of an input state with a constant matrix in

Rijndael’s GF. The C code of this function is given in Code 3.3

Code 3.3: The C code of mix_col function

void mix_col(uint8_t* state)
{

// The array ’a’ is simply a copy of a column from the input
uint8_t a[4];
//The array ’b’ is each element of the array ’a’ multiplied by 2
//in Rijndael’s GF
uint8_t b[4];
// a[n] ^ b[n] is element n multiplied by 3 in Rijndael’s GF
for (uint8_t columnNumber = 0; columnNumber<4; ++columnNumber)
{

uint8_t stateByteIndex = columnNumber*4;
a[0] = state[stateByteIndex];
b[0] = (a[0] << 1) ^ (a[0] & 0x80 ? 0x1B : 0);
stateByteIndex++;

a[1] = state[stateByteIndex];
b[1] = (a[1] << 1) ^ (a[1] & 0x80 ? 0x1B : 0);
stateByteIndex++;

a[2] = state[stateByteIndex];
b[2] = (a[2] << 1) ^ (a[2] & 0x80 ? 0x1B : 0);
stateByteIndex++;

a[3] = state[stateByteIndex];
b[3] = (a[3] << 1) ^ (a[3] & 0x80 ? 0x1B : 0);

//column_byte[3] = 2 * a3 + a2 + a1 + 3 * a0
state[stateByteIndex] = b[3] ^ a[2] ^ a[1] ^ b[0] ^ a[0];
stateByteIndex--;

//column_byte[2] = 2 * a2 + a1 + a0 + 3 * a3
state[stateByteIndex] = b[2] ^ a[1] ^ a[0] ^ b[3] ^ a[3];
stateByteIndex--;

//column_byte[1] = 2 * a1 + a0 + a3 + 3 * a2
state[stateByteIndex] = b[1] ^ a[0] ^ a[3] ^ b[2] ^ a[2];
stateByteIndex--;

//column_byte[0] = 2 * a0 + a3 + a2 + 3 * a1
state[stateByteIndex] = b[0] ^ a[3] ^ a[2] ^ b[1] ^ a[1];
}

}

The code is converted to assembly and its CFG is given in Figure 3.9.

42

Berna
Yapışkan Not
ref

Berna
Vurgu

Berna
Yapışkan Not
ref

Figure 3.9: The CFG of mix_col function

43

We found that added instructions for the replaced function sbox_1 can be used in

mix_col function too, and so no new instructions are needed to be added. The new

CFG for mix_col function after using “SHLXOR” and “AMB” instructions is shown

in Figure 3.10.

Again, two programs are written to test mix_col function on the pipelined processor. In

both programs, a 16-byte state has been fed to the function 10 times. The first program

doesn’t use “SHLXOR” and “AMB” instructions and the second one does. The code

size and the required clock cycles to finish both programs are reported in Table 3.3.

Table 3.3: mix_col function simulation results

Pipelined processor Pipelined processor after using AMB and SHLXOR
Clock cycles 4,309 2,879
Program size 87 56

Using “AMB” and “SHLXOR” instructions caused a 33% decrease in clock cycles and

35% decrease in code size.

44

Berna
Yapışkan Not
daha önceki tablo için yazdıklarım bunun için de gerçerli.

Figure 3.10: The CFG of mix_col function after using AMB and SHLXOR
instructions

45

3.4 The Extended Instruction Set

As a result of this study, the standard instruction set of the pipelined processor is

extended with three instructions. The new instructions’ codes are given in Table 3.4.

Table 3.4: The extended instruction set of the designed ASIP

Instruction Function Code
SHLXOR Rd,Ry,Rz Rd = (Ry <<1) ^Rz 11000 dddd 0zzzz yyyy
AMB Rd,Ry,Rz Rd = MSB(Ry) & Rz 11001 dddd 0zzzz yyyy
DEG Rd,Ry Rd = DEG (Ry) 11010 dddd 00000 yyyy

The big benefit that came from the extended instructions is reducing the run time for

some AES functions in a significant way. Table 3.5 shows a comparison between the

designed GPP and the designed ASIP in the number of the required clock cycles to

finish many programs.

Table 3.5: Performance simulation results of the designed GPP and the designed ASIP
for AES functions

Program GPP ASIP
sbox_1 for 10 rounds 861,793 510,183
sbox_2 for 10 rounds 106,873 46,033
mix_col for 10 rounds 4,309 2,879
key_expansion 27,933 14,036
AES round 12,815 6,124
AES total 159,808 76,829

46

3.5 Simulations Results

In order to compare our ASIP (the pipelined processor with the extended instructions)

with our GPP (the pipelined processor without the extended instructions) and get the

energy saving outcome the following steps are performed.

First, the AES algorithm was implemented with the standard instructions and was

run on the designed GPP. The number of the used FPGA slices and the number of

clock cycles that the algorithm takes to complete are reported. The maximum clock

frequency and the dynamic on-chip power are already obtained in the previous chapter.

The latency, the throughput and the energy consumption are calculated.

Next, the AES algorithm was implemented with the extended instructions and was

run on the designed ASIP. After that, the maximum operating frequency, the dynamic

on-chip power, the number of the used FPGA slices and the required clock cycles to

finish the algorithm code are obtained. In the designed ASIP, the maximum operating

frequency was dropped down by 13%, this can be explained as a result of the new

instructions’ hardware that extended the critical path. Also, the dynamic on-chip power

increased 14%, this is because of the additional FPGA slices that are used by the

hardware of the new instructions.

Finally, the latency, the throughput and the energy consumption for the designed ASIP

are calculated. As a result of decreasing the AES algorithm run time on the ASIP,

the latency is decreased and the throughput is increased significantly. The energy

consumption of the AES is also decreased 37% although the dynamic on-chip power

is increased, because the improvement in latency overcame the downgrade in dynamic

power outcome.

47

Table 3.6: Comparison of the designed GPP and the designed ASIP simulation results

GPP ASIP Ratio of percentage change
Maximum frequency 155 MHz 135 MHz -13%
Dynamic on-chip power 0.007 W 0.008 W +14%
Area (number of slices) 70 74 +06%
AES clock cycles 159,808 76,829 -52%
Latency 1031 uS 569 uS -45%
Throughput 121.24 Kbit/s 219.64 Kbit/s +81%
Energy 7.22 uW/S 4.55 uW/S -37%

3.6 Comparing the Proposed Work with Previous Works

AES became a study subject for many researchers and hardware designers due to its

importance and its wide usage in many fields. A lot of work is done in designing high

performance low-power ASICs for AES [13] [14] [15] [16] [17] [18] [19] [20].

On the other hand, a fewer work is done in making ASIPs or extending an instruction

set for AES. In Onur Sahin et al work [21] 6 new complex instructions are added to the

32-bit LEON 2 processor. As reported, the added instructions sped up AES execution

3.12 times. However, no further information is given about the variation in energy

consumption or operating frequency.

In Renhai Chen et al work [22] a GPP design is proposed and its instruction set is

extended with 4 specific instructions for AES. The presented ASIP achieved 46.5%

performance improvement compared to ARM ISA. Although the added instructions’

hardware is simple, it caused a 14% increase in the used resources.

Tim Good et al represented a very small 8-bit ASIP for AES on FPGA in their work

[23]. As the small area was the main priority of the project, the instruction set of the

ASIP is so optimized such the processor isn’t capable of doing any work except AES

operations.

Our work is based on a novel and genuine processor design not on an open source

project. This makes us fully knowing the design details. Also, our added instructions

were selected to be simple not complex, complex instructions like one instruction for

the whole S-box function or MixColumns function requires more resources on the

48

FPGA and that causes to decrease the operating frequency and to increase the energy

consumption highly. Our instruction set isn’t optimized for AES only because we

wanted the processor to be used for different applications beside AES encryption.

49

50

4. CONCLUSION

In this thesis, a low-power general purpose processor design is presented. Then the

processor design is improved by extending the instruction set with instructions for the

Advanced Encryption Standard (AES).

First, a simple general-purpose processor was designed by determining its standard

instruction set then implementing its data path and control unit using VHDL in Vivado

Environment. Then the processor design was improved by pipelining it. Pipeline

hazards were avoided without complicating the processor structure. Finally, the

simulation results of both designs were compiled with Xilinx PicoBlaze processor.

Both designs consumed less power than PicoBlaze processor, and the pipelined

processor’s maximum frequency was higher than PicoBlaze processor’s maximum

frequency. Also, the pipelined design finished test programs with clock cycles less

than the non-pipelined design and consumed less energy.

After that, the AES algorithm was implemented in C then translated to assembly code.

CFGs were drawn for the complex functions of the algorithm and then examined. New

candidate instructions that solves software problems faster or combines sequential and

related instructions were built as RTL models, then described in VHDL language

and added to the processor’s ALU. Next, the added instructions functionality was

verified by performing behavioral simulation and the required clock cycles to finish

test programs were measured.

Finally, the designed GPP and ASIP were compared. It was found that ASIP consumes

less energy than GPP by 37% although its dynamic on-chip power is higher, because

the improvement in its latency overcame the downgrade in dynamic power outcome.

51

52

REFERENCES

[1] Glokler, T. and Meyr, H., 2004. Design of Energy-Efficient Application-Specific
Instruction Set Processors (ASIPs), Kluwer Academic Publishers.

[2] National Institute of Standards and Technology, 1999. FIPS 46-3:
Data Encryption Standard, https://csrc.nist.gov/csrc/
media/publications/fips/46/3/archive/1999-10-25/
documents/fips46-3.pdf.

[3] National Institute of Standards and Technology, 2001. FIPS 197: Advanced
Encryption Standard, https://nvlpubs.nist.gov/nistpubs/
FIPS/NIST.FIPS.197.pdf.

[4] Hennessy, J. and Patterson, D.A., 2017. Computer Architecture: A Quantitative
Approach, Morgan Kaufmann, 6th edition.

[5] Mano, M.M.R. and Ciletti, M.D., 2017. Digital Design: With an Introduction to
the Verilog HDL, VHDL, and SystemVerilog, Pearson, 6th edition.

[6] Churiwala, S., editor, 2017. Designing with Xilinx R© FPGAs: Using Vivado,
Springer, 1st edition.

[7] Chadha, R. and Bhasker, J., 2013. An ASIC Low Power Primer: Analysis,
Techniques and Specification, Springer.

[8] Xilinx, PicoBlaze 8-bit Microcontroller, https://www.xilinx.com/
products/intellectual-property/picoblaze.html.

[9] Wikipedia, 2020, Finite field arithmetic — Wikipedia, The Free Encyclopedia,
https://en.wikipedia.org/wiki/Finite_field_
arithmetic, [Online; accessed 21-March-2020].

[10] Wikipedia, 2020, Extended Euclidean algorithm — Wikipedia, The Free
Encyclopedia, https://en.wikipedia.org/wiki/Extended_
Euclidean_algorithm, [Online; accessed 21-March-2020].

[11] Allen, F.E., 1970. Control Flow Analysis, SIGPLAN Notices.

[12] Graphviz - Graph Visualization Software, https://www.graphviz.org/.

[13] Hamalainen, P., Alho, T., Hannikainen, M. and Hamalainen, T.D., 2006.
Design and Implementation of Low-Area and Low-Power AES Encryption
Hardware Core, 9th EUROMICRO Conference on Digital System Design
(DSD’06), pp.577–583.

53

[14] Hodjat, A. and Verbauwhede, I., 2006. Area-throughput trade-offs for fully
pipelined 30 to 70 Gbits/s AES processors, IEEE Transactions on
Computers, 55(4), 366–372.

[15] Rouvroy, G., Standaert, F.., Quisquater, J.. and Legat, J.., 2004. Compact
and efficient encryption/decryption module for FPGA implementation
of the AES Rijndael very well suited for small embedded applications,
International Conference on Information Technology: Coding and
Computing, 2004. Proceedings. ITCC 2004., volume 2, pp.583–587 Vol.2.

[16] Mozaffari-Kermani, M. and Reyhani-Masoleh, A., 2012. Efficient and
High-Performance Parallel Hardware Architectures for the AES-GCM,
IEEE Transactions on Computers, 61(8), 1165–1178.

[17] Good, T. and Benaissa, M., 2010. 692-nW Advanced Encryption Standard (AES)
on a 0.13-µm CMOS, IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 18(12), 1753–1757.

[18] Tsung-Fu Lin, Chih-Pin Su, Chih-Tsun Huang and Cheng-Wen Wu,
2002. A high-throughput low-cost AES cipher chip, Proceedings. IEEE
Asia-Pacific Conference on ASIC„ pp.85–88.

[19] Sever, R., Ismailoglu, A.N., Tekmen, Y.C. and Askar, M., 2004. A high speed
ASIC implementation of the Rijndael algorithm, 2004 IEEE International
Symposium on Circuits and Systems (IEEE Cat. No.04CH37512),
volume 2, pp.II–541.

[20] Huang, Y., Lin, Y., Hung, K. and Lin, K., 2006. Efficient Implementation of
AES IP, APCCAS 2006 - 2006 IEEE Asia Pacific Conference on Circuits
and Systems, pp.1418–1421.

[21] Şahin, O. and Örs Yalçın, B., 2012. Kriptoloji Uygulamalarına Özel Bir
İşlemcinin Tasarlanarak FPGA Üzerinde Gerçeklenmesi, GÖMSİS 2012
Gömülü Sistemler ve Uygulamaları Sempozyumu.

[22] Chen, R., Jia, Z., Li, Y., Hui, X. and Li, X., 2011. The application specific
instruction processor for AES, 4.

[23] Good, T. and Benaissa, M., 2006. Very small FPGA application-specific
instruction processor for AES, Circuits and Systems I: Regular Papers,
IEEE Transactions on, 53, 1477 – 1486.

54

CURRICULUM VITAE

Name Surename: Muhammed ŞAİROĞLU

Place and Date of Birth: Homs - Syria, 1994

E-Mail: ammarshaar94@gmail.com

Education:

• B.Sc.: Istanbul University

•M.Sc.: Istanbul Technical University

Professional Experience: 2016 - Present : Panasonic Life Solutions, R&D
Department, Embedded Software Engineer

Publications, Presentations and Patents on This Thesis

Mohammad Ammar Alshaar and Berna Örs, 2019 : Special Purpose Processor Design
for IoT Applications and Implementation on an FPGA
İşlemci Tasarımı Çalıştayı 2019, September 19, 2019 Istanbul, Turkey.

55

