

ISTANBUL TECHNICAL UNIVERSITY % INSTITUTE OF SCIENCE AND TECHNOLOGY

LOW-POWER GENERAL PURPOSE PROCESSOR DESIGN
AND INSTRUCTION SET EXTENSION FOR AES

M.Sc. THESIS

Muhammed SAIROGLU

Department of Electronics and Communication Engineering

Electronic Engineering

Thesis Advisor: Assoc. Prof. Dr. Siddika Berna Ors YALCIN

MARCH 2020

ISTANBUL TECHNICAL UNIVERSITY % INSTITUTE OF SCIENCE AND TECHNOLOGY

LOW-POWER GENERAL PURPOSE PROCESSOR DESIGN
AND INSTRUCTION SET EXTENSION FOR AES

M.Sc. THESIS

Muhammed SAIROGLU
(504171254)

Department of Electronics and Communication Engineering

Electronic Engineering

Thesis Advisor: Assoc. Prof. Dr. Siddika Berna Ors YALCIN

MARCH 2020

ISTANBUL TEKNIK UNIVERSITESI % FEN BILIMLERI ENSTITUSU

DUSUK GUC TUKETIMLI GENEL AMACLI iSLEMCI TASARIMI
VE AES ICIN KOMUT KUMESI GENISLETILMESI

YUKSEK LISANS TEZI

Muhammed SAIROGLU
(504171254)

Elektronik ve Haberlesme Miihendisligi Anabilim Dal

Elektronik Miihendisligi Program

Tez Damsmani: Assoc. Prof. Dr. Siddika Berna Ors YALCIN

MART 2020

Muhammed SAIROGLU, a M.Sc. student of ITU Institute of Science and Tech-
nology 504171254 successfully defended the thesis entitled “LOW-POWER GEN-
ERAL PURPOSE PROCESSOR DESIGN AND INSTRUCTION SET EXTEN-
SION FOR AES”, which he/she prepared after fulfilling the requirements specified in
the associated legislations, before the jury whose signatures are below.

Thesis Advisor : Assoc. Prof. Dr. Siddika Berna Ors YALCIN cccccocoo.o....
Istanbul Technical University

Jury Members : Asst. Prof. Ayse Yilmazer Metin .
Istanbul Technical University

Asst. Prof. Tuba Ayhan
MEF University

Date of Submission : 27 March 2020
Date of Defense : 6 April 2020

Vil

To my family

FOREWORD

I would like to thank my supervisor Assoc. Prof. Dr. Siddika Berna Ors YALCIN for
her guidance, kind advice, and help throughout my M.Sc studies.

I am also grateful to Panasonic Life Solutions Turkey company for giving me the
opportunity to complete my studies along with my work.

March 2020 Muhammed SAIROGLU
Embedded Software Engineer

X

TABLE OF CONTENTS

Page
FOREWORD . IX
TABLE OF CONTENTS v Xi
ABBREVIATIONS Xiii
LIST OF TABLES v XV
LIST OF FIGURES <. XVii
SUMMARY . XIX
OZET e XXi
1. INTRODUCTION wo 1
1.1 The Era of Low-PoOWer DeviCes.........cocouveriiiiiiiiiiiiiiieeieeeieeiee e 1
1.2 Choosing the Right Architecture for Low-Power Applications 2
1.2.1 Application-specific integrated circuit (ASIC).....cceeevvviiiiieniiieeiiiieeene 2

1.2.2 General-purpose processor (GPP)cccoceiviiiiiiiiniinicceceene 2

1.2.3 Application-specific instruction set processor (ASIP)cccccceveieeenneen. 3

1.3 The Advanced Encryption Standard (AES).......ccccccooiiiiiiiiiiiiiieee 5
1.3.1 CIPRer PrOCESS ..ccvvieuiieiiiiienieeieesee ettt ettt 6
1.3.1.1 SubBytes transformationccceevveeriieeenieeniieeeiiee e eeee e 7

1.3.1.2 ShiftRows transformationcceceeerueeerieeniiieenieeniec e 8

1.3.1.3 MixColumns transformation...........cceceevueeneeriieeneenienieeesieeneeneeeane 9

1.3.1.4 AddRoundKey transformation.............ccceeeeveerrieencieenneeenieeeeeeeee. 9

1.3.2 Key €XPaAnSION PIOCESSeeerureerureenireeeireeniieeenireesseesnireesseeensseesneessneees 10

1.4 ASIP Designing GUIAEIINEceevuvieriiiieiiieiiieeiee ettt 12

2. GENERAL-PURPOSE PROCESSOR DESIGN . .. 13
2.1 The INStrUCHON SELeeiuiiiriiiiiiiieeite ettt e 13
2.2 The Data Pathcccooiiiiiiiiiieeeeee e 15
2.2.1 The arithmetic 10ZIC UNIL ...cccuvveeeriiiieeiiiie e 15
2.2.2 The re@iSter flle.....cccviriiriiriieieeeeeee e 16
2.2.3 The data MEMOTY ...ccccuvieriieeiieeniieeieeeiee et e ieeesteeeereesbeeeneteesseeenaeeas 17

2.3 The Control UnIf........coovieiriiiiiiieniieeieeeteeee ettt 17
2.3.1 The InStruction MEIMOTYc.ceveerierierrieenieeneeereereenreesre e ereeseeeseneenne 18
2.3.2 The Program COUNLETcccuveerureeruueenireerreeesireesieeessreesseeensseessseesnnnes 18
2.3.3 The control state Machine............ccoccueeriiiiiiiiiiiiiiniccececee, 18

2.4 Improving the General-Purpose Processor Design...........ccoceeeeevieniiiecieenneens 19
2.4.1 Pipeline hazards handling............ccccceeriiiieniiiiniiieniieeceeee e, 20
2.4.1.1 Structural hazardsccocceeeiiiiiiiiiiic e 20

2.4.1.2 Data hazards..........ccceevieeiiieiiiieeiieeeeee e 20

X1

2.4.1.3 CONLOl NAZATAS c.vvveeeeeeeeeeeeeeeeeeeeee ettt e e e e e eeeens 21

2.5 The ASSEMDIET......cooiiiiiiiiiiietee et e 22
2.6 SIMUIALIONSeeiiiiieiiee ettt st st e e e e 23
2.6.1 Simulation Method...........cccooiiiiiiiiiiiie e 23
2.6.2 SImMUlation TESULLS ...c...eiiiuiiiiiiiiiieiteeee e 23
2.7 Chapter CONCIUSION ...c..eeiiiiiiiiiinieeieeie ettt 25
3. EXTENDING THE INSTRUCTION SET FOR AES.....cciiicnrurcssnscssasees 27
3.1 Rules for Extending the Instruction Set...........cccoceiiiiiiiiiiiiiiiniiciieeeecee 27
3.2 Design Flow of the Extended Instruction Set..........ccccoveeeevieeniiiennieenieeene. 27
3.2.1 Dividing the algorithm into several independent functions.................... 27
3.2.2 Implementing the functions of the algorithm in C...............c...cceene 27
3.2.3 Translating the C code to assembly code for our processor 29
3.2.4 Drawing the CFGs of the assembly code and examining them to
figure out which instructions to be added..........c.c.occeeviriiiiiiniinnennen. 29
3.2.5 Finding candidate instructions in a CFG and converting them into a
NEW TNSTIUCTION ...evuiiiniiiiieeiieeteeette ettt ettt esaeeereas 29
3.3 Adding New Instructions for AES FUNCtoONS.........cccevvviieeiniiieeiniieeeeieenn. 31
3.3.1 Adding new instructions for sbox_1 functionc..cccceceeevieeriiennneen. 32
3.3.2 Adding new instructions for sbox_2 functionc.cccceeeveercieeriveennnenn. 37
3.3.3 Adding new instructions for mix_col function............ccccceevuveerrruienennns 42
3.4 The Extended InStruction Stccocueeiiieiiiiiiniieiiieeriee et 46
3.5 Simulations RESULLScccueiriiiiiiiiiicieecceeeeeee e 47
3.6 Comparing the Proposed Work with Previous Worksccccceevviieeennnnenn. 48
4. CONCLUSION ...uuuiiniirsnnnsnecssnnssansssnessasssassssssssasssassssssssssssasssssssassssasssssssassssasssses 51
REFERENCES... . . ceresssessnnessnssasnsnnnns 53
CURRICULUM VITAE ..cucuiinvuiinscnninssrncssssesssssessssssssssesssssssssssssssssssssssssssssssssssssseses 55

Xii

ABBREVIATIONS

AES
ALU
ASIC
ASIP
CFG
DES
FPGA
GF
GPP
HEX
M
IoT
IR
NOP
PC
RAM
VHDL

: Advanced Encryption Standard

: Arithmetic Logic Unit

: Application-Specific Integrated Circuit

: Application-Specific Instruction Set Processor
: Control Flow Graph

: Data Encryption Standard

: Field Programmable Gate Arrays

: Galois Field

: General-Purpose Processor

: Hexadecimal numeral system

: Instruction Memory

: Internet of Things

: Instruction Register

: No Operation Instruction

: Program Counter

: Random Access Memory

: Very High Speed Integrated Circuit Hardware Description Language

xiil

Xiv

LIST OF TABLES

Table 1.1
Table 1.2
Table 2.1
Table 2.2
Table 2.3
Table 2.4

Table 3.1

Table 3.2 :

Table 3.3
Table 3.4
Table 3.5

Table 3.6

XV

Page
: A comparison between GPP, ASIP and ASICccccooviiiiiieninnne. 3
: Key length round combinations in AES..........ccccovviiiiiniiiieiiieee 6
: The instruction set of the designed processorccccceceeveeneennennn. 14
: Comparison between the designed processors and Xilinix Pi-
COBIAZE PrOCESSOT ...uiiiiiieiiiieeeiece ettt 23
: The performance results of the non-pipelined and the pipelined
processors for the multiplication programccccoeceevvveeceeneeneennne. 24
: The performance results of the non-pipelined and the pipelined
processors for the modular multiplication program................cceeuvee.n. 25
¢ sbox_1 function simulation reSUltS..........oovvviiiivimiiiieeeeeeeeeeiee e 35
sbox_2 function simulation results...........ccoceeveenieniieiieinienieeieeens 41
¢ mix_col function SIMulation TeSUILScovumeiieiieeeeeeeeeeeeeeeee e 44
: The extended instruction set of the designed ASIP...........ccccccceeeeeee. 46
: Performance simulation results of the designed GPP and the
designed ASIP for AES functions...........ccccueevieieniieeiieeniieeieeeiee 46
: Comparison of the designed GPP and the designed ASIP
SIMUIAION TESULLS ..eneviiiiiiiiiie et 48

XVi

LIST OF FIGURES

Page
Figure 1.1 : Figure illustrates examples of widely-used low-power electronic
AEVICES ...ttt ettt et 1
Figure 1.2 : Energy flexibility trade-off for several embedded systems
ATCRILECTUTES ...ttt ettt st 3
Figure 1.3 : AES state array input and OUutpUt.........ccceeeveeeriieenieeniiieeiee e 5
Figure 1.4 : AES SubBytes transformation............ccceceereenieniienieenieneeeeeeee. 7
Figure 1.5 : AES affine transformationccocceeeviiiniiiiniiiiniiiicceeeeeeeee, 7
Figure 1.6 : AES S-bOX tableccccceviiiiiiiiieiieeiieeeeeeeee e 8
Figure 1.7 : AES ShiftRows transformationcccceeeveeniiienieeniieeniee e 8
Figure 1.8 : AES MixColumns transformation...........ccccceeeveeeinieeniieeinieesiieenen. 9
Figure 1.9 : AES AddRoundKey transformation............ccceecveeevveenieeenveessineennen. 10
Figure 1.10: AES key eXpansion PrOCESScc.eereerieerieereerieeieeieesitesreseeesieesnnes 11
Figure 1.11: Figure illustrates the set ASIP designing guideline.............cc.ccc....... 12
Figure 2.1 : The data path diagramcccccveeeiiieriieeiiieeiee e 15
Figure 2.2 : The ALU dia@ram.......cccceeiiiiiieiiieiienieeieeiee et 16
Figure 2.3 : The register file diagram.............cccooviieriiiiiiiiniiiiieeee e, 16
Figure 2.4 : The data memory diagram..........ccceecveeriieiiieeniiieeriee e 17
Figure 2.5 : The control unit diagram in the non-pipelined processor.................. 17
Figure 2.6 : The state diagram of the control state machine in the
NON-PIPEHINEd PrOCESSOTveuerieiiieeiiierieeeriieeeiieeesteeeieeesereesnreeesareeens 18
Figure 2.7 : The control unit diagram in the pipelined processorc...ccc.c...... 19
Figure 2.8 : The state diagram of the control state machine in the pipelined
AESTEN .ttt ettt et e st e s bt e e beeens 20
Figure 2.9 : The developed assembler user interface...........ccceeeveevciveenieeeceeennen. 22
Figure 3.1 : An example of GCC CGES....c..ccceviriiiiniininicneeecneeereeeseeeee 30
Figure 3.2 : The CFG of sboxX_1 function..........cccccvvveeviiiieieiiiee e 33
Figure 3.3 : The RTL model of AMB instructioncccceeeveeerveercieeenveeeieeennen. 34
Figure 3.4 : The RTL model of SHLXOR inStructioncccceeeevieeieesieeneenen. 35
Figure 3.5 : The CFG of sbox_1 function after using AMB and SHLXOR
INSTIUCHIONS 1.ttt ettt e st st e bt e 36
Figure 3.6 : The CFG of sboX_2 fUnCtioNccovieriieeiiiieciie e 38
Figure 3.7 : The RTL model of DEG instruction............ccccceeevveeeeeciieeeeeieeeeennenn. 39
Figure 3.8 : The CFG of sbox_2 function after using DEG instruction................ 40
Figure 3.9 : The CFG of mix_col functionccceeveeviieniiieeiiiecie e 43
Figure 3.10: The CFG of mix_col function after using AMB and SHLXOR
INSEIUCHIONS 1.ttt ettt ettt ettt e e saeeeaees 45

Xviii

LOW-POWER GENERAL PURPOSE PROCESSOR DESIGN
AND INSTRUCTION SET EXTENSION FOR AES

SUMMARY

In the last years, there has been a big growth in the demand for portable electronic
devices. Most of these devices need to operate on a thrifty energy budget and they
must be designed to work under extreme energy constraints for a long time. Also, a
lot of smart devices need to communicate with the outer world and with other devices,
and all these communications must be secure. These requirements have increased the
investments in developing low-power integrated circuits with encryption capabilities.

In this thesis, a low-power general purpose processor design is presented. Then the
processor design is improved by extending the instruction set with instructions for the
Advanced Encryption Standard (AES).

In chapter one, many embedded systems architectures for low-power applications are
introduced, then the Advanced Encryption Standard is explained.

In chapter two, the designed processor’s instruction set is given, and its architecture
is explained in detail. Then the processor architecture is improved by adding many
pipeline stages. Pipeline hazards are handled without complicating the processor
architecture. Both processor designs (the non-pipelined and the pipelined) were
tested with simple programs to compare its performances. The pipelined processor
showed better results in terms of the required clock cycles to finish test programs, the
throughput and the consumed energy. Both processor designs were also compared with
the well-known Xilinx PicoBlaze processor. The pipelined processor beat PicoBlaze
according to the maximum clock rate and dynamic on chip power.

In chapter three, The AES algorithm is implemented in Assembly language and is
run on the pipelined processor. Then AES algorithm code is investigated using its
control flow graphs. New instructions are added to the standard instruction set by
combining related and sequential instructions from the algorithm code and creating
new instructions that solves software problems faster. It is showed that the added
instructions reduced the required time to finish AES encryption to 52% and the
consumed power to 37% without having a significant increase in the architecture size.

Xix

XX

DUSUK GUC TUKETIMLI GENEL AMACLI iISLEMCI TASARIMI
VE AES ICIN KOMUT KUMESI GENISLETILMESI

OZET

Son yillarda, taginabilir elektronik cihazlara olan talepte biiyiik bir artis olmustur. Bu
cihazlarin cogunun enerji tasarrufu yapabilmesi ve bu sekilde uzun siire ¢alisabilecek
sekilde tasarlanmasi gerekmektedir. Ayrica, bircok akilli cihazin dig diinyayla ve
diger cihazlarla iletisim kurmasi gerekmektedir ve tiim bu iletisim giivenli sekilde
saglanmalidir. Bu gereksinimler, sifreleme 6zelliklerine sahip diisiik giiclii entegre
devrelerin gelistirilmesine yonelik yatirimlart artirmigtir.

Bu tezde genel amach kullanilabilecek diisiik giiclii islemci tasarimi sunulmustur.
Daha sonra, islemcinin komut seti Gelismis Sifreleme Standardi (AES) icin yeni
talimatlarla genisletilerek gelistirilmisgtir.

Birinci boliimde diisiik giiclii uygulamalar i¢in bir¢ok gomiilii sistem mimarisi
tanitilmig, ardindan Geligmis Sifreleme Standardi (AES) anlatilmigtir.

Ikinci boliimde, tasarlanmis islemcinin komut seti verilmis ve mimarisi ayritil
olarak anlatilmigtir. Daha sonra bircok boru hatti asamasi eklenerek islemci
mimarisi gelistirilmistir. Boru hatt1 tehlikeleri, islemci yapisim1 karmagiklastirmadan
giderilmistir. Her iki iglemcinin tasarimlar1 (boru hattt olmayan ve boru hatti
olan), performanslarini kargilagtirmak icin basit programlarla test edilmistir. Boru
hatt1 iglemcisi test programlarini bitirmek i¢in gereken saat dongiileri, verimleri ve
tilketilen enerjileri acisindan daha iyi sonuglar vermistir. Her iki islemci de herkes
tarafindan bilinen Xilinx PicoBlaze islemcisi ile karsilastirilmistir. Boru hatti islemcisi,
PicoBlaze islemcisini dinamik giicii ve maksimum saat hiz1 acisindan yenmistir.

Uciincii boliimde, AES algoritmast Assembly dilinde yazilmistir ve boru hatti
islemcisinde calistirlmisti. Daha sonra kontrol akis grafigini kullanarak AES
algoritma kodu incelenmigtir. Algoritma kodunda birbirine bagli ve art arda gelen
komutlar birlestirilerek ve yazilim problemlerini daha hizli ¢6zebilen yeni komutlar
olusturarak standart komut setine yeni komutlar eklenmistir. Eklenen komutlar,
islemcinin mimari boyutunda 6nemli bir artis yapmadan AES sifrelemesini bitirmek
icin gereken siireyi 52%’ye ve tiiketilen enerjiyi 37%’ye diistirdiigii gosterilmistir.

XX1

XXii

1. INTRODUCTION

1.1 The Era of Low-Power Devices

Nowadays, Portable electronic devices are widely used in everyone daily life, and they
are getting involved in our lives more and more¢ .~ "hese devices majorly depends on
rechargeable batteries, and the low power consumption in these devices translates to
longer run time on a full charged battery, and higher number of charge cycles until the
end of useful battery life.~These are very important end user care-about. Also, low
power translates to less heat dissipation which means fewer cooling parts and smaller

designs.

Low power consumption is becoming more important in portable electronic devices
markets as many users started to choose devices with better battery life and smaller

size over devices with higher performance and capabilities.

(d)

Figure 1.1: Figure illustrates examples of widely-used low-power electronic devices.
(a) pacemake) [oT sensor. () wireless headphones. (") POS termina’
(e) smartwatcu

Berna
Vurgu
Bu başlığa gerek yok.

Berna
Vurgu
küçük harf

Berna
Yapışkan Not
referans

Berna
Vurgu
gerek yok

Berna
Vurgu
gerek yok

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
ref

1.2 Choosing the Right Architecture for Low-Power Applications

When electronic engineers are asked to design a low-power device, they are faced with
a myriad of core technologies, all claiming to best save power for a given application.
So how do they know which one will meet their energy consumption requirements?
The next section examines the benefits of the different architectures and compare the

design trade-offs between them.

1.2.1 Application-specific integrated circuit-<* SIC)

As the name implies, /5IC is an integrated circuit chip manufactured for a particular
use, not for general-purpose use:Some examples of ASIC chip include a battery

charging circuit in a mobile phone, high-efficiency bitcoin miner, video decoder etc.

ASICs offer high application-specific performance because the designer can tune
hardware gates specific to the target application. Furthermore, ASICs can achieve

decent power efficiency when the design is specifically targeted for power efficiency

However, ASIC solutions suffer from their lack of flexibility as they cannot be
reprogrammed to implement new algorithms. This means that only a single application
or specification can be supported, and a separate ASIC is needed for each new
application and specification. In addition, the cost of building new ASIC chips using
latest manufacturing technology is increasingly high, particularly for relatively small

quantities.

1.2.2 General-purpose processor (GPP)

A general-purpose processor 15 capable of performing many different functions under
the direction of instructions - The general-purpose processor can execute another task,

if a different set of instructions are given.

General-purpose processor based solutions have the advantage of being off-the-shelf
and less expensive. However, higher power and area consumption, and lower

speed performance are potential disadvantages for GPP compared to more

Berna
Yapışkan Not

Berna
Vurgu
Başlıkta kısaltma olmaz.

Berna
Yapışkan Not
uzun hal buraya

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
.

Berna
Vurgu
çıkar

Berna
Yapışkan Not
(GPP)

Berna
Yapışkan Not
ref

application-specific implementations, because they target a broad range of embedded

applications.

1.2.3 Application-specific instruction set processor (ASIP)

“"IP is application dependent instruction processors. 't is used for processing the

various instruction set inside a combinational circuit of an embedded system.

The idea of ASIP is to get the best out of general-purpose processor programmability
while at the same time trying to offer performance efficiency as high as ASIC’s.
The primary approach is to maximize the design domain of the microarchitecture by

actively adding particular instructions.

This specialization of the core provides a trade-off between the flexibility of a GPP and

the good performance and power consumption of an ASIC.

Table 1.1 gives a comparison between GPP, ASIP and ASIC according to the
performance, flexibility, power consumption and reusing. Figure 1.2 depicts the

tradeoff between energy-efficiency and flexibility for several architecture paradigms.

Table 1.1: A comparison between GPP, ASIP and ASIC

Programmable DSPs TMS320C54X: 3MIPS/mW

—

ASIC GPP ASIP
Performance | Very high Low High
Flexibility Poor Excellent | Good
Power Small Large | Medium
Reuse Poor Excellent | Good
. A
% 1000
ga Dedicated
o
2= 100 | AW
£ ASIPs, FPGAs
w o . ICORE ASIP: 36MOPS/mW
~Z 10 Reconf. Logic
==
2 &
Wi o
o
=

Embedded Processors

SA110: 0.4MIPS/mW

o
—

Flexibility (Coverage)
Figure 1.2: Energy flexibility trade-off for several embedded systems architectures [1]

3

Berna
Vurgu
çıkar

Berna
Yapışkan Not
uzun hal

Berna
Yapışkan Not
ref

ASIP is a good architecture choice for low-power applications when the flexibility is
a required feature or when the application is too complex to be done as a dedicated

hardware.

Berna
Yapışkan Not
Buraya sen bu tezde ne yapıyorsun bir paragraf ile anlat.
sonra chapter x'de şu var chapter y de bu var de

1.3 The Advanced Encryption Standard (AES)

73S is an encryption standard accepted by the United States governmeni. it is also
known as Rijndael cipher. As DES (the Data Encryption Standard) [2] algorithm
became weak and lost its reliability in the face of developing technology, NIST (the
National Institute of Standards and Technology) organized a competition in order to set
anew encryption standard. Two Belgian researchers Joan Daemen and Vincent Rijmen
won the competition with their Rijndael algorithm. NIST published AES as U.S. (FIPS
197) standard [3] on November 26, 2001 after a long standardization and verification
process. AES provides higher reliability, and it also has advantages in terms of being

easy to implement compared to the DES.

Although the algorithm supports different key and block size, the standard includes
128-bit, 192-bit or 256-bit key lengths with a fixed 128-bit block size. In AES, 128-bit
data blocks are considered as 4 words, each consisting of 32-bit. When starting the
encryption process with AES, the 128-bit, 4-word data block is written into the state
array and all the necessary operations during the algorithm are performed using this
array. After the last operation of encryption, the final version of the state array is

written to the output array.

For example; as illustrated in Figure 1.3, the input data block that consists of {in_0,
in_1 ... in_15} bytes is written to the state array and all necessary operations are

performed on this array. After the operations are completed, the encrypted data is

copied to the output as {out_0, out_1, ..., out_15} byte array.
input bytes State array output bytes
ing | ing | ing | inp So00 | Soa | So2 | So3 ouly | outy | outg |out,
iny | ins | ing | iny3 N Sio | S| Si2 | Sis N out, | outs | outy |outys
iny | ing | iny | iny S20 | S21 | S22 | 823 out, | outs |outyg|out 4
iny | inqg | ing | ings S30 | S31 | S32 | 833 outs | outy |outyy|outs

Figure 1.3: AES state array input and output

Berna
Vurgu
Yeni bir chapter aç. Orada olsun.

AES'i başlıktan kaldır.

Berna
Yapışkan Not
uzun hal

Berna
Yapışkan Not
ref

Berna
Vurgu
equation olmalı

Berna
Vurgu
equation

Berna
Yapışkan Not
ref

The AES algorithm generally consists of two processes, the first process is cipher

process, and the second process is key expansion process.

The algorithm has a repetitive structure, in cipher process, the round transformations
are repeated many times depending on the length of the key. The number of rounds

according to the key length is given in Table 1.2.

Table 1.2: Key length round combinations in AES

AES Type | Key length | Number of Rounds
AES-128 128 10
AES-192 192 12
AES-256 256 14

1.3.1 Cipher process

At the start of this process, the input data block is copied to the state array, then four

different byte-oriented transformations are applied on the state. They are:

e SubBytes: byte substitution using a substitution table (S-box),
e ShiftRows: shifting rows of the state array by different offsets,
e MixColumns: mixing the data within each column of the state array,

e AddRoundKey: adding a round key to the state.

These transformations are described in details in the following subsections.

Cipher process for 128-bit key length is described in pseudocode in Code 1.1.

Code 1.1: Cipher process pseudocode

Cipher (byte in[l1l6], byte out[l6], byte expanded_key [176])
{
byte state [1
AddRoundKey (s
for (round =
{
SubByte (state);
ShiftRows (state);
MixColumns (state) ;
AddRoundKey (state, expanded_key, round);

6] = in;
tate, expanded_key,0);
1; round <= 9; round++)

Berna
Vurgu
gerek yok

Berna
Vurgu
Bold

Berna
Vurgu

Berna
Vurgu

Berna
Vurgu

Berna
Yapışkan Not
ref

SubByte (state);

ShiftRows (state);

AddRoundKey (state, expanded_key, 10);
Out = state;

1.3.1.1 SubBytes transformation

SubBytes transformation is a non-linear operation that is performed on each byte of
the state independently as shown in Figure 1.4. 11 this function each byte in the state
array is replaced with a byte from an 8-bit substitution box (S-box). The output of this

function is different for each different input.

] S-Box - - - -
So.0 | Soa1 | So.2 ot ~_] 0.0 | Soa | Soz2 | Sos
..-#"""J
S0 S 22 |53 510 v fz | s
S - TLL
San| S21 | S22 |23 S0 | F21 | S22 | S23
S0 | S30 [S5z | %3 S30 | Fa1 | F32 | Fa3

Figure 1.4: AES SubBytes transformatior

S-box values can be obtained in two stages. The first stage is finding the multiplicative
inverse of the input in the finite field GF(2%). The polynomial used to define this
field is p(x) = x® +x* + x> +x+ 1. 0 is mapped to itself because it doesn’t have a
multiplicative inverse. The second stage is applying an affine transformation which
can be described as multiplying and adding the output of the previous stage (as a

polynomial over GF (28)) with constant matrices. Figure 1.5 illustrates this operation.

(B] [t 0001 1 1 1] [1]
Bl |1 10001 1 1|b| |1
bl |1 1 1 00 0 1 1k |0
byl [1 11100 0 15| |0
Bl |t 111100 0ofg| |of
b| |01 1 1 110 0[b| |1
bl [0 01 1 1 1 1 0fbf |1
(B, [0 0 0 1 1 1 1 1j/b]| |0]

Figure 1.5: AES affine transformatior

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
ref

Berna
Vurgu
does not

Berna
Vurgu
fazla parantez

Berna
Yapışkan Not
ref

S-box can be implemented in different ways. Some implementation methods are

examined in detail in section 3.2.2

S-box output for each possible input is given in Figure 1.6 in hexadecimal

representation.

0 1 2 3 4 5 6 T 8 9 a b c d e £
63 | Te | 77| Tb | £f2 | 6 | 6£ | ¢5 | 30| 01 | 67 | 2b | fe | d7 | ab | 76
ca a2 c9 | Td | fa 59 a7 f0 ad | d4 a2 aft Qe ad T2 a0
b7 | £fd | 93 | 26| 36| 3£ | £7 | cc| 34 a5 | e5 | £1 | 71 | dB | 31 | 15
04| 7| 23 | 3| 1B| 96 | 05| 9a | 07 | 12 | BO | e2 | eb | 27 | b2 | 75
09| 83| 2¢ | 1la| 1b| 6e | 5a | a0 | 52 | 3b | d6 | 3 | 29 | e3 | 2f | B4
53| d1 | 00 | ed| 20| fo | 1 | Bb | 6a | cb | be | 39 | d4a | 4c | 58 | cf
did | ef | aa | fb | 43| 4d | 33 | 85| 45 (£9 | 02 | T£| B0 | 3c | 9f£ | aB
51 | a3 | 40 | Bf | 92| 9d | 38| £5 | be | b6 | da | 21 | 10 | ££ | £3 | d2
cd | Oc | 13 | ec | S£| 97| 44 | 17 | c4 | a7 | Te | 3d| 64 | 54| 19| 73
60 | 81 | 4f | de | 22| 2a | 90 | BB | 46 | ee [kB8 | 14 | de | 5e | 0Ob | db
el | 32| 3a | 0a| 49| 06| 24 | Boe| c2 [d3 | ac | 62| D1 | 95 | ed | 79
e’ cB 37 6d| 8d| d5 | de | aB | 6o | B6 | £4 | ea | 65 | Ta | as | 08
ba | 78 | 25 | 2e | 1c | a6 | b4 | c6 | eB ([dd | T4 | 1f | 4b | bd | 8b | 8a
TO | 3e | b5 | 66 | 4B | 03 | £f6 | Oe | 61 | 35 57 | b9 | B6 | «¢1 | 1d | 9e
el | £8 | 98 | 11| 69| d9 | 8Be | 94 | 9b (1le | B7 | €9 | ce | B5 | 28 | Af
Bc | al | 89 | OAd| bf | e6 | 42 | 68 | 41 | 99 | 2d | Of | O | 54 | bb | 186

LA A = - e A A A L I =]

Figure 1.6: AES S-box table

1.3.1.2 ShiftRows transformation

In ShiftRows transformation, all the rows are shifted, except for the first row of the
state matrix. Row 2 is shifted one byte, row 3 is shifted two bytes, and the last row is

shifted three bytes. The block diagram of ShiftRows is given in Figure 1.7.

ShiftRows ()

Sro |31 |Sr2|53 SeoSe1 |52 |53
S g
Soo | So1 | 0.2 | Fos Soo | fo1 | So2 | o3

Sto | S11 | S12 | S13 F@ S | S | Si3 | S
S20| 21 | S22 | 523 @'} S22 | $23 | S0 | S22
S3.0| 831 |32 |S33 | | D:D:‘j S33 | S50 | §31 | 532

Figure 1.7: AES ShiftRows transformatior

Berna
Vurgu
Section

Berna
Yapışkan Not
.

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
ref

1.3.1.3 MixColumns transformation

MixColumns transformation is performed independently on each column in the state
matrix. While performing this operation, each column is considered as a polynomial

in GF (2%) and multiplied modulo x* 4 1 with a fixed polynomial a(x), given by
a(x) =3%x +x>+x+2

MixColumns transformation can also be performed as a matrix multiplication. Let
s'(x) = a(x) * s(x)

02 03 01 01][s,.
s | |0l 02 03 o1 s

s, 0L 01 02 03}(]s,
54 | [03 01 01 02]]s,

Where s(x) is the state column before the transformation and s’(x) is the new

state column after the transformation. Figure 1.8 illustrates the MixColumns

transformation.
MixColumns ()
.‘,.r"'-f. ‘-‘-\“-\.\' 1
S0 B T S : |
s “Is,, | s 5 0cls |5
0,0 0.2 | %03 0.0 0.2 | So3
&) 5 . ;
l.c 1.
510 813 | 513 f10 € 1512 | 513
Ay ' 5
Sy0] "€ 522|523 F1p 52, SEREE
8o 53, Is. |5 s S3c fsss | s
30| P3e |52 |5 30 | 73 P32 | Sis
L 1 1

Figure 1.8: AES MixColumns transformation

1.3.1.4 AddRoundKey transformation

In AddRoundKey transformation, the state matrix is XORed with a 128-bit round key
matrix that is generated in key expansion process before. Key expansion process will
be examined in detail in the next section. The general diagram of the AddRoundKey

transformation is given in Figure 1.9.

Berna
Vurgu
gerek yok

Berna
Yapışkan Not
equation number?

Berna
Yapışkan Not
equation number?

Berna
Yapışkan Not
equation number?

Berna
Vurgu
equation

Berna
Vurgu
equation

Berna
Yapışkan Not
ref

[=round * 4

SO.(‘ SO.C‘
So0.0 2 | S0 - Sool[b2 Ses

Sl(‘ | Wi+e -._'\--\ Sl -
510 .-‘ﬁ?ﬂtf; ‘ , I 2| 513

W 2 | Wiss '

S < s ;
S3.0 2¢ 2| Sas §50 ll TIECE!
S30]85, |2 | 532 S30 || S3.c 2| S33

Figure 1.9: AES AddRoundKey transformation

1.3.2 Key expansion process

The AES algorithm takes the K key array and generates the necessary key blocks
for each round. These key blocks are also known as the round keys. The AES
algorithm can work with different key lengths, but since the length of the state is
fixed at 128-bit, the generated round keys length is 128-bit too. The round key
is used in AddRoundKey transformation which is the last transformation in round
transformations. Key expansion process generates a total of 4 x (number of rounds +1)
words: the AES algorithm requires an initial set of 4 words, and each of the rounds
requires 4 words of key block. The resulted expanded key is an array of 4-bytes words

with length equals to 4 * (number of rounds +1).

The Key Expansion process for 128-bit key length is described in pseudocode in
Code 1.2.

Code 1.2: Key Expansion Process pseudocode

KeyExpansion (byte key[1l6], word expanded_key[44])
{
for (3 = 0; J < 4; j++)
{
expanded_key[j] = word(key[4x3+0], key[4*j+1], key[4x]J+2], key[4%xj+3]);
}
for (j=4; 3 < 44; j++)
{
word temp = expanded_key[]j-1];
if (J % 4 == 0)
{
temp = SubWord (RotWord (temp)) ~ Rcon[3j/4];

}

10

Berna
Yapışkan Not
ref

Berna
Vurgu
equation

Berna
Vurgu
equation

Berna
Vurgu
equation

Berna
Yapışkan Not
ref

expanded_key[j] = expanded_key[j—-4] *~ temp;
}
}

SubWord function applies SubBytes transformation on a four-byte input word and
produce an output word. RotWord function applies a cyclic permutation on a four-byte
input word [b0, b1, b2, b3] and returns the word [bl, b2, b3, b0]. Rcon is the round
constant word array, it consists of values given by [2(j ~in GF (2%), 0,0, 0] where j

starts at 1. Figure 1.10 illustrates AES key expansion process for a 128-bit key.

0 0 0 0
kﬂ.O kﬂ.l k0.2 km.a
0
k?.o kg.l kl.z k?.a
0 0 0 0
I% 0 I(2.1 l%.z l% 3
0 0 0 0
I%.o k3.1 ka.z I%.3
| RotWord Il l
T Y A S
| 1/ L/ N L
SubWord |
1 1 1
ko.o kﬂ.l ko.z k0.3
R
G = 0] |] | [| R
1
ké.u k2.1 Ié.z klza
1 1 1
RotWord =

4

SubWord I
"

k.

Figure 1.10: AES key expansion process

11

Berna
Vurgu
equation

Berna
Vurgu
equation

Berna
Vurgu
equation

Berna
Yapışkan Not
ref

1.4 ASIP Designing Guideline

Before starting to design an ASIP for AES, we set a guideline to follow. It includes the

following rules:

(a) Build the design from scratch: This makes us fully knowing the design details,
and when power and area analyses are done, we can easily track the problematic

components and fix then .

(b) Build it as simple as possible: We have to avoid any complexity in the design as
possibl¢ . Tomplex designs cause more power consumption, larger chip area and

slower clock rate.

(c) Build a general-purpose processor then extend its instruction set: Starting an
ASIP project with making a general-purpose processor before adding the extended
instructions gives you a chance to test and verify your design before the things mix
up . \lso, it helps you to know the effect of the extended instructions on the total

design according to the power consumption and operating frequency.

()
Figure 1.11: Figure illustrates the set ASIP designing guideline

12

Berna
Vurgu
Başka bir chapter

veya

Bir sonraki bölümün başına

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
ref

2. GENERAL-PURPOSE PROCESSOR DESIGN

The first step we took in designing a general-purpose processor was determining its
instruction set, then according to the determined instruction set a data path and a

control unit is designed.

After finishing our first design we found that we can improve it by pipelining it.

be sure that the added pipeline stages don’t cause losses in power consumption and
operating frequency, many tests were done, and its results are reported. Next sections
will explain in details the processor design, the made improvements, simulation steps

and the applied tests.

2.1 The Instruction Set

The processor has 24 different instructions which have the same width 18 bit. The
first 5 bits of each instruction are used for the operation code and the other bits usage

differs. The instruction set is listed and explained in Table 2.1.

LOD operation is used to load a register with a specific value. FTC operation is used
to fetch data from the data memory to a register, and STR operation is used to store
data into the data memory from a register. MOV operation is used to load a register

with a value from another register.

There are 7 different jump instructions. Each one of them is used to jump to an absolute
address or a relative address. The relative address is coded as 11-bit signed value so it

can be jumped +2047 instruction forward or -2048 instruction backward at a time.

There is also "No Operation" instruction that has no effect on the registers or the data
memory and it can be used as a delay slot especially after and before jump instructions

in the enhanced processor.

13

Berna
Vurgu
for design of a

Berna
Vurgu
was

Berna
Vurgu
introducing pipeline to its datapath

Berna
Yapışkan Not
In order to be

Berna
Vurgu
do not

Berna
Yapışkan Not
Buraya düşük güç hedeflediğimiz için RISC mimarisi seçtik. Sadece base intructionları ekledik demelisin.

Berna
Vurgu
neyle the same?

Berna
Vurgu
neden 5-bit

Berna
Vurgu
Bunları liste halinde ver.

Berna
Vurgu
neden 11 bit

Berna
Yapışkan Not
Buraya bir computer architecture kitabından bir işlemcinin iç yapısını gösteren resim koymalısın. Burada neleri nasıl tasarladığını bu resme referans vererek yapmalısın.

Table 2.1: The instruction set of the designed processor

Instruction

|

Function \

Code

Registers and Data Memory Operations

LOD Rx,Value | Rx = Value 00000 rrrr Ovvvvvvvy

FTC Rx,[N] [N] =Rx 00001 rrrr Onnnnnnnn

FTC Rx,[R15] [R15] =Rx 00001 rrrr 100000000

STR [N],Rx Rx =[N] 00010 rrrr Onnnnnnnn

STR [R15],Rx | Rx =[R15] 00010 rrrr 100000000

MOV Rd,Rs Rd=Rs 00011 dddd 00000ssss

Jump Operations

JMP Add Unc'ondltlonal Jump 00100 0 aaaaaaaaaaaa
to direct address

IMP Rel Unconditional Jump | 00 | geeeceeeeece
to relative address

JZ/JE Add Jump if zero / equal | 00101 O aaaaaaaaaaaa

JZ/JE Rel Jump if zero / equal | 00101 1 eeeeceeeecee

INZ/INE Add | JUmpifnonzero/ 6110 6 saanaasanaaa
not equal

JNZ/JNE Rel Jump if non zero / 00110 1 eceeeeeeeeee
not equal

JC/JB Add Jump if carry/ 00111 O aaaaaaaaaaaa
below

JC/JB Rel Jump if carry/ 00111 1 eceeeeeeeeee
below

INC/JAE Add Jump if not carry / 01000 0 aaaaaaaaaaaa
above or equal

INC/JAE Rel Jump if not carry / 01000 1 eeeeeeeeeeee
above or equal

JA Add Jump if above 01001 0 aaaaaaaaaaaa

JA Rel Jump if above 01001 1 eeeeeeeeeeee

JBE Add Jump if below 01010 0 aaaaaaaaaaaa
or equal

JBE Rel Jump if below 01010 1 eeceeeeeeeeee
or equal

ALU Operations

AND Rd,Ry.Rz | Rd=Ry & Rz 01011 dddd 0zzzz yyyy

OR Rd,Ry,Rz Rd=RyIRz 01100 dddd 0zzzz yyyy

XOR Rd,Ry,Rz | Rd =Ry "Rz 01101 dddd 0zzzz yyyy

NOT Rd,Ry Rd = ~Ry 01110 dddd 00000 yyyy

SHL Rd,Ry Rd = Ry<<1 01111 dddd 00000 yyyy

SHR Rd,Ry Rd =Ry>>1 10000 dddd 00000 yyyy

ROL Rd,Ry Rd=Ryrol 1 10001 dddd 00000 yyyy

ROR Rd,Ry Rd=Ryror 1 10010 dddd 00000 yyyy

ADD Rd,Ry,Rz | Rd=Ry + Rz 10011 dddd Ozzzz yyyy

INC Rd,Ry Rd=Ry+1 10100 dddd 00000 yyyy

SUB Rd,Ry,Rz | Rd=Ry-Rz 10101 dddd Ozzzz yyyy

DEC Rd,Ry Rd=Ry-1 10110 dddd 00000 yyyy

CMP Ry,Rz S(i):}rllfl)s;e Rz 10111 0000 Ozzzz yyyy

NOP No operation 11111 1111 11111 1111

14

All other instructions are . .U operations. Some of them have 2 operands and some
of them have 3 operands. The destination register of all ALU operations can be one of

the source register/s or a different register.

2.2 The Data Path

The data path is a set of functional units that carry out data processing operations

Its diagram is shown in Figure 2.1. The data memory and the register file have a
clock input to synchronize the writing operations. However, reading operations are not
synchronized so the memory cell or the register value will be shown on the output data

bus as soon as its address is on the address bus.

L

DM RF

l Control Bus

Figure 2.1: The data path diagram

2.2.1 The arithmetic logic unit

The one byte-wide arithmetic logic unit (ALU) performs all processor calculations,

including:
e bitwise logic operations such as AND, OR, XOR and NOT
e shift and rotate operations

e basic arithmetic operations such as addition, subtraction, increment and decrement

e arithmetic compare

The ALU also gives the status of the executed ALU operation result. The status signals

are carry-out and zero. The carry-out flag state changes with arithmetic operations

15

Berna
Yapışkan Not
uzun hal

Berna
Yapışkan Not
ref

Berna
Vurgu
uzun halini ALU'nun ilk geçtiği yerde vermelisin.

Berna
Vurgu
bunları büyük harf ile başlat veya başka font ile yaz.

Berna
Vurgu

only (ADD, INC, SUB, DEC, CMP) while the zero flag state changes with all ALU

operations. The ALU diagram is shown in Figure 2.2.

RF_data_out_1

ALU_out

RF_data_out_2
//
77

Figure 2.2: The ALU diagram

2.2.2 The register file

The register file of the designed processor has 16 8-bit wide general-purpose registers
and they are designated as RO, R1, .., R15. Its diagram is shown in Figure 2.3. Register
file input data can be from another register, data memory, ALU operation result or a
LOD instruction value. The fifteenth register’s value can be used as a pointer to a

location in the data memory so there is a bus mapped directly to it.

clk

> RO

RF_read_address_1 R1

RF_read_address_2 RF_data_out_1

— .
DM_data_out RF_write_address
75 RF_data_out_2
ALU; :—OUt RF_data_in —5—>
RF_data”out_1
Load_value RF_write
—_— DM_R15_address

R15

RF_data_in_sel

Figure 2.3: The register file diagram

16

Berna
Vurgu
neden 16 neden 8-bit

2.2.3 The data memory

The data memory is a simple 256-byte " AM. Its diagram is shown in Figure 2.4.
Thanks to the 2-way MUX on the address input, The data memory’s 8-bit address can
be specified by the control unit to be either a direct address from an instruction, or an

indirect address from the content of the fifteenth register (R15) of the register file.

clk >
DM_Instruction_ DM data in 256
address ——
Byt DM_data out
|744) DM_address yre ———>
Data
I / DM_write | Memory

DM_R15_address

DM_address_sel

Figure 2.4: The data memory diagram

2.3 The Control Unit

The diagram of the control unit and its all sub units is shown in Figure 2.5.

IR_load

clk l—l

IM_data \/ [——CFin

clk reset

out |, CF_load

IR

le—ZF_in
L, 7ZF out

IR_data_out /2, DM_address
L, DM_address_sel

Control ——— DM _write
Instruction

memory clk State

. opcode
1 up machine ——°P

Instruction load +RF_Ioad_vaIue
address ;
rel +RF_|nput_seI
PC <., RF_write_address
clr . »RF_read_address_1
+RF_read_address_2

L RF_write

PC_address_in

Figure 2.5: The control unit diagram in the non-pipelined processor

17

Berna
Yapışkan Not
uzun hal

Berna
Vurgu
thanks olmaz

Berna
Vurgu

2.3.1 The instruction memory

The designed processor can execute up to 4096 instructions from a single block RAM.
Each instruction is 18-bit wide. The output data of the instruction memory (IM) is
connected to instruction register (IR) that is used to hold the instruction for the control

state machine.

2.3.2 The program counter

The program counter (PC) points to the next instruction to be executed. According
to the control signals that come from the control state machine, the next instruction
address can be a specific absolute address, a relative address, the instruction just after
the current instruction or the first instruction in the instruction memory. If the 12-bit

PC reaches the top of the memory at OxFFF, it rolls over to location 0x000.

2.3.3 The control state machine

The control state machine has 3 states: Initialize, Fetch and Execute. In Initialize
state the program counter is cleared. In Fetch state the instruction register is loaded
with an instruction from the instruction memory and the program counter increases its
counter. In Execute state the instruction in the instruction register is executed after it
is decoded, and all control signals and addresses are set. The transition between these

states is shown in Figure 2.6.

reset

Clock rising edge

Clock rising
edge

Figure 2.6: The state diagram of the control state machine in the non-pipelined
processor

18

2.4 Improving the General-Purpose Processor Design

Our aim in this work is to reduce the average clock cycles number that is required to
finish executing one instruction. In the previous design two clock cycles were required
to execute an instruction and the processor cannot process more than one instruction at

the same time.

In the enhanced design a three-stage pipeline was implementec. [he first stage is
represented by the instruction memory and the program counter. The second stage is
represented by the control state machine. The last stage is represented by the data path.
In the first stage an instruction is fetched from the instruction memory and loaded to
the instruction register. In the second stage the fetched instruction is decoded and the
control signals of the data path and the program counter are produced then loaded to
state registers. In the third stage the instruction is executed and stored. The new control
unit diagram is shown in Figure 2.7.

SR AT

IR_load clk reset

il

l——CF_in

l——ZF_in
IM_data_out

IR/aata IALU_control_signals __
it a | ALU-pipeline-reg |

out

Instruction Control Data
memory clk state machine [DM_control_signals path
Ve up . DM-pipeline-reg -
Instruction load
address pC PC_control
signals
o PC rel | | pipeline | |*®
clr reg RF_control_signals
/7 .

RF-pipeline-reg

PC_address_in

— —

Figure 2.7: The control unit diagram in the pipelined processor

Fetch and Execute states of the former processor’s control state machine are merged
into one new state “Run” in the new pipelined processor. The new state diagram is
shown in Figure 2.8. In this new state an instruction is decoded and executed while a
new instruction is fetched from the instruction memory at the same cycle. Although

an instruction requires three clock cycles to fully processed in this design, the average

19

Berna
Vurgu
average clock cycle ne demek?

Berna
Vurgu
Neden önceki tasarımda 2 saat darbesi alıyordu? Ne yaptık ki düştü? Neden bir defada sadece bir instruction vardı? Ne gelişti?

Berna
Yapışkan Not
resim koy. Pipeline stage leri resimde göster

clock cycles number that is required to finish executing one instruction became one
clock cycle, this is because the processor processes three instructions at the same time.

This makes our processor relatively fast among 8-bit processors.

reset

Clock rising edge

S

Figure 2.8: The state diagram of the control state machine in the pipelined design

2.4.1 Pipeline hazards handling

In every pipelined processor architecture there are three types of hazards can be
occurrec .- They are structural hazards, data hazards and control hazards. In order
to keep the processor design as simple as possible no new hardware units are wanted

to be added, and all hazards are avoided without complicating the processor structure.

2.4.1.1 Structural hazards

Structural hazards arise from resource conflicts when the hardware cannot support all
possible combinations of instructions simultaneously in overlapped execution [4]. In
our pipeline design two instructions cannot be executed in the ALU at the same time

so this type of hazards cannot be occurred in the processor.

2.4.1.2 Data hazards

Data hazards arise when an instruction depends on the results of a previous instruction
in a way that is exposed by the overlapping of instructions in the pipeline [4]. In our
pipeline design this can happen when a jump instruction’s condition depends on the
result of the instruction that is being executed at the same time. We can avoid this
problem by adding a delay represented by a NOP instruction before each conditional

jump instruction.

20

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
Buraya hazar ları sadece program yazarken yok ettiğini donanım olarak hazard hadler tasarlamadığını söylemelisin.

2.4.1.3 Control hazards

Control hazards arise from the pipelining of instructions that change the PC [4]. In
our pipeline design this can happen when a jump instruction will be executed but the
instruction register is already loaded with the next instruction and the PC is pointing
to the instruction that comes after them. A simple way to solve this problem is adding

two NOP instructions after each jump instruction.

21

2.5 The Assembler

A simple assembler [iogram has been developed with C# to help us in writing test
programs. The used assembler user interface is shown in Figure 2.9. This assembler is

capable of:

e Giving meaningful and clear error messages if the entered assembly code has some

syntax errors.
e Saving assembly codes to a file and opening a previously saved one.
e Showing the cursor position as line and character number.

e Translating the assembly code to 712X code or v ADI Chde (to be used in

instruction memory).

e Adding delay instructions (NOP) automatically if the target is the pipelined

processor.

Also, the assembler C# code is written in a way makes adding new instructions to

decode is so easy.

B ITU Assembler

3 o
» B H VHDL - Add NOP Automatically 1L10 %O e
- - “a z

Assembly

#SBOX (Rl=input byte, R15 = return address)

SBOX_START:

#if(a <= 1) return a;

Machine Language
"000000000010001101" ,
"0ee100000011001000" ,
"000000000000000001" ,
"000100000011001001" ,
" 0000000600008 00010" ,

MOV R3,R1 "020100000011001010"
LOD RE,1 "020000000020000160"
P R3,R8 "020100000011001011"
NOP "9BEEEABEEARBEO1EE"
JBE MI_FINISHED "020100000011001100"
NoP "020000000020010600"
NOP "900100000011001101"

#unsigned char v = Bxlb

LOD R2,27

#unsigned char gl = 1;

LOD R3,1

#unsigned char g2 = 8;

LOD R4,0

#char j = gf_degree(u) - 8;

"920000000000100000" ,
"000100000011601110" ,
"0e000eee0001000000" ,
"009100000011001111",
"000000000010000008" ,
"000100000011010000" ,
"0e00ee0e00000011011"
"0eo1e0000011010001"

s

s

"000000000000110118" ,

DEG R5,R1 "oee100000011010010" ,
"000000000000000100" ,
LOD R7,8 "le11e1111000000000" ,

SUB RS,RS,R7

"911111111000001111",
"911111111000001111",

MI_WHILE: "000000001000010000" ,

"100111111000011111",
#if (j < @) "000010001100000008" ,
LOD R7,8 "101001111000801111",
CMP RS,R7 "0e0010010100000000" ,
NOP "leleel1110@ee01111",
JB MI_END_IF "000010011100000008" ,
NOP "101001111000601111" ,
NOP "000010100100000000" ,

#temp = u; u = v; v = temp;

Line 585, Char 44

"101001111000001111",
"000000191000000011" ,

Figure 2.9: The developed assembler user interface

22

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
uzun hal

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
uzun hal

Berna
Yapışkan Not
Buraya hazar önleme için assembler bu işi yapıyor deemelisin. Yani assembler sadece text based makina diline çevirmez, data deepndency analizi de yapmayı becerir demelisin

2.6 Simulations

2.6.1 Simulation method

Both designs were described with Very High Speed Integrated Circuit Hardware
Description Language (VHDL) [5] and then implemented and simulated in Xilinx
Vivado Environment [6]. First of all, the maximum clock frequency of the designs
was found. Then the Switching Activity Interchange Format (SAIF) [7] files were
generated by running “Post-Implementation Timing Simulation”. The generated SAIF
files is used in Vivado power reports to give more accurate results. In simulation steps

we verified the processors behavior.

2.6.2 Simulation results

Both designs were compared with Xilinx PicoBlaze procc:sor [8] according to
instruction memory size, RAM size, maximum clock rate and power consumption.
All processors were tested on Xilinx Spartan 7 Series XC7S6 FPGA. The test results

are shown in Table . 2.2.

Table 2.2: Comparison between the designed processors and Xilinix PicoBlaze

processor

Processor Non-pipelined | Pipelined | Xilinx PicoBlaze
Instruction mem. 4K 4K 4K

RAM 256 byte 256 byte 256 byte
Maximum clock rate 110 MHz 155 MHz 135 MHz
Dynamic on-chip power 0.006 W 0.007 W 0.008 W

Both designs consume less power than PicoBlaze processor. The non-pipelined
processor has a lower maximum frequency than PicoBlaze processor’s maximum
frequency, but the pipelined processor’s maximum frequency is higher. This is because

of the pipeline stages which allow to cut the delay of the critical paths in the processor.

Two simple programs were used to test the non-pipelined and the pipelined processors.
The first program calculates the multiplication of two numbers from the data memory

then writes the result to it. The second program calculates the modular multiplication

23

Berna
Vurgu
Yeni chapter.
Implementation Results başlık olsun

Berna
Yapışkan Not
Bu chpater da şunu bunu anlatacağım demelisim

Berna
Vurgu
ilk geçtiği yerde yazmalısın

Berna
Vurgu
Bu başlık implementation olmalı

Berna
Yapışkan Not
neden picoblaze anlatmalısın

Berna
Yapışkan Not
Buraya bir deneme programının gerçekleme süresi ve bu süre ile ortalama güç çarpıldığında enerjisini de hesaplayıp satırları ekler misin?

((A * B) mod N, where A, B < N) of numbers from the data memory and returns the
result to it too. Algorithm 1 and Algorithm 2 demonstrate the used algorithms in these

programs.

Algorithm 1 Multiplication program

1: procedure MULTIPLY(C = A X B)
2: C+0

3 fori<+ B:0do
4. C+—C+A
5: end for

6: end procedure

Algorithm 2 Modular multiplication program

procedure MODULAR MULTIPLICATION(C = A * B mod N)

2: C+0
fori< k—1:0do
4: C+—Cx2
if C > N then
6: C+~C—N
end if
8: C+—C+bixA
if C > N then
10: C+~C-—N
end if
12: end for

end procedure

The required number of cycles to finish these two programs, the throughput and the
energy consumption at the maximum frequency for the non-pipelined and the pipelined
designs are reported in Table 2.3 and Table 2.4.

Table 2.3: The performance results of the non-pipelined and the pipelined processors
for the multiplication program

Multiplication program | Non-pipelined processor | Pipelined processor
Clock cycles 34 28
Throughput 24.6 Mbit/s 42.2 Mbit/s
Energy 1.8 nW/s 1.2 nW/s

The pipelined processor finished both programs with-=!ock cycles less than the
non-pipelined processor, and its throughput and energy results are better because it

can operate at higher frequency.

24

Berna
Vurgu
equation

Berna
Yapışkan Not
less

Table 2.4: The performance results of the non-pipelined and the pipelined processors
for the modular multiplication program

Modular multiplication program | Non-pipelined processor | Pipelined processor
Clock cycles 198 196
Throughput 4.2 Mbit/s 6 Mbit/s
Energy 10.2 nW/s 8.8 nW/s

2.7 Chapter Conclusion

The first step in our ASIP project was making a general-purpose processor. We
designed a simple general-purpose processor by determining its standard instruction
set then implementing its data path and control unit using VHDL in Vivado
Environment. Then we improved our design by pipelining it. Pipeline hazards
are avoided without complicating the processor structure. Finally, we compared
the simulation results of both designs with Xilinx PicoBlaze processor. Both
designs consumed less power than PicoBlaze processor, and the pipelined processor’s
maximum frequency was higher than PicoBlaze processor’s maximum frequency.
Also, the pipelined design finished testbench programs with clock cycles less than

the non-pipelined design and consumed less energy.

25

26

3. EXTENDING THE INSTRUCTION SET FOR AES

3.1 Rules for Extending the Instruction Set

Before starting to extend the instruction set of the designed processor, we had to put
some rules to ensure that the added instructions don’t turn our processor away from

the goals of this project. These rules are:

e The added instructions cannot be too complex, else it will lead to a long-time delay

and reduce the efficiency of the entire system.

e New instructions shouldn’t add new massive hardware, else the power consumption

in the processor will increase significantly.

e The opcodes and the operands of an added instruction must fit with the original

instructions codes structure and cannot be longer than them.

3.2 Design Flow of the Extended Instruction Set

Our extended instruction set design flow consists of 5 steps, they are:

3.2.1 Dividing the algorithm into several independent functions

We divided the AES algorithm to many independent functions. They are round
transformations functions (SubBytes - ShiftRows - MixColumns - AddRoundKey),

KeyExpanstion function, and S-box function.

3.2.2 Implementing the functions of the algorithm in C

We wrote the C code for each AES function and test it separately then we combined
them and verified the whole algorithm. The inputs of the algorithm which are the initial
state and the cypher key are fed to the algorithm from RAM. The expanded key and

the output state of the algorithm are stored to RAM too.

27

Berna
Vurgu
uzun hal

Berna
Yapışkan Not
bu chapter da şunu bunu anlatacağım yazmalısın

Berna
Vurgu
do not

Berna
Vurgu
Bunu iyi anlatman lazım. Aslında ALU içindeki critical path in artacağını ve saat frekansının düşeceğini söylüyorsun.

Berna
Vurgu
should not

Berna
Vurgu
sil

Berna
Vurgu
sil

Berna
Vurgu

Berna
Vurgu
Bir SubBytes diyorsun, sonra S-box diyorsun. Dikkat et

Berna
Vurgu
cipher

There are several ways to implement S-box function. One of them is hardcoding the
S-box table into RAM. We avoided this way because our processor RAM size is 256
bytes and sbox table size is 256 bytes too, this gives us no room to use RAM for another

purpose.

On the other hand, S-box function output can be generated by getting the multiplicative
inverse in Galois Field GF(2%) = GF(2)[x]/(x® +x* 4+ x* +x + 1) of the input then

applying the following affine transformation.

(56] [1 00 0 1 1 1 17[b] [1]
81 1100011 1|y 1
PR 1 110001 1]||d 0
ss|_ |1 111000 1| |0
54 1 1 11100 0f]bs 0
s5 0111110 0]bs 1
86 00 1 1 1 1 1 0|]bg 1
s,] oo o111 1 1][b] |oO]

Where [b7, b6, ..., bl, b0] is the multiplicative inverse and [s7, s6, ..., sl, sO] is the

S-box output as a vector.

The transformation can be simplified to be easy to implement in C language as in the

next formula.
s=b”" (bs<<1)N(b<<<2)M(b<<<3)N(b<<<4) N 99

Where b is the multiplicative inverse of the S-box input, s is the S-box output, # is the

bitwise xor operator and <<< is the bitwise rotate left operator.

Calculating the multiplicative inverse in GF (28) can be done in different ways [9].
The easiest way is multiplying the input with every element in the field until the result
of the multiplication operation is one. Then the multiplicative inverse is found. This is
a brute-force search. However, this method suffers from poor performance and a high
running time because in the worst case it is required to examine every number in the
field. Another way to find the multiplicative inverse is using the extended Euclidean
algorithm [10]. This algorithm shows better performance and shorter running time

than the previous way.

28

Berna
Vurgu
Bunu hardcodinf değil de tabloyu olduğu gibi RAM olduğunu söylemelisin. Hangi tablo olduğunu da burada göstermelisin. Bu tablonun nasıl oluşturulduğunu söylemelisin.

Berna
Vurgu
yazım şekli hep aynı olsun. yukarıda farklı

Berna
Yapışkan Not
equation number

Berna
Vurgu
equation

Berna
Vurgu
equation

Berna
Vurgu
equation

Berna
Yapışkan Not
equation number

Berna
Vurgu
equation

Berna
Vurgu
equation

Berna
Vurgu
equation

Berna
Vurgu
equation

Berna
Vurgu
Bu bahsettiğin algoritmayı buraya koy

Berna
Vurgu
Neden? Algoritma üzerinden anlat

Berna
Vurgu
Algoritmayı buraya koy. Neden daha iyi anlat

Berna
Vurgu
Bunun da formülünü yaz.

Berna
Vurgu
multiplicat,ve inverse of what?

Berna
Vurgu
AES starndardında olduğu gibi buraya aktar.

Berna
Vurgu
Neden?

In this study, both methods along with MixColumns transformation are implemented

in C and examined, then many new instructions are added.

3.2.3 Translating the C code to assembly code for our processor

All C language programs have to be converted into the low-level realities the
processors’ digital hardware, and our program is not an exception. As there is no

compiler to do this job for us, we translated the C code to assembly code by hand.

3.2.4 Drawing the CFGs of the assembly code and examining them to figure out

which instructions to be added

Control flow graph (CFQG) is a representation of all paths that could be traversed by
a program during its execution, using graph notations [11]. Basically, CFGs are
mostly used in both code static analysis and compiler implementation and applications.
We used CFGs in finding sequential instructions that can be combined and complex
sequence of instructions that is created to do one job and can be simplified with

hardware components.

Before starting drawing CFGs we examined many compiler-generated CFGs then we
chose 57 C CFGs 10 be a template for ours. An example of GCC CFG is shown in
Figure 3.1

To generate a CFG for a C code in GCC we have to add this compiler option
-fdump-tree-all-graph

Then the compiler will generate many dot files for the compiled code. Dot is a plain
text graph description language; it defines a graph but not the layout of the graph. We
used Graphviz [12] (an open source graph visualization software) to convert dot files

to visualized data like 771G images.

3.2.5 Finding candidate instructions in a CFG and converting them into a new

instruction

The candidate instructions should be frequently invoked instructions during the

program life cycle, else the consequences of adding a new instruction like the increase

29

Berna
Vurgu
MixColumn için nasıl bir algoritma ve program yazdığını anlat.

Berna
Vurgu
Bu ne demek?

Berna
Yapışkan Not
ref

Berna
Vurgu
başlıkta kısaltma olmaz

CFG mi DFG mi?

Berna
Yapışkan Not
uzun hal?

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
GCC CFG nasıl üretilir anlatmalısın

Berna
Vurgu
farklı font

Berna
Yapışkan Not
uzun hal

Berna
Vurgu
başlıklar çok uzun

Berna
Vurgu
başlıklar çok uzun

| | : q.4 = (zizned char) q; o
: X i D.2317 =D.2315 " q.4;
I
| X | q = (unsigned char) D.2317;
: ! L |[D231 = Gt o
' ! . | D2319=D2318 << 4;
' ! : D.2320 = (signed char) D.2319;
: FREQ0 ! ' .5 = (signed char) q;
! <bb 2>: ! .|| D2322=D.2320 " q.5;
if (a ==0) i ' = (unsigned char) D.2322;
: e ! \ q = (usigned char) D.2322;
| elze ! . .7 = (signed char) q;
| goto <bb 4> l : if(q.7 < 0)
: : . goto <bb 9=
| | ! else
X [0%] I I goto <bb 10=:
I 1 I
] I
| FREQO | ;
! “bb 4 : :
: p=1; | ', FREQO FREQ0
: o= AR (N O)
\ | ! iftmy.6 = 9: .6 = 0-
: p.6 = 0;
: [0o6] X I' goto <bb 11>
I]
: loop 1 [1
' L RRRREETI | I
| 1 I
FREQ:0
|] I FRE
I <bb 5> ! ! Q0
X = 1 1 o
! D.2207 = (int) p; : ' b
! D.2208 = D.2207 << 1; ! ! = ey
=y A o
i D.2299 = (signed char) D.2208; | ! I D.2329 = iftwp 6 * 4.8 :
! I = i ; .
| p.0 = (signed char) p: ! | |9 (nsigned char) D.2329: J:
i - ! I if (p 1= a) .
' D.2301 = D.2299 " p.0; : ! goto <bb 5>
I P2 = (zigned char) p; 1 " elze
1 < =
: £02<0) ! .r goto <bb 12>; _
I goto <bb 6=, ! ! - .
! else : I 0%4)
\ goto <bb 7>; | ' y
! ! ! FREQ:0
: : [l <bb 12>:
I
I [I D.2330=qr=>T;
[FREQ FREQD ! ' 2 -
! . ! | D.2331=D.2330 " q;
" <bb 6 —bb T ! i FREQ:0
! 1.ﬁmp1=2? :] D.2332 = q1==>6: £
| : L = H
| goto <vb g>; | | Hwp-1=0 ! i [D2333=D2331 "D2332 | | P03
i : | D.2296 = 99,
£ ' =qr==5; :
; 0%] 0%] [0%0] : ; e L goto <bb 13> (LI0>),
| : i . D.2335 = D.2333 " D.2334;
|
\ FREQ0 i || D2336=qr= 4
| =bb & : ! D.2337 = D.2335 " D.2336;
: D.2307 = D.2301 * iftup.1; : ! D.2296 = D.2337 99;
I
i | [= (msigned char) D.2307; | !
| I
I D.2308 = (k) (. | '[
i || 2309 = D.2308 <= 1 : ! FREQ0
: D.2310 = (signed char) D.2309; | ! <bb 13>
= I
: .3 = (signed char) . 1 'r <L10=:
]
i || D2312=D.2310 " q.3: | ! retun D.2206;
\ q = (msigned char) D.2312; : !
! D.2313 = (i) ; X :
' |[pBu=paBB <2 ! I
- e A+ . I
! D.2315 = (signed char) D.2314; e X)

Figure 3.1: An example of GCC CGFs

30

in power consumption and the decrease in operating frequency will beat the gains

which is the decrease in the run time.

First, the new instructions are built as = [L models, then it’s described in VHDL
language and added to the processor’s ALU. After that, the added instructions
functionality is verified by performing behavioral simulation and the required clock
cycles to finish the program is measured. Finally, the simulation results are analyzed

and reported.

3.3 Adding New Instructions for AES Functions

The AES algorithm is divided to the next functions:

e KeyExpansion function: since this function will be called only once during the life
cycle of the AES encryption program and its run time is short relative to the whole
program run time, it’s not efficient to add instructions for this function exactly.
However, this function calls S-box function that will be discussed later and adding
new instructions for S-box function leads to an enhancement in this function run

time.

e AddRoundKey function: this function uses simple xor instruction only. It’s a

primitive instruction and cannot be reduced.

e SubBytes function: this function replaces every byte in a state with its S-box
equivalent. As discussed before, S-box operation relies on finding the multiplicative
inverse in Rijndael’s GF which can be implemented in different ways. Firstly,
we implemented “sbox_1"" function that uses the brute search method and added
new instructions for i = lowever, even though the added instructions reduced the
required clock cycles to finish the function, its run time still too long relative to
the other functions. So, we decided to shift to another method. “sbox_2’ function
uses the extended Euclidean algorithm <11 it gives more satisfying results and more

reasonable run-time overhead.

e ShiftRows function: this function does many byte swap operations, and no new

instruction can reduce its work at least in our processor architecture.

31

Berna
Yapışkan Not
uzun hal

Berna
Vurgu
only

Berna
Vurgu
daha önce tartışılan yere referans ver.

Berna
Vurgu
böyle birşey yok. Equation olarak GF(2^8) yaz.

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
Algoritmayı burada göster. Neden brute force olduğunu söyle.
referans ver

Berna
Yapışkan Not
ref
algoritmayı burada göster

e MixColumns function: this function multiplies each column (sequential four bytes)
in an AES state with a constant matrix in Rijndael’s GE. We found that the added

instructions for “sbox_1"’ function can be used for this function too.

3.3.1 Adding new instructions for sbox_1 function

sbox_1 function takes an input “a” and returns its S-box output. Its C code is given in
Code 3.7 This code relies on a property that says: for a number p and its multiplicative
inverse q in GF, multiplying p with 3 and dividing q with 3 gives another multiplicative
inverse pair.

Code 3.1: The C code of sbox_1 functior

#fdefine ROTLS8 (x,shift) ((uint8_t) ((x) << (shift)) \
((x) >> (8 — (shift))))
uint8_t sbox_1(uint8_t a)
{
/+x 0 is a special case since it has no inverse =/
if (a == 0)
return 0x63;
uint8_t p =1, g = 1;
/* loop invariant: p » g == 1 in the Galois field =/

do {
/+ multiply p by 3 =/

p =P " (p << 1) " (p & 0x80 ? 0x1B : 0);
/* divide g by 3 (equals multiplication by 0xf6) */
q "= q << 1;
q "= g << 25
q "= q << 4;
g "= g & 0x80 2 0x09 : O;

} while (p != a);

/+ compute the affine transformation =*/

return g ~ ROTL8(g,1l) ~ ROTL8(g,2) ~ ROTL8(g,3) ~ ROTL8(g,4) ~ 0x63;

We translated this code to assembly and drew a CFG for it. The CFG is given in

Figure 3.2.

Then we searched where we can add a new instruction. We found that we can add one
in place of the instructions that are in the red rectangula’ . These instructions are used
to reset a register if the most significant bit of another register is 1. The new instruction

ANDs a register (Rz) with the most significant bit of another register (Ry). It has the

32

Berna
Yapışkan Not
anlattıın yere referans

Berna
Vurgu

Berna
Vurgu
equation

Berna
Vurgu
equation

Berna
Vurgu

Berna
Vurgu

Berna
Vurgu

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
shown in Fig. 3.2

shox continued

g5 = 0x09 _J
g6 = q & 9x80
if gb ==
if input == 8 goto skip loading 2
goto input_is_zero else
else goto load_zero_ 2
goto MI_start
load_zero_2:
.......................=
y ! l§q5 =9
MI_start: : \
1
p=1 ! \ 4
: skip loading 2:
q=1 1
! a=q"~a5
1
<+ ! if p != input
1
1
Do- : goto Do
1 1
p2 - @x1B i ese
o 1 goto MI_finished
p3 = p & Ox30 :
1
if p3 ==8 H
1
goto skip loading 1 : Y
: MI_finished:
else 1
! qrol1=gqrol 1
goto load_zero_1 1
/ : qrol 2 =qurollroll
1
: gq_rol 3 =g rol 3 rol 1
load_zero_1: 1
: q_rol 4 = g_rol_4 rol 1
p2 =0 :
1 output = g ~ gq_rol_1
1
1
; output = output * g rol 2
skip_loading 1: S e e output = output ~ g_rol 3
pl=p <1 output = Bx63 output = output ~ g_rol_4
pl=rpl“p output output ~ @x63
p=pl " p2
ql = g << 1
qg=-g9ql ~ g sbox_finished:
q2 =g << 1 return output
q2 = g2 << 1
q=92"q
gd= g << 1
gd= g4 << 1
gd= g4 << 1
gld= gd << 1
q=094 " q

Figure 3.2: The CFG of sbox_1 function

33

same job of the old instructions. The new instruction name is “AMB” (And with most

Significant Bit) and its assembly code is shown below.

AMB Rd, Ry, Rz

Some examples of the output of this instruction are given below

Ry =0x47 (01000111), Rz =0x1B, Rd=(00000000) & 0x1B = 0x00
Ry =0x91 (10010001), Rz =0x09, Rd=(11111111) & 0x09 = 0x09

The RTL model of this instruction in our ALU can be done by adding a multiplexer to
the input of the already existed AND gate. This multiplexer selects the input according

to the opcode of the executed instruction. The RTL model is shown in Figure 3.3.

Opcode

P— MSB(Rs1) &
Others=>Rs1(7) Rs2

Figure 3.3: The RTL model of AMB instruction

The next instruction that we added to sbox_1 function is “SHLXOR”. It replaces the
two instructions that are surrounded with green rectangular “SHL” and “XOR”. These
two instructions come four times sequentially in sbox_1 assembly code and the new
instruction combines its works. It shifts a register (Ry) to left one bit and then XORs it
with another register (Rz). “SHLXOR” instruction Assembly code and two examples

explain its work is given below

SHLXOR Rd,Ry,Rz

Ry = 0x40, Rz = 0x01, Rd = 0x81
Ry = 0x91, Rz = OxFF, Rd = 0xDD

The RTL model of the new instruction can be presented by a new multiplexer on the
input of the already existed XOR gate. This multiplexer selects XOR gate’s first input
from a normal register or from the existed shift-left circuit output according to executed

instruction opcode. The new RTL model is shown in Figure 3.4

34

Berna
Vurgu
başka bir font

Berna
Vurgu
Buna Fig. 3.2 nin neresine bakarak karar verdin? Neden?

Berna
Vurgu
başka bir font

Rsl Rd Rsl ——
Rs2 |:> (Rs1 << 1) o Rd
Rs2
Figure 3.4: The RTL model of SHLXOR instruction

The CFG of sbox_1 function after adding AMB and SHLXOR instructions is shown

in Figure 3.5.

Two programs are written to test sbox_1 function on the pipelined processor. In both
programs, a 16-byte state has been fed to the function 10 times. The first program
doesn’t use the added instructions and the second one does. The code size and the

required clock cycles to finish both programs are reported in Table 3.1.

Table 3.1: sbox_1 function simulation results

Pipelined processor | Pipelined processor after adding AMB and SHLXOR
Clock cycles 861,793 510,183
Program size 61 44

The added instructions caused a 40% decrease in clock cycles and 27% decrease in

code size.

35

Berna
Vurgu
does not

Berna
Yapışkan Not
max saat frekansı sütünu aç.

bunu yapabilmek için gerçeklemede time constraint yazarak max ferekansa kadara gerçeklemeyi zorlaman lazım.

saat peryodu ve clock cycle i çarparak bir şifreleme süresini bul. Bunun için de bir sütun aç.

Bu iki sütuna göre de karşılaştırma yap.

if input == @

goto input_is zero

else

goto MI_start

o e e e e

i
1
MI_start: :
1
p=1 1
i
q=1 i
- input is zero:
output = @x63
De:
p2 = @x1B

p2 = MSB(p) & p2

Y

pl = (p << 1) “ p

MI finished:
p=pl " p2

g_rol 1 =g rol 1
q=(q=<<1) *q

grol 2 =g rol 1 rol 1
q2 = q<<1

g_rol 3 =g rol 3 rol 1
q=(92<« 1) " q

grol 4 =g rol 4 rol 1
gd=q << 1

output = g ~ g_rol_1
gd= g4 << 1

output = output * g_rol_2
gd= g4 << 1

output = output * g_rol_3
q=(ad << 1)~ g

output = output ~ g_rol_4
q5> = @x@9

output = output * Bx63

q5 = MSB(q) & g5

q=4q"as

if p = input

goto Do

else

goto MI_finished shox_finished:

return output

Figure 3.5: The CFG of sbox_1 function after using AMB and SHLXOR instructions

36

3.3.2 Adding new instructions for sbox_2 function

sbox_2 function is used to replace the inefficient sbox_1 function. In sbox_2 function
the extended Euclidean algorithm '~ implemented to find the multiplicative inverse of

the input in in Rijndael’s GF. Its C code is given in code 3.2

Code 3.2: The C code of sbox_2 function

#define ROTLS8 (x,shift) ((uint8_t) ((x) << (shift)) | \
((x) >> (8 — (shift))))

unsigned char degree (unsigned char a)

{

unsigned char res = 0xff;
do
{
res++;
a >>= 1;
} while (a !'= 0);

return res;

unsigned char sbox_ 2 (unsigned char a)
{
unsigned char temp;
unsigned char u = a;
unsigned char v = 0x1b;
unsigned char gl = 1;
unsigned char g2 = 0;
char j = degree(u) - 8;
while (u !'= 1)
{
if (3 < 0)
{

u "= v << j;
gl "= g2 <<j;
j= degree (u) - degree (v);
}
return gl ~ ROTL8(gl,1l) ~ ROTL8(gl,2) ~ ROTL8(gl,3) ~ ROTL8(gl,4) ~

The code is translated to assembly and its CFG is given in Figure 3.6

37

0x63;

Berna
Vurgu
neden sbox_1 inefficient. İlk olarak 1 ve 2 yi karşılaştırman gerekir.

Berna
Yapışkan Not
daha önce algoritayı anlattığın yere referans ver.

Berna
Vurgu

Berna
Yapışkan Not
ref

Berna
Yapışkan Not
ref

v

j_is_positive:

v_shifted = v << j

g2_shifted = g2 << j

if input <= 1 u =u ™ v_shifted
goto input_is @_or 1 gl = gl ~ g2 shifted
else holder = u
goto MI_start u_deg = OxFF
— === = F-—-h goto do 2 start
h 4 Lo B -
MI_start: !
. — |
u = input ‘ .
v = Bx1B do_2_start: !
I
gl =1 u_deg = u deg + 1 .
I
g2 =9 holder = holder >> 1 .
I
holder = input if holder != © ;
input_deg = @xFF goto do_2 start ;
goto do_1_start else i
goto do_2_end v
A 4 input_is_@ or_1:
do_1_start:
— h 4 mi = input
input_deg = input_deg + 1 do_2_end:
holder = holder »> 1 holder = v >
if holder != @ v_deg = OxFF h 4
MI_fini :
goto do_1_start goto do_3_start I_finished
e » mi_rol 1 = mi rol 1
A4 - 3
goto do_1_end T 3 start: mi_rol 2 =mi_rol 1 reol 1
; = p mi_rol 3 = mi_rol 3 rol 1
v_deg = v_deg + 1
mirol 4 = mirol 4 rol 1
do_1 end: y holder = holder >> 1 - -
§ = input_deg - 8 if holder I= @ output = mi * mi_rol_1
e e goto do_3_start output = output ~ mi_rol 2
v -
T d else output = output ® mi_rol 3
_do:
<o goto do_3_end output = output * mi_rol_4
if j <
to 5 i . output = output * @x63
goto j_is_negative v
else do 3 end: return output
goto j_is_positive Jj = u_deg - v_deg
> mi = gl
Y

iful=29
j_is_negative: i

goto MI_start

temp = u
else
u=v
goto MI_do

v = temp

temp = g1

gl = g2

g2 = temp

j=0-7

Figure 3.6: The CFG of sbox_2 function

38

After investigating the CFG we found that we can add an instruction to find the degree
of a polynomial in Rijndael’s GF and use it instead of the code block that is surrounded
in red rectangular. The new instruction “DEG” takes two operands only (Rd and Ry).
It finds the degree of the source register (Ry) and stores it in the destination register

(Rd). Its assembly code and three examples explain its work are given below.
DEG Rd, Ry

Ry =0x0A, Rd=0x03

Ry =0xF7, Rd=0x07

Ry =0x01, Rd=0x00

The RTL model of the new instruction can be described as 7 2-to-1 multiplexers
connected in series where each multiplexer’s zero input is connected to the output
of the previous one and the first multiplexer zero input is connected to “0” (as 8-bit
vector). The one input of the multiplexers is connected to constant vector which its
value is the multiplexer order (1, 2, ... ,7). The selector pin of the (i)’th multiplexer
is connected to the (i+1)’th bit of the source register Ry. The output of the last
multiplexer is the result of DEG instruction. The RTL model of this instruction is

given in Figure 3.7

Rs(7)

Rs(8)

Figure 3.7: The RTL model of DEG instruction

The CFG of sbox_2 function after adding DEG instruction is shown in Figure 3.8.

Note: “v_shifted = v << j” and “g2_shifted = g2 << j” statements in the CFGs are
not real instructions. They are actually implemented using a loop because our shift

instructions shift only by one. The loop code is represented in this way just to make the

39

Berna
Vurgu

Berna
Vurgu

if input <= 1

goto input_is @ or 1

else

goto MI_start

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-l

MI_start:

u = input

v = @x1B

gl =1

¥

g2 =@ e S
J_1is_positive:

input_deg = Deg(input)

v_shifted = v << j

j = input_deg - 8

g2 shifted = g2 << j

. —————————— —-——

n u =u ™ v_shifted
MI_do: gl = gl ~ g2 shifted
if j <o u_deg = Deg(u)

goto j_is negative v_deg = Deg(v)

i - = = s ke e e e e e e = —-

1
1
1
|
1
I
1
else | j = u_deg - v_deg
goto j_is positive ! mi = gl
1
1 iful=20
o
| goto MI_do
¥
j_is negative: ! else input_is_@& or_1:
= . |
temp = u | goto MI_finished mi = input
1
u=v 1
L e e
v = temp
temp = gl L)
gl = g2 MI_finished:
g2 = temp mi_rol 1 =mi rol 1
j=98-73 mirol 2 =mi_rol 1 rol 1

I mi_rol 3 =mi_rol 3 rol 1

mi_rol 4 = mi_rol 4 rol 1

output = mi ~ mi_rol_1

output = output ~ mi_rol_2

output = output * mi_rol 3

output = output ~ mi_rol 4

output = output * @x63

return output

Figure 3.8: The CFG of sbox_2 function after using DEG instruction

40

CFG clearer. No new instruction is added for shifting by a variable number because
the required hardware (a barrel shifter circuit) has a massive area and leads to large

power consumption.

As in sbox_1 function, two programs are written to test sbox_2 function on the
pipelined processor. In both programs, a 16-byte state has been fed to the function
10 times. The first program doesn’t use “DEG” instruction and the second one does.
The code size and the required clock cycles to finish both programs are reported in

Table 3.2

Table 3.2: sbox_2 function simulation results

Pipelined processor | Pipelined processor after adding DEG
Clock cycles 106,873 46,033
Program size 85 64

The added “DEG” instruction caused a 56% decrease in clock cycles and 24% decrease

in code size.

41

Berna
Yapışkan Not
Daha önceki tablo için yazdıklarım bunun için de gerçerli.

3.3.3 Adding new instructions for mix_col function

mix_col function multiplies each column of an input state with a constant matrix in

Rijndael’s GE 1 1e C code of this function is given in Code 3.3

Code 3.3: The C code of mix_col function

void mix_col (uint8_tx state)

{
// The array ’'a’ is simply a copy of a column from the input
uint8_t afl4];
//The array ’'b’ is each element of the array ’'a’ multiplied by 2
//in Rijndael’s GF
uint8_t b[4];
// aln] ~ bln] is element n multiplied by 3 in Rijndael’s GF

for (uint8_t columnNumber = 0; columnNumber<4; ++columnNumber)
{
uint8_t stateBytelIndex = columnNumber=*4;
al0] = state[stateBytelIndex];
b[0] = (a[0] << 1) ~ (a[0] & 0x80 ? 0x1B : 0);
stateByteIndex++;
all] = state[stateBytelIndex];
b[l] = (a[l] << 1) ~ (a[l] & 0x80 ? 0x1B : 0);
stateByteIndex++;
al[2] = statel[stateBytelIndex];
b[2] = (a[2] << 1) ©~ (a[2] & 0x80 ? 0x1B : 0);
stateByteIndex++;
a[3] = statelstateBytelIndex];
b[3] = (a[3] << 1) ~ (a[3] & 0x80 ? 0x1B : 0);
//column_byte[3] = 2 * a3 + a2 + al + 3 % a0
state[stateByteIndex] = b[3] * al[2] * al[l] ~ b[0] ~ al0];
stateByteIndex——;
//column_byte[2] = 2 * a2 + al + a0 + 3 * a3
state[stateByteIndex] = b[2] ~ a[l] ~ a[0] ~ b[3] * al3];
stateByteIndex——;
//column_byte[l] = 2 * al + a0 + a3 + 3 » a2
state[stateByteIndex] = b[1l] ~ a[0] ~ al[3] ~ b[2] * al2];
stateByteIndex——;
//column_byte[0] = 2 * a0 + a3 + a2 + 3 * al
state[stateBytelIndex] = b[0] ~ a[3] "~ al2] ~ b[l] ~ alll;

}

The code is converted to assembly and its CFG is given in Figure 3.9.

42

Berna
Yapışkan Not
ref

Berna
Vurgu

Berna
Yapışkan Not
ref

d = a[2] & @x8e

ifd==20

goto continue_3

col no = @

else

goto load_zero_3

J: _________

Mix_next_col:

byte no = col no << 1

byte no <<= 1

state[byte_no] "= a[2]

state[byte_no] "= b[1]

state[byte ne] ~= a[1]

col_no++

if col_no < 4

goto mix_next col

load_zero_3:

else

goto end

a[@] = state[byte_no]

c = ex1B

e = af[2] << 1

continue_3:

d = a[e] & oxse

ifd==120

goto continue 1

else

goto load_zero_1

b[2] = e "~ c

byte_no++

a[3] = state[byte no]

c = Bx1B

d = a[3] & ox80

ifd==20

load_zero_1:

goto continue_4

else

goto load zero 4

continue_1:

e = a[@] << 1

b[@] = e ~ ¢

byte_no++

a[l] = state[byte_no]

“-H‘~*

load_zero_3:

c=0
"/

c = ex1B

continue_4:

e = a[3] << 1

d = a[1] & ox3e

ifd==120

goto continue 2

else

goto load_zero_2

load zero 2:

c=28

—

e = afl1] << 1

‘ continue 2: | /

b[1] = e ~ ¢

byte_no++

a[2] = state[byte no]

c = ox1B

b[3] = e ~ ¢

state[byte nol= b[3] *

al2]

state[byte_no] "= a[1]

state[byte no] "= b[@]

state[byte ne] ~= a[@]

byte_no--

state[byte no]l= b[2] ~

al1]

state[byte_no] "= a[@]

state[byte_no] “= b[3]

state[byte no] "= a[3]

byte_no--

state[byte_no]= b[1] *

a[e]

state[byte no] "= a[3]

state[byte_no] "= b[2]

state[byte_no] "= a[2]

byte no--

state[byte_no]= b[@] ~

a[3]

Figure 3.9: The CFG of mix_col function

43

We found that added instructions for the replaced function sbox_1 can be used in
mix_col function too, and so no new instructions are needed to be added. The new
CFG for mix_col function after using “SHLXOR” and “AMB” instructions is shown

in Figure 3.10.

Again, two programs are written to test mix_col function on the pipelined processor. In
both programs, a 16-byte state has been fed to the function 10 times. The first program
doesn’t use “SHLXOR” and “AMB” instructions and the second one does. The code

size and the required clock cycles to finish both programs are reported in Table 3.3.

Table 3.3: mix_col function simulation results

Pipelined processor | Pipelined processor after using AMB and SHLXOR

Clock cycles 4,309 2,879

Program size 87 56

Using “AMB” and “SHLXOR” instructions caused a 33% decrease in clock cycles and

35% decrease in code size.

44

Berna
Yapışkan Not
daha önceki tablo için yazdıklarım bunun için de gerçerli.

state[byte_no]= b[@] ~ a[3]

state[byte_no] ~= a[2]

state[byte_no] ~= b[1]

state[byte_no] ~= a[1]

col no = @ col_no++

if col no < 4

J - == === ====== 1

goto mix_next_col

Mix next col:

else
byte no = col no << 1
goto end
byte no <<= 1 L
a[@] = state[byte_no] h 4
end:
c = Bx1B

c = MSB(a[@]) & c

b[@] = (a[®] << 1) " ¢

byte_no++

a[1l] = state[byte_no]

c = @x1B

c = MSB(a[1]) & ¢

b[1] = (a[l] << 1) * ¢

byte no++

a[2] = state[byte no]

c = Bx1B

c = MSB(a[2]) & c

b[2] = (a[2] << 1) * ¢

byte_no++

a[3] = state[byte_no]

c = @x1B

c = MSB(a[3]) & ¢

b[3] = (a[3] << 1) * ¢

state[byte no]= b[3] * a[2]

state[byte no] ~= a[1]

state[byte no] = b[8]

state[byte_no] ~= a[@]

byte_no--

state[byte_no]= b[2] ™ a[1]

state[byte_no] ~= a[@]

state[byte_no] ~= b[3]

state[byte_no] ~= a[3]

byte_no--

state[byte_no]= b[1] ~ a[@]

state[byte no] ~= a[3]

state[byte no] = b[2]

state[byte no] = a[2]

byte_no--

Figure 3.10: The CFG of mix_col function after using AMB and SHLXOR
instructions

45

3.4 The Extended Instruction Set

As a result of this study, the standard instruction set of the pipelined processor is

extended with three instructions. The new instructions’ codes are given in Table 3.4.

Table 3.4: The extended instruction set of the designed ASIP

Instruction Function Code
SHLXOR Rd,Ry,Rz | Rd = (Ry <<1) "Rz 11000 dddd 0zzzz yyyy
AMB Rd,Ry,Rz Rd =MSB(Ry) & Rz | 11001 dddd 0zzzz yyyy
DEG Rd,Ry Rd = DEG (Ry) 11010 dddd 00000 yyyy

The big benefit that came from the extended instructions is reducing the run time for
some AES functions in a significant way. Table 3.5 shows a comparison between the
designed GPP and the designed ASIP in the number of the required clock cycles to

finish many programs.

Table 3.5: Performance simulation results of the designed GPP and the designed ASIP
for AES functions

Program GPP ASIP
sbox_1 for 10 rounds | 861,793 | 510,183
sbox_2 for 10 rounds | 106,873 | 46,033
mix_col for 10 rounds | 4,309 2,879
key_expansion 27,933 14,036
AES round 12,815 6,124
AES total 159,808 | 76,829

46

3.5 Simulations Results

In order to compare our ASIP (the pipelined processor with the extended instructions)
with our GPP (the pipelined processor without the extended instructions) and get the

energy saving outcome the following steps are performed.

First, the AES algorithm was implemented with the standard instructions and was
run on the designed GPP. The number of the used FPGA slices and the number of
clock cycles that the algorithm takes to complete are reported. The maximum clock
frequency and the dynamic on-chip power are already obtained in the previous chapter.

The latency, the throughput and the energy consumption are calculated.

Next, the AES algorithm was implemented with the extended instructions and was
run on the designed ASIP. After that, the maximum operating frequency, the dynamic
on-chip power, the number of the used FPGA slices and the required clock cycles to
finish the algorithm code are obtained. In the designed ASIP, the maximum operating
frequency was dropped down by 13%, this can be explained as a result of the new
instructions’ hardware that extended the critical path. Also, the dynamic on-chip power
increased 14%, this is because of the additional FPGA slices that are used by the

hardware of the new instructions.

Finally, the latency, the throughput and the energy consumption for the designed ASIP
are calculated. As a result of decreasing the AES algorithm run time on the ASIP,
the latency is decreased and the throughput is increased significantly. The energy
consumption of the AES is also decreased 37% although the dynamic on-chip power
is increased, because the improvement in latency overcame the downgrade in dynamic

power outcome.

47

Table 3.6: Comparison of the designed GPP and the designed ASIP simulation results

GPP ASIP Ratio of percentage change
Maximum frequency 155 MHz 135 MHz -13%
Dynamic on-chip power 0.007 W 0.008 W +14%
Area (number of slices) 70 74 +06%
AES clock cycles 159,808 76,829 -52%
Latency 1031 uS 569 uS -45%
Throughput 121.24 Kbit/s | 219.64 Kbit/s +81%
Energy 7.22 uW/S 4.55 uW/S -37%

3.6 Comparing the Proposed Work with Previous Works

AES became a study subject for many researchers and hardware designers due to its
importance and its wide usage in many fields. A lot of work is done in designing high

performance low-power ASICs for AES [13] [14] [15] [16] [17] [18] [19] [20].

On the other hand, a fewer work is done in making ASIPs or extending an instruction
set for AES. In Onur Sahin et al work [21] 6 new complex instructions are added to the
32-bit LEON 2 processor. As reported, the added instructions sped up AES execution
3.12 times. However, no further information is given about the variation in energy

consumption or operating frequency.

In Renhai Chen et al work [22] a GPP design is proposed and its instruction set is
extended with 4 specific instructions for AES. The presented ASIP achieved 46.5%
performance improvement compared to ARM ISA. Although the added instructions’

hardware is simple, it caused a 14% increase in the used resources.

Tim Good et al represented a very small 8-bit ASIP for AES on FPGA in their work
[23]. As the small area was the main priority of the project, the instruction set of the
ASIP is so optimized such the processor isn’t capable of doing any work except AES

operations.

Our work is based on a novel and genuine processor design not on an open source
project. This makes us fully knowing the design details. Also, our added instructions
were selected to be simple not complex, complex instructions like one instruction for

the whole S-box function or MixColumns function requires more resources on the

48

FPGA and that causes to decrease the operating frequency and to increase the energy
consumption highly. Our instruction set isn’t optimized for AES only because we

wanted the processor to be used for different applications beside AES encryption.

49

50

4. CONCLUSION

In this thesis, a low-power general purpose processor design is presented. Then the
processor design is improved by extending the instruction set with instructions for the

Advanced Encryption Standard (AES).

First, a simple general-purpose processor was designed by determining its standard
instruction set then implementing its data path and control unit using VHDL in Vivado
Environment. Then the processor design was improved by pipelining it. Pipeline
hazards were avoided without complicating the processor structure. Finally, the
simulation results of both designs were compiled with Xilinx PicoBlaze processor.
Both designs consumed less power than PicoBlaze processor, and the pipelined
processor’s maximum frequency was higher than PicoBlaze processor’s maximum
frequency. Also, the pipelined design finished test programs with clock cycles less

than the non-pipelined design and consumed less energy.

After that, the AES algorithm was implemented in C then translated to assembly code.
CFGs were drawn for the complex functions of the algorithm and then examined. New
candidate instructions that solves software problems faster or combines sequential and
related instructions were built as RTL models, then described in VHDL language
and added to the processor’s ALU. Next, the added instructions functionality was
verified by performing behavioral simulation and the required clock cycles to finish

test programs were measured.

Finally, the designed GPP and ASIP were compared. It was found that ASIP consumes
less energy than GPP by 37% although its dynamic on-chip power is higher, because

the improvement in its latency overcame the downgrade in dynamic power outcome.

51

52

REFERENCES

[1] Glokler, T. and Meyr, H., 2004. Design of Energy-Efficient Application-Specific
Instruction Set Processors (ASIPs), Kluwer Academic Publishers.

[2] National Institute of Standards and Technology, 1999. FIPS 46-3:
Data Encryption Standard, https://csrc.nist.gov/csrc/
media/publications/fips/46/3/archive/1999-10-25/
documents/fips46-3.pdf.

[3] National Institute of Standards and Technology, 2001. FIPS 197: Advanced
Encryption Standard, https://nvlpubs.nist.gov/nistpubs/
FIPS/NIST.FIPS.197.pdf.

[4] Hennessy, J. and Patterson, D.A., 2017. Computer Architecture: A Quantitative
Approach, Morgan Kaufmann, 6th edition.

[5] Mano, M.M.R. and Ciletti, M.D., 2017. Digital Design: With an Introduction to
the Verilog HDL, VHDL, and SystemVerilog, Pearson, 6th edition.

[6] Churiwala, S., editor, 2017. Designing with Xilinx® FPGAs: Using Vivado,
Springer, st edition.

[7] Chadha, R. and Bhasker, J., 2013. An ASIC Low Power Primer: Analysis,
Techniques and Specification, Springer.

[8] Xilinx, PicoBlaze 8-bit Microcontroller, https://www.xilinx.com/
products/intellectual-property/picoblaze.html.

[9] Wikipedia, 2020, Finite field arithmetic — Wikipedia, The Free Encyclopedia,
https://en.wikipedia.org/wiki/Finite_field_
arithmetic, [Online; accessed 21-March-2020].

[10] Wikipedia, 2020, Extended Euclidean algorithm — Wikipedia, The Free
Encyclopedia, https://en.wikipedia.org/wiki/Extended_
Euclidean_algorithm, [Online; accessed 21-March-2020].

[11] Allen, F.E., 1970. Control Flow Analysis, SIGPLAN Notices.
[12] Graphviz - Graph Visualization Software, https://www.graphviz.org/.

[13] Hamalainen, P., Alho, T., Hannikainen, M. and Hamalainen, T.D., 2006.
Design and Implementation of Low-Area and Low-Power AES Encryption
Hardware Core, 9th EUROMICRO Conference on Digital System Design
(DSD’06), pp.577-583.

53

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Hodjat, A. and Verbauwhede, 1., 2006. Area-throughput trade-offs for fully
pipelined 30 to 70 Gbits/s AES processors, IEEE Transactions on
Computers, 55(4), 366-372.

Rouvroy, G., Standaert, F.., Quisquater, J.. and Legat, J.., 2004. Compact
and efficient encryption/decryption module for FPGA implementation
of the AES Rijndael very well suited for small embedded applications,
International Conference on Information Technology: Coding and
Computing, 2004. Proceedings. ITCC 2004., volume 2, pp.583-587 Vol.2.

Mozaffari-Kermani, M. and Reyhani-Masoleh, A., 2012. Efficient and
High-Performance Parallel Hardware Architectures for the AES-GCM,
IEEE Transactions on Computers, 61(8), 1165-1178.

Good, T. and Benaissa, M., 2010. 692-nW Advanced Encryption Standard (AES)
on a 0.13-um CMOS, IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 18(12), 1753-1757.

Tsung-Fu Lin, Chih-Pin Su, Chih-Tsun Huang and Cheng-Wen Wau,
2002. A high-throughput low-cost AES cipher chip, Proceedings. IEEE
Asia-Pacific Conference on ASIC,, pp.85-88.

Sever, R., Ismailoglu, A.N., Tekmen, Y.C. and Askar, M., 2004. A high speed
ASIC implementation of the Rijndael algorithm, 2004 IEEE International
Symposium on Circuits and Systems (IEEE Cat. No.04CH37512),
volume 2, pp.11-541.

Huang, Y., Lin, Y., Hung, K. and Lin, K., 2006. Efficient Implementation of
AES IP, APCCAS 2006 - 2006 IEEE Asia Pacific Conference on Circuits
and Systems, pp.1418-1421.

Sahin, O. and Ors Yalcin, B., 2012. Kriptoloji Uygulamalarina Ozel Bir
Islemcinin Tasarlanarak FPGA Uzerinde Gergeklenmesi, GOMSIS 2012
GoOmiilii Sistemler ve Uygulamalar1 Sempozyumu.

Chen, R., Jia, Z., Li, Y., Hui, X. and Li, X., 2011. The application specific
instruction processor for AES, 4.

Good, T. and Benaissa, M., 2006. Very small FPGA application-specific
instruction processor for AES, Circuits and Systems I: Regular Papers,
IEEE Transactions on, 53, 1477 — 1486.

54

CURRICULUM VITAE

Name Surename: Muhammed SAIROGLU
Place and Date of Birth: Homs - Syria, 1994
E-Mail: ammarshaar94 @ gmail.com
Education:

e B.Sc.: Istanbul University

e M.Sc.: Istanbul Technical University

Professional Experience: 2016 - Present : Panasonic Life Solutions, R&D
Department, Embedded Software Engineer

Publications, Presentations and Patents on This Thesis

» Mohammad Ammar Alshaar and Berna Ors, 2019 : Special Purpose Processor Design
for IoT Applications and Implementation on an FPGA
Islemci Tasarumi Calistayr 2019, September 19, 2019 Istanbul, Turkey.

55

