

ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICS FACULTY

SENIOR DESIGN PROJECT

JULY 2020

EXTENDING THE INSTRUCTION SET OF RISC-V PROCESSOR FOR NTRU
ALGORITHM

Elif Nur İŞMAN
Canberk TOPAL

ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT

ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT

JULY 2020

ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICS FACULTY

EXTENDING THE INSTRUCTION SET OF RISC-V PROCESSOR FOR NTRU
ALGORITHM

SENIOR DESIGN PROJECT

Elif Nur İŞMAN
040150214

Canberk TOPAL

040160057

Project Advisor: Assoc Prof. Dr. Sıddıka Berna ÖRS YALÇIN

RISC-V İŞLEMCİSİNİN KOMUT SETİNİN NTRU ALGORİTMASI İÇİN
GENİŞLETİLMESİ

LİSANS BİTİRME TASARIM PROJESİ

Elif Nur İŞMAN
040150214

Canberk TOPAL

040160057

Proje Danışmanı: Doç. Dr. Sıddıka Berna ÖRS YALÇIN

TEMMUZ, 2020

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

İSTANBUL TEKNİK ÜNİVERSİTESİ
 ELEKTRİK-ELEKTRONİK FAKÜLTESİ

iv

Canberk TOPAL
040160057

We are submitting the Senior Design Project Report entitled as “EXTENDING THE
INSTRUCTION SET OF RISC-V PROCESSOR FOR NTRU ALGORITHM”. The
Senior Design Project Report has been prepared as to fulfill the relevant regulations of the
Electronics and Communication Engineering Department of Istanbul Technical
University. We hereby confirm that we have realized all stages of the Senior Design Project
work by ourselves and we have abided by the ethical rules with respect to academic and
professional integrity .

Elif Nur İŞMAN
040150214

v

FOREWORD

June 2020

Canberk TOPAL
Elif Nur İŞMAN

We would like to thank to our mentor Assoc. Prof. Dr. Sıddıka Berna Örs Yalçın who
helped us to find this project and who supported and guided us in all of our mistakes.
Secondly, we would like to offer our gratitude to our mentor Res. Assist. M.Sc. Latif

 and our families who has the biggest role on our successes for our entire life.
 project. Finally, we would like to emphasize that we are grateful to our friends in İTÜ

Akçay, who gave his attention, remarks and part of his own work to the project.
Without them, we would spend lots of unnecessary time in order to finish our

vi

vii

TABLE OF CONTENTS

Page

FOREWORD
... vii

ABBREVIATIONS ... ix
SYMBOLS .. x
LIST OF TABLES .. xi
LIST OF FIGURES ... xii
SUMMARY ... xiii
ÖZET ... xiv
1.INTRODUCTION ... 15

 Basic Consepts ... 15
1.1.1 What is open source processors and why do we use it ? 15
1.1.2 What is instruction set architecture? ... 16
1.1.3 What is RISC-V processor and why etending ISA of it? 16
1.1.4 How to extend ISA? .. 16
 Mathematical Background for NTRU Algorithm .. 16
1.2.1 NTRU keys and parameters: ... 17
1.2.2 Key generation .. 17
1.2.3 Encryption ... 18
1.2.4 Decryption ... 18
 Preparing Work Environment .. 19
1.3.1 Installing Ubuntu 16.04 and required programs 19
1.3.2 Installing RISC-V GNU toolchain from GitHub 21
1.3.3 Preparing the software development environment 23

 IMPLEMENTING AN OPEN SOURCE RISC-V PROCESSOR ON FPGA
 .. 24

 Implementing LowRISC Chip With Rocket Core ... 25
 Implementing Ibex Core ... 25

 RUNNING C PROGRAMS ON RISC-V CORE AND OPTIMIZATION OF
THE NTRU C IMPLEMENTATION .. 27

 Compiling C Codes And The Structure Of Generated Memory 27
 Running C Program in RISC-V Core ... 28
 Implementation and Optimization of the NTRU Algorithm in C Programming

Language .. 29
3.3.1 Optimization of the c program .. 30
 Profiling the NTRU C Implementation .. 31

 INSTRUCTION SET EXTENSION OF RISC-V PROCESSOR 32
 Software Part .. 33
4.1.1 Opcode space .. 33
4.1.2 Inline Assembly method ... 33
4.1.3 Chosen instructions and their types .. 34
4.1.4 Implementing the custom instructions to the C programs 34
4.1.5 Developing and testing the instructions using simple C programs 35

... v
TABLE OF CONTENTS

viii

4.1.6 Adding custom instructions to the optimized C code 37
 Hardware Part ... 37
4.2.1 Custom Module Design ... 38
4.2.2 Changes for multi-clock cycle operations ... 40
4.2.3 Connections with RAM and other modules .. 40

 PERFORMANCE & TIMING ANALYSIS .. 42
 Benchmark C Program ... 43
 Behavioral Simulation to Check the Results .. 44
 Using 7-Segment Display and LEDs to See the Results on Board 45
 Usage of ILA IP.. 45
 Comparing Selected Operation Implementations on Core with and without

Custom Module .. 46
 REALISTIC CONSTRAINTS AND CONCLUSIONS 47

 Practical Application of this Project ... 48
 Realistic Constraints ... 48
6.2.1 Social, environmental and economic impact... 48
6.2.2 Cost analysis .. 48
6.2.3 Standards ... 49
6.2.4 Health and safety concerns .. 49
 Future Work and Recommendations .. 49

REFERENCES ... 50
APPENDICES .. 54
CURRICULUM VITAE .. 70

ix

ABBREVIATIONS

ALU : Arithmetic Logic Unit

CPU : Central Processing Unit

FF : Flip Flop

FPGA : Field Programmable Gate Array

GCC : GNU Compiler Collection

ILA : Integrated Logic Analyzer

IP : Intellectual Property

ISA : Instruction Set Architecture

LED : Light Emitting Diode

LUT : Look Up Table

NTRU : N-Truncated Polynomial Ring

NIST : National Institute of Science and Techonology

RAM : Random Access Memory

RISC : Reduced Instruction Set Computer

x

SYMBOLS

 : Terminal Commands

xi

LIST OF TABLES

Page

 Performance Results ... 47
 Area Usage Results.. 47

xii

LIST OF FIGURES

Page

Figure 1.1: CLion Change of Kernel Variables Prompt ... 244
Figure 2.1: List of SoC and Cores That Uses RISC-V ISA 244
Figure 2.2: Modified Architecture of Ibex .. 266
Figure 3.1: Simple Summation C Program for 32-bit RISC-V Core 299
Figure 3.2: Example of Optimization Process in the Implementation 300
Figure 3.3: Speed Difference Between Optimized and Unoptimized Version 311
Figure 3.4: Part of the Profiling Script for C Program .. 322
Figure 4.1: Instruction Format of R-type Instructions [18] 333
Figure 4.2: instr_equ Function with the Inline Assembly Method 344
Figure 4.3: array_equ Function within the C Code .. 355
Figure 4.4: Parts of the C Code for Testing Functionality of the Added Instructions

 .. 366
Figure 4.5: Behavioral Simulation of Test C Code ... 377
Figure 4.6: Diagram of Execution Module ... 39
Figure 4.7: State Flowchart for Custom_Module .. 39
Figure 4.8: Input and Output Ports of Custom Module .. 411
Figure 5.1: Main Part of the Benchmarking C Code .. 444
Figure 5.2: Number of Clock Cycles Comparison Between the Custom Instructions

and Basic C Operations ... 444
Figure 5.3: Dashboard Screen ... 466

xiii

EXTENDING THE INSTRUCTION SET OF RISC-V PROCESSOR FOR
NTRU ALGORITHM

SUMMARY

The technological progress of humanity has reached a point that even science fiction
writers cannot predict. With the ease of access to information and invention of social
media, cyber security has become increasingly important in our lives. Especially the
concept of the quantum computers, whose feasibility has ceased to be an issue of
debate and the discussions moved towards the question of when it will start to affect
daily life, threatens the security standards created by hundreds of engineers in the past
decades. Quantum computing technology has taken priority in the field of information
security, where companies and governments constantly compete, and algorithms that
can resist the computing power of post-quantum computers gain importance in this
field. NTRU algorithm, which is one of the few candidates approaching to be the
standard for post quantum public key cryptography was discussed in this project.

The main problem in the field of electronic engineering; balance between area and
performance has been the main issue that determined the limits in this project. A
cryptography algorithm is needed in almost all electronic devices. Since the public
key encryption method is especially used for the secure communication of the two
parties, this algorithm is expected to work with high performance in internet of
things devices and unmanned aerial vehicles. One of the prominent methods to
achieve this high performance in small and relatively weak processors is to expand
the instruction sets of these processors for this algorithm. We have created a project
plan accordingly. One of the cheapest and most convenient methods for performing
the instruction set expansion that forms the building block of our project was to
modify an already designed open source processor. After achieving this goal, the
FPGA card, one of the most important assistants of engineers working in this field,
was used to test real-time results. In the project, the open source RISC-V processor
has been implemented and developed on the Nexys 4 DDR FPGA card produced by
Digilent company.

As a result, it was observed that the three candidate array arithmetic operation
commands we added had an accelerating effect on the NTRU algorithm
performance. This effect has the potential of especially to speeding up the
implementation of secure communication protocols of small processors. In this
study, it is envisaged that the processors to be produced may not be doomed to
existing patterns and can be developed for use, and this study will increase the
performance and added value of the product in that area.

xiv

RISC-V İŞLEMCİSİNİN KOMUT SETİNİN NTRU ALGORİTMASI İÇİN
GENİŞLETİLMESİ

ÖZET

İnsanlığın teknolojik ilerleyişi bilimkurgu yazarlarının bile tahmin edemeyeceği bir
noktaya gelmiş durumda. Bilgiye ulaşımın kolaylaşmasıyla ve sosyal medyanın
icadıyla beraber, hayatımızda özellikle siber güvenlik giderek daha önemli bir yer
alıyor. Özelikle son dönemde yapılabilirliği bir tartışma olmaktan çıkıp, ne zaman
gündelik hayatı etkilemeye başlayacağı konuşulmaya başlanan kuantum sonrası
bilgisayarlar geçtiğimiz on yıllarda yüzlerce mühendisin işbirliğiyle oluşturmuş
olduğu güvenlik standartlarını tehdit ediyor. Şirketlerin ve devletlerin sürekli
yarıştığı bilgi güvenliği sahasında önceliği kuantum hesaplama teknolojisi almış
durumda ve bu alanda özellikle kuantum sonrası bilgisayarların işlem gücüne karşı
durabilen algoritmalar önem kazanmakta. Bu algoritmalardan açık anahtar kuantum
sonrası şifreleme algoritması standardı olmaya yaklaşan birkaç adaydan biri olan
NTRU algoritması bu projede ele alındı.

Elektronik mühendisliği alanında baştan beri temel sorun olan alan ve performans
dengesi bu projede sınırları belirleyen ana konu olmuştur. Bir kriptografi
algoritmasına neredeyse bütün elektronik cihazlarda hitiyaç vardır. Açık anahtarlı
şifreleme yöntemi özellikle iki tarafın birbiriyle güvenli bir şekilde haberleşmesi için
kullanıldığından bu algoritmanın internet nesneleri cihazlarında ve insansız hava
araçlarında yüksek performans ile çalışması beklenmektedir. Bu yüksek performansı
küçük ve görece güçsüz işlemcilerde gerçekleştirmek için öne çıkan yöntemlerden
biri, bu işlemcilerin komut setlerini bu algoritmaya yönelik şekilde genişletmektir.
Biz de buna göre bir proje planı oluşturduk. Projemizin temel katmanını oluşturan
komut seti genişletmesini gerçekleştirmek için en ucuz ve elverişli yöntemlerden biri,
halihazırda tasarlanmış olan açık kaynak kodlu bir işlemciyi değiştirmekti. Bu amacı
gerçekleştirdikten sonra gerçek zamanlı sonuçları test etmek için, bu alanda çalışan
mühendislerin en önemli yardımcılarından olan FPGA kartı kullanıldı. Projede açık
kaynak kodlu RISC-V işlemcisinin Digilent firması tarafından üretilen Nexys 4 DDR
FPGA kartı üzerinde gerçeklenmesi ve geliştirilmesi yapılmıştır.

Sonuç olarak, eklemiş olduğumuz üç adet dizi aritmetiği komutunun NTRU
algortiması üzerinde hızlandırıcı etki yaptığı görüldü. Bu etki, özellikle küçük
işlemcilerin güvenli haberleşme protokollerini uygulamasını oldukça hızlandıracak
potansiyele sahip. Bu çalışmada, üretilecek olan işlemcilerin varolan kalıplara

xv

mahkum olmayıp kullanıma yönelik geliştirilebileceği ve bu çalışmanın ürünün o
alandaki performansını ve katma değerini oldukça arttıracağı öngörülmüştür.

15

1. INTRODUCTION

With the developing technology, interest and investments in developing quantum

computers are increasing rapidly[1, 2]. However, this poses a threat to cryptography

algorithms used in every system where information security is needed today. The

quantum era requires fundamental changes in information security. New cryptography

algorithms that can resist post-quantum computers are being developed in order to

maintain information security in banking, military and many other areas. In order to

be usable and practical in daily life, low area usage and low performance are prioritized

in the algorithms created. N-Truncated Polynomial Ring Units(NTRU)[3] is one of the

most promising postquantum cryptography algorithms as they are among 28

standardization candidates in the National Institute of Science and

Techonology(NIST) competition for public key cryptography[4].

Based on the Reduced Instruction Set Computer (RISC) architecture[5], RISC-V[6] is

an open source alternative to a world of proprietary instruction set architectures. Our

project aims to increase the performance of a NTRU cryptosystem application on an

open source, low-power RISC-V processor. The plan is to increase the performance

by extending the instruction set with most commonly used operations in the

application.

 Basic Consepts

1.1.1 What is open source processors and why do we use it ?

A processor, or "microprocessor," is a small chip that positioned in computers and

other electronic devices. Its basic job is to receive input and provide the appropriate

output, according to the structures that embedded on it. This may seem like a simple

task at the first glance, but

processors of today’s world can handle trillions of calculations per second. The most

basic processor will include a register file, an ALU, system memory, and a control unit

that allows the processor to make decisions based on the instruction it's executing.

16

1.1.2 What is instruction set architecture?

The Instruction Set Architecture (ISA)[5] design is one of the most critical structures

for a processor. Designing it properly and correctly at the beginning is very important.

It is accessible by the programmer or compiler writer. It defines the relationship and

boundaries between software and hardware. User can have knowledge about supported

data types, registers, interrupts, the hardware support for managing main memory

features and the input/output model of a bunch of implementations by examining it.

1.1.3 What is RISC-V processor and why etending ISA of it?

There are various popular instruction sets that are used in the industry and each one of

them has its own unique usage and advantages. Reduced Instruction Set Computer

(RISC) is one of them. It has fewer cycles per instruction. Instructions are simple,

fewer, more general and usually fixed-length. Registers are also fixed-length,

generally. This type of ISA is easy to develop control logic on, requires lower area,

lower power. But besides its advantages, it has low performance. RISC-V is an open

standard ISA based on established RISC principles. To be able to accelerate the NTRU

implementation, some complex instructions would be useful. We are planning to create

custom instructions that consume less clock cycles to execute operations in the NTRU

algorithm.

1.1.4 How to extend ISA?

The decision for the custom instructions will be done by detecting operations that are

repetitive and spend many clock cycles in the NTRU C code. Since simple instruction

architectures will not be suitable to execute them, we will extend the execution block

in the core by creating a custom module that can be execute the instructions we will

create.

 Mathematical Background for NTRU Algorithm

 NTRU differs from the previously found public key cryptosystems by the foundations

it is based on which is the shortest vector problem in a lattice[3]. NTRU is shown as

an alternative to Rivest-Shamir-Adelman (RSA)[7] and Elliptic Curve Cryptography

(ECC)[8] by using a lattice-based approach to cryptography.

17

A truncated polynomial ring 𝑅 = 𝑍[𝑋]/(𝑋ேିଵ) that is created based on the determined

parameters form the backbone of the steps in NTRU cryptosystem. During the process,

different polynomials are created by using the 𝑅 and all of them have to have integer

coefficients and degree at most 𝑁 − 1.

𝑃(𝑥) = 𝑎 + 𝑎ଵ𝑥 + 𝑎ଶ𝑥ଶ + ⋯ + 𝑎ேିଵ𝑥ேିଵ

1.2.1 NTRU keys and parameters:

𝑁 - the polynomials in the ring R have degree $N-1$. (Non-secret)

𝑞 - the large modulus to which each coefficient is reduced. (Non-secret)

𝑝 - the small modulus to which each coefficient is reduced. (Non-secret)

𝑓 - a polynomial that is the private key.

𝑔 - a polynomial that is used to generate the public key h from f (Secret but discarded

after initial use)

ℎ - the public key, also a polynomial

𝑟 - the random ``blinding'' polynomial (Secret but discarded after initial

use)

𝑑 - coefficient

1.2.2 Key generation

If two person named Alice and Bob are communicating through a secure channel,

sending a secret message from Alice to Bob requires the generation of a public and a

 (1.1)

18

private key. While the public key is known by both sides, private key should only be

known by the receiver[9].

As the first step, two polynomials named 𝑓 and 𝑔 in the 𝑅 are selected randomly.

Chosen polynomials with degree at most 𝑁 − 1 with coefficients [−1,0,1] must be

invertible. Then, the inverse of 𝑓 according to modulo 𝑞 (𝑓) and modulo 𝑝 (𝑓) should

be calculated. Operations, especially in the decryption part, will be depend on the 𝑓

and 𝑓 satisfying the equations:

In the third step, public key ℎ will be calculated with the equation ℎ = 𝑝 ∗

൫𝑓 ∗ 𝑔൯ 𝑚𝑜𝑑 𝑞. 𝑓 and 𝑓 are used to create a longer and protected private key.

1.2.3 Encryption

1.2.4 Decryption

Private key that Bob have is the combination of 𝑓 and 𝑓, as mentioned before, Private

key is the only information Bob has aside from the encrypted message. He can try to

solve the message by using 𝑓. First, he multiplies the 𝑒 and 𝑓, represent the result with

a polynomial 𝑎.

𝑓 ∗ 𝑓 = 1 𝑚𝑜𝑑 𝑞 (1.2)

and

𝑓 ∗ 𝑓 = 1 𝑚𝑜𝑑 𝑝 (1.3)

As the beginning, message to be transmit will put in the form of polynomial and

represented with m, with coefficients [−1,0,1].

𝑚 = 1 − 𝑋ଶ + 𝑋ହ − 𝑋 + 𝑋ଵ (1.4)

Than, a ‘blinding value’ is chosen randomly to obscure the message. Blinding value is

a small polynomial that represented with 𝑟.

𝑟 = 1 + 𝑋ଵ + 𝑋ଶ − 𝑋ଷ − 𝑋ଽ (1.5)

Last step of the encryption is to calculating the encrypted message by the equation:

𝑒 = 𝑟 ∗ ℎ + 𝑚 𝑚𝑜𝑑 𝑞 (1.6)

𝑎 = 𝑓 ∗ 𝑒 𝑚𝑜𝑑 𝑞 (1.7)

𝑎 = 𝑓 ∗ 𝑒 𝑚𝑜𝑑 𝑞 (1.7)

19

 Preparing Work Environment

 In the final version of this project a modified RV32IMC RISC-V core is implemented

on the Digilent FPGA card Nexys 4 DDR[10]. However, before this selection, the first

candidate was a RV64GC core. In the following sections, preparation for the

implementation of these candidates are given. The implementation of both candidates

are done using Xilinx Vivado 2018.1[11] and the reason behind it is to automatizing

the synthesis, implementation, place and route processes and using the generate bit-

stream feature to program the FPGA card. In order to focus the main effort on design

and not dealing with side problems such as driver failures and tool bugs, a Linux based

system is installed on the computers from the beginning.

1.3.1 Installing Ubuntu 16.04 and required programs

If equation is rearranged with the equality of e:

𝑎 = 𝑓 ∗ (𝑟 ∗ ℎ + 𝑚)𝑚𝑜𝑑𝑞 (1.8)

𝑎 = 𝑓 ∗ ൫𝑟 ∗ 𝑝𝑓 ∗ 𝑔 + 𝑚൯𝑚𝑜𝑑𝑞 (1.9)

𝑎 = 𝑝𝑟 ∗ 𝑔 + 𝑓 ∗ 𝑚 𝑚𝑜𝑑 𝑞 (1.10)

Instead of choosing the coefficients of a between 0 and 𝑞 – 1, they are chosen in the

interval [−𝑞/2 , 𝑞/2]. Aim of this is to prevent that the original message may not be

properly recovered since Alice chooses the coordinates of her message 𝑚 in the

interval [−𝑝/2 , 𝑝/2]

𝑏 = 𝑎 𝑚𝑜𝑑 𝑝 (1.11)

Since modulo of 𝑝𝑟 ∗ 𝑔 equals to 0,

𝑏 = 𝑓 ∗ 𝑚 𝑚𝑜𝑑 𝑝 (1.12)

Now, Bob can use the 𝑓 to recapture 𝑚, by multiplication of 𝑏 and 𝑓.

𝑐 = 𝑓 ∗ 𝑏 = 𝑓 ∗ 𝑓 ∗ 𝑚𝑚𝑜𝑑𝑝 (1.13)

𝑐 = 𝑚 𝑚𝑜𝑑 𝑝 (1.14)

Next step will be calculating 𝑎 modulo 𝑝, result will be represented with polynomial

𝑏:

20

 In order to run the project, Ubuntu 16.04.5 LTS [12] is chosen as the default operating

system. Linux based operating system is chosen because complex open source projects

like processors needs to have a building scripts and their own tools in order to work

properly. This situation requires certain packages and tools like CMake[13] and RISC-

V GNU Toolchain [14]. Installing these requirements is a lot more easier in Linux

based systems than Windows based ones.

 After installing Ubuntu, Vivado 2018.1 should be installed from the Xilinx website.

After its installation, in order to run the program effortlessly, one should edit her

.bashrc file in the /home directory.

 source /opt/Xilinx/Vivado/2018.1/settings64.sh

This ensures when the terminal is called in the system, settings64.sh script would

always be entered in the background. In addition to that, Vivado 2018.1 requires

external drivers to be installed in order to recognise the FPGA cards from Digilent.

For Nexys 4 DDR, following drivers need to be installed into the system.

 • Adept 2.16.1 Runtime, X64 DEB

 • Adept 2.2.1 Utilities, X64 DEB

After installing Vivado 2018.1 and Ubuntu 16.04 with the required packages, one

could begin to implement an open source processor as a Vivado project. As it is

mentioned in the previous section, there are many open source RISC-V processors in

the internet. Initial aim of this project was to implement a 64-bit RISC-V processor

because of the large number of bits in the cryptographic algorithms would make use

of 64 bits fully. So, the first candidate to implement was lowRISC[15] chip with

Rocket core. The core is RV64GC which means it is 64 bits and includes G and C

21

standard extensions. In the next sections, implementation steps for its FPGA project

and the reason behind the switching of the processor is explained.

CMake must be installed to compile and install complex projects and programs to the

system. To install CMake Linux version 3.13.2, it can be downloaded from

https://cmake.org/download/ [13] . After downloading the files, the commands below

must be entered inside the download folder to the terminal

 ./bootstrap

 make

 make install

1.3.2 Installing RISC-V GNU toolchain from GitHub

 Any open source RISC-V processor repository needs its own development tools like

RISC-V compiler, ISA simulator et cetera to be installed. In order to install these tools,

system should have some necessary packages. The command below does the

installation of the necessary packages:

 sudo apt-get install autoconf automake autotools-dev curl libmpc-

dev libmpfr-dev libgmp-dev gawk build-essential bison flex

texinfo gperf libncurses5-dev libusb-1.0-0 libboost-dev

Also, in order to use GitHub effectively in Linux operating system, git tool needs to

be installed. So, in the first step one should open a terminal and enter this command:

 sudo apt-get install git

22

When every necessary package is built on the system, one could start to install the

RISC-V tools. This project includes C programs to be run in the digital system itself.

That means the compiled version of the C code should not include any libraries in the

Linux operating system. In order to ensure there is no such error in the tools, one

should install the tools with their cross-compilation bare-metal version. Normally,

computers compile and run their programs for their own system. Cross-compilation

means the compilation process is done in another system (in this case Linux operating

system) for the processor.

In order to install the compiler, one should build the RISC-V GNU Toolchain using

the commands below:

 git clone --recursive https://github.com/riscv/riscv-gnu-toolchain

 sudo apt-get install autoconf automake autotools-dev curl python3 libmpc-

dev libmpfr-dev libgmp-dev gawk build-essential bison flex texinfo gperf

libtool patchutils bc zlib1g-dev libexpat-dev

 ./configure --prefix=/opt/riscv --with-arch=rv64gc

 make

This processes takes 20-30 minutes total depending on the performance of the

computer. The last command installs the RV64GC compiler. However, when the target

processor changed to its final version RV32IMC a slight modification needed to be

done. The modified command can be seen below:

 ./configure --prefix=/opt/riscv --with-arch=rv32imc

 make

23

After installing the toolchain, now by calling:

 which riscv32-unknown-elf-gcc

One could make sure the compiler is installed correctly.

After the installation of all the necessary programs for the hardware part of this project,

the preparation of the software development environment may begin.

1.3.3 Preparing the software development environment

NTRU has many open source C code implementations ranging from key generation,

encryption and decryption functions to the whole cryptosystem. In this project aim was

to increase the performance of NTRU in the encryption, decryption and key generation

functions.

In order to work and test different C codes an Integrated Development Environment

needs to be installed to the system. CLion 2019.3.1 was te choice for that role because

of its ease of use and its own profiling tools. In order to install CLion to Ubuntu

16.04LTS one should download the compressed file and enter the following

commands:

 sudo tar xvzf CLion-2019.3.1.tar.gz -C /opt/

 sh /opt/clion- 2019.3.1/bin/clion.sh

After installing CLion to the system, it is now possible to create and edit C projects

with it. However, one small installation needs to be made in order to use the CPU

Profiler tool of the program.

 uname -r

This command returns the exact version of the operating system, which will be used

when installing the dependencies of the Profiler tool. In the systems that this project is

done, the version was 4.15.0-106-generic

 sudo apt-get install linux-tools-4.15.0-106-generic

After that upon the first launch, CLion asks for the kernel variable changes. The reason

behind that is to record the changes in the kernel while being not the root user. Since

the profiler essentially analyzes the kernel it is important to record the logs of it.

24

Figure 1.1: CLion Change of Kernel Variables Prompt

 IMPLEMENTING AN OPEN SOURCE RISC-V PROCESSOR ON FPGA

With the developing technology After the preparation of the work environment

regarding hardware and software design, the implementation process for the open

source RISC-V processors begun. In this aspect, several candidate processors and

system on chips have been considered. These are Ariane core, Ibex (formerly Zero-

riscy) core and LowRISC SoC which uses rocket core.

Figure 2.1: List of SoC and Cores That Uses RISC-V ISA

Ariane is a 64-bit RISC-V core which implements six stage pipeline structure with

single issue, in-order architecture. LowRisc SoC also uses a 64-bit RISC-V core

however implemented core on the system, rocket core, has not a six stage but a five

stage pipeline structure. There are more than a dozen of different cores from different

25

companies with different hardware description languages. So, better documented and

more comprehensible cores would be the bigger candidates in this project. It is decided

to use more simple core because it is thought that the modification of the core will be

complex enough.

 Implementing LowRISC Chip With Rocket Core

In this project, first candidate system for the modification of the processor was the

system on chip designed by lowRISC organisation. The name of this SoC is lowRISC-

Chip and it contains a core,

After that, in order to use the open source chip it is needed to clone the project files to

the computer. The command below does the cloning:

 git clone -b refresh-v0.6 --recursive https://github.com/lowrisc/lowrisc-

chip.git

After installing necessary tools, packages and Vivado 2018.1 finally the project files

for the SoC can be built. Running the commands below in the /fpga/board/nexys4 path

results with the verilog files and the vivado project of the system as a whole.

 make vivado

 make project

 Since the output Verilog files of the whole project is automatically generated from

Chisel it is assumed that the editing of the Verilog codes would not be difficult. After

closer inspections in the Rocket Core, it is seen that the assumption is simply wrong.

The reason behind that is the nature of the connections in the Verilog files are highly

complex because the main idea is to write them in a higher level hardware description

language, Chisel. Since learning a new hardware description language from scratch

and editing the processor using that language is beyond the scope of this project it is

decided to move on to another open source RISC-V processor named Ibex.

 Implementing Ibex Core

32-bit Ibex[15] core is chosen as a suitable RV32IMC core because of its hardware

design language, SystemVerilog[16], and detailed documentation. Architecture of

Ibex can be seen in Fig.2.2

26

Figure 2.2: Modified Architecture of Ibex

Core simply takes instructions from an instruction memory and acts like a two-stage

pipeline processor. Which means it fetches the instructions and buffers the inputs of

the decoder. However, there is no buffer for the execution stage of the processor which

makes the design two stage. Ibex has its own dependencies and in this section all the

steps that are executed will be explained. However, the modifications on the core and

how its done will be explained in the next sections.

The Ibex project needs srecord, fusesoc and pip to be built. In order to install these

dependencies one should enter the commands:

 sudo apt install python-pip

 sudo apt-get install srecord

 sudo pip install fusesoc

After installing the dependencies, first thing to do is to clone Ibex repository to the

desired path using the following command:

 git clone --recursive https://github.com/lowRISC/ibex

 After cloning the repository by going into ibex/examples/fpga/artya7/ directory and

entering the following command would ensures the vivado project to be built with an

example of generated bitstream with the altering led lights in the Nexys 4 DDR FPGA

card.

 make build-arty-100 program-arty

27

 After this command the generated Vivado project will include synthesis,

implementation and bitstream of the example described above. The whole project

includes a memory which acts like both instruction and data memory. By changing the

memory path in the SystemVerilog file of the memory, core could execute any

compiled program at this point. How to run a program with this method will be

explained in detail in the following sections.

 RUNNING C PROGRAMS ON RISC-V CORE AND OPTIMIZATION OF

THE NTRU C IMPLEMENTATION

After building the the RISC-V core project. The processor fetches the instructions from

the memory and executes them in order while writing up to the register file and the

memory itself. In order to see this process, behavioral simulation of the system needs

to be done. The behavioral simulation is chosen for analyzing the inner works of

processor and the intricacies of the whole process. Since behavioral simulation allows

for the inspection of the intermediate signals in the design it is used for the verification

of the both modified and unmodified versions of the processor. First task to do after

the implementation was to compile some example C codes and verify the inner

workings of the processor. In the next section how to generate a memory file from a C

program will be explained.

 Compiling C Codes And The Structure Of Generated Memory

Generation of the compilation files including executable linked file (.elf), disassembly

file (.dis), binary file(.bin) and memory file (.mem) is done by a script which is in the

Makefile format. The script needs three inputs in the same directory with itself. First a

C program, in the example makefile script, the C program is named "2d_array". After

that, in order to show where to put the instructions into the memory and setting up the

general flow of the memory structure a linker script and a C runtime file is needed.

The example makefile script can be seen in the appendix. In this project, the linker

script and C runtime file from the demonstration example named link.ld and crt0.S is

used.

28

Using this Makefile, one can generate the memory file of any C program by simply

entering the command below:

 make

Likewise, simply entering the command below would delete the generated outputs of

the script:

 make distclean

This script mainly uses riscv32-unknown-gcc compiler that is built in the previous

section. This compiler simply turns C program to an Assembly program and then

generates binary instruction codes from each instruction one by one. After that process

it simply divides the binary file into 32-bit hexadecimal parts.

When the generating binary codes of the instructions, compiler does a simple

comparison using opcode mask and opcode match method. In this method fetched

instruction is XORed by all the opcode matches. After that it is masked by applying

opcode mask bits. If it is equal to zero, the generated opcode would be correct. Opcode

matches are unique codes for each opcode spaces. The term opcode space and the

opcode space of custom instructions will be explained in the later sections. The same

method also applied for recognizing the individual instructions. That means every

instruction has its own mask and match code for generating the binary files.

More details about the instruction generation and manipulation of the compiler in order

to generate binary codes of custom instructions will be explained in the "Instruction

Set Extension" section.

 Running C Program in RISC-V Core

After generating the necessary memory file for the C programs, one should include the

destination of the memory file as a variable in the Vivado project settings.

SRAM_INIT_FILE variable is created for that reason and it simply initializes the

memory structure with the generated instructions. After setting the variable as desired,

core would perform all the instructions given. In order to analyze the core, it is decided

to work with the behavioral simulation. Specifically, input and output signals of the

external memory, execution stage of the core and the outputs of the decoder and

register file are inspected with the waveform. In one of the first example C program, a

29

simple addition of two 32-bit variables is tested. The result of these two variables are

stored in a distinct RAM address.

Figure 3.1: Simple Summation C Program for 32-bit RISC-V Core

Reason for trying this kind of simple C programs is simply for trying to understand the

overall process of the core by following most of the signals from fetch to write back

stages. After successfully tracing necessary signals, it is decided to move onto finding

the implementation of NTRU algorithm in C programming language.

 Implementation and Optimization of the NTRU Algorithm in C

Programming Language

As its mathematical background and history explained before, NTRU is a candidate

for post quantum cryptography public key standard. This means it needs a lot of

implementation which are secure, optimized and open source. Since the complex

mathematical background of the algorithm with its need for array like implementation

is out of the scope of this project, it is decided to implement a ready to use NTRU C

code. In this effort two main candidates are considered. First one is named

"libntru"[17] and it is a highly optimized version of NTRU algorithm for both Java

and C programming languages. However, compatible compilation of this

implementation was not successful. The reason for that was the high instruction

memory and external library usage of the implementation. The reserved memory for

the instruction memory is 48kB and for the stack is 16kB in this project and because

it is a hardcoded limitation, libntru implementation is eliminated as acandidate. The

second option is to use the custom implementation of NTRU algorithm with 48bit

message length and parameters N = 53, p = 3 and q = 101. Since this implementation

30

is written by our faculty member Res. Assist. M. Sc. Latif Akçay, it was fairly simple

to troubleshoot and integrate it to the system. However, it was unoptimal since it is

mainly designed for functional correctness.

3.3.1 Optimization of the c program

The optimization of the code started with identifying the flow of the code. More than

dozen of sequential for loops have been found in the code itself. Since the

implementation is fairly modular with fundamental functions like polynomial

multiplication and polynomial division, optimizing with a simple principle would yield

significant improvement in the performance. The whole optimization step consists of

first, reducing the number of for loops by combining unnecessary ones into one loop.

Second, removing the printing statements which are there for debugging purposes. At

last, removing residual variables for better memory usage is done. An example figure

for the optimization process involving before and after of a snippet of the code for

modulus operation in arrays is given in Figure 3.2

Figure 3.2: Example of Optimization Process in the Implementation

Both the optimized and unoptimized version of the program is run in the computer

before running it in the processor. The reason for that is the ineffective speed of the

behavioral simulation. In detail, the whole program is so complex that in order to

simulate the full operation with behavioral simulation, one may use a very high

performance computer. As a result, the optimized and unoptimized versions of the

program is compared with the designing computer itself. The result shows that

optimization process caused a performance gain of 14.48 percent.

31

Figure 3.3: Speed Difference Between Optimized and Unoptimized Version

 Profiling the NTRU C Implementation

In order to continue the next step of the project which is implementing custom

instructions to the processor, fundamental step to take is choosing the custom

instructions. Since this project uses the implementation with the C programming

language and there was no realistic way was found for this project to edit the compiled

executable linkable format, the profiling step of the project took place in the C program

too. The editing of the executable linkable format (.elf) file was necessary because the

binary code of the whole program is generated in that file. In other words, for changing

the content of the instruction memory and adding custom instruction codes to it one

should try to edit the source of that generated memory. However, it is found a more

simple and high-level way to approach this problem. By editing the C program and use

the compiler in such a way that generates the desired custom instruction codes there

was no need for being involved in complex problems. The details about this solution

will be explained in the next section with the subsection of inline assembly method.

 In order to find the best suiting instruction for this application, it is thought that

finding the most frequent function and trying to reduce it to an instruction would be

an ideal scenario. So, the profiling of the optimized code is done by a script that uses

a counter to record how many times a particular part of the program is called. The

script is used with the commands:

 riscv32-unknown-elf-gcc -g -O3 <name of the c program> -o <desired

name of the object file>

 riscv32-unknown-elf-gdb --command= <name of the gdb script>

32

Figure 3.4: Part of the Profiling Script for C Program

 The result shows that the polynomial multiplication function in the code is called 535

times while the polynomial division function is called 136 times. These functions

mainly include basic array arithmetic operations like element-wise addition, element-

wise subtraction and element-wise equalization. After confirming the counter results

again with the CLion profiler tool, the process for implementing these array operations

into the instruction set begun

 INSTRUCTION SET EXTENSION OF RISC-V PROCESSOR

After profiling the optimized NTRU code and finding the candidate instructions to add

to the ISA itself, different methods for implementing is discussed. In order to get a

broader view for this problem, in the first subsections some important terms is needed

to be explained. The first thing to choose was the type of the custom instructions in

order to generate their machine codes. R-type instructions, as shown in the Figure 4.1

is chosen due to their availability for two operands per instruction.

33

Figure 4.1: Instruction Format of R-type Instructions [18]

 Software Part

4.1.1 Opcode space

Opcode Space[18] is a term for a group of instructions that have the same instruction

type and enable the same sort of response in the core to some degree. For example, all

32-bits ALU instructions are in the same opcode space, OP_32[18]. There is also

three different opcode spaces for customized instructions. In this project, opcode

space CUSTOM_0 is used.

4.1.2 Inline Assembly method

Modifying the compiler to include the custom function and adding a .insn directive to

the source code is considered as two different options for changing the machine code

of the project. Between these two options, using .insn directive is picked for its ease

of use. The directive is an assembly directive; in order to combine it with the C code,

inline assembly method[19] is used.

Generally the inline term is used to instruct the compiler to insert the code of a function

into the code of its caller at the point where the actual call is made. The benefit of

inlining is that it reduces function-call overhead. As can be understood from the

definition, inline assembly is a set of assembly instructions written as inline functions.

Inline assembly structure is created and used for each instruction with the name

instr_[instruction]. instr_equ can be seen in Fig. 4.2 as an example. asm stands for

'assembly' and volatile indicates that the variables can be modified from outside of the

C program. ".insn r CUSTOM_0, 0x7, 5, %0, %1, %2 \n" is the assembly code that

define a R-type custom0_rd_rs1_rs2 instruction. Registers can be appointed

automatically by % symbol. 0x7 is the funct3 value which specify that instruction will

take 2 registers (rs1 and rs2) and returns to a destination register (rd). 5 is the funct7

value. funct7 is used for specifying the individual instructions in the same opcode

space. In the project, 0x03 implies array addition, 0x05 implies array equalization and

0x06 implies element-wise modulus operation. First of the two lines below the

34

assembly code indicates the output operands and second indicates the input operands.

Result of the a1 and a2 arrays will be written to the a1 in this case.

Figure 4.2: instr_equ Function with the Inline Assembly Method

4.1.3 Chosen instructions and their types

There are different instruction formats for different needs and for a custom instruction,

R-type instruction format is chosen due to its capability of using two different source

registers. Other types are in lack of this property or are not in a proper structure. The

third register in R-type, destination register, is simply equals to the first operand in our

structure since, all of the added custom instructions were designed to be self returning

instructions. However, using the methods mentioned above on any type of instruction

could be added to the instruction set simply by changing their parameters in inline

assembly code.

4.1.4 Implementing the custom instructions to the C programs

Parallelization is a powerful application for increasing the timing performance. To be

able to execute parallelization, we imagined of a structure that processes every element

of the source array at the same time. But it was not possible due to limitations of the

instruction structure. We can send maximum two source operands(rs1 and rs2) and

receive one result (rd) by using R-type instruction structure. Therefore it was not

possible to design a digital system to calculate all the elements, both for the huge area

cost and the insufficiency of the number of operands. For example for a simple array

operation one might need three operands: array1, array2 and length of the both arrays.

Since the last operand, length cannot be fit into the instruction itself we decided to

implement its value in the hardware by hard-coding it to the module. The detailed

explanation for this implementation can be found in the next chapters. There are many

parts in the optimized C code with "for loops" where basic operations done for

35

elements of arrays. The solution we found is to using addresses of the source arrays

and lengths of them in a wrapper function since the instruction itself could not contain

all three information. The detailed explanation of the hardware implementation of this

part is in the hardware section.

As can be seen from Figure 4.2, custom instruction with the inline assembly method

contains, first element addresses of the arrays a1 and a2. These are assigned to the

source registers. However, there is a difference between the instr_mod and the other

two. A second array is not needed in array modulation. A second variable called mod

will be used as the second input and is not a pointer. Based on this mod value, the

modulus of each array element will be calculated. In the hardware part which will be

explained later on, three elements of each array are processed by calling

instr_[instruction] functions.

4.1.5 Developing and testing the instructions using simple C programs

In the previous subsections, we said that instr_equ is helpful to process three elements

of each array at the same time. But in the C code of the NTRU algorithm, there are

many elements with different array lengths use the custom operations. To be able to

execute operations on arrays that have more than 3 elements and with different

capacities, we create a new function structure. array_equ shown in the Fig. 4.3 created

to execute equilization and is one of the three functions that the structure is used.

Figure 4.3: array_equ Function within the C Code

36

In array_equ, there is a switch structure that helps to decide how many times to call

the instr_equ. If length is divisible by 3 without remainder, instr_equ will called

length/3 times, since instr_equ is handling 3 array elements from each array at a time.

If length is divided by 3 with remainder 1, instr_equ will called (𝑙𝑒𝑛𝑔𝑡ℎ − 1)/3 times

and last elements will be equilize by operand '='.

If length is divided by 3 with remainder 2, instr_equ will called (𝑙𝑒𝑛𝑔𝑡ℎ − 2)/3 times

and last two elements will be equilize by operand '='.

This function differs for array_mod. Like the instr_mod, mod value will be used

instead of the a2 pointer.

After building the structure for array operations, tested three functions (array_mod,

array_add, array_equ) on simple C codes to see if they are giving the wanted results

correctly. Global array definitions and main part of the C code written for testing,

without instruction definitions for simplicity, is given in the Figure 4.4

Figure 4.4: Parts of the C Code for Testing Functionality of the Added Instructions

2 global arrays were defined at the beginning; array1 and array2. They defined as

having 17 elements and random values are assigned to them. At the main part, custom

instructions were tried one by one.

To see the outcomes, created .mem file for the code and run it on the core in Vivado

environment. By debugging, we made sure that the correct commands were entered in

custom_module written in hardware. By examining behavioral simulation, we made

sure that added instructions are working correctly. Results of the test can be seen in

Figure 4.5.

37

Figure 4.5: Behavioral Simulation of Test C Code

4.1.6 Adding custom instructions to the optimized C code

Optimized NTRU code has many for loops which are aimed to be replaced with the

functions array_equ, array_mod and array_add. Changed the loops with the functions

array_mod(array1, mod, [array_length]), array_add(array1, array2, [array_length])

and array_equ(array1, array2, [array_length]). Final version of the NTRU C code is

given in appendix.

 Hardware Part

After the candidate instructions for extension is chosen, modification in the core are

mainly done to the execution stage of the structure. In order to not get the illegal

opcode error in the core itself, first thing to do is introducing the custom instructions

to the instruction decoding stage of the core. This is done by adding a new state in the

decoder hardware of the core for the specific opcode space CUSTOM_0. Whenever

that opcode space is decoded in the decoder, an enable signal and the specific opcode

of the instruction is sent to the added module in the execution stage.

In the execution stage of the core, there are two modules present in the vanilla version.

First one is Arithmetic Logic Unit(ALU) and another module is for the multiplication

and division module MUL/ DIV. ALU is used for the single cycle operations while

MUL/ DIV is used for multi cycle operations, the detailed explanation for the multi

cycle instructions and their connections will be given in the next subsection. In this

project, a new custom module and a new remainder module are added to the execution

stage for enabling the array operations in the core.

38

4.2.1 Custom Module Design

In the first iteration of the project, all the new instruction is designed in a way that the

all operations would be done in a single custom module. However, in the future

iterations it would be found that the design is mostly inefficient and not using the full

features of hardware design. By simply writing a driver module to pull the data from

RAM and then dispersing the data into a parallel network of modules would be seen

most efficient way to implement the custom instructions.

In the second iteration of the design, making use of the already existing MUL\DIV

module would seem appropriate because of its advantage for the area problem.

However, even adding two new modules of MUL\DIV would create a lot bigger

designs. In order to solve that issue, the search for the specific part that is responsible

for the remainder instruction begun. Upon finding that part of the module, creating a

new module that uses the specific part was seem to be enough. After doing the testing

of that design it is found that the inner architecture of interconnected MUL\DIV

module and ALU module was the main problem for the area. Since the remainder

instruction part uses ALU to do its basic calculations, in order to do the full

parallelization of the process, one has to multiply the number of ALU's as well. Since

this is a pretty big addition to the execution stage and it would complicate the system

too much the project moved to its next and final iteration.

In the final version of the project, two new modules are added in the execution stage

of the core. Input signals of the execution stage is divided between the original

modules and the custom module. Outputs of the execution stage is chosen in respect

to the enable signal that comes from the decoder. The diagram that summarizes the

connection between the sub-modules of execution stage module is shown in the Figure

4.6. Remainder module is a module that is used for doing the modulo operation using

the non-restoring division algorithm implementation[20]. The reason for not using the

inherent REM instruction of RISC-V is that the core itself use both ALU and

MUL\DIV modules to execute REM instruction. Thus, parallelization of this structure

is costly in terms of area usage. In order to increase the performance by doing the same

operation in the same time, three instances of this module is generated in the execution

stage.

39

Figure 4.6: Diagram of Execution Module

Another module named custom_module acts like a driver between the memory of the

system and the remainder module. Also, it does simple algebraic computations like

additions and equalization. Main structure of the module consists of eight states, which

are shown in Figure 4.7.

Figure 4.7: State Flowchart for Custom_Module

State zero initializes the counter, temporary registers etc. First state is for sending the

address information to the memory and retrieve the corresponding data. In order to

read from the memory, one clock cycle has to be passed. So, second state is used for

that delay. Third state is for loading the incoming data into local registers datareg_1,

datareg_2. This loading sequence is repeated until the capacity of the local registers

are full. In this project, it is decided to use three data at a time because of the trade-off

between area and increase in performance. Fourth state is for sending the modulus

40

operands to remainder instances or doing the addition. Action in the fifth state is

determined by the unique opcode of the instruction. In the fifth state results are stored

in another local register called datareg_3. Contents of this register is sent to the

memory of the system by changing the control signal check and return the module to

state 1. After valid signal is set to high, the module goes into the end routine, from

which it sends the control signals to the core to end the multi cycle waiting process.

Also, it gives out the final result to the destination register as intended.

4.2.2 Changes for multi-clock cycle operations

Any process that reaches the memory structure and pulls multiple data then executes

the same operation has to be multi clock cycle. That is because of the nature of the

memory structure would allow only one data to be read in one clock cycle. So, there

is a need for implementing multi clock cycle instructions to the core.

The core already has multi clock cycle instructions from MUL\DIV module. An

unfinished instruction should send a signal to the instruction fetch stage of the core,

the reason behind it is that if the fetch stage continues to work after one clock cycle,

decoder receives another instruction and the core moves on to the next instruction to

fetch. That will conclude with erroneous results. The control signals inside of

instruction fetch stage are modified to include the custom module enabling signals and

another signal that indicates the validity of the custom module outputs. Whenever the

custom module is enabled, core would enter a waiting stage just like if it receives a

MUL\DIV enabling instruction. Moreover, parallel to MUL\DIV module when the

custom_valid signal is high the core would start to fetch and decode instruction from

where it left off.

4.2.3 Connections with RAM and other modules

In this section, all the connections of custom module will be listed with their brief

explanations.

41

Figure 4.8: Input and Output Ports of Custom Module

 As it can be deducted from their names array1_addr and array2_addr ports

of the module corresponds to the two operands of the instruction. For the

modulation instruction array2_addr port acts like it is the divisor.

 clk port takes the same clock signal as the execution stage input clock.

 custom_en is the active high enable port that ensures the module only

activates when the relevant instruction is decoded.

 custom_mod_result ports are the inputs to custom module that comes from

the custom written three remainder modules. Remainder modules would

take their inputs from the custom module, calculates the remainders and

send it back to custom module as explained in the hardware part section

before.

 custom_op is the port for specifying the individual instructions. The

individual opcodes for instruction would be decoded in the decoder. So,

this port gets its input from the decoder.

42

 mod_valid is the port that checks if the remainder modules provide the

valid results at the same time. In order to check that, this port takes its input

as the result of three input and gate which includes valid signals from all

three modules.

 ram_data_in is the port for pulling the data from RAM module.

 custom_data is the output port for pushing resulting data to RAM module.

 custom_final is the output port that implies the multiclock instruction is

finished. Hence, it is connected to the instruction fetching module and

related to enabling the stall signals of the core.

 custom_mod_o is the output port that enables the all three remainder

modules when the opcode for modulus instruction comes.

 custom_op_a_o and customopbo output ports are the inputs to the

remainder module as described above.

 custom_result is the output port that sends the address of the first array

since all the instructions are self returning type.

 custom_valid is the output port for indicating the results needed was

calculated thus controlling the write enable port of the RAM module.

 ram_addr_out is the output port for controlling the RAM module address

input.

 PERFORMANCE & TIMING ANALYSIS

We have tested the custom instruction's functionality as mentioned previously. And

after the structural improvements on both software and hardware, we had the

implementation of the NTRU C code with custom instructions on the modified core.

In this section, we will explain how time analysis is done on the instructions and whole

structure. Also, the results of these analyzes will be shown.

43

 Benchmark C Program

Benchmarking[21] can be defined simply as measuring relative performance of an

object by using a computer program or a set of programs. To be able to do timing

analysis, we have used this method.

The C code, written for testing the functionality of the custom instructions, is explained

before in the 'Developing and Testing the Instructions Using Basic C Programs'

subsection. This code is updated to measure how fast each specific operation was

compared to using basic C operations such as '+', '%' and '='. There were two arrays

defined globally: array1 and array2. Another global array named resultkon is defined.

resultkon defined as a global array because, we wanted the data to be saved in RAM,

such as array1 and array2. In this way, we can see the test signals at the output. The

resultkon, which contains 1 element, was used for a slightly more specific job than

others.

In the main part of the code, the custom operations were called in order for testing.

However, when written in this way, only the result of the last operation could be

observed; It was not possible to measure how long each process took. Therefore, by

making use of the sequential working feature of the C programming language, some

specific values are assigned to the resultkon array after each custom instruction called.

Thus, resultkon served as a control signal here. As seen in the Figure 5.1 the array_add

command is called between the assignments of the 0xdebdebde and 0xdcdcdcdc

signals to the resultkon. It was assumed that the difference between the times when

two specified control signals were seen at the output, was equal to the time it took to

sum two 17-element arrays. Similarly, how many clock cycles the modulation and

equalization processes took by using two 17-element arrays were measured.

44

Figure 5.1: Main Part of the Benchmarking C Code

A comparison of the implementation of these processes with the custom operations

and the basic C library is given in Table

Figure 5.2: Number of Clock Cycles Comparison Between the Custom Instructions
and Basic C Operations

 Behavioral Simulation to Check the Results

 After the behavioral simulations on the trivial C code examples, it's time to test the

final version of the NTRU C code. When we used behavioral simulation, see that heavy

computing need of it would make simulating the whole operation practically

impossible.

 In order to solve this problem, NTRU implementation has to be tested in the real-

world conditions. An FPGA card is used to implement the whole project and run the

C code on the core. The card we used was Nexys 4 DDR which is in Xilinx's Artix-7

FPGA family.

45

 Using 7-Segment Display and LEDs to See the Results on Board

 There were some changes needed in RAM(ram_1p) and clock generator

(clkgen_xil7series.sv) module to be able to create bitstream and run it on the board.

Assignment to the CLKIN1_PERIOD in the clock generator is needed only when

behavioral simulation is running.10 assigned to it because of the clock period

determined in the testbench module. As for RAM, created .mem file is read by the

$display and $readmemh commands in [initial begin end] block for the behavioral

simulation. This part replaced with a ['ifdef ... 'endif] block that helps reading the

SRAM_INIT_FILE for creating bitstream. SRAM_INIT_FILE which shows the .mem

file, can be changed from the Tools/Settings/General/Verilog options/Defines.

 The memory structure of the project is quite simple, it has the same memory for

both data and instructions. All global arrays that are in the C code is saved in a constant

address in the memory. Data output of the core which changes rapidly is also saved in

the memory and we wanted to observe changes on it during the NTRU algorithm. We

had two main ideas to observe the output that named 'data_wdata_o': Using LEDs on

the FPGA board and observe the output on the 8-digit 7-segment LED display. But,

data changes so fast that human eye could not catch and distinguish the changing

values on both of them. Observation problem is solved by using Integrated Logic

Analyzer (ILA) IP.

 Usage of ILA IP

 ILA[22] is a module that was used for measuring and reading the values from the

project. In order to see the memory input and core output of the project, one probe of

the ILA is connected to the wire that connects both of them in the top module.

 When FPGA board programmed with the bitstream, a dashboard is opening in the

hardware manager. We used trigger setup and waveform in the dashboard options list.

 As mentioned before, main function of the C code includes both key generation,

encryption and decryption algorithms for NTRU. In an effort to measure the

performance improvements that are achieved for individual parts of the cryptosystem,

a specific data assigned to our control signal resultkon at the beginning and the end of

the each function.

46

 By simply checking the number of clock cycles or time between the two uniquely

designated signals, an accurate measurement is concluded.

 This check is done using trigger setup and waveform. Trigger setup used to detect a

specific value in the probe of the ILA. Our control signal connected to the probe with

the name leds and it is what we are looking for to see resultkon values assigned in the

C code. In the waveform, looking for the leds and a clock counter to detect the each

values time to come.

 Dashboard screen can be seen in the Figure 5.3. Different control signals are looked

for by changing the leds value in the trigger setup code.

Figure 5.3: Dashboard Screen

There is a reason why we insert the control signal into the functions. When we used it

between calling the functions in the main part, measurements were not logical. So, we

measure a function's time consumption by detecting beginning and end of it.

 Comparing Selected Operation Implementations on Core with and without

Custom Module

Performance measurements are made with the previously mentioned method. First

measurement was the unmodified NTRU code with the modified core. Array

equalization instruction made an unexpected increase in the clock cycles. It is possible

that it is because of the disruption of the optimization process of the compiler, caused

by the new instruction. However, the overall effect of that instruction in the last

configuration shows that it can be a helpful in decreasing the clock cycles in some

combinations. It is also worth mentioning that there was no change in the working

frequency of the core in the case of modified version.

47

 Performance Results

Added Instruction Clock
Cycles

Improvement

Vanilla 329,281,688 -
MOD 255,087,137 - 22.53%
ADD 310,181,046 - 5.80%
EQU 345,059,480 +4.79%

MOD + ADD 224,556,529 −31.80%
MOD + EQU 321,277,395 −2.43%
ADD + EQU 312,095,182 −5.22%

MOD + ADD + EQU 222,705,262 −32.37%

The area measurements are made by implementing unmodified Ibex core and

comparing the utilization report of it with the modified core. To be able to obtain more

ideal results, from the Tools/Settings/Synthesis/Strategy, we choosed

'Flow_AreaOptimized_high'. This property helps Vivado tool to synthesis the project

with high area optimization.

Increase in the usage of Look-up tables (LUT) and flip-flops (FF) are shown in the

Table II.

 Area Usage Results.

Status LUT Increase FF Increase
VANILLA 2991 - 1923 -
MODIFIED 37.44% 25.18% 2929 +52.31%

While the number of clock cycles are decreasing, the critical path of the whole system

does not change significantly. Results of this project shows that with a directly

connected data memory and a custom driver for the data handling in execution stage

would improve the overall performance of the core for NTRU cryptosystem

implementation.

 REALISTIC CONSTRAINTS AND CONCLUSIONS

Post-Quantum cryptography is one of the issues that should be studied in all aspects

for information security both today and in the coming years. Although NTRU is the

oldest of the candidate algorithms, it stands out with its security level and processing

speeds. In this study, new instructions are designed and implemented on an open-

48

source RISC-V processor to speed up NTRU Crypyosystem operations effectively.

For this purpose, NTRU Cryptosystem is firstly designed in C language as a software

application. Then, profiling is applied at a functional level with a classical method to

determine the most frequently used blocks. New instructions that implement the

operations of the detected blocks are designed and integrated into the processor core.

The designs are tested on FPGA and compared with others for all versions. According

to the results obtained, even if the resource utilization increases the design requirement

slightly, it has provided a serious improvement in terms of performance.

 Practical Application of this Project

This project proves that by adding carefully planned, custom instructions to the ISA,

great performance improvements could be delivered with the small changes in the

core. Most of the complex and computing intensive operations could be simplified this

way.

 Realistic Constraints

Most important impact of this project is that it takes advantage of open source

hardware designs. Big open source projects like RISC-V processors give a great

reduction in time spent dealing with the implementation part of the project. This extra

time would allow designers to think more creatively and design products faster.

6.2.1 Social, environmental and economic impact

The society we live in today is called the information society. Military and state

secrets are shared interchangeably, also personal and social information are

shared too. The possibility of leakage of information that have an importance at any

level, raises the need to protect and encrypt said information. It is of utmost

importance to design equipment that will ensure this healthy and secure sharing

environment and implement crypto protocols. Fast and efficient design and

performance of these equipment will make information sharing safer and healthier.

6.2.2 Cost analysis

A FPGA evaluation board that faculty management meets was the essential cost factor

of this project. In addition to the FPGA evaluation board, Vivado development

49

environment is also used for implementing the whole project to the board and

debugging it using ILA. Since the project mainly uses open source sources for its

operating system and other necessities, there are no other cost factor.

6.2.3 Standards

The studies to be carried out in the project will be in accordance with several

different standards. The modified core itself will be in accordance to RISC-V ISA

standards. Hardware implementation will be in accordance with IEEE(Institute of

Electrical and Electronics Engineers) while cryptographic algorithm NTRU will be in

accordance with NIST. Also, it is aimed to modify and optimize the NTRU C

implementation in accordance with C programming language standards. Finally, the

engineering code of conduct is followed throughout the project.

6.2.4 Health and safety concerns

Since FPGA itself is sort of a black box mentality, there is no actual danger to any

human. Also, by the nature of this project the design product is not risky by any means.

 Future Work and Recommendations

The aim for a future project would be to implement a simple communication protocol

that utilizes a lattice-based cryptographic algorithm. Then testing it with two modified

cores and analyzing the performance improvements over the unmodified ones. Also,

another project about porting GCC for any custom instruction would benefit the

designing team greatly. First, the pure software part of the project would not need any

modification unlike the current version of the project that includes inline assembly

directives. Furthermore, it would enable assembly level optimizations in the code.

Because of the inline assembly method and the complexity of the NTRU algorithm,

low level optimizations are difficult to implement manually. Porting the compiler

would help in that case enormously.

50

REFERENCES

Alagic G., Alperin-Sheriff J., Apon D., Cooper D., Dang Q., Liu Y., Miller C.,
Moody D., Peralta R., Perlner R., Robinson A. and Smith-Tone D.,
“Status Report on the First Round of the NIST Post-quantum
Cryptography Standardization Process,” National Institute of Standards
and Technology, Tech. Rep. 8240, January 2019.

Buktu T., Gueron S., S.F.: libntru github Repository,
https://github.com/tbuktu/libntru

CMake, “Cross Platform Make,” https://cmake.org/cmake/help/v3.3/index.html.

Furber S. B., VLSI RISC Architecture and Organization. Routledge, 19 Sep 2017.

Hoffstein J., Pipher J., and Silverman J. H., “NTRU: A Ring-based Public Key
Cryptosystem,” in International Algorithmic Number Theory
Symposium.Springer, 1998, pp. 267–288.

Ibex Documentation, lowRISC, April 22 2020, https://ibexcore.readthedocs.io/
/downloads/en/latest/pdf/.

Integrated Logic Analyzer v6.2, Xilinx, Inc., October 5 2016,
https://www.xilinx.com/support/documentation/ip_documentation/ila/
v6_2/pg172-ila.pdf.

Kanoun K. and Spainhower L., Dependability Benchmarking for Computer Systems,
January 7 2008, doi:10.1002/9780470370506.

Mohseni M., Read P., Neven H., Boixo S., Denchev V., Babbush R., Fowler A.,
Smelyanskiy V. and Martinis J., “Commercialize Quantum
Technologies in Five Years,” Nature, vol. 543, no. 7644, pp. 171–174,
2017.

Nexys4 DDR FPGA Board Reference Manual, Digilent, Inc., April 11 2016,
https://reference.digilentinc.com/ media/reference/programmablelogic/
nexys4ddr/nexys4ddr rm.pdf.

Paar C., “Implementation Options for Finite Field Arithmetic for Elliptic Curve
Cryptosystems,” Presented at the 3rd workshop on Elliptic Curve
Cryptography (ECC 1999), November 1-3 1999,
http://www.cacr.math.uwaterloo.ca/conferences/1999/ecc99/slides.ht
ml.

Patterson D. A. and Hennessy J. L., Computer Organization and Design RISCV
Edition, 1st ed. Morgan Kaufmann, 12 May 2017.

RISC-V, “GNU COMPILER TOOLCHAIN” https://github.com/riscv/riscv-gnu-
toolchain.

Rivest R. L., Shamir A. and Adleman L., “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems,” Communications of the
ACM, vol. 21, no. 2, pp. 120–126, 1978.

51

Sako K., Public Key Cryptography. Boston, MA: Springer US, 2011, pp. 996–997.
[Online]. Available: https://doi.org/10.1007/978-1-4419-5906-5 22.

SystemVerilog, “IEEE Standard for SystemVerilog–Unified Hardware Design,
Specification, and Verification Language - Redline,” IEEE Std 1800-
2009 (Revision of IEEE Std1800-2005) - Redline, pp. 1–1346, 2009.

Ubuntu, “Ubuntu 16.04 Documentation,” https://help.ubuntu.com/16.04/ubuntu-
help/index.html.

Vivado Design Suite User Guide, Xilinx, Inc., April 4 2018,
https://www.xilinx.com/support/documentation/sw
manuals/xilinx2018 1/ug910-vivado-getting-started.pdf.

Waterman A., Lee Y., Patterson D. and Asanovic K., “The RISC-V Instruction Set
Manual,” 2016.

Yanofsky N. S. and Mannucci M. A., Quantum Computing for Computer Scientists,
1st ed. Cambridge University Press, 11 Aug 2008.

Yusmardiah Y., Mohd D., Karimi A., Abdul A. and Kamsani A., “Translation of
Division Algorithm Into Verilog HDL,” ARPN Journal of Engineering
and Applied Sciences, vol. 12, pp. 3214–3217, 05 2017.

Url-1 <https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html.>

52

[1] Yanofsky N. S. and Mannucci M. A., Quantum Computing for Computer
Scientists, 1st ed. Cambridge University Press, 11 Aug 2008.

[2] Mohseni M., Read P., Neven H., Boixo S., Denchev V., Babbush R., Fowler A.,
Smelyanskiy V. and Martinis J., “Commercialize Quantum
Technologies in Five Years,” Nature, vol. 543, no. 7644, pp. 171–174,
2017.

[3] Hoffstein J., Pipher J., and Silverman J. H., “NTRU: A Ring-based Public Key
Cryptosystem,” in International Algorithmic Number Theory
Symposium.Springer, 1998, pp. 267–288.

[4] Alagic G., Alperin-Sheriff J., Apon D., Cooper D., Dang Q., Liu Y., Miller C.,
Moody D., Peralta R., Perlner R., Robinson A. and Smith-Tone D.,
“Status Report on the First Round of the NIST Post-quantum
Cryptography Standardization Process,” National Institute of Standards
and Technology, Tech. Rep. 8240, January 2019.

[5] Furber S. B., VLSI RISC Architecture and Organization. Routledge, 19 Sep 2017.

[6] Patterson D. A. and Hennessy J. L., Computer Organization and Design RISCV
Edition, 1st ed. Morgan Kaufmann, 12 May 2017.

[7] Rivest R. L., Shamir A. and Adleman L., “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems,” Communications of the
ACM, vol. 21, no. 2, pp. 120–126, 1978.

[8] Paar C., “Implementation Options for Finite Field Arithmetic for Elliptic Curve
Cryptosystems,” Presented at the 3rd workshop on Elliptic Curve
Cryptography (ECC 1999), November 1-3 1999,
http://www.cacr.math.uwaterloo.ca/conferences/1999/ecc99/slides.ht
ml.

[9] Sako K., Public Key Cryptography. Boston, MA: Springer US, 2011, pp. 996–997.
[Online]. Available: https://doi.org/10.1007/978-1-4419-5906-5 22

[10] Nexys4 DDR FPGA Board Reference Manual, Digilent, Inc., April 11 2016,
https://reference.digilentinc.com/ media/reference/programmablelogic/
nexys4ddr/nexys4ddr rm.pdf.

[11]Vivado Design Suite User Guide, Xilinx, Inc., April 4 2018,
https://www.xilinx.com/support/documentation/sw
manuals/xilinx2018 1/ug910-vivado-getting-started.pdf.

[12] Ubuntu, “Ubuntu 16.04 Documentation,” https://help.ubuntu.com/16.04/ubuntu-
help/index.html.

[13] CMake, “Cross Platform Make,” https://cmake.org/cmake/help/v3.3/index.html.

[14] RISC-V, “GNU COMPILER TOOLCHAIN” https://github.com/riscv/riscv-gnu-
toolchain.

[15] Ibex Documentation, lowRISC, April 22 2020, https://ibexcore.readthedocs.io/
/downloads/en/latest/pdf/.

[16] SystemVerilog, “IEEE Standard for SystemVerilog–Unified Hardware Design,
Specification, and Verification Language - Redline,” IEEE Std 1800-
2009 (Revision of IEEE Std1800-2005) - Redline, pp. 1–1346, 2009.

53

[17] Buktu T., Gueron S., S.F.: libntru github Repository,
<https://github.com/tbuktu/libntru>

[18] Waterman A., Lee Y., Patterson D. and Asanovic K., “The RISC-V Instruction
Set Manual,” 2016.

[19]Url-1<https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-
C.html.>

[20] Yusmardiah Y., Mohd D., Karimi A., Abdul A. and Kamsani A., “Translation
of Division Algorithm Into Verilog HDL,” ARPN Journal of
Engineering and Applied Sciences, vol. 12, pp. 3214–3217, 05 2017.

[21] Kanoun K. and Spainhower L., Dependability Benchmarking for Computer
Systems, January 7 2008, doi:10.1002/9780470370506.

[22]Integrated Logic Analyzer v6.2, Xilinx, Inc., October 5 2016,

https://www.xilinx.com/support/documentation/ip_documentation/ila/

v6_2/pg172-ila.pdf.

54

APPENDICES

APPENDIX A: The Example makefile Script
APPENDIX B: C Code of the NTRU Algorithm
APPENDIX C: SystemVerilog Codes of the Custom Module and Remainder
Module
APPENDIX D: RTL Schematics

55

APPENDIX A

Figure A.1: The Example makefile Script

56

APPENDIX B

57

58

59

60

61

62

63

64

Figure B.1: C Code of the NTRU Algorithm

65

APPENDIX C

66

Figure C.1: SystemVerilog Code of the Custom Module

67

Figure C.2: SystemVerilog Code of the Remainder Module

68

Figure D.1: RTL Schematic of Custom Module

Figure D.2: RTL Schematic of Remainder Module

Figure D.3: RTL Schematic of Execution Block

Figure D.4: RTL Schematic of Ibex Core

ibex_core

ex_block_i

ibex_ex_block

custom_final

custom_mod_o

custom_mod_result[1][31:0]

custom_mod_result[2][31:0]

custom_op_a_o[2][31:0]

custom_op_b_o[31:0]

custom_result[31:0]

RTL_ADD

RTL_ADD

I1[31:0]
O[31:0]

RTL_ADD__0

RTL_ADD

I1[31:0]
O[31:0]

RTL_ADD__1
I0[31:0]

I1[31:0]
O[31:0]

RTL_ADD__2

I1[31:0]
O[31:0]

RTL_ADD__3

I1[31:0]
O[31:0]

RTL_ADD__4

I1[31:0]
O[31:0]

I2

I0[31:0]

I1[2:0]V=B"101"

O[2:0]

addr_check_i__0

RTL_MUX

I0[2:0]S=5'b00101

I1[2:0]S=default

addr_check_i__1

O[2:0]

addr_check_i__3

RTL_MUX

I0[2:0]S=5'b00110

I1[2:0]S=5'b00101

I2[2:0]S=5'b00011

I3[2:0]S=default

S[4:0]

addr_check_i__4

RTL_MUX

I0[2:0]S=4'b0001

I1[2:0]S=4'b0010

I2[2:0]S=4'b0011

I6[2:0]S=4'b0111

I7[2:0]S=default

O[2:0]

RTL_MUX

I1S=default

I1S=default
O

addr_check_i__7

RTL_MUX

I0S=4'b0001

I1S=4'b0010

I5S=4'b0110

I6S=4'b0111

I7S=default

addr_check_i__8

RTL_MUX

I0S=1'b1

I1S=default

addr_check_i__9

I0S=5'b00110

S[4:0]

addr_check_i__10

RTL_MUX

I4S=4'b0101

I5S=4'b0110

I6S=4'b0111

I7S=default

S[3:0]

addr_check_reg[2:0]

C

CE

D

Q

addr_check0_i

RTL_MUX

I0[2:0]V=B"001", S=1'b1
O[2:0]

addr_check0_i__0

RTL_MUX

I0[2:0]V=B"010", S=1'b1

I1[2:0]V=B"001", S=default

RTL_ROM

RTL_REG

C

CE

D

RTL_RSHIFT

I2

I0[31:0]

I1[1:0]V=B"10"

O[13:0]

array2_addr_temp_i

RTL_ROM

OA[3:0]

array2_addr_temp_reg[13:0]

C

CE

D

Q

array2_addr_temp0_i
I2

I0[31:0]

I1[1:0]V=B"10"

RTL_MUX

I1[1:0]S=default

I1[31:0]S=default
O[31:0]

O

custom_data_i__1

RTL_MUX

I0S=1'b1

I1S=default

custom_data_i__2

RTL_MUX

I0S=4'b0001

I5S=4'b0110

I6S=4'b0111

I7S=default

S[3:0]

custom_data_reg[31:0]

RTL_REG

C

CE

D

RTL_ROM

custom_final_i__0

RTL_ROM

OA[3:0]

RTL_REG

C

CE

D

custom_mod_i

RTL_MUX

I0S=1'b1

I1S=default

custom_mod_i__0

S[3:0]

custom_mod_i__1

custom_mod_i__2

RTL_MUX

I0S=4'b0001

I4S=4'b0101

I5S=4'b0110

I6S=4'b0111

I7S=default

S[3:0]

custom_mod_reg

RTL_REG

C

CE

D

custom_op_a_o_i

O[31:0]

S[3:0]

custom_op_a_o_i__0

I2S=4'b0011

I3S=4'b0100

I4S=4'b0101

I5S=4'b0110

S[3:0]

custom_op_a_o_i__2

RTL_MUX

I1[31:0]S=default

custom_op_a_o_i__3

RTL_ROM

OA[4:0]

I1S=4'b0010

I2S=4'b0011

I3S=4'b0100

I4S=4'b0101

S[3:0]

custom_op_a_o_i__5

RTL_MUX

I0[31:0]S=4'b0101
O[31:0]

S[3:0]

custom_op_a_o_i__6

RTL_ROM

OA[4:0]

custom_op_a_o_i__7

RTL_MUX

I0S=4'b0001

I5S=4'b0110

I6S=4'b0111

I7S=default

RTL_REG

C

CE

D

RTL_REG

C

CE

D

RTL_REG

C

CE

D

custom_op_b_o_i

RTL_MUX

I0[31:0]S=4'b0101

I1[31:0]S=default

S[3:0]

custom_op_b_o_i__0

I1S=4'b0010

I2S=4'b0011

I3S=4'b0100

I4S=4'b0101

S[3:0]

custom_op_b_o_reg[31:0]

RTL_REG

C

CE

D

custom_op_temp_i

RTL_ROM

OA[3:0]

RTL_REG

C

CE

D

custom_result_i

RTL_MUX

I0[15:0]S=4'b0110

I1[31:0]S=default

custom_result_i__0

custom_result_reg[31:0]

RTL_REG

C

CE

D

custom_result0_i

RTL_LSHIFT

I2

I0[15:0]

I1[1:0]V=B"10"

custom_valid_i

RTL_MUX

I0S=4'b0100

I1S=4'b0110

I2S=default

S[3:0]

custom_valid_i__0

RTL_MUX

I0S=1'b1

custom_valid_i__2

RTL_MUX

I0S=4'b0001

I1S=4'b0010

I6S=4'b0111

I7S=default

custom_valid_reg

C

CE

D

data_reg1_i

RTL_MUX

I0[31:0]S=4'b0001

I1[31:0]S=4'b0100

I2[31:0]S=4'b0111

O[31:0]

S[3:0]

RTL_MUX

I3S=default

data_reg1_i__3

RTL_MUX

I0S=4'b0001

I1S=4'b0010

I2S=4'b0011

I7S=default

O

I2[31:0]S=4'b0111

data_reg1_i__5

RTL_MUX

I0S=1'b1

I1S=default

data_reg1_i__6

I0S=5'b00110

data_reg1_i__7

S

I2S=4'b0011

I3S=4'b0100

I4S=4'b0101

I5S=4'b0110

S[3:0]

data_reg1_i__9

RTL_MUX

I0[31:0]S=4'b0001

I1[31:0]S=4'b0100 O[31:0]

S[3:0]

data_reg1_i__10

RTL_MUX

I0S=1'b1

I1S=default

data_reg1_i__11

I0S=5'b00110

data_reg1_i__12

RTL_MUX

I0S=1'b1

I1S=default

S

data_reg1_i__13

RTL_MUX

I0S=4'b0001

I1S=4'b0010

I2S=4'b0011

I6S=4'b0111

I7S=default

O

data_reg1_reg[0][31:0]

C

CE

D

Q

S[1:0]

data_reg1_reg[1][31:0]

C

CE

D

Q

data_reg1_reg[1]_i

RTL_MUX

I0S=2'b01

S[1:0]

RTL_REG

C

CE

D

data_reg1_reg[2]_i

RTL_MUX

I0S=2'b10

I1S=default

data_reg2_i

RTL_MUX

I0[31:0]S=4'b0100

I1[31:0]S=4'b0111

data_reg2_i__0

RTL_MUX

I0S=1'b1

I1S=default

S

data_reg2_i__1

RTL_MUX

I0S=1'b1

I1S=default

data_reg2_i__2

S[4:0]

data_reg2_i__3

I0S=4'b0001

I1S=4'b0010

I2S=4'b0011

I3S=4'b0100

I7S=default

O

O[31:0]

S[3:0]

data_reg2_i__5

RTL_MUX

I0S=1'b1

I1S=default

data_reg2_i__6

RTL_MUX

I0S=1'b1

I1S=default

data_reg2_i__7

RTL_MUX

I0S=5'b00101

I1S=default

S[4:0]

RTL_MUX

I3S=4'b0100

I4S=4'b0101

I5S=4'b0110

I6S=4'b0111

S[3:0]

data_reg2_i__9

O[31:0]

S[3:0]

RTL_MUX

I1S=default

RTL_MUX

I1S=default

data_reg2_i__13

I0S=4'b0001

I1S=4'b0010

I2S=4'b0011

I3S=4'b0100

data_reg2_reg[0][31:0]

C

CE

D

Q

data_reg2_reg[0]_i

RTL_MUX

I0S=2'b00

I1S=default

data_reg2_reg[1][31:0]

RTL_REG

C

CE

D

data_reg2_reg[1]_i

RTL_MUX

I0S=2'b01

I1S=default

data_reg2_reg[2][31:0]

RTL_REG

C

CE

D

RTL_MUX

I1S=default

data_reg3_i

RTL_MUX

I0[31:0]S=5'b00011

S[4:0]

data_reg3_i__0

RTL_MUX

I0[31:0]S=4'b0100

I1[31:0]S=4'b0101

I2[31:0]S=4'b0111

O[31:0]

S[3:0]

RTL_MUX

I1S=default

data_reg3_i__3

RTL_MUX

I0S=5'b00101

I1S=default

RTL_MUX

I1S=5'b00110

I2S=default

data_reg3_i__5

RTL_MUX

I0S=4'b0001

I1S=4'b0010

I6S=4'b0111

I7S=default

data_reg3_i__6

RTL_MUX

I0[31:0]S=5'b00011

I1[31:0]S=5'b00110

S[4:0]

data_reg3_i__8 data_reg3_i__9

S

RTL_MUX

I1S=default

RTL_MUX

I1S=5'b00110

I2S=default

RTL_MUX

I3S=4'b0100

I4S=4'b0101

I5S=4'b0110

I6S=4'b0111

S[3:0]

data_reg3_i__13

RTL_MUX

I0[31:0]S=5'b00011
O[31:0]

S[4:0]

data_reg3_i__14

RTL_MUX

I0[31:0]S=4'b0100

I1[31:0]S=4'b0101 O[31:0]

S[3:0]

data_reg3_i__15

RTL_MUX

I0S=1'b1

I1S=default

data_reg3_i__16

RTL_MUX

I0S=1'b1

I1S=default

S

data_reg3_i__17

S[4:0]

data_reg3_i__18

I0S=5'b00011

S[4:0]

data_reg3_i__19

RTL_MUX

I0S=4'b0001

I1S=4'b0010

I6S=4'b0111

I7S=default

data_reg3_i__20

S[1:0]

data_reg3_reg[0]_i

RTL_MUX

I0S=2'b00

I1S=default

S[1:0]

data_reg3_reg[1][31:0]

data_reg3_reg[1]_i

RTL_MUX

I0S=2'b01

I1S=default

data_reg3_reg[2][31:0]

data_reg3_reg[2]_i

RTL_MUX

I0S=2'b10

I1S=default

S[1:0]

RTL_MUX

I1[1:0]S=4'b0110

I2[1:0]S=default

O[1:0]

RTL_ROM

i_reg[1:0]

RTL_REG

O[1:0]

I0[1:0]
O[1:0]

RTL_ROM

OA[3:0]

RTL_REG

C

CE

D

O[13:0]

ram_addr_out_i__0

RTL_MUX

I0[13:0]S=5'b00110

I1[13:0]S=5'b00101 O[13:0]

S[4:0]

O[13:0]

O RTL_MUX

I1S=5'b00101

I2S=5'b00011

I3S=default
RTL_MUX

I3S=4'b0100

I4S=4'b0101

I5S=4'b0110

I6S=4'b0111

S[3:0]

ram_addr_out_reg[13:0]

C

CE

D

ram_addr_out0_i

RTL_ADD

I1[1:0]
O[13:0]

ram_addr_out0_i__0

I1[1:0]
O[13:0]

ram_addr_out0_i__1

RTL_MUX

I0[13:0]S=1'b1

I1[13:0]S=default

O[3:0]

state_i__0

RTL_MUX

I0[3:0]S=5'b00110

I1[3:0]S=5'b00101

I2[3:0]S=5'b00011

O[3:0]

S[4:0]

O[2:0]

state_i__2

RTL_MUX

I0[3:0]S=1'b1

I1[3:0]V=B"0100", S=default

state_i__3

O[3:0]

RTL_MUX

I1[3:0]S=default
O[3:0]

I1[3:0]S=default
O[3:0]

O[3:0]

state_i__7

RTL_MUX

I0[3:0]S=5'b00101

I1[3:0]S=default

state_i__8

RTL_MUX

I0[2:0]V=B"001", S=1'b1

I1[2:0]V=B"101", S=default

state_i__9

I0[2:0]V=B"001", S=5'b00011

S[4:0]

I1[2:0]S=4'b0010

I2[3:0]V=B"0100", S=4'b0011

I3[3:0]S=4'b0100

I4[2:0]S=4'b0101

RTL_ROM

state_i__12

RTL_MUX

I0S=4'b0001

I1S=4'b0010

I5S=4'b0110

I6S=4'b0111

I7S=default

+

state0_i

RTL_ADD

I0[3:0]
O[3:0]

S

O[3:0] O[3:0]

=

RTL_EQ

O
I0[2:0]

=

RTL_EQ

O
I0[1:0]

I1

0

1

u_core

ibex_core

ex_block_i

ibex_ex_block

rem_i_1

remainder

clk

enable

valid

dividend[31:0]

divisor[31:0]

result[31:0]

bits_i

RTL_MUXS

I0[6:0]V=B"0100000", S=1'b1

I1[6:0]S=default
O[6:0]

bits_reg[6:0]

RTL_REG

C

CE

D

Q

bits0_i

RTL_MUXS

I0[6:0]V=B"1000000", S=1'b1

I1[6:0]S=default
O[6:0]

bits1_i

RTL_SUB

I1

I0[6:0]
O[6:0]

=

bits2_i

RTL_EQ

O
I0[6:0]

I1

dividend_copy_i

RTL_MUXS

I0[63:0]S=1'b1

I1[63:0]S=default
O[63:0]

dividend_copy_i__0

RTL_MUX

I0S=1'b0

I1S=default
O

S

dividend_copy_i__1

RTL_MUX

I0S=1'b1

I1S=default
O

S

dividend_copy_i__2

RTL_MUX

I0S=1'b1

I1S=default
O

S

dividend_copy_reg[63:0]

RTL_REG

C

CE

D

Q

-

dividend_copy0_i

RTL_SUB

I0[63:0]

I1[63:0]
O[63:0]

divisor_copy_i

RTL_MUXS

I0[63:0]S=1'b1

I1[63:0]S=default
O[63:0]

divisor_copy_reg[63:0]

RTL_REG

C

CE

D

Q
>>

divisor_copy0_i

RTL_RSHIFT

I1

I2

I0[63:0]

O[63:0]

valid_i

RTL_MUX

I0S=1'b1

I1S=default
O

S

valid_i__0

RTL_MUX

I0S=1'b1

I1S=default
O

S

valid_reg

RTL_REG

C

CE

D

Qvalid0_i

RTL_AND

I0

I1
O

valid1_i

RTL_AND

I0

I1
Ovalid2_i

RTL_AND

I0

I1
O

valid3_i

RTL_AND

I0

I1
O

valid4_i

RTL_AND

I0

I1
O

valid5_i

RTL_AND

I0

I1
O

6

6

5
4

3
2

1
0

63

...

...

...

u_core

ibex_core

ex_block_i

ibex_ex_block

branch_decision_o

clk_i

custom_en_i

custom_valid

div_en_i

ex_valid_o

mult_en_i

rst_ni

alu_adder_result_ex_o[31:0]

alu_operand_a_i[31:0]

alu_operand_b_i[31:0]

alu_operator_i[4:0]

custom_data[31:0]

custom_in_RS1_i[31:0]

custom_in_RS2_i[31:0]

custom_op_i[4:0]

jump_target_o[31:0]

multdiv_operand_a_i[31:0]

multdiv_operand_b_i[31:0]

multdiv_operator_i[1:0]

multdiv_signed_mode_i[1:0]

ram_addr_out[13:0]

ram_data_ex_i[31:0]

regfile_wdata_ex_o[31:0]

rem_i_1

remainder

clk

enable

valid

dividend[31:0]

divisor[31:0]

result[31:0]

multdiv_en_i

RTL_OR

I0

I1
O

multdiv_en_sel_i

RTL_OR

I0

I1
O

regfile_wdata_ex_o_i

RTL_MUX

I0[31:0]S=1'b1

I1[31:0]S=default
O[31:0]

regfile_wdata_ex_o0_i

RTL_MUX

I0[31:0]S=1'b1

I1[31:0]S=default
O[31:0]

rem_i_3

remainder

clk

enable

valid

dividend[31:0]

divisor[31:0]

result[31:0]

rem_i_2

remainder

clk

enable

valid

dividend[31:0]

divisor[31:0]

result[31:0]

alu_i

ibex_alu

comparison_result_o

is_equal_result_o

multdiv_en_i adder_result_ext_o[33:0]

adder_result_o[31:0]multdiv_operand_a_i[32:0]

multdiv_operand_b_i[32:0]

operand_a_i[31:0]

operand_b_i[31:0]

operator_i[4:0]

result_o[31:0]

cust_i

custom_module

clk

custom_en

custom_final

custom_mod_o

custom_validmod_valid

array1_addr[31:0]

array2_addr[31:0]

custom_data[31:0]

custom_mod_result[0][31:0]

custom_mod_result[1][31:0]

custom_mod_result[2][31:0]

custom_op[4:0]

custom_op_a_o[0][31:0]

custom_op_a_o[1][31:0]

custom_op_a_o[2][31:0]

custom_op_b_o[31:0]

custom_result[31:0]

ram_addr_out[13:0]ram_data_in[31:0]

ex_valid_o_i

RTL_MUX

I0S=1'b1

I1S=default
O

ex_valid_o0_i

RTL_MUX

I0S=1'b1

I1S=default
O

gen_multdiv_fast.multdiv_i

ibex_multdiv_fast

clk_i

div_en_i

equal_to_zero

mult_en_i

rst_ni

valid_o

alu_adder_ext_i[33:0]

alu_adder_i[31:0]

alu_operand_a_o[32:0]

alu_operand_b_o[32:0]

multdiv_result_o[31:0]

op_a_i[31:0]

op_b_i[31:0]

operator_i[1:0]

signed_mode_i[1:0]

mod_valid0_i

RTL_AND

I0

I1
O

mod_valid1_i

RTL_AND

I0

I1
O

u_core

ibex_core

core_sleep_o n/c

custom_en_ex

custom_valid_ex

data_err_i

data_gnt_i

data_req_o

data_rvalid_i

debug_req_i

fetch_enable_i

instr_err_i

instr_gnt_i

instr_req_oinstr_rvalid_i

irq_external_i

irq_nm_i

irq_software_i

irq_timer_i

rst_ni

test_en_i

boot_addr_i[31:0]

custom_data_ex[31:0]

data_addr_o[31:0]

data_be_o[3:0] n/c

data_rdata_i[31:0]

data_wdata_o[31:0]

hart_id_i[31:0]

instr_addr_o[31:0]instr_rdata_i[31:0]

irq_fast_i[14:0]

pc_id_ila[31:0] S=default

ram_addr_out_ex[13:0]ram_data_core_i[31:0]

clock_en_i

RTL_OR

I1
O

clock_en0_iI0

I1
O

RTL_OR

I0

I1
O

core_busy_i

I0S=1'b1

I1S=default
O

S

core_busy_int_i

RTL_OR

I1
O

core_busy_int0_i

RTL_OR

I1
O

core_busy_q_reg

RTL_REG_ASYNC

C
CLR

D
Q

core_clock_gate_i

prim_clock_gating

clk_i

clk_oen_i

test_en_i

core_sleep_o_i

RTL_INV

I0 O

branch_i

branch_taken_i

clk_i

csr_access_i

csr_msip_o

csr_mstatus_mie_o

csr_mstatus_tw_o

csr_mtip_o

csr_mtvec_init_i

csr_restore_mret_i

csr_save_cause_i

csr_save_id_i

csr_save_if_i

debug_csr_save_i

debug_ebreakm_o

debug_ebreaku_o

debug_mode_i

debug_single_step_o

illegal_csr_insn_o

imiss_i

instr_new_id_i

instr_ret_compressed_i

instr_ret_i

irq_external_i irq_pending_o

irq_software_i

irq_timer_i

jump_i

lsu_busy_i

mem_load_i

mem_store_i

pc_set_i

rst_ni

boot_addr_i[31:0]

csr_addr_i[11:0]

csr_depc_o[31:0]

csr_mcause_i[5:0]

csr_mepc_o[31:0]

csr_mfip_o[14:0]

csr_mtvec_o[31:0]

csr_op_i[1:0]

csr_rdata_o[31:0]

csr_wdata_i[31:0]

debug_cause_i[2:0]

hart_id_i[31:0]

irq_fast_i[14:0]

pc_id_i[31:0]

pc_if_i[31:0]

priv_mode_id_o[1:0]

RTL_MUXS

I0[11:0]S=1'b1

I1[11:0]S=default

ex_block_i

ibex_ex_block

branch_decision_o

clk_i

custom_en_i

custom_valid

div_en_i ex_valid_o

mult_en_i

alu_operand_a_i[31:0]

alu_operand_b_i[31:0]

alu_operator_i[4:0]

custom_data[31:0]

custom_in_RS1_i[31:0]

custom_in_RS2_i[31:0]

custom_op_i[4:0]

jump_target_o[31:0]

multdiv_operand_a_i[31:0]

multdiv_operand_b_i[31:0]

multdiv_operator_i[1:0]

multdiv_signed_mode_i[1:0]

ram_addr_out[13:0]

ram_data_ex_i[31:0]

regfile_wdata_ex_o[31:0]

id_stage_i

ibex_id_stage

branch_decision_i

clk_i

core_ctrl_firstfetch_o

csr_access_o

csr_meip_i

csr_msip_i

csr_mstatus_mie_i

csr_mstatus_tw_i

csr_mtip_i

csr_restore_mret_id_o

csr_save_cause_o

csr_save_id_o

csr_save_if_o

ctrl_busy_o

custom_en_ex_o

data_req_ex_o

data_sign_ext_ex_o

data_we_ex_o

debug_ebreakm_i

debug_ebreaku_i

debug_mode_o

debug_req_i

debug_single_step_i

div_en_ex_o

ex_valid_i

fetch_enable_i

id_in_ready_o

illegal_c_insn_i

illegal_csr_insn_i

instr_fetch_err_i

instr_is_compressed_i

instr_req_o

instr_ret_compressed_o

instr_ret_o

instr_valid_clear_o

instr_valid_i

irq_nm_i

irq_pending_i

lsu_addr_incr_req_i

lsu_load_err_i

lsu_store_err_i

lsu_valid_i mult_en_ex_o

pc_set_o

perf_branch_o

perf_jump_o

perf_tbranch_o

rst_ni

test_en_i

alu_operand_a_ex_o[31:0]

alu_operand_b_ex_o[31:0]

alu_operator_ex_o[4:0]

csr_mfip_i[14:0]

csr_mtval_o[31:0]

csr_op_o[1:0]

custom_in_RS1_ex_o[31:0]

custom_in_RS2_ex_o[31:0]

custom_op_ex_o[4:0]

data_type_ex_o[1:0]

data_wdata_ex_o[31:0]

debug_cause_o[2:0]

exc_cause_o[5:0]

exc_pc_mux_o[1:0]

instr_rdata_c_i[15:0]

instr_rdata_i[31:0]

multdiv_operand_a_ex_o[31:0]

multdiv_operand_b_ex_o[31:0]

multdiv_operator_ex_o[1:0]

multdiv_signed_mode_ex_o[1:0]

pc_mux_o[2:0]

priv_mode_i[1:0]

regfile_wdata_ex_i[31:0]

regfile_wdata_lsu_i[31:0]

if_stage_i

ibex_if_stage

clk_i

csr_mtvec_init_o

if_busy_o

illegal_c_insn_id_o

instr_err_i

instr_fetch_err_o

instr_gnt_i

instr_is_compressed_id_o

instr_new_id_o

instr_pmp_err_i

instr_req_o

instr_rvalid_i

instr_valid_clear_i

instr_valid_id_o

pc_set_i

perf_imiss_o

req_i

rst_ni

csr_depc_i[31:0]

csr_mepc_i[31:0]

csr_mtvec_i[31:0]

exc_cause[5:0]

exc_pc_mux_i[1:0]

instr_addr_o[31:0]

instr_rdata_c_id_o[15:0]

instr_rdata_i[31:0]

instr_rdata_id_o[31:0]

jump_target_ex_i[31:0]

pc_id_o[31:0]

pc_if_o[31:0]

pc_mux_i[2:0]

load_store_unit_i

ibex_load_store_unit

busy_o

clk_i

data_err_i

data_gnt_i

data_pmp_err_i

data_req_ex_i data_req_o

data_rvalid_i

data_sign_ext_ex_i

data_we_o

load_err_o

rst_ni

store_err_o

adder_result_ex_i[31:0]

addr_last_o[31:0]

data_addr_o[31:0]

data_be_o[3:0]

data_rdata_ex_o[31:0]data_rdata_i[31:0]

data_type_ex_i[1:0]

data_wdata_ex_i[31:0]

data_wdata_o[31:0]

perf_load_i

RTL_AND

I1
O

perf_load0_i

RTL_AND

I0

I1
O

perf_store_i

RTL_AND

I0

I1
O

valid_csr_id_i

RTL_AND

I1
O

APPENDIX D

69

Figure D.5: RTL Schematic of Top Module

IO_CLK

IO_RST_N

clk_sys_counter_i

RTL_MUX

I0[31:0]S=1'b0

I1[31:0]S=default
O[31:0]

clk_sys_counter_reg[31:0]

RTL_REG_SYNC

C

D
Q

S=default

RST

+

clk_sys_counter_reg0_i

RTL_ADD

I0[31:0]S=default

I1[31:0]V=X"00000001"
O[31:0]

clkgen

clkgen_xil7series

IO_CLK

IO_RST_N

clk_sys

rst_sys_n

data_gnt_reg

RTL_REG_ASYNC

C
CLR

D
Q

data_gnt0_i

RTL_AND

I0

I1
O

data_gnt1_i

RTL_AND

I0

I1
O

data_rvalid_reg

RTL_REG_ASYNC

C
CLR

D
Q

ila

ila_0

clk

probe0[31:0]S=default

probe1[31:0]S=default

probe2[31:0]S=default

instr_gnt_reg

RTL_REG_ASYNC

C
CLR

D
Q

instr_gnt0_i

RTL_AND

I0

I1
O

leds_reg[31:0]

RTL_REG_ASYNC

C

CE

CLR

D

Q
S=default

leds_reg0_i

RTL_AND

I0

I1
O

leds_reg1_i

RTL_OR

I0

I1
O

leds_reg2_i

RTL_AND

I0

I1
Omem_addr_index_i

RTL_MUXS

I0[13:0]S=1'b1

I1[13:0]S=default
O[13:0]

mem_addr_index_i__0

RTL_MUXS

I0[13:0]S=1'b1

I1[13:0]S=default
O[13:0]

mem_addr_index_i__1

RTL_MUXS

I0[13:0]S=1'b1

I1[13:0]S=default
O[13:0]

mem_req_i

RTL_MUX

I0S=1'b1

I1S=default
O

S

mem_req_i__0

RTL_MUX

I0S=1'b1

I1S=default
O

S

=

mem_req0_i

RTL_EQ

O
I0[31:0]

I1[31:0]

=

mem_req0_i__0

RTL_EQ

O
I0[31:0]

I1[31:0]

mem_req1_i

RTL_AND

I0[31:0]

I1[31:0]V=X"FFFF0000"
O[31:0]

mem_req1_i__0

RTL_AND

I0[31:0]

I1[31:0]V=X"FFFF0000"
O[31:0]

mem_wdata_i

RTL_MUXS

I0[31:0]S=1'b1

I1[31:0]S=default
O[31:0]

mem_wdata_i__0

RTL_MUXS

I0[31:0]S=1'b1

I1[31:0]S=default
O[31:0]

mem_wdata_i__1

RTL_MUXS

I0[31:0]S=1'b1

I1[31:0]S=default
O[31:0]

mem_wdata_i__2

RTL_MUXS

I0[31:0]S=1'b1

I1[31:0]S=default
O[31:0]

mem_write_i

RTL_MUX

I0S=1'b1

I1S=default
O

S

mem_write_i__0

RTL_MUX

I0S=1'b1

I1S=default
O

S

mem_write_i__1

RTL_MUX

I0S=1'b1

I1S=default
O

S

u_core

ibex_core

clk_i

custom_en_ex

custom_valid_ex

data_err_i

data_gnt_i

data_req_o

data_rvalid_i

data_we_o

debug_req_i

fetch_enable_i

instr_err_i

instr_gnt_i

instr_req_o

instr_rvalid_i

irq_external_i

irq_nm_i

irq_software_i

irq_timer_i

rst_ni

test_en_i

boot_addr_i[31:0]

custom_data_ex[31:0]

data_addr_o[31:0]

data_rdata_i[31:0]

data_wdata_o[31:0]

hart_id_i[31:0]

instr_addr_o[31:0]

instr_rdata_i[31:0]

irq_fast_i[14:0] pc_id_ila[31:0] S=default

ram_addr_out_ex[13:0]

ram_data_core_i[31:0]

u_ram

ram_1p

clk_i

req_i

rst_ni rvalid_o

write_i

addr_i[13:0]

rdata_o[31:0]

wdata_i[31:0]

...
...

70

CURRICULUM VITAE

Name Surname : Elif Nur İşman

Place and Date of Birth : İstanbul / 10.11.1997

E-Mail : elifnurisman@hotmail.com

Elif Nur İşman finished primary and high school in İstanbul. She is currently a senior
year student at Electronics and Communication Engineering in Istanbul Technical
University Electrical-Electronics Faculty. She completed her internships in İTÜ GSTL
Laboratory, Türk Telekom A.Ş. and ASELSAN A.Ş., also completed a voluntary
internship in TÜBİTAK.

71

CURRICULUM VITAE

Name Surname : Canberk Topal

Place and Date of Birth : Bafra / 25.10.1998

E-Mail : topalc16@itu.edu.tr

Canberk Topal is currently a senior year student at Electronics and Communication
Engineering in Istanbul Technical University Electrical-Electronics Faculty. He
completed her internships in ASELSAN A.Ş. and HAVELSAN A.Ş. His primary areas
of interest include digital system design, cryptography and machine learning.

