ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICS FACULTY

EXTENDING THE INSTRUCTION SET OF RISC-V PROCESSOR FOR NTRU
ALGORITHM

SENIOR DESIGN PROJECT

Elif Nur ISMAN
Canberk TOPAL

ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT

JULY 2020

ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICS FACULTY

EXTENDING THE INSTRUCTION SET OF RISC-V PROCESSOR FOR NTRU
ALGORITHM

SENIOR DESIGN PROJECT

Elif Nur ISMAN
040150214

Canberk TOPAL
040160057

ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT

Project Advisor: Assoc Prof. Dr. Siddika Berna ORS YALCIN

JULY 2020

ISTANBUL TEKNiK UNiVERSITESI
ELEKTRIK-ELEKTRONIK FAKULTESI

RISC-V ISLEMCISININ KOMUT SETININ NTRU ALGORITMASI iCiN
GENISLETILMESI

LiSANS BITIRME TASARIM PROJESI

Elif Nur ISMAN
040150214

Canberk TOPAL
040160057

Proje Damismani: Dog¢. Dr. Siddika Berna ORS YALCIN

ELEKTRONIK VE HABERLESME MUHENDISLiGi BOLUMU

TEMMUZ, 2020

We are submitting the Senior Design Project Report entitled as “EXTENDING THE
INSTRUCTION SET OF RISC-V PROCESSOR FOR NTRU ALGORITHM”. The
Senior Design Project Report has been prepared as to fulfill the relevant regulations of the
Electronics and Communication Engineering Department of Istanbul Technical
University. We hereby confirm that we have realized all stages of the Senior Design Project
work by ourselves and we have abided by the ethical rules with respect to academic and
professional integrity .

Canberk TOPAL e,
040160057

Elif Nur ISMAN e,
040150214

Y

FOREWORD

We would like to thank to our mentor Assoc. Prof. Dr. Siddika Berna Ors Yalgin who
helped us to find this project and who supported and guided us in all of our mistakes.
Secondly, we would like to offer our gratitude to our mentor Res. Assist. M.Sc. Latif
Akgay, who gave his attention, remarks and part of his own work to the project.
Without them, we would spend lots of unnecessary time in order to finish our
project. Finally, we would like to emphasize that we are grateful to our friends in ITU

and our families who has the biggest role on our successes for our entire life.

June 2020 Canberk TOPAL
Elif Nur ISMAN

vi

TABLE OF CONTENTS

Page
FOREWORD......couiiiiinuinenninsuissansesssisssissesssssssssssssstsss v
TABLE OF CONTENTS.....cooiiniitininsticsninenssesssicsssssncssissssssesssessssssassssssssssssssassass vii
ABBREVIATIONS ...cutiiiiinnnisinsissnnssesssissssssesssnsssssssssssssssssssssssssssssssssssassssssssssssse ix
SYMBOLS ..uoiiiiiitininsninsnnssesssncssissesssecsssase X
LIST OF TABLEScuuiiiintinenninsuicsensesssessesssssssisssns xi
LIST OF FIGURESuuouiiiitiniinensnicnnssncssissssssecssisssssssssssssssssssssssssssssssssssssssasssse xii
SUMMARY .oucouiiuicensaissnnssensanssanssesssassssssssssssss xiii
OZET Xiv
LINTRODUCTION....couiiuiiensuinsanssessansssnssesssnssssssessassssssssssssssssssssssssssssssssssssassssssas 15

1.1 BASIiC CONSEPLS .uveeeiienvieeiiieiieeiieesiteeite et e e teeteesieeebeesateenseessaeenseeseesnseenseesnseas 15
1.1.1 What is open source processors and why do we use it ?.........cceeeveeennenn. 15
1.1.2 What is instruction set architecture?coceeverierieneniienieneneneeieeen 16
1.1.3 What is RISC-V processor and why etending ISA of it?........c.ccccveennee. 16
1.1.4 How to eXtend ISAT ...co.iiiiiiiieeeeseeee et 16

1.2 Mathematical Background for NTRU Algorithmccccoooiiiiiiininnnnen. 16
1.2.1 NTRU keys and parameters:cccveeeveerieerieenieeiiienieeieenieesveesieeeveeens 17
1.2.2 KEY ZENETALION ...eeeviieiiieeiiieeiieeeiteeeiteeeiteeeaeeeeaeeessteeesnseeesaseeensseeensseeens 17
L.2.3 ENCTYPLION ..utiiiiieiieeiie ettt ettt ettt sttt e et e et e snaeenbeeenaeenes 18
| RO D 1STe) o7 o] 5 (o) o DO SRR 18

1.3 Preparing Work Environmentc.coccueeviieniieiiieniieiieeieeceeee e 19
1.3.1 Installing Ubuntu 16.04 and required programscccceeeeeveeerveeennneenns 19
1.3.2 Installing RISC-V GNU toolchain from GitHubcccccoceevinininnennn. 21
1.3.3 Preparing the software development environment............c.cccccveeeeveeennenn. 23

2. IMPLEMENTING AN OPEN SOURCE RISC-V PROCESSOR ON FPGA
.. 24
2.1 Implementing LowRISC Chip With Rocket Coreccoceevveniienieniieieenee. 25
2.2 Implementing IbeX COre.........coiiiiiiiiiiiiieiiceie e 25
3. RUNNING C PROGRAMS ON RISC-V CORE AND OPTIMIZATION OF
THE NTRU C IMPLEMENTATION 27

3.1 Compiling C Codes And The Structure Of Generated Memory...................... 27

3.2 Running C Program in RISC-V Core.......ccccoooiiiiiiniiiiiiiiiiieceeeeeeeen 28

3.3 Implementation and Optimization of the NTRU Algorithm in C Programming

LAN@UAZE ..eeeeieieeeeeiee ettt et e e et e e et e e e etbe e e e e nnnaaeeean 29
3.3.1 Optimization of the ¢ Programcccoeceeeviieniieiienieeeece e 30

3.4 Profiling the NTRU C Implementation...........cccceevieniiiieeniieiiieiieecesieeeene 31

4. INSTRUCTION SET EXTENSION OF RISC-V PROCESSOR.................... 32

4.1 SoftWare Part........coouiiiiiiiiee e 33
4.1.1 OPCOAE SPACE ...vveeneiieniieeiieeiie ettt ettt e eate et e stteebeesateebeessaeebeessaesnseennes 33
4.1.2 Inline Assembly methodccceeviiiiiiiieiiieeeeeee e 33
4.1.3 Chosen instructions and their typesccceeveeeviierieeiiienieeeenre e 34
4.1.4 Implementing the custom instructions to the C programs 34
4.1.5 Developing and testing the instructions using simple C programs........... 35

vii

4.1.6 Adding custom instructions to the optimized C codecccceevvereruennnne 37

4.2 Hardware Part..........ocooiiiiiiiiee e e 37
4.2.1 Custom Module DeSign..........ccccueeriieriieiiieniieiieeie et 38
4.2.2 Changes for multi-clock cycle operations..........c.cceeeeeeecueeercieeencieeseneeenne 40
4.2.3 Connections with RAM and other modules............cccoevveriiininniiieniennen. 40

5. PERFORMANCE & TIMING ANALYSIS ...uucoviiviiinsninsnnsensacssensesssessasssessas 42

5.1 Benchmark C Programc.cccceeeiiiiiieniieiiieeieeieesee et 43

5.2 Behavioral Simulation to Check the Results...........cccccoooiiiiiniiiiie 44

5.3 Using 7-Segment Display and LEDs to See the Results on Board 45

5.4 USaZE OF ILA TPt 45

5.5 Comparing Selected Operation Implementations on Core with and without

CUStOM MOAUIE ... e 46

6. REALISTIC CONSTRAINTS AND CONCLUSIONS.....cccivienuiessnnssnsesnsoanes 47

6.1 Practical Application of this Project..........cocceiiiiiiiniiiiiiniieccee e 48

6.2 Realistic CONSLIAINLSc..eeriieiiieiieeie ettt ettt sae e e ssaeebee e 48
6.2.1 Social, environmental and economic IMpPact.........ccceeeevveercieeerreeerveeennne. 48
6.2.2 COSt ANALYSIS....eevieiiiieiieiie ettt ettt ettt st eere e 48
6.2.3 Standardseeoiiiiie e e 49
6.2.4 Health and safety CONCEINS........c.cocueeriieriiiiiieiiecie et 49

6.3 Future Work and Recommendations..............cccceevieiiieiiieniienieeiceie e 49

REFERENCES............ 50
APPENDICESuuoiiitiniininsuicseisesssisssnssesssnss 54
CURRICULUM VITAEcouiiuiceiruicsnissenssecssicsesssncsssssssssssssssssssssssssssssssesssssssssssssas 70

viii

ABBREVIATIONS

ALU
CPU
FF
FPGA
GCC
ILA
IP
ISA
LED
LUT
NTRU
NIST
RAM
RISC

: Arithmetic Logic Unit

: Central Processing Unit

: Flip Flop

: Field Programmable Gate Array
: GNU Compiler Collection

: Integrated Logic Analyzer

: Intellectual Property

: Instruction Set Architecture

: Light Emitting Diode

: Look Up Table

: N-Truncated Polynomial Ring

: National Institute of Science and Techonology
: Random Access Memory

: Reduced Instruction Set Computer

X

SYMBOLS

< : Terminal Commands

LIST OF TABLES

Table 5.1 : Performance Results

Table 5.2 : Area Usage Results

xi

LIST OF FIGURES

Figure 1.1:
Figure 2.1:
Figure 2.2:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:

Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:
Figure 5.1:
Figure 5.2:

Figure 5.3:

Page
CLion Change of Kernel Variables Promptcccccccvveeiieeicieenieen, 244
List of SoC and Cores That Uses RISC-V ISAccoeviiiiiiiieiee. 244
Modified Architecture of IbeX.........coveeiiiiiiiiniiiieiceeeeee 266
Simple Summation C Program for 32-bit RISC-V Core.........c..c......... 299
Example of Optimization Process in the Implementation.................... 300
Speed Difference Between Optimized and Unoptimized Version....... 311
Part of the Profiling Script for C Program...........cccceevevieviiieencieinnenn, 322
Instruction Format of R-type Instructions [18]........cccccevvveviieniiinnnnnen. 333
instr_equ Function with the Inline Assembly Method.......................... 344
array_equ Function within the C Codeccccevveiieniiiiiiniiciieiee, 355
Parts of the C Code for Testing Functionality of the Added Instructions

.. 366
Behavioral Simulation of Test C Code........cccoooieriiiiiiniiiniiiieiee. 377
Diagram of Execution Modulecccocovieiiiniiiiiiieciieieeeeee e, 39
State Flowchart for Custom Module................ccocuvevceieecieiaieeeieeennen. 39
Input and Output Ports of Custom Moduleccceeveeiiieniniiieinenen. 411
Main Part of the Benchmarking C Codecccoeeeuveevciieiniieeiieee. 444
Number of Clock Cycles Comparison Between the Custom Instructions

and Basic C OPerations...........c.eeecveeeriieeriieesieeeieeeeieeeereeesveeessveeennens 444
Dashboard SCIEenc.cueviiiiiiirieiiiiereece e 466

xii

EXTENDING THE INSTRUCTION SET OF RISC-V PROCESSOR FOR
NTRU ALGORITHM

SUMMARY

The technological progress of humanity has reached a point that even science fiction
writers cannot predict. With the ease of access to information and invention of social
media, cyber security has become increasingly important in our lives. Especially the
concept of the quantum computers, whose feasibility has ceased to be an issue of
debate and the discussions moved towards the question of when it will start to affect
daily life, threatens the security standards created by hundreds of engineers in the past
decades. Quantum computing technology has taken priority in the field of information
security, where companies and governments constantly compete, and algorithms that
can resist the computing power of post-quantum computers gain importance in this
field. NTRU algorithm, which is one of the few candidates approaching to be the
standard for post quantum public key cryptography was discussed in this project.

The main problem in the field of electronic engineering; balance between area and
performance has been the main issue that determined the limits in this project. A
cryptography algorithm is needed in almost all electronic devices. Since the public
key encryption method is especially used for the secure communication of the two
parties, this algorithm is expected to work with high performance in internet of
things devices and unmanned aerial vehicles. One of the prominent methods to
achieve this high performance in small and relatively weak processors is to expand
the instruction sets of these processors for this algorithm. We have created a project
plan accordingly. One of the cheapest and most convenient methods for performing
the instruction set expansion that forms the building block of our project was to
modify an already designed open source processor. After achieving this goal, the
FPGA card, one of the most important assistants of engineers working in this field,
was used to test real-time results. In the project, the open source RISC-V processor
has been implemented and developed on the Nexys 4 DDR FPGA card produced by
Digilent company.

As aresult, it was observed that the three candidate array arithmetic operation
commands we added had an accelerating effect on the NTRU algorithm
performance. This effect has the potential of especially to speeding up the
implementation of secure communication protocols of small processors. In this
study, it is envisaged that the processors to be produced may not be doomed to
existing patterns and can be developed for use, and this study will increase the
performance and added value of the product in that area.

xiii

RISC-V ISLEMCISININ KOMUT SETININ NTRU ALGORITMASI iCIN
GENISLETILMESI

OZET

Insanligin teknolojik ilerleyisi bilimkurgu yazarlarimin bile tahmin edemeyecegi bir
noktaya gelmis durumda. Bilgiye ulasimin kolaylagmasiyla ve sosyal medyanin
icadiyla beraber, hayatimizda 6zellikle siber giivenlik giderek daha 6nemli bir yer
aliyor. Ozelikle son dénemde yapilabilirligi bir tartisma olmaktan ¢ikip, ne zaman
giindelik hayat1 etkilemeye baslayacagi konusulmaya baglanan kuantum sonrasi
bilgisayarlar gectigimiz on yillarda yiizlerce miithendisin igbirligiyle olugturmus
oldugu giivenlik standartlarini tehdit ediyor. Sirketlerin ve devletlerin siirekli
yaristig1 bilgi glivenligi sahasinda 6nceligi kuantum hesaplama teknolojisi almig
durumda ve bu alanda 6zellikle kuantum sonrasi bilgisayarlarin islem giiciine karsi
durabilen algoritmalar 6nem kazanmakta. Bu algoritmalardan ag¢ik anahtar kuantum
sonrasi sifreleme algoritmasi standardi olmaya yaklasan birkag adaydan biri olan
NTRU algoritmasi bu projede ele alind1.

Elektronik miihendisligi alaninda bastan beri temel sorun olan alan ve performans
dengesi bu projede sinirlar1 belirleyen ana konu olmustur. Bir kriptografi
algoritmasina neredeyse biitlin elektronik cihazlarda hitiyag¢ vardir. A¢ik anahtarh
sifreleme yontemi 6zellikle iki tarafin birbiriyle giivenli bir sekilde haberlesmesi i¢in
kullanildigindan bu algoritmanin internet nesneleri cihazlarinda ve insansiz hava
araclarinda yiiksek performans ile ¢alismasi beklenmektedir. Bu yiiksek performansi
kiiciik ve gorece gii¢sliz islemcilerde gerceklestirmek i¢in 6ne ¢ikan yontemlerden
biri, bu islemcilerin komut setlerini bu algoritmaya yonelik sekilde genisletmektir.
Biz de buna gore bir proje plani olusturduk. Projemizin temel katmanini olusturan
komut seti genisletmesini gergeklestirmek i¢in en ucuz ve elverisli yontemlerden biri,
halihazirda tasarlanmis olan agik kaynak kodlu bir islemciyi degistirmekti. Bu amaci
gerceklestirdikten sonra gergek zamanli sonuglart test etmek i¢in, bu alanda ¢alisan
miihendislerin en 6nemli yardimcilarindan olan FPGA kart1 kullanildi. Projede agik
kaynak kodlu RISC-V islemcisinin Digilent firmasi tarafindan tiretilen Nexys 4 DDR
FPGA kart1 iizerinde gerceklenmesi ve gelistirilmesi yapilmistir.

Sonug olarak, eklemis oldugumuz ii¢ adet dizi aritmetigi komutunun NTRU
algortimasi lizerinde hizlandirici etki yaptig1 gortildii. Bu etki, 6zellikle kiigiik
islemcilerin giivenli haberlesme protokollerini uygulamasini olduk¢a hizlandiracak
potansiyele sahip. Bu ¢alismada, iiretilecek olan islemcilerin varolan kaliplara

Xiv

mahkum olmayip kullanima yonelik gelistirilebilecegi ve bu ¢aligmanin iiriiniin o
alandaki performansini ve katma degerini oldukga arttiracagi ongoriilmiistiir.

XV

1. INTRODUCTION

With the developing technology, interest and investments in developing quantum
computers are increasing rapidly[1, 2]. However, this poses a threat to cryptography
algorithms used in every system where information security is needed today. The
quantum era requires fundamental changes in information security. New cryptography
algorithms that can resist post-quantum computers are being developed in order to
maintain information security in banking, military and many other areas. In order to
be usable and practical in daily life, low area usage and low performance are prioritized
in the algorithms created. N-Truncated Polynomial Ring Units(NTRU)[3] is one of the
most promising postquantum cryptography algorithms as they are among 28
standardization candidates in the National Institute of Science and

Techonology(NIST) competition for public key cryptography[4].

Based on the Reduced Instruction Set Computer (RISC) architecture[5], RISC-V[6] is
an open source alternative to a world of proprietary instruction set architectures. Our
project aims to increase the performance of a NTRU cryptosystem application on an
open source, low-power RISC-V processor. The plan is to increase the performance
by extending the instruction set with most commonly used operations in the

application.

1.1 Basic Consepts

1.1.1 What is open source processors and why do we use it ?

A processor, or "microprocessor," is a small chip that positioned in computers and
other electronic devices. Its basic job is to receive input and provide the appropriate
output, according to the structures that embedded on it. This may seem like a simple

task at the first glance, but

processors of today’s world can handle trillions of calculations per second. The most
basic processor will include a register file, an ALU, system memory, and a control unit

that allows the processor to make decisions based on the instruction it's executing.

15

1.1.2 What is instruction set architecture?

The Instruction Set Architecture (ISA)[5] design is one of the most critical structures
for a processor. Designing it properly and correctly at the beginning is very important.
It is accessible by the programmer or compiler writer. It defines the relationship and
boundaries between software and hardware. User can have knowledge about supported
data types, registers, interrupts, the hardware support for managing main memory

features and the input/output model of a bunch of implementations by examining it.

1.1.3 What is RISC-V processor and why etending ISA of it?

There are various popular instruction sets that are used in the industry and each one of
them has its own unique usage and advantages. Reduced Instruction Set Computer
(RISC) is one of them. It has fewer cycles per instruction. Instructions are simple,
fewer, more general and usually fixed-length. Registers are also fixed-length,
generally. This type of ISA is easy to develop control logic on, requires lower area,
lower power. But besides its advantages, it has low performance. RISC-V is an open
standard ISA based on established RISC principles. To be able to accelerate the NTRU
implementation, some complex instructions would be useful. We are planning to create
custom instructions that consume less clock cycles to execute operations in the NTRU

algorithm.

1.1.4 How to extend ISA?

The decision for the custom instructions will be done by detecting operations that are
repetitive and spend many clock cycles in the NTRU C code. Since simple instruction
architectures will not be suitable to execute them, we will extend the execution block
in the core by creating a custom module that can be execute the instructions we will

create.

1.2 Mathematical Background for NTRU Algorithm

NTRU differs from the previously found public key cryptosystems by the foundations
it is based on which is the shortest vector problem in a lattice[3]. NTRU is shown as
an alternative to Rivest-Shamir-Adelman (RSA)[7] and Elliptic Curve Cryptography
(ECCO)[8] by using a lattice-based approach to cryptography.

16

A truncated polynomial ring R = Z[X]/(X"~1) that is created based on the determined
parameters form the backbone of the steps in NTRU cryptosystem. During the process,
different polynomials are created by using the R and all of them have to have integer

coefficients and degree at most N — 1.

P(x) =ag+a;x +ax?+ -+ ay_xN1 (1.1)

1.2.1 NTRU keys and parameters:

N - the polynomials in the ring R have degree $N-1$. (Non-secret)

q - the large modulus to which each coefficient is reduced. (Non-secret)

p - the small modulus to which each coefficient is reduced. (Non-secret)

f - a polynomial that is the private key.

g - a polynomial that is used to generate the public key h from f (Secret but discarded

after initial use)

h - the public key, also a polynomial

7 - the random "'blinding" polynomial (Secret but discarded after initial

use)

d - coefficient

1.2.2 Key generation

If two person named Alice and Bob are communicating through a secure channel,

sending a secret message from Alice to Bob requires the generation of a public and a

17

private key. While the public key is known by both sides, private key should only be
known by the receiver[9].

As the first step, two polynomials named f and g in the R are selected randomly.
Chosen polynomials with degree at most N — 1 with coefficients [—1,0,1] must be

invertible. Then, the inverse of f according to modulo q (f;) and modulo p (f,,) should
be calculated. Operations, especially in the decryption part, will be depend on the f;

and f,, satisfying the equations:
f*fq=1modq (1.2)
and

f*f,=1modp (1.3)

In the third step, public key h will be calculated with the equation h = p *

(fq * g) mod q. f and f, are used to create a longer and protected private key.

1.2.3 Encryption

As the beginning, message to be transmit will put in the form of polynomial and

represented with m, with coefficients [—1,0,1].
m=1-—X?+X5-X"+x10 (1.4)

Than, a ‘blinding value’ is chosen randomly to obscure the message. Blinding value is

a small polynomial that represented with .
r=1+X'+X%?-Xx3-X%° (1.5)
Last step of the encryption is to calculating the encrypted message by the equation:

e =rxh + mmodq (1.6)

1.2.4 Decryption

Private key that Bob have is the combination of f and f,,, as mentioned before, Private
key is the only information Bob has aside from the encrypted message. He can try to
solve the message by using f. First, he multiplies the e and f, represent the result with

a polynomial a.

a = f*xemodq (1.7)

18

If equation is rearranged with the equality of e:

a = f *(r * h+m)modq (1.8)
a=f*(r*pfq*g+m)modq (1.9)
a=pr+xg + f*m modq (1.10)

Instead of choosing the coefficients of a between 0 and g - 1, they are chosen in the
interval [—q/2,q/2]. Aim of this is to prevent that the original message may not be
properly recovered since Alice chooses the coordinates of her message m in the

interval [-p/2,p/2]
Next step will be calculating a modulo p, result will be represented with polynomial
b:

b =a modp (1.11)
Since modulo of pr * g equals to 0,

b =f*mmodp (1.12)
Now, Bob can use the f,, to recapture m, by multiplication of b and f,.

c=fp*b=f,*f+xmmodp (1.13)

c = mmodp (1.14)

1.3 Preparing Work Environment

In the final version of this project a modified RV32IMC RISC-V core is implemented
on the Digilent FPGA card Nexys 4 DDR[10]. However, before this selection, the first
candidate was a RV64GC core. In the following sections, preparation for the
implementation of these candidates are given. The implementation of both candidates
are done using Xilinx Vivado 2018.1[11] and the reason behind it is to automatizing
the synthesis, implementation, place and route processes and using the generate bit-
stream feature to program the FPGA card. In order to focus the main effort on design
and not dealing with side problems such as driver failures and tool bugs, a Linux based

system is installed on the computers from the beginning.

1.3.1 Installing Ubuntu 16.04 and required programs

19

In order to run the project, Ubuntu 16.04.5 LTS [12] is chosen as the default operating
system. Linux based operating system is chosen because complex open source projects
like processors needs to have a building scripts and their own tools in order to work
properly. This situation requires certain packages and tools like CMake[13] and RISC-
V GNU Toolchain [14]. Installing these requirements is a lot more easier in Linux

based systems than Windows based ones.

After installing Ubuntu, Vivado 2018.1 should be installed from the Xilinx website.
After its installation, in order to run the program effortlessly, one should edit her

.bashre file in the /home directory.

+»+ source /opt/Xilinx/Vivado/2018.1/settings64.sh

This ensures when the terminal is called in the system, settings64.sh script would
always be entered in the background. In addition to that, Vivado 2018.1 requires
external drivers to be installed in order to recognise the FPGA cards from Digilent.

For Nexys 4 DDR, following drivers need to be installed into the system.

* Adept 2.16.1 Runtime, X64 DEB

* Adept 2.2.1 Utilities, X64 DEB

After installing Vivado 2018.1 and Ubuntu 16.04 with the required packages, one
could begin to implement an open source processor as a Vivado project. As it is
mentioned in the previous section, there are many open source RISC-V processors in
the internet. Initial aim of this project was to implement a 64-bit RISC-V processor
because of the large number of bits in the cryptographic algorithms would make use
of 64 bits fully. So, the first candidate to implement was lowRISC[15] chip with
Rocket core. The core is RV64GC which means it is 64 bits and includes G and C

20

standard extensions. In the next sections, implementation steps for its FPGA project

and the reason behind the switching of the processor is explained.

CMake must be installed to compile and install complex projects and programs to the
system. To install CMake Linux version 3.13.2, it can be downloaded from
https://cmake.org/download/ [13] . After downloading the files, the commands below

must be entered inside the download folder to the terminal

<o ./bootstrap
< make
< make install

1.3.2 Installing RISC-V GNU toolchain from GitHub

Any open source RISC-V processor repository needs its own development tools like
RISC-V compiler, ISA simulator et cetera to be installed. In order to install these tools,
system should have some necessary packages. The command below does the

installation of the necessary packages:

<> sudo apt-get install autoconf automake autotools-dev curl libmpc-
dev libmpfr-dev libgmp-dev gawk build-essential bison flex
texinfo gperf libncurses5-dev libusb-1.0-0 libboost-dev

Also, in order to use GitHub effectively in Linux operating system, git tool needs to

be installed. So, in the first step one should open a terminal and enter this command:

<> sudo apt-get install git

21

When every necessary package is built on the system, one could start to install the
RISC-V tools. This project includes C programs to be run in the digital system itself.
That means the compiled version of the C code should not include any libraries in the
Linux operating system. In order to ensure there is no such error in the tools, one
should install the tools with their cross-compilation bare-metal version. Normally,
computers compile and run their programs for their own system. Cross-compilation
means the compilation process is done in another system (in this case Linux operating

system) for the processor.

In order to install the compiler, one should build the RISC-V GNU Toolchain using
the commands below:

X/

<> git clone --recursive https://github.com/riscv/riscv-gnu-toolchain

<o sudo apt-get install autoconf automake autotools-dev curl python3 libmpc-
dev libmpfr-dev libgmp-dev gawk build-essential bison flex texinfo gperf
libtool patchutils be zliblg-dev libexpat-dev

> .Jconfigure --prefix=/opt/riscv --with-arch=rv64gc

o make

This processes takes 20-30 minutes total depending on the performance of the
computer. The last command installs the RV64GC compiler. However, when the target
processor changed to its final version RV32IMC a slight modification needed to be

done. The modified command can be seen below:
<> Jconfigure --prefix=/opt/riscv --with-arch=rv32imc

o make

22

After installing the toolchain, now by calling:
<> which riscv32-unknown-elf-gcc
One could make sure the compiler is installed correctly.

After the installation of all the necessary programs for the hardware part of this project,

the preparation of the software development environment may begin.

1.3.3 Preparing the software development environment

NTRU has many open source C code implementations ranging from key generation,
encryption and decryption functions to the whole cryptosystem. In this project aim was
to increase the performance of NTRU in the encryption, decryption and key generation

functions.

In order to work and test different C codes an Integrated Development Environment
needs to be installed to the system. CLion 2019.3.1 was te choice for that role because
of its ease of use and its own profiling tools. In order to install CLion to Ubuntu
16.04LTS one should download the compressed file and enter the following

commands:
<o sudo tar xvzf CLion-2019.3.1.tar.gz -C /opt/
<> sh /opt/clion- 2019.3.1/bin/clion.sh

After installing CLion to the system, it is now possible to create and edit C projects
with it. However, one small installation needs to be made in order to use the CPU
Profiler tool of the program.

#* uname -r

This command returns the exact version of the operating system, which will be used
when installing the dependencies of the Profiler tool. In the systems that this project is

done, the version was 4.15.0-106-generic
¢ sudo apt-get install linux-tools-4.15.0-106-generic

After that upon the first launch, CLion asks for the kernel variable changes. The reason
behind that is to record the changes in the kernel while being not the root user. Since

the profiler essentially analyzes the kernel it is important to record the logs of it.

23

Change Kernel Variables te Run Profiler

Change these kernel variables to allow Perf to collect information without root privileges

sudo sh -¢ ‘echo 1 = /proc/sys/kernel/perf event paranoid’
gida sh ¢ 'eécho @ > |"[II'DE|"'-""].I".EII\E] fEptr restrict’

cance
Change Permanently (write to fete/sysctl d/99-perf conf)

Figure 1.1: CLion Change of Kernel Variables Prompt

2. IMPLEMENTING AN OPEN SOURCE RISC-V PROCESSOR ON FPGA

With the developing technology After the preparation of the work environment
regarding hardware and software design, the implementation process for the open
source RISC-V processors begun. In this aspect, several candidate processors and
system on chips have been considered. These are Ariane core, Ibex (formerly Zero-

riscy) core and LowRISC SoC which uses rocket core.

Cores
Priv. Pri
Name Supplier Links 15 User spec (it License
spec Language
Ibex (formerly 2
lowRISC GitHub 1.1 R 32IMICRYVIZEM]C SystermnVerilog Apache 2.0
Fero-riscy)
ETH Zurich, o chdderpad
Ariane Universita i Website. GitHub o Rved4GC SystemVerilog arcware
draft Licerse w.
Bolagna
0.51
SoC platforms
Name Supplier Links Core License
Rocket Chip SiFive, LICE BAR GitHub. Simulator Rocket BSD
LowRISC lowRISC GitHub RW32IM BSD

Figure 2.1: List of SoC and Cores That Uses RISC-V ISA

Ariane is a 64-bit RISC-V core which implements six stage pipeline structure with
single issue, in-order architecture. LowRisc SoC also uses a 64-bit RISC-V core
however implemented core on the system, rocket core, has not a six stage but a five

stage pipeline structure. There are more than a dozen of different cores from different

24

companies with different hardware description languages. So, better documented and
more comprehensible cores would be the bigger candidates in this project. It is decided
to use more simple core because it is thought that the modification of the core will be

complex enough.

2.1 Implementing LowRISC Chip With Rocket Core

In this project, first candidate system for the modification of the processor was the
system on chip designed by lowRISC organisation. The name of this SoC is lowRISC-

Chip and it contains a core,

After that, in order to use the open source chip it is needed to clone the project files to

the computer. The command below does the cloning:

<> git clone -b refresh-v0.6 --recursive https://github.com/lowrisc/lowrisc-

chip.git

After installing necessary tools, packages and Vivado 2018.1 finally the project files
for the SoC can be built. Running the commands below in the /fpga/board/nexys4 path
results with the verilog files and the vivado project of the system as a whole.

X/

< make vivado

X/

<> make project

Since the output Verilog files of the whole project is automatically generated from
Chisel it is assumed that the editing of the Verilog codes would not be difficult. After
closer inspections in the Rocket Core, it is seen that the assumption is simply wrong.
The reason behind that is the nature of the connections in the Verilog files are highly
complex because the main idea is to write them in a higher level hardware description
language, Chisel. Since learning a new hardware description language from scratch
and editing the processor using that language is beyond the scope of this project it is

decided to move on to another open source RISC-V processor named Ibex.

2.2 Implementing Ibex Core

32-bit Ibex[15] core is chosen as a suitable RV32IMC core because of its hardware
design language, SystemVerilog[16], and detailed documentation. Architecture of

Ibex can be seen in Fig.2.2

25

Ibex Core” EX Black

debug_req_i

Controller

— [cusTomM
D Stage L2008 propmrE

L »opa

=

g ..- cuter -- t --
= 2opa

= I Burfer A !

=

]

ol

7]

=

Diata Mem

l

L >
)
Camp L
Decoder o
addr_a

= i -"-. wdata_o
@ IOWRISC /\ = ! rdata_i =

* Changed based on modifications

Figure 2.2: Modified Architecture of Ibex

Core simply takes instructions from an instruction memory and acts like a two-stage
pipeline processor. Which means it fetches the instructions and buffers the inputs of
the decoder. However, there is no buffer for the execution stage of the processor which
makes the design two stage. Ibex has its own dependencies and in this section all the
steps that are executed will be explained. However, the modifications on the core and

how its done will be explained in the next sections.

The Ibex project needs srecord, fusesoc and pip to be built. In order to install these

dependencies one should enter the commands:
<o sudo apt install python-pip
<> sudo apt-get install srecord
<> sudo pip install fusesoc

After installing the dependencies, first thing to do is to clone Ibex repository to the

desired path using the following command:
<o git clone --recursive https://github.com/lowRISC/ibex

After cloning the repository by going into ibex/examples/fpga/artya7/ directory and
entering the following command would ensures the vivado project to be built with an
example of generated bitstream with the altering led lights in the Nexys 4 DDR FPGA

card.

> make build-arty-100 program-arty

26

After this command the generated Vivado project will include synthesis,
implementation and bitstream of the example described above. The whole project
includes a memory which acts like both instruction and data memory. By changing the
memory path in the SystemVerilog file of the memory, core could execute any
compiled program at this point. How to run a program with this method will be

explained in detail in the following sections.

3. RUNNING C PROGRAMS ON RISC-V CORE AND OPTIMIZATION OF
THE NTRU C IMPLEMENTATION

After building the the RISC-V core project. The processor fetches the instructions from
the memory and executes them in order while writing up to the register file and the
memory itself. In order to see this process, behavioral simulation of the system needs
to be done. The behavioral simulation is chosen for analyzing the inner works of
processor and the intricacies of the whole process. Since behavioral simulation allows
for the inspection of the intermediate signals in the design it is used for the verification
of the both modified and unmodified versions of the processor. First task to do after
the implementation was to compile some example C codes and verify the inner
workings of the processor. In the next section how to generate a memory file from a C

program will be explained.

3.1 Compiling C Codes And The Structure Of Generated Memory

Generation of the compilation files including executable linked file (.elf), disassembly
file (.dis), binary file(.bin) and memory file (.mem) is done by a script which is in the
Makefile format. The script needs three inputs in the same directory with itself. First a
C program, in the example makefile script, the C program is named "2d_array". After
that, in order to show where to put the instructions into the memory and setting up the
general flow of the memory structure a linker script and a C runtime file is needed.
The example makefile script can be seen in the appendix. In this project, the linker
script and C runtime file from the demonstration example named link.Id and crt0.S is

used.

27

Using this Makefile, one can generate the memory file of any C program by simply

entering the command below:
<> make

Likewise, simply entering the command below would delete the generated outputs of

the script:
o make distclean

This script mainly uses riscv32-unknown-gcc compiler that is built in the previous
section. This compiler simply turns C program to an Assembly program and then
generates binary instruction codes from each instruction one by one. After that process

it simply divides the binary file into 32-bit hexadecimal parts.

When the generating binary codes of the instructions, compiler does a simple
comparison using opcode mask and opcode match method. In this method fetched
instruction is XORed by all the opcode matches. After that it is masked by applying
opcode mask bits. If it is equal to zero, the generated opcode would be correct. Opcode
matches are unique codes for each opcode spaces. The term opcode space and the
opcode space of custom instructions will be explained in the later sections. The same
method also applied for recognizing the individual instructions. That means every

instruction has its own mask and match code for generating the binary files.

More details about the instruction generation and manipulation of the compiler in order
to generate binary codes of custom instructions will be explained in the "Instruction

Set Extension" section.

3.2 Running C Program in RISC-V Core

After generating the necessary memory file for the C programs, one should include the
destination of the memory file as a variable in the Vivado project settings.
SRAM_INIT FILE variable is created for that reason and it simply initializes the
memory structure with the generated instructions. After setting the variable as desired,
core would perform all the instructions given. In order to analyze the core, it is decided
to work with the behavioral simulation. Specifically, input and output signals of the
external memory, execution stage of the core and the outputs of the decoder and

register file are inspected with the waveform. In one of the first example C program, a

28

simple addition of two 32-bit variables is tested. The result of these two variables are

stored in a distinct RAM address.

L #include <stdint.h>

[Flint main{int argc, char *%argv) {

& uinted t© a 1074403 ;
uinted © b 1324403457

9 volatile unsigned int *war = (volatile unsigned int &) OxO0000cOLO;

L1 *yar = a+b; /5ummation

13 return (;

14 Ly
Figure 3.1: Simple Summation C Program for 32-bit RISC-V Core

Reason for trying this kind of simple C programs is simply for trying to understand the
overall process of the core by following most of the signals from fetch to write back
stages. After successfully tracing necessary signals, it is decided to move onto finding

the implementation of NTRU algorithm in C programming language.

3.3 Implementation and Optimization of the NTRU Algorithm in C

Programming Language

As its mathematical background and history explained before, NTRU is a candidate
for post quantum cryptography public key standard. This means it needs a lot of
implementation which are secure, optimized and open source. Since the complex
mathematical background of the algorithm with its need for array like implementation
is out of the scope of this project, it is decided to implement a ready to use NTRU C
code. In this effort two main candidates are considered. First one is named
"libntru'[17] and it is a highly optimized version of NTRU algorithm for both Java
and C programming languages. However, compatible compilation of this
implementation was not successful. The reason for that was the high instruction
memory and external library usage of the implementation. The reserved memory for
the instruction memory is 48kB and for the stack is 16kB in this project and because
it is a hardcoded limitation, libntru implementation is eliminated as acandidate. The
second option is to use the custom implementation of NTRU algorithm with 48bit

message length and parameters N = 53, p =3 and q = 101. Since this implementation

29

is written by our faculty member Res. Assist. M. Sc. Latif Akcay, it was fairly simple
to troubleshoot and integrate it to the system. However, it was unoptimal since it is

mainly designed for functional correctness.

3.3.1 Optimization of the ¢ program

The optimization of the code started with identifying the flow of the code. More than
dozen of sequential for loops have been found in the code itself. Since the
implementation is fairly modular with fundamental functions like polynomial
multiplication and polynomial division, optimizing with a simple principle would yield
significant improvement in the performance. The whole optimization step consists of
first, reducing the number of for loops by combining unnecessary ones into one loop.
Second, removing the printing statements which are there for debugging purposes. At
last, removing residual variables for better memory usage is done. An example figure
for the optimization process involving before and after of a snippet of the code for

modulus operation in arrays is given in Figure 3.2

A m:j-keimolq cafcu‘?tl??s // make mod calculations
For (+= g¢. 2 sosize A w)d for (i = 8; i < size a; ++i){
while (pola[i] < 0){ pola[i] = a[i];
: pola[i] = pola[i] + mod; while (pola[i] < 8){
} polaf[i] = pola[i] + mod;
}
for (i = 0; i < size a; ++i){ pola[i] = pola[i] % mod;
polafi] = pola[i] % mod; }
}
for (i = 0; 1 <« size b; ++i){ for \'1‘=_, 1 < size b; ++i){
while (polb[i] < 0){ po:b;ll =_b§1]; .
polb[i] = polb[i] + mod; while (polb[i] < B){
} polb[i] = polb[i] + mod;|
}
polb[i] = polb[i] % mod;
for(i =0; i < size b; ++i){ }
polb[i] = polb[i] % mod;
}
BEFORE (UNOPTIMIZED) AFTER(OPTIMIZED)

Figure 3.2: Example of Optimization Process in the Implementation

Both the optimized and unoptimized version of the program is run in the computer
before running it in the processor. The reason for that is the ineffective speed of the
behavioral simulation. In detail, the whole program is so complex that in order to
simulate the full operation with behavioral simulation, one may use a very high
performance computer. As a result, the optimized and unoptimized versions of the
program is compared with the designing computer itself. The result shows that

optimization process caused a performance gain of 14.48 percent.

30

Before After (+14.48% Faster)

Figure 3.3: Speed Difference Between Optimized and Unoptimized Version
3.4 Profiling the NTRU C Implementation

In order to continue the next step of the project which is implementing custom
instructions to the processor, fundamental step to take is choosing the custom
instructions. Since this project uses the implementation with the C programming
language and there was no realistic way was found for this project to edit the compiled
executable linkable format, the profiling step of the project took place in the C program
too. The editing of the executable linkable format (.elf) file was necessary because the
binary code of the whole program is generated in that file. In other words, for changing
the content of the instruction memory and adding custom instruction codes to it one
should try to edit the source of that generated memory. However, it is found a more
simple and high-level way to approach this problem. By editing the C program and use
the compiler in such a way that generates the desired custom instruction codes there
was no need for being involved in complex problems. The details about this solution

will be explained in the next section with the subsection of inline assembly method.

In order to find the best suiting instruction for this application, it is thought that
finding the most frequent function and trying to reduce it to an instruction would be
an ideal scenario. So, the profiling of the optimized code is done by a script that uses
a counter to record how many times a particular part of the program is called. The

script is used with the commands:

<> riscv32-unknown-elf-gcc -g -O3 <name of the ¢ program> -o <desired

name of the object file>

X/

> riscv32-unknown-elf-gdb --command= <name of the gdb script>

31

st pagination off

set logging file gdb.txt
set logging on

file NTRU4E

target sim

load NTRU43

start

set %cirll = @
set $ctr58 = @
11 set $ctrs7y 0]
12 set $cirB8 g
3 set $ctrllb
14 set $ctrl23
15 set %cirl43
16 set $ctr2ib
17 set %ctr274
18 set $ctrige
19 set $ctr424
28 set %cir5l2
21 set $ctr5de
22 set &ctr569
23 set $ctrhll
24

25

26 break NTRU 4B bitM.c:13
27 commands

=
O 0= W R

| | | | | | | | | 1
DD D000 D@

28 set $citrlld = $ctrlld + 1
209 C
38 end

Figure 3.4: Part of the Profiling Script for C Program

The result shows that the polynomial multiplication function in the code is called 535
times while the polynomial division function is called 136 times. These functions
mainly include basic array arithmetic operations like element-wise addition, element-
wise subtraction and element-wise equalization. After confirming the counter results
again with the CLion profiler tool, the process for implementing these array operations

into the instruction set begun

4. INSTRUCTION SET EXTENSION OF RISC-V PROCESSOR

After profiling the optimized NTRU code and finding the candidate instructions to add
to the ISA itself, different methods for implementing is discussed. In order to get a
broader view for this problem, in the first subsections some important terms is needed
to be explained. The first thing to choose was the type of the custom instructions in
order to generate their machine codes. R-type instructions, as shown in the Figure 4.1

is chosen due to their availability for two operands per instruction.

32

31 a0 25 M 2] 0 1o 15 14 12 11 8 T] 0

funct7 [rs2 i rzl] funetd [rid [opcode] R-type

Figure 4.1: Instruction Format of R-type Instructions [18]
4.1 Software Part

4.1.1 Opcode space

Opcode Space[18] is a term for a group of instructions that have the same instruction
type and enable the same sort of response in the core to some degree. For example, all
32-bits ALU instructions are in the same opcode space, OP_32[18]. There is also
three different opcode spaces for customized instructions. In this project, opcode

space CUSTOM _0 is used.

4.1.2 Inline Assembly method

Modifying the compiler to include the custom function and adding a .insn directive to
the source code is considered as two different options for changing the machine code
of the project. Between these two options, using .insn directive is picked for its ease
of use. The directive is an assembly directive; in order to combine it with the C code,

inline assembly method[19] is used.

Generally the inline term is used to instruct the compiler to insert the code of a function
into the code of its caller at the point where the actual call is made. The benefit of
inlining is that it reduces function-call overhead. As can be understood from the

definition, inline assembly is a set of assembly instructions written as inline functions.

Inline assembly structure is created and used for each instruction with the name
instr_[instruction]. instr _equ can be seen in Fig. 4.2 as an example. asm stands for
'assembly' and volatile indicates that the variables can be modified from outside of the
C program. ".insn r CUSTOM 0, 0x7, 5, %0, %1, %2 \n" is the assembly code that
define a R-type customO rd rsl rs2 instruction. Registers can be appointed
automatically by % symbol. 0x7 is the funct3 value which specify that instruction will
take 2 registers (rs1 and rs2) and returns to a destination register (rd). 5 is the funct7
value. funct7 is used for specifying the individual instructions in the same opcode
space. In the project, 0x03 implies array addition, 0x05 implies array equalization and

0x06 implies element-wise modulus operation. First of the two lines below the

33

assembly code indicates the output operands and second indicates the input operands.

Result of the al and a2 arrays will be written to the al in this case.
vold instr _equ(unsigned int *al, unsigned int *az){

asm volatile(

“.insn r CUSTOM B, Ox7, 5, %@, %1, %2 \n"
"=r"(&al[®])
“r"(&aife]), "r"(&az[e])

)

return;

Figure 4.2: instr_equ Function with the Inline Assembly Method
4.1.3 Chosen instructions and their types

There are different instruction formats for different needs and for a custom instruction,
R-type instruction format is chosen due to its capability of using two different source
registers. Other types are in lack of this property or are not in a proper structure. The
third register in R-type, destination register, is simply equals to the first operand in our
structure since, all of the added custom instructions were designed to be self returning
instructions. However, using the methods mentioned above on any type of instruction
could be added to the instruction set simply by changing their parameters in inline

assembly code.

4.1.4 Implementing the custom instructions to the C programs

Parallelization is a powerful application for increasing the timing performance. To be
able to execute parallelization, we imagined of a structure that processes every element
of the source array at the same time. But it was not possible due to limitations of the
instruction structure. We can send maximum two source operands(rsl and rs2) and
receive one result (rd) by using R-type instruction structure. Therefore it was not
possible to design a digital system to calculate all the elements, both for the huge area
cost and the insufficiency of the number of operands. For example for a simple array
operation one might need three operands: arrayl, array2 and length of the both arrays.
Since the last operand, length cannot be fit into the instruction itself we decided to
implement its value in the hardware by hard-coding it to the module. The detailed
explanation for this implementation can be found in the next chapters. There are many

parts in the optimized C code with "for loops" where basic operations done for

34

elements of arrays. The solution we found is to using addresses of the source arrays
and lengths of them in a wrapper function since the instruction itself could not contain
all three information. The detailed explanation of the hardware implementation of this

part is in the hardware section.

As can be seen from Figure 4.2, custom instruction with the inline assembly method
contains, first element addresses of the arrays al and a2. These are assigned to the
source registers. However, there is a difference between the instr mod and the other
two. A second array is not needed in array modulation. A second variable called mod
will be used as the second input and is not a pointer. Based on this mod value, the
modulus of each array element will be calculated. In the hardware part which will be
explained later on, three elements of each array are processed by calling

instr_[instruction] functions.

4.1.5 Developing and testing the instructions using simple C programs

In the previous subsections, we said that instr_equ is helpful to process three elements
of each array at the same time. But in the C code of the NTRU algorithm, there are
many elements with different array lengths use the custom operations. To be able to
execute operations on arrays that have more than 3 elements and with different
capacities, we create a new function structure. array _equ shown in the Fig. 4.3 created

to execute equilization and is one of the three functions that the structure is used.

voild array_equ{int *ail,int *a2,int length) {

fint i = 0;
switch({length%3) {

case 0:
for (i = 0; i « (length f 3); i++) {
instr_equ({{(unsigned int*)&ai[3 * i],(unsigned int*) &a2[3*1i]);
}

case 1:
for (1 =9; i < ((length-1) / 3); i++) {
instr_equ({unsigned int*)&ai[3 * i],(unsigned int*) Raz[3*i]);

1
al[length-1] = a2[length-1];
case 2:
for (i = 8; 1 < ((length-2) / 3); i++) {
instr_equ({{unsigned int*)&ai[3 * i],(unsigned int*) &az2[3*i]);

}
al[length-1] =
al[length-2] =
} //end of switch case
} //end of function

a2[length-1];
a2[length-2];

Figure 4.3: array _equ Function within the C Code

35

In array _equ, there is a switch structure that helps to decide how many times to call
the instr_equ. If length is divisible by 3 without remainder, instr equ will called

length/3 times, since instr_equ is handling 3 array elements from each array at a time.

If length is divided by 3 with remainder 1, instr _equ will called (length — 1) /3 times

and last elements will be equilize by operand '='.

If length is divided by 3 with remainder 2, instr_equ will called (length — 2)/3 times

and last two elements will be equilize by operand '='.

This function differs for array mod. Like the instr _mod, mod value will be used

instead of the a2 pointer.

After building the structure for array operations, tested three functions (array mod,
array _add, array equ) on simple C codes to see if they are giving the wanted results
correctly. Global array definitions and main part of the C code written for testing,

without instruction definitions for simplicity, is given in the Figure 4.4

int arrayi[17]
int arrayz[17]
int main{) {

{-1,-2,-3,1,2,3,4,5,6,7,8,9,0xa,0xb,16,1,6};
{@xa,0xb,0xc,0xd,0xe,0xf,0xal,0xa2,0xa3,0%xa4,0xa5,0xa6,1,2,3,2,8};

array_add{arrayl,arrayz,17);
array_mod(arrayl,7,17);
array_equfarrayl,array2,17);

return @;

Figure 4.4: Parts of the C Code for Testing Functionality of the Added Instructions

2 global arrays were defined at the beginning; arrayl and array2. They defined as
having 17 elements and random values are assigned to them. At the main part, custom

instructions were tried one by one.

To see the outcomes, created .mem file for the code and run it on the core in Vivado
environment. By debugging, we made sure that the correct commands were entered in
custom\ module written in hardware. By examining behavioral simulation, we made
sure that added instructions are working correctly. Results of the test can be seen in

Figure 4.5.

36

00000000
0

00

0
00000000

T l &= L L1

GGOOOOOO.GGGGBGO0,000GGGGG oo (W R e e, 00000000 80000000,
T T T
[c[clclelolclelc] R, 0 . S [clclsls]c]clclc}

00000000
a

Figure 4.5: Behavioral Simulation of Test C Code
4.1.6 Adding custom instructions to the optimized C code

Optimized NTRU code has many for loops which are aimed to be replaced with the
functions array_equ, array_mod and array _add. Changed the loops with the functions
array mod(arrayl, mod, [array length]), array add(arrayl, array2, [array length])
and array equ(arrayl, array2, [array length]). Final version of the NTRU C code is

given in appendix.

4.2 Hardware Part

After the candidate instructions for extension is chosen, modification in the core are
mainly done to the execution stage of the structure. In order to not get the illegal
opcode error in the core itself, first thing to do is introducing the custom instructions
to the instruction decoding stage of the core. This is done by adding a new state in the
decoder hardware of the core for the specific opcode space CUSTOM (. Whenever
that opcode space is decoded in the decoder, an enable signal and the specific opcode

of the instruction is sent to the added module in the execution stage.

In the execution stage of the core, there are two modules present in the vanilla version.
First one is Arithmetic Logic Unit(ALU) and another module is for the multiplication
and division module MUL/ DIV. ALU is used for the single cycle operations while
MUL/ DIV is used for multi cycle operations, the detailed explanation for the multi
cycle instructions and their connections will be given in the next subsection. In this
project, a new custom module and a new remainder module are added to the execution

stage for enabling the array operations in the core.

37

i)

GGGGBGOO
T

4.2.1 Custom Module Design

In the first iteration of the project, all the new instruction is designed in a way that the
all operations would be done in a single custom module. However, in the future
iterations it would be found that the design is mostly inefficient and not using the full
features of hardware design. By simply writing a driver module to pull the data from
RAM and then dispersing the data into a parallel network of modules would be seen

most efficient way to implement the custom instructions.

In the second iteration of the design, making use of the already existing MUL\DIV
module would seem appropriate because of its advantage for the area problem.
However, even adding two new modules of MUL\DIV would create a lot bigger
designs. In order to solve that issue, the search for the specific part that is responsible
for the remainder instruction begun. Upon finding that part of the module, creating a
new module that uses the specific part was seem to be enough. After doing the testing
of that design it is found that the inner architecture of interconnected MUL\DIV
module and ALU module was the main problem for the area. Since the remainder
instruction part uses ALU to do its basic calculations, in order to do the full
parallelization of the process, one has to multiply the number of ALU's as well. Since
this is a pretty big addition to the execution stage and it would complicate the system

too much the project moved to its next and final iteration.

In the final version of the project, two new modules are added in the execution stage
of the core. Input signals of the execution stage is divided between the original
modules and the custom module. Outputs of the execution stage is chosen in respect
to the enable signal that comes from the decoder. The diagram that summarizes the
connection between the sub-modules of execution stage module is shown in the Figure
4.6. Remainder module is a module that is used for doing the modulo operation using
the non-restoring division algorithm implementation[20]. The reason for not using the
inherent REM instruction of RISC-V is that the core itself use both ALU and
MUL\DIV modules to execute REM instruction. Thus, parallelization of this structure
is costly in terms of area usage. In order to increase the performance by doing the same
operation in the same time, three instances of this module is generated in the execution

stage.

38

Modified Execution Stage

MUL/DIV ENABLE —— UL/ DIV RESULT

REMAINDER 1

CUSTOMMOBULE REMAINDER_2 U — oUTPUT SIGNAL TP

REMAINDER 3

CUSTOM_RESULT
ALU_RESULT

Figure 4.6: Diagram of Execution Module

Another module named custom_module acts like a driver between the memory of the
system and the remainder module. Also, it does simple algebraic computations like
additions and equalization. Main structure of the module consists of eight states, which

are shown in Figure 4.7.

LOADDATA
FROM RAM

INITIALIZE

;. SEND ADDRESS

COUNTER— LENGTIL

Figure 4.7: State Flowchart for Custom Module

State zero initializes the counter, temporary registers etc. First state is for sending the
address information to the memory and retrieve the corresponding data. In order to
read from the memory, one clock cycle has to be passed. So, second state is used for
that delay. Third state is for loading the incoming data into local registers datareg 1,
datareg 2. This loading sequence is repeated until the capacity of the local registers
are full. In this project, it is decided to use three data at a time because of the trade-off

between area and increase in performance. Fourth state is for sending the modulus

39

operands to remainder instances or doing the addition. Action in the fifth state is
determined by the unique opcode of the instruction. In the fifth state results are stored
in another local register called datareg 3. Contents of this register is sent to the
memory of the system by changing the control signal check and return the module to
state 1. After valid signal is set to high, the module goes into the end routine, from
which it sends the control signals to the core to end the multi cycle waiting process.

Also, it gives out the final result to the destination register as intended.

4.2.2 Changes for multi-clock cycle operations

Any process that reaches the memory structure and pulls multiple data then executes
the same operation has to be multi clock cycle. That is because of the nature of the
memory structure would allow only one data to be read in one clock cycle. So, there

is a need for implementing multi clock cycle instructions to the core.

The core already has multi clock cycle instructions from MUL\DIV module. An
unfinished instruction should send a signal to the instruction fetch stage of the core,
the reason behind it is that if the fetch stage continues to work after one clock cycle,
decoder receives another instruction and the core moves on to the next instruction to
fetch. That will conclude with erroneous results. The control signals inside of
instruction fetch stage are modified to include the custom module enabling signals and
another signal that indicates the validity of the custom module outputs. Whenever the
custom module is enabled, core would enter a waiting stage just like if it receives a
MUL\DIV enabling instruction. Moreover, parallel to MUL\DIV module when the
custom_valid signal is high the core would start to fetch and decode instruction from

where it left off.

4.2.3 Connections with RAM and other modules

In this section, all the connections of custom module will be listed with their brief

explanations.

40

cust i

+
arrayl_addrﬁl:ﬂ] . cuatnm_dataﬁBl:D]
arrayE_addr{Bl:D] custom final
clk custom _mod o
custom_en cugtann[D]EEl:D]
custom mod result[0][31:0] cuatann[l]EEl:D]
custom mod result[1][31:0] cuatanniz]Bl:D]
custom mod result[2][31:0] = custom op b 0[31:0]
cus.tnm_npicl:[h] custnm_regultBl:D]
mod valid custom valid
ram_data_in{Bl:D] ram_addr_nut{lE:D]

custom_module

Figure 4.8: Input and Output Ports of Custom Module

= As it can be deducted from their names arrayl addr and array2 addr ports
of the module corresponds to the two operands of the instruction. For the

modulation instruction array2 addr port acts like it is the divisor.
= clk port takes the same clock signal as the execution stage input clock.

= custom en is the active high enable port that ensures the module only

activates when the relevant instruction is decoded.

= custom mod_result ports are the inputs to custom module that comes from
the custom written three remainder modules. Remainder modules would
take their inputs from the custom module, calculates the remainders and
send it back to custom module as explained in the hardware part section

before.

= custom op is the port for specifying the individual instructions. The
individual opcodes for instruction would be decoded in the decoder. So,

this port gets its input from the decoder.

41

mod_valid is the port that checks if the remainder modules provide the
valid results at the same time. In order to check that, this port takes its input
as the result of three input and gate which includes valid signals from all

three modules.
ram_data_in is the port for pulling the data from RAM module.
custom_data is the output port for pushing resulting data to RAM module.

custom_final is the output port that implies the multiclock instruction is
finished. Hence, it is connected to the instruction fetching module and

related to enabling the stall signals of the core.

custom_mod o is the output port that enables the all three remainder

modules when the opcode for modulus instruction comes.

custom op a o and customopbo output ports are the inputs to the

remainder module as described above.

custom_result is the output port that sends the address of the first array

since all the instructions are self returning type.

custom_valid is the output port for indicating the results needed was

calculated thus controlling the write enable port of the RAM module.

ram_addr out is the output port for controlling the RAM module address

input.

S. PERFORMANCE & TIMING ANALYSIS

We have tested the custom instruction's functionality as mentioned previously. And

after the structural improvements on both software and hardware, we had the

implementation of the NTRU C code with custom instructions on the modified core.

In this section, we will explain how time analysis is done on the instructions and whole

structure. Also, the results of these analyzes will be shown.

42

5.1 Benchmark C Program

Benchmarking[21] can be defined simply as measuring relative performance of an
object by using a computer program or a set of programs. To be able to do timing

analysis, we have used this method.

The C code, written for testing the functionality of the custom instructions, is explained
before in the 'Developing and Testing the Instructions Using Basic C Programs'
subsection. This code is updated to measure how fast each specific operation was
compared to using basic C operations such as '+', '%' and '=". There were two arrays

defined globally: arrayl and array2. Another global array named resultkon is defined.

resultkon defined as a global array because, we wanted the data to be saved in RAM,
such as arrayl and array2. In this way, we can see the test signals at the output. The
resultkon, which contains 1 element, was used for a slightly more specific job than

others.

In the main part of the code, the custom operations were called in order for testing.
However, when written in this way, only the result of the last operation could be
observed; It was not possible to measure how long each process took. Therefore, by
making use of the sequential working feature of the C programming language, some
specific values are assigned to the resultkon array after each custom instruction called.
Thus, resultkon served as a control signal here. As seen in the Figure 5.1 the array add
command is called between the assignments of the Oxdebdebde and Oxdcdcdcdc
signals to the resultkon. It was assumed that the difference between the times when
two specified control signals were seen at the output, was equal to the time it took to
sum two 17-element arrays. Similarly, how many clock cycles the modulation and

equalization processes took by using two 17-element arrays were measured.

43

int main() {

result_kon[@] = Oxdcdcdcdc;
array_add(arrayl,array2,17);
result_kon[@] = @xdebdebde;
array mod(arrayl,7,17);
result_kon[@8] = @xdabadaba;
array_equ(arrayl,array2,17);
result_kon[B] = @xAAbabaaa;

return @;

1

Figure 5.1: Main Part of the Benchmarking C Code

A comparison of the implementation of these processes with the custom operations

and the basic C library is given in Table

ided Kosullarda..(17 elemanliarray) |add rmod equ
st 279 454 199

irmp o ern ent-%) 01671641791 04921700 |0.3e52205 ;

Figure 5.2: Number of Clock Cycles Comparison Between the Custom Instructions
and Basic C Operations

5.2 Behavioral Simulation to Check the Results

After the behavioral simulations on the trivial C code examples, it's time to test the
final version of the NTRU C code. When we used behavioral simulation, see that heavy
computing need of it would make simulating the whole operation practically

impossible.

In order to solve this problem, NTRU implementation has to be tested in the real-
world conditions. An FPGA card is used to implement the whole project and run the
C code on the core. The card we used was Nexys 4 DDR which is in Xilinx's Artix-7
FPGA family.

44

5.3 Using 7-Segment Display and LEDs to See the Results on Board

There were some changes needed in RAM(ram_lp) and clock generator
(clkgen xil7series.sv) module to be able to create bitstream and run it on the board.
Assignment to the CLKIN1 PERIOD in the clock generator is needed only when
behavioral simulation is running.10 assigned to it because of the clock period
determined in the testbench module. As for RAM, created .mem file is read by the
Sdisplay and $readmemh commands in /[initial begin end] block for the behavioral
simulation. This part replaced with a ['ifdef ... 'endif] block that helps reading the
SRAM_INIT FILE for creating bitstream. SRAM_INIT FILE which shows the .mem
file, can be changed from the Tools/Settings/General/Verilog options/Defines.

The memory structure of the project is quite simple, it has the same memory for
both data and instructions. All global arrays that are in the C code is saved in a constant
address in the memory. Data output of the core which changes rapidly is also saved in
the memory and we wanted to observe changes on it during the NTRU algorithm. We
had two main ideas to observe the output that named 'data_wdata o". Using LEDs on
the FPGA board and observe the output on the 8-digit 7-segment LED display. But,
data changes so fast that human eye could not catch and distinguish the changing
values on both of them. Observation problem is solved by using Integrated Logic

Analyzer (ILA) IP.

5.4 Usage of ILA IP

ILA[22] is a module that was used for measuring and reading the values from the
project. In order to see the memory input and core output of the project, one probe of

the ILA is connected to the wire that connects both of them in the top module.

When FPGA board programmed with the bitstream, a dashboard is opening in the

hardware manager. We used trigger setup and waveform in the dashboard options list.

As mentioned before, main function of the C code includes both key generation,
encryption and decryption algorithms for NTRU. In an effort to measure the
performance improvements that are achieved for individual parts of the cryptosystem,
a specific data assigned to our control signal resultkon at the beginning and the end of

the each function.

45

By simply checking the number of clock cycles or time between the two uniquely

designated signals, an accurate measurement is concluded.

This check is done using trigger setup and waveform. Trigger setup used to detect a
specific value in the probe of the ILA. Our control signal connected to the probe with
the name /eds and it is what we are looking for to see resultkon values assigned in the
C code. In the waveform, looking for the leds and a clock counter to detect the each

values time to come.

Dashboard screen can be seen in the Figure 5.3. Different control signals are looked

for by changing the leds value in the trigger setup code.

HARDWARE MANAGER - |ocalhost/xilin« tcf/iDigilent/210202A6EFA0A

dashboard_1

Hardware

Trigger Setup - hw ila_1 » — 0O X Waveform - hw_ila_1
thome/elifnur/Desktop/senior_project/test.te » Qi |= ||k | H | E & |Q X | of |4 M |=|% |+

+Q - X BB 7 IL& Status: Idle

Dashboard Options

S | state wait_for_leds to be C:
if (leds == 32'hdededede) then
reset_counter §counter;
trigger:
else
increment counter fcountard;
goto wait_for_leds_to_be C;

ILA Core Properties

Figure 5.3: Dashboard Screen

There is a reason why we insert the control signal into the functions. When we used it
between calling the functions in the main part, measurements were not logical. So, we

measure a function's time consumption by detecting beginning and end of it.

5.5 Comparing Selected Operation Implementations on Core with and without

Custom Module

Performance measurements are made with the previously mentioned method. First
measurement was the unmodified NTRU code with the modified core. Array
equalization instruction made an unexpected increase in the clock cycles. It is possible
that it is because of the disruption of the optimization process of the compiler, caused
by the new instruction. However, the overall effect of that instruction in the last
configuration shows that it can be a helpful in decreasing the clock cycles in some
combinations. It is also worth mentioning that there was no change in the working

frequency of the core in the case of modified version.

46

Table 5.1 : Performance Results

Added Instruction Clock Improvement
Cycles
Vanilla 329,281,688 -
MOD 255,087,137 -22.53%
ADD 310,181,046 - 5.80%
EQU 345,059,480 +4.79%
MOD + ADD 224,556,529 —31.80%
MOD + EQU 321,277,395 —2.43%
ADD + EQU 312,095,182 =5.22%

MOD + ADD + EQU 222,705,262 —32.37%

The area measurements are made by implementing unmodified Ibex core and
comparing the utilization report of it with the modified core. To be able to obtain more
ideal results, from the Tools/Settings/Synthesis/Strategy, we choosed
'Flow_AreaOptimized high'. This property helps Vivado tool to synthesis the project

with high area optimization.

Increase in the usage of Look-up tables (LUT) and flip-flops (FF) are shown in the
Table II

Table 5.2 : Area Usage Results.

Status LUT Increase FF Increase
VANILLA 2991 - 1923 -
MODIFIED 37.44% 25.18% 2929 +52.31%

While the number of clock cycles are decreasing, the critical path of the whole system
does not change significantly. Results of this project shows that with a directly
connected data memory and a custom driver for the data handling in execution stage
would improve the overall performance of the core for NTRU cryptosystem

implementation.

6. REALISTIC CONSTRAINTS AND CONCLUSIONS

Post-Quantum cryptography is one of the issues that should be studied in all aspects
for information security both today and in the coming years. Although NTRU is the
oldest of the candidate algorithms, it stands out with its security level and processing

speeds. In this study, new instructions are designed and implemented on an open-

47

source RISC-V processor to speed up NTRU Crypyosystem operations effectively.
For this purpose, NTRU Cryptosystem is firstly designed in C language as a software
application. Then, profiling is applied at a functional level with a classical method to
determine the most frequently used blocks. New instructions that implement the
operations of the detected blocks are designed and integrated into the processor core.
The designs are tested on FPGA and compared with others for all versions. According
to the results obtained, even if the resource utilization increases the design requirement

slightly, it has provided a serious improvement in terms of performance.

6.1 Practical Application of this Project

This project proves that by adding carefully planned, custom instructions to the ISA,
great performance improvements could be delivered with the small changes in the
core. Most of the complex and computing intensive operations could be simplified this

way.

6.2 Realistic Constraints

Most important impact of this project is that it takes advantage of open source
hardware designs. Big open source projects like RISC-V processors give a great
reduction in time spent dealing with the implementation part of the project. This extra

time would allow designers to think more creatively and design products faster.

6.2.1 Social, environmental and economic impact

The society we live in today is called the information society. Military and state
secrets are shared interchangeably, also personal and social information are

shared too. The possibility of leakage of information that have an importance at any
level, raises the need to protect and encrypt said information. It is of utmost
importance to design equipment that will ensure this healthy and secure sharing
environment and implement crypto protocols. Fast and efficient design and

performance of these equipment will make information sharing safer and healthier.

6.2.2 Cost analysis

A FPGA evaluation board that faculty management meets was the essential cost factor

of this project. In addition to the FPGA evaluation board, Vivado development

48

environment is also used for implementing the whole project to the board and
debugging it using ILA. Since the project mainly uses open source sources for its

operating system and other necessities, there are no other cost factor.

6.2.3 Standards

The studies to be carried out in the project will be in accordance with several
different standards. The modified core itself will be in accordance to RISC-V ISA
standards. Hardware implementation will be in accordance with IEEE(Institute of
Electrical and Electronics Engineers) while cryptographic algorithm NTRU will be in
accordance with NIST. Also, it is aimed to modify and optimize the NTRU C
implementation in accordance with C programming language standards. Finally, the

engineering code of conduct is followed throughout the project.

6.2.4 Health and safety concerns

Since FPGA itself is sort of a black box mentality, there is no actual danger to any

human. Also, by the nature of this project the design product is not risky by any means.

6.3 Future Work and Recommendations

The aim for a future project would be to implement a simple communication protocol
that utilizes a lattice-based cryptographic algorithm. Then testing it with two modified
cores and analyzing the performance improvements over the unmodified ones. Also,
another project about porting GCC for any custom instruction would benefit the
designing team greatly. First, the pure software part of the project would not need any
modification unlike the current version of the project that includes inline assembly
directives. Furthermore, it would enable assembly level optimizations in the code.
Because of the inline assembly method and the complexity of the NTRU algorithm,
low level optimizations are difficult to implement manually. Porting the compiler

would help in that case enormously.

49

REFERENCES

Alagic G., Alperin-Sheriff J., Apon D., Cooper D., Dang Q., Liu Y., Miller C.,
Moody D., Peralta R., Perlner R., Robinson A. and Smith-Tone D.,
“Status Report on the First Round of the NIST Post-quantum
Cryptography Standardization Process,” National Institute of Standards
and Technology, Tech. Rep. 8240, January 2019.

Buktu T., Gueron S., S.F.: libntru github Repository,
https://github.com/tbuktu/libntru

CMake, “Cross Platform Make,” https://cmake.org/cmake/help/v3.3/index.html.
Furber S. B., VLSI RISC Architecture and Organization. Routledge, 19 Sep 2017.

Hoffstein J., Pipher J., and Silverman J. H., “NTRU: A Ring-based Public Key
Cryptosystem,” in International Algorithmic Number Theory
Symposium.Springer, 1998, pp. 267-288.

Ibex Documentation, lowRISC, April 22 2020, https://ibexcore.readthedocs.io/
/downloads/en/latest/pdf/.

Integrated Logic Analyzer v6.2, Xilinx, Inc., October 5 2016,
https://www xilinx.com/support/documentation/ip documentation/ila/
v6 2/pgl72-ila.pdf.

Kanoun K. and Spainhower L., Dependability Benchmarking for Computer Systems,
January 7 2008, doi:10.1002/9780470370506.

Mohseni M., Read P., Neven H., Boixo S., Denchev V., Babbush R., Fowler A.,
Smelyanskiy V. and Martinis J., “Commercialize Quantum
Technologies in Five Years,” Nature, vol. 543, no. 7644, pp. 171-174,
2017.

Nexys4 DDR FPGA Board Reference Manual, Digilent, Inc., April 11 2016,
https://reference.digilentinc.com/ media/reference/programmablelogic/
nexys4ddr/nexys4ddr rm.pdf.

Paar C., “Implementation Options for Finite Field Arithmetic for Elliptic Curve
Cryptosystems,” Presented at the 3rd workshop on Elliptic Curve
Cryptography (ECC 1999), November 1-3 1999,
http://www.cacr.math.uwaterloo.ca/conferences/1999/ecc99/slides.ht
ml.

Patterson D. A. and Hennessy J. L., Computer Organization and Design RISCV
Edition, 1st ed. Morgan Kaufmann, 12 May 2017.

RISC-V, “GNU COMPILER TOOLCHAIN” https://github.com/riscv/riscv-gnu-
toolchain.

Rivest R. L., Shamir A. and Adleman L., “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems,” Communications of the
ACM, vol. 21, no. 2, pp. 120-126, 1978.

50

Sako K., Public Key Cryptography. Boston, MA: Springer US, 2011, pp. 996-997.
[Online]. Available: https://doi.org/10.1007/978-1-4419-5906-5 22.

SystemVerilog, “IEEE Standard for SystemVerilog-Unified Hardware Design,
Specification, and Verification Language - Redline, ” IEEE Std 1800-
2009 (Revision of IEEE Std1800-2005) - Redline, pp. 1-1346, 2009.

Ubuntu, “Ubuntu 16.04 Documentation,” https://help.ubuntu.com/16.04/ubuntu-
help/index.html.

Vivado Design Suite User Guide, Xilinx, Inc., April 4 2018,
https://www xilinx.com/support/documentation/sw
manuals/xilinx2018 1/ug910-vivado-getting-started.pdf.

Waterman A., Lee Y., Patterson D. and Asanovic K., “The RISC-V Instruction Set
Manual,” 2016.

Yanofsky N. S. and Mannucci M. A., Quantum Computing for Computer Scientists,
Ist ed. Cambridge University Press, 11 Aug 2008.

Yusmardiah Y., Mohd D., Karimi A., Abdul A. and Kamsani A., “Translation of
Division Algorithm Into Verilog HDL,” ARPN Journal of Engineering
and Applied Sciences, vol. 12, pp. 3214-3217, 05 2017.

Url-1 <https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C. html.>

51

[1] Yanofsky N. S. and Mannucci M. A., Quantum Computing for Computer
Scientists, 1st ed. Cambridge University Press, 11 Aug 2008.

[2] Mohseni M., Read P., Neven H., Boixo S., Denchev V., Babbush R., Fowler A.,
Smelyanskiy V. and Martinis J., “Commercialize Quantum
Technologies in Five Years,” Nature, vol. 543, no. 7644, pp. 171-174,
2017.

[3] Hoffstein J., Pipher J., and Silverman J. H., “NTRU: A Ring-based Public Key
Cryptosystem,” in International Algorithmic Number Theory
Symposium.Springer, 1998, pp. 267-288.

[4] Alagic G., Alperin-Sheriff J., Apon D., Cooper D., Dang Q., Liu Y., Miller C.,
Moody D., Peralta R., Perlner R., Robinson A. and Smith-Tone D.,
“Status Report on the First Round of the NIST Post-quantum
Cryptography Standardization Process,” National Institute of Standards
and Technology, Tech. Rep. 8240, January 2019.

[5] Furber S. B., VLSI RISC Architecture and Organization. Routledge, 19 Sep 2017.

[6] Patterson D. A. and Hennessy J. L., Computer Organization and Design RISCV
Edition, 1st ed. Morgan Kaufmann, 12 May 2017.

[7] Rivest R. L., Shamir A. and Adleman L., “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems,” Communications of the
ACM, vol. 21, no. 2, pp. 120-126, 1978.

[8] Paar C., “Implementation Options for Finite Field Arithmetic for Elliptic Curve
Cryptosystems,” Presented at the 3rd workshop on Elliptic Curve
Cryptography (ECC 1999), November 1-3 1999,
http://www.cacr.math.uwaterloo.ca/conferences/1999/ecc99/slides.ht
ml.

[9] Sako K., Public Key Cryptography. Boston, MA: Springer US, 2011, pp. 996-997.
[Online]. Available: https://doi.org/10.1007/978-1-4419-5906-5 22

[10] Nexys4 DDR FPGA Board Reference Manual, Digilent, Inc., April 11 2016,
https://reference.digilentinc.com/ media/reference/programmablelogic/
nexys4ddr/nexys4ddr rm.pdf.

[11]Vivado Design Suite User Guide, Xilinx, Inc., April 4 2018,
https://www xilinx.com/support/documentation/sw
manuals/xilinx2018 1/ug910-vivado-getting-started.pdf.

[12] Ubuntu, “Ubuntu 16.04 Documentation,” https://help.ubuntu.com/16.04/ubuntu-
help/index.html.

[13] CMake, “Cross Platform Make,” https://cmake.org/cmake/help/v3.3/index.html.

[14] RISC-V, “GNU COMPILER TOOLCHAIN https://github.com/riscv/riscv-gnu-
toolchain.

[15] Ibex Documentation, lowRISC, April 22 2020, https://ibexcore.readthedocs.io/
/downloads/en/latest/pdf/.

[16] SystemVerilog, “IEEE Standard for SystemVerilog—Unified Hardware Design,
Specification, and Verification Language - Redline, ” IEEE Std 1800-
2009 (Revision of IEEE Std1800-2005) - Redline, pp. 1-1346, 2009.

52

[17] Buktu T., Gueron S., S.F.. |libntru github Repository,
<https://github.com/tbuktu/libntru>

[18] Waterman A., Lee Y., Patterson D. and Asanovic K., “The RISC-V Instruction
Set Manual,” 2016.

[19]Url-1<https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-
C.html.>

[20] Yusmardiah Y., Mohd D., Karimi A., Abdul A. and Kamsani A., “Translation
of Division Algorithm Into Verilog HDL,” ARPN Journal of
Engineering and Applied Sciences, vol. 12, pp. 3214-3217, 05 2017.

[21] Kanoun K. and Spainhower L., Dependability Benchmarking for Computer
Systems, January 7 2008, doi:10.1002/9780470370506.

[22]Integrated Logic Analyzer v6.2, Xilinx, Inc., October 5 2016,
https://www xilinx.com/support/documentation/ip_documentation/ila/
v6 2/pgl72-ila.pdf.

53

APPENDICES

APPENDIX A: The Example makefile Script

APPENDIX B: C Code of the NTRU Algorithm

APPENDIX C: SystemVerilog Codes of the Custom Module and Remainder
Module

APPENDIX D: RTL Schematics

54

APPENDIX A

1 # Copyright lowRISC contributors.
2 # Licensed under the Apache License, Versich 2.0, see LICENSE for details
& # 5PD¥-License-TIdentifier: Apache-2.0
4 #
5 # Generates a baremetal application
&
7 PROGRAM 7= Zd array
8 PROGRAM CFLAGS = -Wall -g -0s
=l ARCH = rv3Zimc
10
AEIE SECY = 5 (PROGRAM).c
1z
i CC = foptiriscw/bin/riscvii-unknoim-elf-goco
14
15 OEJCOPY 2= §(subst gcc,objcopy,f(wordlist 1,1,5(CC)))
16 OEJDUME 2= §(subst gcc,objdump,f (wordlist 1,1,5(CC)))
1
13 LINFEF_ZCRIPT 7= link.ld
13 CRT 7= crt0.3
20 CFLAGS #?= -march=% [ARCH] -mahi=ilp32 -static -wmcwmodel=medany %
21 -fwisibility=hidden -nostdlib -nostartfiles § (PROGEAM CFLAGH)
22
23 OEJS = §{53RCS5:.c=.0} ${CRT:.5=.0}
24 DEPS = 5 (0BJ3:%.0=%.4d)
25
26 OUTFILES = % (PROGRAM).elf § (PROGRAM).vmen & (PROGRAM).bin 4 (PROGRAM).dis
27
28 all: §(OOTFILESR)
i
30 § (PROGRAM) .elf: §(0BEJ3) % (LINFEF_3CERIFT)
31 $(CC) %(CFLAGS3) -T % (LINKER SCRIPT) %(0BEJ3) -o £0 5(LIES)
e
33 %.dis: %.elf
34 5 (OBJDUMP) -3D 5~ > &0
B
36 # Note: this target requires the srecord package to be installed.
T, # Xxx: This could be replaced by objcopy once
38 # https: //sourceware. org/bugzilla/shoy bug. cgizid=19921
20 # 1z widely available.
40 # »x: Currently the start address 0x00000000 iz hardcoded. It could/should be
41 # read from the elf file but:is lest:in the bin: file.
42 # Zwitching to objcopy will resolwe that as well.
43 F.vmem: %.bin
44 srec_cat §* -binary -offset 0x0000 -byte-swap 4 -0 @ -vmen
an
a6 5.bin: %.elf
a7 5 (0BICOPY) -0 binary 5+ M
4aa
49 t.e: %.cC
50 $(CC) %(CFLAGS) -MMD -c % (INC3) -o 5@ 5
51
BE Foms FoF
55 §(CC) §(CFLAGS) -MMD -c 5 (INCS) -o 50 §<
54
55 clean:
13 IEM) -£ *.0 *.d
BT
58 distclean: clean
e §IRM) -f£ §(0UTFILE3)

Figure A.1: The Example makefile Script

55

APPENDIX B

ffinclude <stdio.h>
#include cstdlib.h>

product[158];

product2[15e];

result[1587;

ti_z[1ea];

static int random_keys[318];

volatile int resultkon[1]={@XBEBEBEBE};

LA T8 FCUSTOM INSTRUCTION SETS /S0 00T
void instr_add{unsigned int *al, unsigned int *a2){

asm volatile(

“.insn ¢ CUSTOM 8, Bx7, 3, %8, %1, X2 \n"
"=p" {Ba1[8])

© “pT(&alfel), "r"(&a2[e]}

b H

return;

void array_add{int *al, int *a2, int length) {
int i =8;
switch{length%3} {

case @:
for (i=8: i< {length / 3): i++) {
instr_add{{ensigned int*}&=1[3 * 1], {unsigned int*)&a2[3*i]};
}
break;
case I:
for (1 =8; 1 ¢ {(length-1) f 3); 3+4) {
instr_add{{onsigned int*}&al[3 * i], {unsigned int*)&a2]3*i]};
}
3i[length-1] = al[length-1] + =Z[length-1];

break;

case 2:
for (i=8; 1< ((length-2) / 3); 3+ {
instr_add{({onsigned int*}&a1[3 = i], {unsigned int*)&a2[3*il};
}
al[length-1] = al[length-1] + =2[length-1];
3l[length-2] = al[length-2] + =2[length-27;
break;
} /fend of switch case

1 f/end of function

void instr_egqu{unsigred int *al, unsigred int *a2){

asm volatile(

“.insn r CUSTOM B, @x7, 5, X8, X1, X2 \n"
r{ga1fe])

rr(&alfa]), "roga2e]}

void array_equ{int *al,int "a2,int length) {
int 1= 8;
switch{length%3) {

case @:
For (i =8; i< (length / 3); ie+) {
instr_egu{{unsigned int*}&=1[3 * i],(unsigned int*}) Ba2[3*i]};
}
break;
case 1t
for [i=#8; i« {{length-1) / 3); 3++) {
instr_egu{{unsigned int*}&=1[3 * i],(unzigned int*) Ba2[3*i]};
i
al[length-1] = a2[length-1];

break;

56

case 2t
for (L =48; 1< ((langth-2) / 3); i+) {
instr_equ{(unsigned int*}&al[3 * i],(unsigned imt*} Ra2[3*i]l);
]
a1[length-1] = a2[lsngth-1];
a1[length-2] = a2[lsngth-2];
brealk;
} /fend of switch case
} /fend of function

void instr_mod{unzigned int *al, unsigned int mod) {

asm volatile(

".insn ¢ CUSTOM 9, exY, 6, %8, €1, %2 \n"
: "=p"(&a1[8])

: "PT(&al[8]), "r(mod)

b
return;
}
void array_mod{int ®21, int mod,int length){

int i =8;

switch{length¥3) {

case @:
For (i=@; 1« (length / 3); i+4)
instr_mod((unsigned int *) &31[3 * i], (unsigned int) mod);
]
brealk;
case 1t
Far (i =@; i< ((length-1) / 3); i+4) {
instr_mod((unsigned int *) &31[3 * i], (unsigned int) mod);
]
31[length-1] = =1[length-1] ¥ mod;
brealk;

case 1:

For (i =8; i ¢ ((length-2) / 3); i=) {
instr_mod{{unsigned int *) &al1[3 * i], (onsigned int) mod);

¥
al[length-1] = =1[length-1] % mod;
al[length-2] = 21[length-2] % mod;
break;

1 /fend of switch case

} /fend of Function

SRR DR R E R LT LT

int *polymult{int *3, int size a, int *b, int size b, int mod, int star mult){

int line[size b]lsize_a + size b];
int i,3,k;

int *return_addressij

int pola[size al;

e bl;

fimake all line vectors zero
for (1 = @; i < size b; ++){
for(j = &; j < size 8 + size b -1; ++j){
line[1][d] = &;
product[j] = &;

// make mod calculations
array_equpols,s,size_a);

array_mod{pola,mod,size_a};

array_equ{polb,b,size b);
array_mod(polb,mod,size_b});

57

J/ make caicalations for partial products, if need add mod calculations
if{star_mult == 1){
for (j=size b -17 § >=8; j = F-1){
for (k = size a-1; k »= 8] k = k-1 }{
line[size_b-1-j][k] = pola[k}*polbijl;

3
}
}
elzaf
for (j==ize b -1; j>=8; j =F-1){
For (k = size 3-1; k »= 8; k = k-1 }{
line[size b-1-3]1k + J] = pola[k]*palb[j];
}
1
}

Jimod calculations
for (1 = 8; 1 ¢ =size b; ++1){
array_mod{line[i],mod,size_a+size_b-1};

¢ construct product
for{i = B; i < size b; +i){

array_add{product,1ine[i],size s+size_b-1};

Simod calculations

array_nod{product,mod, (size _a+size_b-1));

return_addressl = &product[d];

return return_asddressi;

*polymult2{int *a, int size_ a, int *b, int size b, int star mult){

int line[size b][size a + size b];
int i,3.k;

int *return_addressl;

int pola[size af;

int polb[size bJ;

f#make all line vectors zera

for (i =

3 1« size by +i)

for(i = 8; j < size & + size b -1; ++){
line[i][3] = &;
product2ij] =.8;

array_equipola,a,size aj;

array_equ{polb,b,size b);

[make calculations for partial products, if need add mod calculations
if{star_muit == 1){
for (§ =size b -1; ja=8; §=F-1){
for (k= size 3-1; k2= 8; k = k-1 M
line[size b-1-j]Tk] = pola[k]*polb[]jl;

}
1
1
elsef
for (j = size b -1; j =87 § = §-1){
for (k = size 3-1; k2= 8 k= k-1 M
line[size b-1-j]1k + j] = pola[k]*polbli];
}
}
1

/¢ construct product
for{i=8;icsize_hj++i){

array_add{product?,line[i],size assize h-1};

58

return_addressi = product2[8];

return return_addressi;

t *palydiv(int *num, int size N, int*denum, Int size D, int mod){

int u,d,d2,i,b N,r_d;
int *return_sddressi;

int w[size Ni;

int g[size Ni;

int *product;

int num_temp[size NJ;
int denum_temp{size O];

array_equinum_temp,num,size N);

array_mod{num_temp, mod, size_N);

/{ make mod calculation for coefficents
array_equidenum_temp,denum, size D)}
array_mod{denum_temp,mod,size_0);

for (1 =9; 1 ¢ size N; +4){
qli] = &
v[i] =8;

ff¥ind b_N (denum) and degres denum
for (1 = size 0-1; i 3= 8; 1 = i-1){
if{ denum temp[i] != @)
break;
1
d2 = ip ffdegree of €
b N = demum_temp[i];

A Set u = (B.N)"-1 mod p {denum} //
for (s = @; u < mod; ++u){
iF { (h_Nru)Emod == 1)
break;

fi find degres mum and © d
for (i = size N-1;'1 >= 8; 1 = 1-1){
iF{ num_temp[i] |=8)
break;
b
d=1i;

r_d = num_temp[d];

A While-1 deg mum »= deg d=num do
while {d »= d2){

ffset wor=ow w rd w XM{d-N)
v[{d-d2}] = w*r_d;

array_mod{v, mod, size M);

ff v b
product = polymult{denum_temp,size D,v,size D, mod 8);

f/ make mod calculation for coefficents

array_mod{product, mod, size M);

fir = r-v*b
For (i =9;'1 < size Nj ++i){
num_temp[i] = num_temp[i] - product[i];

ff make mod calculation for coefficents

array_mod{num_temp, mod, size M);

59

M ag=qg+v;
array_add{g, v, size N};

array_mod{g, mod, size_N}:

£t Set d i= deg r{X) (mum}
for (i =size N-1; 1 2=4; i = 3-1){
if{ mum_temp[i} !'= 8)
break;

1
g =1
-

~d = num_temp[d];

/¢ make zero for next calculations
for (i =8; i« size N} +4){
vii] = &;

1 //End While-1

array_equi{result,g,size_N);

for{i = size N; i « (Z"size N}; ++i){

result[i] = num_templi-size M];

return_address3 = Sresult[@];

return return_address3;

int® ext_euclid(imt* polyk, int* polyf, int size; int mod) {

int *return_sddressd;

int M, i, §;

int ri 2fsize]; // MX-ring poly, a

int ri_1[size]; // f-random poly, F[N] =@, b

int ri[size];

int ti i[size]; // ti lfe] =1
int ti[size];

int gi_i[size];

int temp[size];

int *res;

int *resl;

int *resl;

int comtrolR = 1}

K = size - 1;
for (1 =@8; 1 ¢ size) ++#i) {
ti_2[i] = &
ti_i[i] = &;
}
array_equi{ri 2,polyR,size);
array equiri 1,polyf,size);

ti_i[e] = 1;
while (controlR !=8) {

controlf = B;
£/ make mod for ri_d

array_mod{ri_2z,mod,size);

4/ make mod for ri_ 1
array_mod{ri_1,mod,size);

res = polydivi{ri #, N + 1, ri 1, N+ 1, mod);
for (i=N+1; 1¢c (2" N+2); i)
rifd - (N + 1)] = res[i];

60

M giidl= (ei2 - Fi}frid; A1

for (L =8; L <N+1; +1) {
temp[i] = ri_2[i] - ri[i];

#/make mod calc
array_mod{temp,mod,size);

resl = polydivi{temp, N+ 1, ri 1, N + 1, mod};

array_equigi_1,resl, size);

#/make mod calc
array_mod{gi_1,mod,size);

M to=ti2 - qi 1%vd 3 /MY

res? = polymult(gi 1, N+ 1, i1, N + 1, mod, B);

array_equ{temp,res2,size);

44 make mod calculations
array_mod{temp,mod,size);

for (L =8; L <N+1; +1) {
ti[d] = £i_2[i] - temp[il;

array_mod{ti,mod,size};

Miri2=rilpridl=ri; €12 =1i 17t =ti; I/

array_equ{ri_2,ri_1,size);
array_equiri_1,ri,size);
array_equiti_2,ti 1,size);
array_equiti_1,ti,size);

for (i=8; & oN+1; 441 {
gi_1[i] = 8;
controlfl += ri[i];

¥
}
for (3 = 9 J < mod; ++3) {
if (({ri_2[e] * 3) ¥ mod} = 1)
break;
}
for (i=12; 1 «N; ++)
if (ri_2{i] != #)
break;
}
for {i=9; 3 «N+1; i)
i 2[3] = (ti_2[i] * §) % mod;
}
return_addressd = &ti 2[8];
return return_addressd;
}

int* generate_keys(int N, int p, int gi{
resultkon[8] = exasasaasd;

int £[55} = {-1, 1, 1, 8, -1, 8; 1, &, 8, 1, -1, -1, 8, 1, 8, -1, 8, 1, 1, B, 8,
int g[55) = {-1, 8, 1, 1,8, 1,8, 8, -1; 8 -1, -1, 8, 1, @, -1, 8, 1,8, 8, 1; -1, 8,1, 8, 8, 1, -1, 8, 1; & 8,1, -1, 8, 1, 8, 1,

int *Fp

int *fq;

int *fg;

int *pk;

int polyR[M+1];
int i

int* return_addresss;

61

-1,8,1; 8 81,1, 1,

-1,08, 1, & & 1, 1, 1,

-1, 8, 1,88 1,1, 1)
1, 9,9, 1;:-1, 8, 1, 8, 1};

palyR(N] = 1;
polyR[e] = -1;

For(i=1; i< N ++1){

polyRfi] = &;

For (1= M; 4 ¢85 4)
flil = &5
gli] = &

Forfi= 8 1< N; ++i){
random_keys[i] = f[il;

For(i = N; i< (2M); ++i}
random_keys[i] = g[i-N];

p = ext_euclid(polyR, £, (M1}, P);

for(i = (27K} 1 < (3°N); ++E)]
random_keys[i] = fp[i-(Z*°N}];

q = ext_euclid(polyR, £, (M1}, a);

For(i = (3"M); 1 < (4°N); ++E)]
random_keys[i] = fg[i-(3"N}1;

fg = polymult2(fa, N, g, N, 8);

For(i = B i< (2M-1); ++1)(
fg(1] = F5111%P;

pic = polydiv(fg, (2'N-1), polyd, (M1}, al;
For(l = (4°N); 1< (5N})]

random_keys[1] = pk[i-(d*N)+{2°N-1)];

For(i = (5°N); 1< (B™N#1)j 4D
random_keys[1] = palyR[i-(5°M)];

return_addressS = &random keys[9];
resultkon[8] = Bxasaaaasl;
return return_addresss;

Int* Atru_encyrpt{int M, int g, int® message, int* public key, int* polyR){
resultkan[@] = @xbbbbbbbi;
int *return_addressé;
int *CF;
int random_valf[a8] = {1, -1, @, 1, -1,1, -1, @,1,1, 9, -1, 1, -1,1,@8,1,1,48, -1,1,-1,1,@,1,1,9,1, -1,1, -3, 6,1, -1,8,1, -1, 1, -1, 8,1, 1, 8, -1, 1, -1,
int *tamp;
ne 13
temp = polymult(public key,N,random val,48.q,8);

HIFEF PUBLIC_KEY*RANDOM VALUE (/11111

array_sdd{temp,message, 48}
A PF4 PUBLIC KEY®RANDOM VALUE + MESSAGE (/71117

€T = palydivitemp, (2*N},polyk, (N+1),q);

Forfd = (2N); 1< (3N); +K
e1i-(2*N)] = E1EE

62

return_addresse = &CT[e];
resultkon[#] = exbbbbbbbl;
return return_addresse;

inc* ntru_deceypt{int ¥, int p, int g, int* secret_key f, int* secret_key fp, int* Enc_Message, fnt* polyR){
resultkon[#] = exceccoocd;
int* return_address?;
int® a;
int* a2;
int® c3
int* €3;
int 1;
ffa=Ffemodqg
a = polymilt{secret_key_f,N,Enc_Message,N,e);

32 = polydiv(z, (27N),polyR, (N+21).9);
FHGEETREEEE vector ax (F.e modg) /700 T00T

fordi = (2%N); 1 < ({2*ND+N); ++E){
a2li-(2*N)] = a2[i];

/fcenterlifting a2
For (1= 8; 1 c Ny +)[
if(a2li] <= qf2)
a2fi} = a2[i];
else
a2[3f = (-1)*{g-a2[i]}

c© = polymilti{secret_key_fp,N,a2,N,4);
FHEETE Poecror o fpea2)/ /1 F7TTTNT

€2 = polydivic, (2N}, polyR, (N+1).p)5
for(l = (2°N); 1« ((2N)an); 1)
C2f1-(2N)] = €2fi];

FAE4F i vector 1 (decrypred message)/ /11T

return_address? = &e2[e];
resultkon[8] = @xccocoocl;
raturn return_address?;

int main(}{
inc* Enc_Message;
int* Dec_Message;

ine keys;
int N = 53
intp =3

inTog = 1013

intomessage(48] = {1, 1, 2,0 10 L, 2,04 L0, 1, 1) 2 1851y 208 1 1 1, 18l 1, 8 2 L 2, Lo# L1 2 1L 4 K2, 1 102 L L 0, L 2k
int public_key[N];

int secret_kay_f[N];

int secret_key_g[N];

int secret_key_fp[N];

int secret_key fg[N];

int ring poly[N+1];

dnc 3
// Alice generates public key fram her randomly created secret keys.
keys = generate_keys(N, p, 4);

for(i = 8; i< Np ++i){

secret_key_f[i] = keys[il;

for{i = N; 1 < (ZM); =i}
secret_key_gli-N] = keyslil;

for(l = (2°N); 1 € (3M); +i)]
secret_key_fp[i-(2°N)] = keys[i];

63

for(i = (3°M); i < (4°N); +i)
secret_key_fali-{3°N)] = keys[il;

fFor(l = (4*N); 1 ¢ (%MD 41}

public_key[i-{4*N)] = keys[i];

fFar(i = (57N} 1 ¢ (B"Ned); ++4)({
ring poly[i-{5°N)] = keys[i

encrypts. mess t to Alice

s publi

key and sen

using

Enc_Message = ntru_encyrpt(N, q, message, public key, ring poly);

rypts the messags u

v
=

Dec_Message = ntru_deceypt(N, p, g, secret_key f, secret_key_fp, Enc_Message, ring pol

Comparison and Proof

L

1 Dec_Message[2])){
resultkon{8] = SxBABABABA;
break;

{
resultken|

Figure B.1: C Code of the NTRU Algorithm

64

APPENDIX C

. timescale 1ns / 1ps

[-) module custom_module(

| input logic custom_en,

6 input logic [31:0] arrayl_addr,

: input logic [31:0] array2 addr,
output logic [31:0] custom_result,
output logic [31:0] custom_data,
input logic clk,

input logic [31:0] ram_data_in,
output logic [13:0] ram_addr_out,
output logic custom_valid,

output logic custom_final.

input logic [4:@] custom_op.
output logic custom_mod_o,

output logic [31:0] custom_op_a_o [2:0],
output logic [31:0] custom_op_b_o,

input logic [31:0] custom_mod_result [2:01,
input logic mod_walid

fronm RAM

RAM

logic [2:0] addr_check = 8,array_length = 3;

reg [1:0] k,i=3;

reg [4:0] custom_op_temp:
reg [13:0] arrayl_addr_tenp:
reg [1 array2_addr_temp:
reg [3 data_regl [2:0];
reg [31:0] data_req2 [2:0];
reg [31:0] data_req3 [2:0]:

logic c:

logic [3:0] state=0;
logic [31:8] mod;
logic custom_mod;

assign custom_mod_o = custom_mod;
assign ¢ = (i==array_length-1) ? 1 : ©:

always@(posedge clk)

begin case (state)

1 :begin //Adres Yo
case(custon_op_tenp)
4'bG110 : begin d
if(addr_check[0]) begin
for(int k=0;k<array_length;k++) begin
if(data_regl{k] [31]) begin =
data_regl(k] += mod =<5 ;
end

state = 5;
end
end
else begin
ran_addr_out = ({arrayl_addr_temp)+i);
state = state+l;

4'bE101 : begin /,

if (addr_check[1]) begin
ran_addr_out = ({arrayl_addr_temp)+i);
state = state+l;

end

else begin
addr_check == 1;
ran_addr_out = ({array2_addr_temp)+i);
state = state+l;

end

end

4'b0011 : begin //add
ran_addr_out = addr_check[0] ? ((array2_addr_temp)+i) : ((arrayl_addr_temp)+i) ;
state = state+l;

end
endcase

an

2 :begin /s
if (i) begin
state =state+l;
end
else begin
state = state+2;
end

end

3 :begin 2
state = state+l;

end

65

4 :begin
i=c70: itl:
case (custom_op_temp)
4'bE10L : beqgin //equ

if(laddr_check) begin

data_reql[i] = ram_data_in;
addr_check =¢c 21 : 8;
state = 1

end

else 1f (addr_check[0]) begin
data_req3[i] = ram_data_in;
addr_check = ¢ 72 : 1;
state = 1;

end

else if (addr_check[1]) begin
custom_valid = 1;
custom_data = data_reg3[il:
state = ¢ 7 state+2 : 1.

end

end Zsend of

default: begin

if(taddr_check) begin
data_reqlli] = ram_data_in;
addr_check =c 71 : O;
state = 1;

end

else if (addr_check[@]l) begin

data_req2[i] = ram_data_in;

state = ¢ ? statetl : 1;

end

else if (addr_check[1]) begin
custom_valid = 1;
custom_data = data_reg3[il;
state = ¢ 7 state+2 : 1;

5 :begin ate
case (custom_op_temp)

4'ba0ll: begin
fari{int j=0;j<array_length;j++) begin
data_reg3[j] = data_reqlljl+data_reg2[jl;
end
state = 1;
end

4'bol10 : begin
custom_mod = 1'bl;
custom_op_b o = mod:
custom_op_a_o = data_regl;

if (mod_valid) begin
data_reg3 = custom_mod_result;
custom_mod = 0;

state = 1;
end
else begin
state =
end
end
endcase
addr_check
end /
6 :begin // Fi

custom_final
custom_result = arrayl_addr_temp<<2;
1=0:

custom_valid = O;

state = state +1:

end
7 :begin //Fins 2
for{int i=0;i<array_length;i+) begin
data_reg3[i] = 32'ba;
data_regl[i] = 32'bo;
data_reg2[i] = 32'b0;
end
state = 0;
end

default: begin
arrayl_addr_temp = arrayl_addr==2;
array2_addr_temp = array2 addr==2;
mod = array2 addr;
custom_op_temp = custom_op;

custom_op_a_o[0] = 32'b0;
custom_op_a_o[1] = 32'ba;
custom_op_a_o[2] = 32'bi;
custom_op_b_o = 32'b0;
custom_mod = 1'b0;

ram_addr_out = 14'b0;
custom_valid = 1'b@;
custom_data 32'bo;
custom_final = @;

o;

_check = 0:
custom_result = 32'b0;
custom_data = 32'b@;

i=
addr,

if(custom_en) state = 1;
end
endcase
1 end
| endmodule

Figure C.1: SystemVerilog Code of the Custom Module

66

“timescale 1ns / 1ps

nodule remainder(clk,enable,dividend,divisor, result,valid);

input clk;

input enable;

input [31:0] dividend,divisor:
output [31:8] result;

output valid;

logic [63:0] dividend_copy,divisor_copy,diff;
logic [6:0] bits = 64
logic valid=0;

always@(posedge clk) begin
if (enable) begin
1f(bits[6]) begin
bits = 32
dividend_copy = {32'd0,dividend}:
divisor_copy = {1'd0,divisor,31'do};
end
else begin
valid = (~bits[6] && ~bits[S] && ~bits[4] && ~bits[3] && ~bits[2] & ~bits[l] && bits[0]) && enable;
diff = dividend_copy - divisor_copy:
if(!diff(63]) begin
dividend_copy = diff;

end

divisor_copy = divisor_copy == 1;
bits = (!bits) ? 64 : bits - 1;

end
end
- end
| assign result = dividend copy [31:0];
endmodule

Figure C.2: SystemVerilog Code of the Remainder Module

67

APPENDIX D

R

sl
il
i

i
L”{ 4
B,

%@@l ! == = =7 =L il

%—W@‘HE; ‘ = ‘! :ﬁfﬁ—t M y k :%7 =

i i i = 1 == ’—\‘ [l ﬂ Eﬁfzﬂii [’%gjﬁfy
ri‘%ﬂ%‘ ‘ — = %%:%jjj

| 1

Figure D.1: RTL Schematic of Custom Module

&l

Figure D.4: RTL Schematic of Ibex Core

68

Figure D.5: RTL Schematic of Top Module

69

CURRICULUM VITAE

Name Surname : Elif Nur isman
Place and Date of Birth : Istanbul / 10.11.1997

E-Mail : elifnurisman@hotmail.com

Elif Nur Isman finished primary and high school in istanbul. She is currently a senior
year student at Electronics and Communication Engineering in Istanbul Technical
University Electrical-Electronics Faculty. She completed her internships in ITU GSTL
Laboratory, Tiirk Telekom A.S. and ASELSAN A.S., also completed a voluntary
internship in TUBITAK.

70

CURRICULUM VITAE

Name Surname : Canberk Topal
Place and Date of Birth : Bafra/25.10.1998

E-Mail : topalcl 6@itu.edu.tr

Canberk Topal is currently a senior year student at Electronics and Communication
Engineering in Istanbul Technical University Electrical-Electronics Faculty. He
completed her internships in ASELSAN A.S. and HAVELSAN A.S. His primary areas
of interest include digital system design, cryptography and machine learning.

71

