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vii



viii



TABLE OF CONTENTS

Page

FOREWORD........................................................................................................... vii
TABLE OF CONTENTS........................................................................................ ix
ABBREVIATIONS ................................................................................................. xi
LIST OF TABLES .................................................................................................. xiii
LIST OF FIGURES ................................................................................................ xv
SUMMARY .............................................................................................................xvii
ÖZET ....................................................................................................................... xix
1. INTRODUCTION .............................................................................................. 1
2. POST-QUANTUM CRYPTOGRAPHY ........................................................... 3

2.1 Lattice Based Cryptography ........................................................................... 4
2.2 Learning With Error ....................................................................................... 7
2.3 NewHope PQC Algorithm.............................................................................. 7

2.3.1 Randomness and sampling ..................................................................... 8
2.3.2 Number Theoretic Transformation (NTT) ............................................. 9
2.3.3 Encryption Scheme................................................................................. 10
2.3.4 NewHope Real Life Implementations .................................................... 10

3. RISC-V ................................................................................................................ 13
3.1 RISC-V Applications...................................................................................... 14
3.2 RISC-V GNU Toolchain ................................................................................ 14

3.2.1 Setup ....................................................................................................... 15
3.2.2 Toolchain Modifications ......................................................................... 16

4. PULPino .............................................................................................................. 19
4.1 PULPino Architecture .................................................................................... 19
4.2 Setup ............................................................................................................... 20

4.2.1 RISC-V GNU Toolchain ........................................................................ 20
4.2.2 Implementation on FPGA....................................................................... 21

4.3 Simulation Environment................................................................................. 21
4.4 Applications.................................................................................................... 22
4.5 Tests ................................................................................................................ 23

5. Potato RISC-V .................................................................................................... 25
5.1 Potato RISC-V Architecture........................................................................... 25
5.2 Setup ............................................................................................................... 25

6. Ibex....................................................................................................................... 29
6.1 Introduction .................................................................................................... 29
6.2 Vivado Project ................................................................................................ 29
6.3 Peripherals ...................................................................................................... 30

6.3.1 GPIO....................................................................................................... 32

ix



6.3.2 Timer ...................................................................................................... 34
6.3.3 UART...................................................................................................... 35

6.4 Utilities ........................................................................................................... 37
6.5 Bootloader ...................................................................................................... 37
6.6 Makefile For Software .................................................................................... 38
6.7 Linker Scripts ................................................................................................. 39
6.8 NTRU ............................................................................................................. 40
6.9 NewHope ........................................................................................................ 40

6.9.1 Extending the ISA .................................................................................. 41
6.9.1.1 Profiling ........................................................................................... 41
6.9.1.2 Adding Custom Instruction Hardware............................................. 42
6.9.1.3 Custom Instruction 0: Hamming Weight Difference....................... 43
6.9.1.4 Custom Instruction 1: coeff_freeze ................................................. 45
6.9.1.5 Custom Instruction 2: flipabs........................................................... 47
6.9.1.6 Performance Improvements............................................................. 48

7. REALISTIC CONSTRAINTS AND CONCLUSIONS .................................. 49
7.1 Practical Application of this Project............................................................... 49
7.2 Realistic Constraints ....................................................................................... 49

7.2.1 Social, environmental and economic impact .......................................... 49
7.2.2 Cost analysis ........................................................................................... 49
7.2.3 Standards ................................................................................................ 49
7.2.4 Health and safety concerns..................................................................... 49

7.3 Future Work and Recommendations .............................................................. 50
REFERENCES........................................................................................................ 51
APPENDICES......................................................................................................... 55

APPENDIX A.1 ................................................................................................... 57

x



ABBREVIATIONS

PULP : Parallel Ultra Low Power
RISC : Reduced Instruction Set Computer
UART : Universal Asynchronous Receiver Transmitter
GPIO : General Purpose Input Output
ROM : Read-Only Memory
NTRU : Nth Degree Truncated Polynomial Ring Unit
IIS : Integrated Systems Laboratory
EEES : Energy-Efficient Embedded Systems Laboratory
NIST : National Institute of Standards and Technology
ISA : Instruction Set Architecture
GPR : General Purpose Registers
FPR : Floating Point Registers
PCR : Privileged Control Registers
IoT : Internet of Things
FPGA : Field-Programmable Gate Array
PQC : Post-Quantum Cryptography
NTT : Number Theoretic Transformation
LWE : Learning With Error
RLWE : Ring Learning With Error
SVP : Shortest Vector Problem
CVP : Closest Vector Problem
RISC : Reduced Instruction Set Computer
SoC : System On a Chip
OS : Operating System
SPI : Serial Peripheral Interface
JTAG : Joint Test Action Group
I2S : Inter-IC Sound
DMA : Direct Memory Access
VHDL : Very High Speed Integrated Circuit Hardware Description Language

xi



xii



LIST OF TABLES

Page

Table 3.1 : RISC-V GNU Toolchain prequisities.................................................. 15
Table 3.2 : Modified documents............................................................................ 16
Table 4.1 : PULPino prequisities .......................................................................... 20
Table 5.1 : NTRU PQC algorithm runs on different platforms............................. 27
Table 6.1 : ibex_wb source file list........................................................................ 30
Table 6.2 : Compiling results with different GCC flags........................................ 41
Table 6.3 : Performance and area changes with different custom instructions ..... 48

xiii



xiv



LIST OF FIGURES

Page

Figure 2.1 : 2D Lattice generated by 3 different base vectors [1]......................... 5
Figure 2.2 : Shortest Vector Problem example. [2] ............................................... 6
Figure 2.3 : Closest Vector Problem example. [3] ................................................ 6
Figure 2.4 : NewHope Key Generation. [4] .......................................................... 8
Figure 2.5 : NewHope Encapsulation. [4]............................................................. 8
Figure 2.6 : NewHope Decapsulation. [4]............................................................. 8
Figure 2.7 : Sampling from Binomial Distribution. [4] ........................................ 9
Figure 2.8 : R-LWE Based KEM. [4] ................................................................... 10
Figure 3.1 : RISC-V Base Instruction Formats [5]. .............................................. 13
Figure 3.2 : Adding Toolchain path to the .bashrc ................................................ 16
Figure 3.3 : riscv-opc.c Modification.................................................................... 17
Figure 3.4 : riscv-opc.h match and mask definitions ............................................ 17
Figure 3.5 : Instruction declaration in riscv-opc.h ................................................ 18
Figure 3.6 : Inline assembly method ..................................................................... 18
Figure 4.1 : PULPino architecture [6]................................................................... 19
Figure 4.2 : RI5CY core overview [6] .................................................................. 20
Figure 4.3 : Disassembly file example .................................................................. 22
Figure 4.4 : UART helloworld! example .............................................................. 23
Figure 5.1 : Potato UART Test code ..................................................................... 26
Figure 6.1 : HDL code for peripheral enums. ....................................................... 31
Figure 6.2 : HDL code for peripheral module instantiations. ............................... 32
Figure 6.3 : HDL code for GPIO module. ............................................................ 33
Figure 6.4 : HDL code for timer module. ............................................................. 34
Figure 6.5 : HDL code for UART wrapper module. ............................................. 36
Figure 6.6 : HDL code of result multiplexer in ALU module............................... 42
Figure 6.7 : HDL code for added custom extension in instruction decoder.......... 43
Figure 6.8 : HDL code of look-up table for Hamming weight. ............................ 44
Figure 6.9 : HDL code of custom instruction 0 in ALU module. ......................... 45
Figure 6.10: C code of usage of custom instruction 0............................................ 46
Figure 6.11: HDL code of custom instruction 1 in ALU module. ......................... 46
Figure 6.12: C code of usage of custom instruction 1............................................ 47
Figure 6.13: HDL code of custom instruction 2 in ALU module. ......................... 47
Figure 6.14: C code of usage of custom instruction 2............................................ 48
Figure A.1 : NewHope software makefile.............................................................. 57

xv



xvi



INSTRUCTION SET EXTENSION
FOR POST QUANTUM CRYPTOGRAPHY

ALGORITHMS ON RISC-V CORES

SUMMARY

With the development of quantum computers, security gets more and more important.
The commonly used cryptography algorithms such as RSA are less secure against
quantum computers. Because of that, in the near future, cryptography algorithms
resistant against quantum computers will be needed. With the aim of standardizing
good post-quantum cryptography algorithms, NIST has started a project. Between
the submissions, NewHope is one of the promising post-quantum cryptography
algorithms. So we have decided to use NewHope algorithm in this project. Since
post-quantum cryptography algorithms contain complex mathematical operations, they
tend to be slow. With the rise of IoT, more data is getting digitalized which makes
security even more important. Because of that, even small devices with RISC
architectures may be required to use post-quantum cryptography algorithms. So, this
project aims to extend RISC-V instruction set architecture to improve performance of
NewHope post-quantum cryptography algorithm.

RISC-V is an open source instruction set architecture. It is easy to add custom
extensions to RISC-V which makes it a suitable architecture for the aim of this project.
Several RISC-V cores were analyzed: Potato core, PULPino, and Ibex. Ibex was
chosen for the project since it is easy to work on, easy to understand and modify
the source code, and it implements the standard multiplication extension of RISC-V.
A small disadvantage of Ibex is that it does not come with a bus interface or any
peripherals. In order to easily add and use peripherals, a modified project of Ibex,
ibex_wb is used. This project includes a Wishbone bus interface module. With this
bus, any Wishbone compatible peripheral module can be connected to the core easily.
There is an example project top module for FPGA in the repository. This module is
used as a base for preparing a new one for Nexys 4 DDR FPGA board. For debug
purposes and getting used to editing the project, several peripherals are added. These
peripherals are GPIO, timer and UART modules. GPIO and timer modules are written
from scratch whereas the UART module is taken from an open source repository. A C
library is written for each peripheral to easily use them on the software side.

At this point the project needs to be synthesized and implemented again after each
modification on the software. In order to avoid this delay, a bootloader program is
written, This bootloader takes the application image file via UART, copies it to the
RAM and runs the program from RAM. This configuration significantly improves the
development speed.

After making the environment ready for development, NewHope library is downloaded
from the official website and tested on the device. With the use of static counters and
GDB, the application is profiled to analyze which functions are used the most. Later
with these analysis, custom instructions are decided considering the repeat amount and
difficulty to implement.
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In order to add a custom extension the ALU and the instruction decoder must be edited.
Also, the compiler source code must be edited and rebuilt to let the compiler know
about custom instructions. Later the custom instructions are used with inline assembly
code inside the C code.

The first custom instruction is Hamming weight difference. This instruction takes the
Hamming weights of two different values and takes the difference of them.
The second custom instructions is a part of coeff_freeze function which is a subtraction
followed by a series of logic operations.
The third and final custom instruction is a part of flipabs function which is again a
subtraction followed by a series of logic functions.

The instructions are used with inline assembly and the clock cycles are measured with
performance counters of RISC-V. As a result, the algorithm takes 6.90% less clock
cycles to complete with all the custom extensions while the area used is increased by
6.16%.
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RISC-V MİMARİLİ İŞLEMCİLER ÜZERİNDE
POST-KUANTUM KRİPTOPGRAFİ ALGORİTMALARI İÇİN

KOMUT SETİ GENİŞLETİLMESİ

ÖZET

Günümüzde kuantum bilgisayarlar üzerine çalışmalar arttıkça, güvenlik gitgide daha
da önem kazanmaktadır. Şu anda yaygın olarak kullanılan RSA gibi şifreleme
algoritmaları kuantım bilgisayarlara karşı dayanıklı değildir. Kuantum bilgisayarların
çalışma mantığından dolayı bu şifrelemeler çok daha hızlı bir şekilde kırılabilecektir.
Bu sebeple yakın gelecekte kuantum bilgisayarlara dayanıklı (post-kuantum) şifreleme
algoritmalarına ihtiyaç duyulacaktır. Post-kuantum şifreleme algoritmalarını standard-
ize etme amacıyla NIST bir proje başlatmıştır. Bu proje yapılan katılımlar arasında,
NewHope algoritması ümit vadedenler arasındadır. Bu sebeple bu projede NewHope
algoritması kullanılması kararı verilmiştir. Post-kuantum şifreleme algoritmaları
kompleks matematik işlemleri içerdiğinden genellikle yavaş çalışırlar. Nesnelerin
interneti teknolojilerinin de gelişmesiyle kişisel veriler daha da dijitalleşmeye
başlamıştır ve bu güvenliğe daha da önem kazandırır. Bu sebeple RISC mimamirili
küçük cihazların bile post-kuantum şifreleme algoritmaları kullanması gerekebilir.
Bu projenin amacı RISC-V mimarisine komut kümesi eklentisi yaparak NewHope
post-kuantum şifreleme algoritmasının performansını arttırmaktır.

RISC-V açık kaynaklı bir komut kümesi mimarisidir. RISC-V mimarisine eklenti
yapmak basit olduğundan bu projenin amacına uygundur. Potato core, PULPino ve
Ibex olmak üzere birkaç RISC-V çekirdeği incelenmiştir. NewHope algoritmasına
geçmeden önce tüm çekirdekler üzerinde NTRU algoritması ile performans testleri
yapılmıştır. Potato hiçbir standart eklentiyi içermediğinden performans açısından
çok geride kalmışıtr. PULPino ile iyi bir performans alınsada proje ve kaynak
kodlar biraz karışıktır. Ibex ile de iyi bir performans alınmıştır. Kaynak kodlarının
kolay anlaşılabilir ve değiştirilebilir olmasından ve standart çarpma eklentisini de
içermesinden dolayı Ibex ile devam etme kararı verilmniştir. Ibex’in ufak bir
dezavantajı çevresel modüllerin bağlanabileceği herhangi bir arayüz içermemesidir.
Bu yüzden Ibex’in ekleme yapılmış bir versiyonu olan ibex_wb projesi kullanılmıştır.
ibex_wb içerisinde Wishbone bus arayüzü bulundurur. Bu sayede herhangi bir
Wishbone uyumlu çevresel modül, sisteme kolaylıkla eklenebilir.

Projenin içerisinde, FPGA üzerinde kullanılmak üzere yazılmış örnek bir top modül
dosyası bulunmaktadır. Bu örnek kod baz alınarak, Nexys 4 DDR FPGA kartı üzerinde
kullanmak amacıyla yeni bir top modül ve xdc dosyası yazılmıştır. Bu yeni top modül
içerisinde çevresel modül eklemeyi kolaylaştırmak amacıyla modüller için enumlar
tanımlanmıştır. Modüllerin adres, boyut ve sinyalleri dizilerde tutulup, bu diziler enum
kullanılarak endekslenmektedir. Bu sayede modüllerin eklenmesi ve sinyal bağlantıları
çok basit bir hal alır.

Proje üzerinde çalışmaya alışmak ve ileride debug amacıyla kullanmak üzere birkaç
modül eklenmiştir. Bu modüller GPIO, zamanlayıcı ve UART modülleridir. Eklenen
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bütün modülleri yazılım tarafında rahatlıkla kullanabilmek için, herbirine ayrı ayrı C
kütüphaneleri yazılmıştır.

Wishbone uyumlu GPIO modülü sıfırdan yazılmıştır. Bu modül içerisinde 3 adet
register bulunur: yön, giriş ve çıkış registerları. Yön registerı hangi pinlerin giriş hangi
pinlerin çıkış olduğunu belirtir. Giriş registerı giriş bilgilerindeki sinyali okumak için,
çıkış registerı ise çıkışları değiştirmek için kullanılır.

Aynı şekilde Wishbone uyumlu zamanlayıcı modülü de sıfırdan yazılmıştır.
Zamanlayıcı modülünün 2 adet registerı vardır: kontrol ve sayaç. Kontrol registerında
sayacın çalışması veya sıfırlanmasını belirten bayraklar bulunmaktadır. Sayaç registerı
ise ne kadar zaman geçtiğini belirten, aktif durumdayken her saat darbesiyle değeri 1
arttırılan registerdır.

UART için açık kaynaklı, Wishbone uyumlu hazır bir modül kullanılmıştır. Yalnızca
Wishbone sinyallerini ibex_wb projesinde varolan Wishbone arayüzüne uyarlamak
amacıyla bir wrapper modül eklenmiştir.

Bu aşamada yazılım üzerinde herhangi bir değişiklik yapıldığında bütün proje baştan
sentezlenmeli ve yeni bir bitstream dosyası üretilmelidir. Bu işlem çok zaman
almaktadır. Bu gecikmeyi önlemek amacıyla bir bootloader programı yazılmıştır. Bu
program başlangıçta hafızaya gömülü bir şekilde bulunup otomatik çalışır. UART
üzerinden aldığı bir uygulama dosyasını hafızaya yazarak program akışını burdan
devam ettirir. Bu sayede yazılımda bir değişiklik yapıldığında projeyi baştan
sentezlemek yerine tek yapılması gereken işlemciyi resetleyip, ;UART üzerinden yeni
uygulama dosyasının gönderilmesidir. Başlangıçta bu program hafızada boş kalan
yer kadar bir dosya alacak şekilde tasarlanmıştır. Bu sebeple eğer uygulama dosyası
küçükse, sonuna sıfırlar eklenerek gerekli boyuta büyütülür. UART üzerinden dosya
aktarımı yavaş olduğundan bu tasarım da gecikmelere yol açmaktadır. Bunu önlemek
için önce UART üzerinden dosya boyutunu alıp daha sonra bu boyut kadar veri
okuyacak şekilde bootloader güncellenmiştir. Bu sayede program geliştirip test etmek
çok daha hızlı bir hale gelir.

İşlemci, uygulama geliştirme ve test etmeye hazır bir hale geldikten sonra NewHope
algoritması ile çalışmalara başlandı. NewHope algoritmasının C implementasyonu
NewHope resmi sitesi üzerinden elde edilmiştir. Bu implementasyonun neredeyse
tamamı standart C kütüphaneleri ile yazılmıştır. Yalnızca rastgele sayı üreteci için
OpenSSL kütüphanesi kullanılmıştır. Bu projenin amacına bir etkisi olmayacağından,
OpenSSL kütüphanesini RISC-V için derlemek yerine, rastgele sayı üreteci standard
C fonksiyonu olan rand fonksiyonu ile değiştirilmiştir. Algoritma, Ibex işlemcisi
üzerinde başarıyla çalıştırıldıktan sonra profil çıkarma işlemine başlanır. GDB
debugger ve C içerisinde statik sayaçlar kullanılarak algoritma içerisinde hangi
fonksiyonların ne kadar sık çağırıldığı incelenmiştir. Sık kullanılan ve donanım
implementasyonu mümkün olduğunca basit olan fonksiyon ve fonksiyon parçaları,
yeni komut eklentisi yapılmak üzere seçilmiştir.

Yeni bir komut eklemek için hem ALU hem de decoder üzerinde değişiklik
yapılmalıdır. ALU operatör enum’ına yeni komut eklenir. ALU içerisine komutu
gerçekleyen donanım eklenip, çıkış multiplexer’ına bağlanır. Decoder içerisinde
de yeni komut için belirlenen funct3/funct7 kombinasyonu geldiğinde komuta
karşılık düşen ALU operatörünün seçilmesi eklenir. Zaten varolan register-register
opcode’una bir ekleme olduğundan bu bir brownfield eklentidir. Bu komutların aynı
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zamanda derleyiciye de tanıtılması gerekir. Bunun için derleyicinin kaynak kodunda
değişiklikler yapılarak, derleyici baştan build edilir. Daha sonra eklenen komutlar C
içerisinde inline assembly şeklinde kullanılabilir.

Eklenen ilk komut, Hamming ağırlık farkıdır. Hamming ağırlığı bir sayı içerisinde
değeri 1 olan bitlerin sayısıdır. Bu eklenen komut iki sayısnın Hamming ağırlıklarını
bulup bu değerlerin farkını alır. Hamming ağılığının hesaplanması için 4-bit look-up
table kullanılmıştır. Operandlar 4-bit dilimlere ayrılıp, hepsinin Hamming ağırlıkları
bulunup sırayla toplanır ve en son iki ağırlığın farkı alınır.

İkinci komut coeff_freeze adlı bir fonksiyonun içinden bir parçadır. Başta bir çıkarma
işlemi yapılıp daha sonra bir dizi lojik işlem yapılmaktadır. Başlangıçtaki çıkarma
işlemi için zaten ALU içerisinde bulunan toplama-çıkarma modülü kullanılarak
alandan tasarruf edilir.

Üçüncü ve son komut ise flipabs fonksiyonunun bir parçasıdır. Yine ikinci komut gibi
buradada bir çıkarma işlemi ve ardından bir dizi lojik işlem yapılmaktadır.

Algoritma, eklenen bütün komutlar için ayrı ayrı ve en son hepsi beraber test
edilmiştir. RISC-V’in performans sayaçları kullanılarak algoritmanın kaç saat
darbesinde tamamlandığı ölçülmüştür. Yapılan testler sonucu, bütün eklentiler
kullanıldığında algoritmanın %6.90 daha kısa sürede tamamlandığı ve kullanılan
alanın %6.16 arttığı gözlenmiştir.
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1. INTRODUCTION

In this graduation project, instruction set extension on RISC-V cores for post-quantum

cryptography algorithms is implemented. In order to create an instruction set extension

for RISC-V cores, three different RISC-V cores have been studied on. These cores

are Potato RISC-V, PULPino and Ibex. Results of post-quantum cryptography codes

are compared between the cores with their runtimes and memory usages and then, an

extension is implemented for the suitable core.

Since protecting personal and private datas are so important in today’s world,

encrypting information is an important part of life. But with the quantum computing

technology according to the Shor’s and Grover’s algorithms it is seen that classical

cryptography algorithms such as Rivest, Shamir, Adleman algorithm (RSA) etc. will

be easily cracked and became vulnerable [7] [8].

Therefore, design of an algorithm that is strong enough to encrypt data that would

not be easily cracked with both post-quantum computing and classical computing

methods. That’s why National Institute of Standards and Technology (NIST), has

opened a project and tries to standardize the encryption algorithm for post-quantum

computational system [9].

In this project, a post-quantum cryptography algorithm is analyzed and have been

implemented on a RISC-V core. In order to implement this algorithm, Xilinx Vivado

tools and Nexys 4 DDR Field-Programmable Gate Arrays (FPGA) are used.

1
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2. POST-QUANTUM CRYPTOGRAPHY

Today’s computers simply represent the data as 1s and 0s and all the information need

to be converted and represented as with these two bits as a result. The theory of

being able to become two state at the same time (superposition and entanglement)

of quantum mechanics started the researches on quantum computers which works

with qubits. "Superposition can transfer the complexity of the problem from a large

number of sequential steps to a large number of coherently superposed quantum

states. Entanglement is used to create complicated correlations that permit interference

between the parallel “computations” performed by the machine." [10]. Qubits can

represent 1s, 0s and also the superposition state which is the possibility of being both at

the same time. By being able to process third state of unclarity, in theory, computations

which are done with classical computers can be calculated parallel with this stochastic

approach and as a result basically computational loops can be transformed into a

single computation. “Taking benefit of the superposition principle, it could process

simultaneously all the possible inputs. This “ massive quantum parallelism” enables

the quantum computer to perform in a single run 2n calculations on an n qubits

input.” [11].

Since two of the mathematical problems that today’s cryptography methods predicated

on, are integer factorization and discrete logarithm problems and also hardnesses of

these problems are based on computational loops, this new computational power can

be threatening for these cryptography methods. According to Peter Shor’s and Lov

Grover’s algorithms, quantum computers can search possible permutations faster and

can find prime factors of integers easier, so especially the crypto systems which are

based on these mathematical equations are in danger against quantum computers. [7]

[8].

There are very common cryptography systems which are used to encrypt our data

based on the integer factorization problem, elliptic curve discrete logarithm problem

and discrete logarithm problem such as Rivest–Shamir–Adleman (RSA). RSA uses

3



computational workload of the reverse engineering for prime factors of a very large

numbers which are the multiplication of large prime numbers and commonly used

at cryptography world such as at TLS. According to Bernstein, “Shor’s algorithm

and its generalizations will then completely break RSA, DSA, ECDSA, and many

other popular cryptographic systems: for example, a quantum computer will find

an RSA user’s secret key at essentially the same speed that the user can apply the

key”. [12]. Therefore idea of ending up in an unsecure environment after the realization

of quantum computational powers has increased the importance of Post Quantum

Cryptography.

Post Quantum Cryptography is simply the research of secure algorithms designed

to be run on classical machines and counted as secure even against the quantum

computational power. This algorithms needs to be run on non-quantum machines

since quantum computing is still at its early stages, and needs to be based on new

mathematical problems which are secure against Shor’s and Grover’s algorithms.

“The goal of post-quantum cryptography (also called quantum-resistant cryptography)

is to develop cryptographic systems that are secure against both quantum and

classical computers, and can interoperate with existing communications protocols and

networks” [13].

So, National Institute of Standards and Technology (NIST) has started a project

to discover Post Quantum Cryptography algorithms which are more secure against

quantum computer attacks and trying to standardize Post Quantum Cryptography.

Right now project has reached its second phase. Some of the algorithms proposed

to the project have already been started to be used by technology companies as a

testing purposes. “The company has now successfully demonstrated the first PQC

implementation on a commercially available contactless security chip, as used for

electronic ID documents.” [14].

We have also chosen one of these Post Quantum Cryptography algorithms from phase

two for our thesis project. Algorithm’s name is NewHope and it is under the group of

lattice-based Post Quantum Cryptography methods [15].

2.1 Lattice Based Cryptography
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"A lattice is a set of points in n-dimensional space with a periodic structure.... More

formally, given n-linearly independent vectors b1,...,bn Rn, the lattice generated by

them is the set of vectors." [16]. Example of a basic lattice can be seen from the Figure

2.1.

Figure 2.1: 2D Lattice generated by 3 different base vectors [1]

Most of the lattice based methods which are counting on computational lattice

problems are counted as secure and used often for Post Quantum Cryptography

algorithms. “. . . Micciancio and Regev conclude that “there is no polynomial time

algorithm that approximates lattice problems to within polynomial factors” [16]. Even

for the NIST Post Quantum Cryptography project has 12 lattice based candidates out

of 26 applicants. [9]. There are two different computational lattice problems that are

based on for cryptography algorithms; Shortest Vector Problem and Closest Vector

Problem.
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Shortest Vector Problem is searching of a shortest lattice vector (or a point) when a

basis of a lattice is given as it can be seen from the Figure 2.2.

Figure 2.2: Shortest Vector Problem example. [2]

Closest Vector Problem is similar to the SVP, when given a target vector and a basis of

a lattice, it tries to find the closest lattice point to this target vector. At the Figure 2.3

closest point to the given vector can be seen from the right picture.

Figure 2.3: Closest Vector Problem example. [3]

2.2 Learning With Error
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Given m samples of (a, b = <s,a> + e mod q) data with “e” as a small noise factor,

learning with error (LWE) method is simply tries to estimate the secret “s” when “a”

and “b” are known. When this equation is simplified to the (a, b = <s,a>), it can be

solved by Gaussian Elimination but with an extra small noise “e” added to the equation,

it transforms the equation into a machine learning problem.

When the coefficients become polynomials and the number of samples increases it

turns into a computational lattice problem since the attacker needs to guess the closest

vector to the “b” as it is “<s,a>”. For Post Quantum Cryptography this approach is used

with relatively huge polynomials on a relatively larger lattices to increase security.

In pure LWE algorithms huge coefficient matrices are needed, so to be able to minimize

the size and the efficiency other implementations of LWE are derived such as Ring

Learning With Error.

For pure LWE, coefficients of the matrices need to be preserved after they are

generated, so as a result they occupy large space at memory and as the dimension

increases, used memory size will also increases. Ring Learning With Error prevents

this situation. Even though there are other implementations of R-LWE, simply by

sending the first row of a matrice with a predetermined rule, such as each row can

be 2 times cyclic right shifted version of the previous one with mod x for a wrapping

rule, sender doesn’t need to create or preserve the other coefficients. Receiver will

generate rest of the matrice with the provided rule if it is needed so while it decreases

the memory usage, it also speeds up the process.

2.3 NewHope PQC Algorithm

NewHope is a lattice based Post Quantum Cryptography algorithm working with Ring

Learning With Error approach on its core. The version we have implemented is

NEWHOPE-512-Chosen Ciphertext Attacks-Key Encapsulation Mechanism which is

retrieved from the official website of NewHope [17].

At the upper layer of abstraction, algorithm consists of three steps: Key Generation,

Encapsulation, Decapsulation.

Inside the NewHope-CCA-KEM algorithm there exists a PKE implementation of a

previous NewHope Simple project but since it is transformed into a Key Encapsulation
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Mechanism, it could not handle message encyrption with different lengths and just

used as a transformation step from Public Key Encryption to the Key Encapsulation

Mechanism. Because of this, the version of the algorithm we have implemented,

contains PKE functions also.

Figure 2.4: NewHope Key Generation. [4]

Figure 2.5: NewHope Encapsulation. [4]

Figure 2.6: NewHope Decapsulation. [4]

2.3.1 Randomness and sampling

NewHope-CCA-KEM uses byte arrays as a data structure for both sampled datas,

and preserved coefficients. SHAKE256 function is used for hashing, squezing and
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expanding the byte arrays according to the given seed. [18]. It takes two arguments,

one for input data byte array d and one for number of output bytes. Since its output is

also a byte array, output values are in between 0„„255.

V <- SHAKE256(64, seed) : by using 32 byte random seed it fills V with a byte array

of 64 elements

For the generation of noise factor “e”, binomial sampling is used. It is preferred instead

of Gaussian distribution since it is easier to implement and does not require large tables.

Figure 2.7: Sampling from Binomial Distribution. [4]

2.3.2 Number Theoretic Transformation (NTT)

Since NewHope algorithm is based on lattice-based R-LWE approach, polynomial

computations are often calculated throughout the implementation. Subtraction and

addition of polynomials can be carried out as coefficient-wisely but multiplication of

polynomials is a challenging task when timing and resource constraints are considered.

[4]

"The Number Theoretic Transform (NTT) provides efficient algorithms for cyclic

and nega-cyclic convolutions, which have many applications in computer arithmetic,

e.g., for multiplying large integers and large degree polynomials." [19]. NewHope

algorithm uses NTT library for this challenging task to surpass these limitations of

polynomial multiplications. What this task do is, it simply transforms the polynomials

to the NTT domain with fourier transform operations and does the multiplications

at that domain since its fourier transform is taken now. At NTT domain these
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multiplications can be carried out coefficient-wisely instead of multiplying the whole

polynomials. And the result of this operations after coefficient-wise multiplication is

inverse transformed from NTT domain to the regular domain.

2.3.3 Encryption Scheme

Figure 2.8: R-LWE Based KEM. [4]

Alice has v = us = ass’ + e’s

Bob has v’= bs’ = ass’ + es’

Since noise and secret polynomials s’, s, e’, e are small enough, v’ and v are

more or less the same values. So, after this transaction, each side will have the same

key even though they have different noise and secret values at the beginning which are

sampled from the same distribution.

2.3.4 NewHope Real Life Implementations

Although the algorithm is still in the project phase and quantum computers are still far

away, especially the NewHope algorithm is started to be tested at various platforms

and for some use cases it has already been deployed as a product. Thanks to

its R-LWE implementations, its size is relatively small and since there are still no

algorithms which exposes the quantum weaknesses of lattice-based problems such

as Shor’s and Grover’s algorithm, NewHope is seen as a promising candidate for

future implementations. According to Google’s security blog, “We’re indebted to

Erdem Alkim, Léo Ducas, Thomas Pöppelmann and Peter Schwabe, the researchers
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who developed “New Hope”, the post-quantum algorithm that we selected for this

experiment." [20].

“None the less, if the need arose, it would be practical to quickly deploy NewHope in

TLS 1.2”. [21].
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3. RISC-V

Instruction set architectures [5] (ISA) are models of computer which differs with

the instruction’s complexity. ISA defines supported data types, registers and also

input/output model of implementation. RISC-V is a Reduced Instruction Set Computer

(RISC) which is designed to have a high performance and power efficiency.

This architecture is open source and has support for 32-, 64- and 128-bits systems.

Project began in 2010 by University of California, Berkeley. Its RV32I and RV64I

base instruction sets are frozen and also, there are 6 other frozen extensions. RISC-V

ISA has fixed 32-bit instructions in base instructions but ISA supports also 16-bit

instructions which is in compressed instruction-set extension called “C”. There are

four types of base instructions which are R-, I-, S- and U-Type and its structures can

be seen in Figure 3.1. And based on the immediate, two further instruction types are

available, B- and J-Type.

Figure 3.1: RISC-V Base Instruction Formats [5].

RISC-V architecture enables to have 32 general purpose registers (GPR), 32

floating-point registers (FPR) and 32 privileged control registers (PCR). Width of

these registers may vary with its purpose and system definition. With the design

specifications that are decided by an committee of RISC-V Foundation, RISC-V

architecture enables the developers to design extension to the instruction sets [5].
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3.1 RISC-V Applications

RISC-V specifications and further developments currently maintained by RISC-V

Foundation which is a group of members around the world focused on developing a

free and highly efficient ISA. There is a list available on the official site of RISC-V

Foundation and it lists the both software and hardware projects contributed to the

RISC-V community [22].

Hardware projects listed on RISC-V Foundation site [22] includes both cores and

System on a Chip (SoC) platforms. The cores only have the instruction extension

that are available on the RISC-V specifications and the SoC platforms also includes

the peripherals of the system which enables us to use them with an interface.

Software projects listed on the site includes simulators, toolchains, bootloaders and

operating systems (OS). Simulators that are available focused on simulating the

behaviour and the outputs of the implemented RISC-V instruction set. The toolchain

projects are focused on compiling and optimizing C and the higher level software

languages into RISC-V specific programs and therefore, enables us to create and

run programs on RISC-V. After that both bootloader and OS projects are designed

to improve user experiences on RISC-V systems and also, to create a better research

platforms. These projects improves the usability of the RISC-V cores and as seen in the

RISC-V Foundation website most of these hardware and software projects are listed as

free and open source [22].

3.2 RISC-V GNU Toolchain

RISC-V GNU Toolchain is included in GNU Compiler Collection (GCC), and it

includes frontends for C, C++ and, also it is a free project. This software project

enables us to compile and optimize C and C++ based software projects and create

a RISC-V supported executables. Therefore, it provides flexibility and ease when

developing a RISC-V software.

In the software development step, RISC-V GNU Toolchain will be used to compile C

software and create their memory and executable files. Also, since new instructions

will be added into the RISC-V SoC in the project, RISC-V GNU Toolchain will be

modificated and used with these new added instructions.
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3.2.1 Setup

In order to install RISC-V GNU Toolchain, prerequisites follows as shown in Table

3.1.

Table 3.1: RISC-V GNU Toolchain prequisities

CMake Version ≥2.6
GCC Version ≥5.2

Python Version ≥2.7

These prequisities can be controlled with the commands shown below for Linux

systems.

$ cmake --version

$ gcc --version

$ python --version

After that, these prequisities are confirmed, following code must be run.

$ sudo apt-get install autoconf automake autotools-dev curl python3 libmpc-dev

libmpfr-dev libgmp-dev gawk build-essential bison flex texinfo gperf libtool

patchutils bc zlib1g-dev libexpat-dev

After these steps, RISC-V GNU Toolchain repository must be downloaded from the

official RISC-V repositories. Then, the instructions written in the repository must be

followed and RISC-V GNU Toolchain must be compiled and installed for your specific

instruction set requirements which might be differ for other cores with respect to both

instruction set extensions and hardware implementations of different units in the core

and these steps can be found in the repositories of your RISC-V core. For example

newlib installation can be made with the following lines,

$ ./configure --prefix=/opt/riscv

$ make

Installation path is determined with the "--prefix" in the codes above and can be

changed to another path. These lines might take a long while to complete.

With the steps above completed, RISC-V GNU Toolchain can be used from the bash.

But, if installation path is added to the ".bashrc" in the "/home/user" directory,
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"riscv-gcc" can be used without specifying the directory every time when RISC-V

GNU Toolchain needed to be used. It can be added as shown in Figure 3.2.

Figure 3.2: Adding Toolchain path to the .bashrc

After that, RISC-V GNU Toolchain can be used with commands like

"riscv-unknown-elf-gcc".

3.2.2 Toolchain Modifications

After modifications were made on RISC-V cores, the toolchain needs to be edited in

order to run tests with the software so that it recognizes the custom instruction and

creates the executable with this new instruction. The compiler will not be able to

optimize the code with the newly added instruction but this modification is required in

order to create C software for RISC-V with the custom extensions.

In order to add new instruction to RISC-V GNU Toolchain, modifications inside the

"riscv-bintuils" must be made. Documents that needs to be modified can be seen in the

Table 3.2 and these files can be found under the "riscv-gnu-toolchain" project folder.

Table 3.2: Modified documents

riscv-opc.c
riscv-opc.h

In the "riscv-opc.c" document which can be found under the

"./riscv-binutils/opcodes/" directory, the new instruction must be added to the

riscv_opcodes structure. New defined instructions can be added to the end of the

structure. An example of this can be seen in the Figure 3.3.
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Figure 3.3: riscv-opc.c Modification

Elements in the structure specifies the following:

First element shows the name of the instruction and can be named arbitrarily. Second

one shows the "Xlen-bits", and should be selected accordingly to the added instruction

in the core. Third one shows the which instruction set extension it is included in. In

this step if a "brownfield extension" is aimed then, an instruction set extension that

exists in the core can be selected but if a "greenfield extension" is expected than you

can add your instruction accordingly to that instruction specification which you have

created [5]. Forth one in the structure lists are the operands that your instruction needs

and also, it should be defined with the requirements defined in your instruction. Fifth,

sixth and the seventh ones are about the structure of your instruction and it masks

and unmasks your operands with these elements added into the structure. For the

greenfield extensions there are much less free space than the brownfield extension in

the RISC-V’s encoding space.

After that modification made in the "riscv-opc.c", also modifications

must be made in the "riscv-opc.h" document which is located under the

"./riscv-binutils/include/opcode/" directory. In that file, "opcode mask" and

"opcode match" should be defined for new instructions. An example of modifications

can be seen in Figure 3.4 and 3.5.

Figure 3.4: riscv-opc.h match and mask definitions
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Figure 3.5: Instruction declaration in riscv-opc.h

As seen in the Figure 3.4 and 3.5, "match" and "mask" values are defined for each new

added instruction. Given figures in this chapter is an example of greenfield extension

and therefore it uses the existing opcodes and instruction types. Some of the instruction

types can be seen in Figure 3.1 and also, with the bits allocation as seen in the figure

mask and match values can be obtained.

After that, these modifications are complete on both documents for each instruction

than RISC-V GNU Toolchain must be install again with these modified documents.

Following two commands must be used for your new toolchain,

$ ./configure --prefix=/opt/riscv

$ make

This step will take a long while to complete. In order to reduce the time spent on this

step, a set of custom instructions can be defined with the instructions types that are

most likely to be used in the project. Therefore, there will be no need to install the

toolchain for every new instruction that are created during the project.

After that the installation complete, new instructions can be used in the softwares but

as mentioned before since RISC-V GNU Toolchain will not be able to optimize the

code with the new added instructions, these specific instructions must be added as

their Assembly Language forms. So, the inline assembly method should be used when

writing a C code with using the new custom instruction. New instruction usage can be

seen in Figure 3.6.

Figure 3.6: Inline assembly method
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4. PULPino

PULPino is a RISC-V project which is implemented by ETH Zürich and it uses a

RISC-V core named RI5CY. Also, there are several companies around the world that

support the PULPino project such as NVDIA, Google and Microsemi. Project purpose

is to create a highly efficient ultra low power RISC-V system [6].

4.1 PULPino Architecture

PULPino project is a SoC platform which includes several peripherals around the

RI5CY [23] core. These peripherals help the users to create a system for their test

and improvements. Peripherals that are included in the PULPino project are Universal

Asynchronous Receiver-Transmitter (UART), Serial Peripheral Interface (SPI), Joint

Test Action Group (JTAG), Inter-IC Sound (I2S), Direct Memory Access (DMA) and

General Purpose Input Outputs (GPIO). PULPino project architecture can be seen in

the Figure 4.1.

Figure 4.1: PULPino architecture [6]
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As seen in the Figure 4.1, PULPino project has been designed as a single core

micro-controller. Project has a RISC-V core called RI5CY which has a several

different features besides an ordinary RISC-V core such as "hardware loops",

"post-incrementing ld/st", "multiply-accumulate" and some Arithmetic Logic Unit

(ALU) extensions like min, max and absolute value. With these extensions added,

project aimed to save from unnecessary instructions and branches. An overview of the

RI5CY core can be seen in Figure 4.2.

Figure 4.2: RI5CY core overview [6]

4.2 Setup

In order to create a test system with PULPino, the necessary requirements are as

follows in Table 4.1,

Table 4.1: PULPino prequisities

CMake Version ≥2.8.0
GCC Version ≥5.2

RISC-V GNU Toolchain riscv32-unknown-elf-gcc
Xilinx Vivado 2015.1

ModelSim ≥10.2c

For this project to be implemented on an FPGA and get tested, Xilinx Vivado 2015.1

must be used and RISC-V GNU Toolchain must be configured correctly.

4.2.1 RISC-V GNU Toolchain

In order to install a toolchain with extensions of RI5CY core, there is a project called

"pulp-riscv-gnu-toolchain" on "pulp-platform" repository. Installation steps of this
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toolchain is similar to the official RISC-V GNU Toolchain with the differences on

configuration step and steps can be seen below,

$ ./configure --prefix=/opt/riscv --with-arch=rv32imc --with-cmodel=medlow

--enable-multilib

$ make

After the installation step of toolchain, C codes can be analyzed and their memory files

can be created with using "riscv32-unknown-elf-" from the toolchain. Some example

of usage of toolchain can be seen below,

$ riscv32-unknown-elf-gcc –o program.elf program.c

# creates .elf file of the program which is its assembly language version before

# turned into the machine language.

$ riscv32-unknown-elf-objcopy -O binary program.elf program.bin

# creates binary and .elf file of the program.

In the Figure 4.3, an example of .dis disassembly can be seen. With this disassembly

of the C code, code can be analysed and modification can be made in order to create

an efficient algorithm.

4.2.2 Implementation on FPGA

There are two different board that PULP platform has configured the project on and

these two can be selected with "setenv BOARD" command as "zybo" and "zedboard".

After that the board is selected, "make all" command should be used in the directory

"./fpga" under the project repository. This command will run Vivado 2015.1 and it will

create the necessary bitstream files for the FPGA.

In our implementation, Nexys 4 DDR FPGA board [24] is used and therefore changes

made on the PULPino project files and .xdc constraints file has been modified for the

Nexys 4 DDR FPGA board.

4.3 Simulation Environment

ModelSim 10.2c is recommended in the repository of the PULPino for the simulations

of the project but since RI5CY core has hardware loops inside, behavioral simulations

of the project fails with both Vivado and ModelSim. Therefore, post-implementation
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Figure 4.3: Disassembly file example

simulations must be made in order to get reliable results from the simulation but with

the cell delays and post-implementation considered this simulation works so slow.

Since its hard to get simulation result for PULPino project, verification tools can be

used to get results of applications.

4.4 Applications

PULPino project has example codes in order to test the peripherals of the system and

also, project has a base libraries of the PULPino for the first time configurations of the
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core. Project needs a boot code contained in the "boot_code.sv" file under the project

hierarchy.

For the first tests of the project since there is no OS running on the core, applications

can be ran with changing the boot code for every applications to test. For every boot

code, project bitstream must be generated again.

Since PULPino project has several peripherals, UART codes can be written and

checked with USB interface with using "minicom" program. As seen in the Figure

4.4, a C code is compile and uploaded to PULPino with changing "boot_code.sv"

file in the hierarchy, tested and "Hello World!!!!!" outputs has been observed in the

terminal window.

Figure 4.4: UART helloworld! example

4.5 Tests

In order to test the performance of the PULPino platform, a PQC algorithm which is

tested in different platforms is tested on PULPino. The PQC algorithm is called NTRU.

So, in order to obtain a comparison data, Nth Degree Truncated Polynomial Ring Unit

(NTRU) [25] algorithm is tested with different key lengths and program runtimes are

recorded. Comparison of algorithm runtime with two different cores can be seen in

Table 5.1.

As seen in Table 5.1, PULPino has a 15 times better result than Potato RISC-V core

but it seems that it is unable to work with algorithm that has longer key length.
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5. Potato RISC-V

Potato is a simple RISC-V project written in Very High Speed Integrated Circuit

Description Language(VHDL) [26]. Potato implements RV32I instruction set [5] and

it also has a wishbone bus in the project.

5.1 Potato RISC-V Architecture

In the Potato RISC-V project, RV32I instruction set is implemented. Project includes

peripherals such as UART, GPIO, Timer, ROM and RAM. These peripherals are

interconnected with each other with Wishbone B4 Bus Interface [27].

5.2 Setup

A Vivado [28] project is created by following the tutorial in the github repository of

the project [27]. The top module of potato has two UART, a GPIO and two timer

modules. To create the project, documents inside the src/, soc/ and example/ directories

must be added to a Vivado project. Then also, a clock generator and PAEE ROM

IPs must be added to project hierarchy. Clock generator outputs should be set as 10

MHz "timer_clk" and 50 MHz "system_clk". Also, reset and locked signals should be

enabled and reset should be selected as "active low". After that, PAEE ROM should be

added as Block Memory IP and should be configured as Single-Port ROM and named

as "aee_rom". Port A should be configured with "width : 32" and "depth : 4096".

Then, always enabled should be selected.

"aee_rom" includes the boot code of the core and a .coe memory file should be

added into it. This .coe file can be obtained from "potato-master/software/bootloader"

directory with the Makefile. "make all" command should be ran in this directory to

create the .coe file. The bootloader code that is added as first time example in the

project, sends opening message and waits for a 128 KB which will be your input

program.
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With using a Serial Communication terminal, a .bin file should be sent to the core with

using 115200 baud, 8N1 configurations. The .bin document can be sent to the core via

an USB connection.

The code that is uploaded to the core can be seen in Figure 5.1.

Figure 5.1: Potato UART Test code

The bootloader program simply reads 128KB of data from the UART and fills the

main memory with this data then jump there. It is used to load the core with an

application. Since the application code is usually smaller than 128KB, the file is

extended with zeros until it is 128KB and following code can be used to complete

your .bin file to 128 KB. $ cat hello.bin /dev/zero | head -c131072 > hello_new.bin .
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The instruction cache of potato core is disabled due to a bug. After testing that the core

works correctly with the hello world example program, we tested the core performance

with NTRU post-quantum crypto algorithm [25]. The timer module is used to count

the amount of clock cycles it takes to run the algorithm. Algorithm runtime cycles can

be seen in Table 5.1.

Table 5.1: NTRU PQC algorithm runs on different platforms

32-bit Algorithm Runtime 48-bit Algorithm Runtime

Potato Core 788,173,585 2,415,247,120
PULPino Core 52,489,786 -

Since Potato core includes only the base integer instruction set, it is not great

performance wise. NTRU algorithms with longer key length do not work properly

and get stuck during execution. This may be caused by a stack overflow.
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6. Ibex

6.1 Introduction

After inspecting various RISC-V cores, we have decided to continue with Ibex since

the source code of Ibex is easy to understand and edit. Ibex implements the RV32IMC

instruction set. This includes 32-bit base integer set (I), standard multiplication

extension (M), and compressed instructions extension (C). In this project, compressed

instructions are not used. Ibex does not have any bus interface with peripherals by

default. It only has connections to data memory and instruction memory. In order to

easily add peripherals and run tests on FPGA, a version of Ibex with wishbone bus

called ibex_wb is used [29]. ibex_wb comes with an example implementation for

Xilinx Arty A7-100: Artix-7 FPGA [30] development board so, that implementation

is used as a basis.

6.2 Vivado Project

A Vivado project is created for ibex_wb by simply adding the required modules from

the repository. Unfortunately, ibex_wb does not include a detailed manual so, to find

required files, first the top modules is added, then rest of the missing files are added

according to hierarchy. The following is a list of all of the required files’ paths relative

to the project repository:

The example top module included in the project has a 25MHz clock generator and as

peripheral there is only a wishbone LED module. The constraints in xdc file is updated

for Nexys 4 DDR board [24]. The single port RAM module is edited to take memory

initialization file name as a parameter to easily initialize the memory with program

instructions.

For the software part, the RISC-V GNU Toolchain provided by lowRISC is used to

compile and link the code written in C language. The machine code is generated with
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Table 6.1: ibex_wb source file list

pulpino/rtl/components/pulp_clock_mux2.sv common_cells/src/cdc_2phase.sv
riscv-dbg/debug_rom/debug_rom.sv common_cells/src/deprecated/fifo_v2.sv

riscv-dbg/src/dm_top.sv common_cells/src/fifo_v3.sv
riscv-dbg/src/dm_csrs.sv ibex/rtl/ibex_core.sv
riscv-dbg/src/dm_sba.sv ibex/rtl/ibex_if_stage.sv

riscv-dbg/src/dm_mem.sv ibex/rtl/ibex_prefetch_buffer.sv
riscv-dbg/src/dmi_cdc.sv ibex/rtl/ibex_fetch_fifo.sv
riscv-dbg/src/dmi_jtag.sv ibex/rtl/ibex_compressed_decoder.sv

riscv-dbg/src/dmi_jtag_tap.sv ibex/rtl/ibex_id_stage.sv
rtl/wb_ibex_core.sv ibex/rtl/ibex_register_file_ff.sv

rtl/core2wb.sv ibex/rtl/ibex_decoder.sv
rtl/slave2wb.sv ibex/rtl/ibex_controller.sv

rtl/wb_dm_top.sv ibex/rtl/ibex_ex_block.sv
soc/common/rtl/wb_interconnect_sharedbus.sv ibex/rtl/ibex_alu.sv

soc/fpga/arty-a7-100/rtl/ibex_soc.sv ibex/rtl/ibex_multdiv_fast.sv
soc/fpga/arty-a7-100/rtl/crg.sv ibex/rtl/ibex_multdiv_slow.sv

soc/fpga/arty-a7-100/rtl/sync_reset.sv ibex/rtl/ibex_load_store_unit.sv
soc/fpga/arty-a7-100/rtl/wb_spramx32.sv ibex/rtl/ibex_cs_registers.sv

soc/fpga/arty-a7-100/rtl/spramx32.sv ibex/rtl/ibex_pmp.sv
soc/fpga/arty-a7-100/rtl/wb_led.sv ibex/shared/rtl/fpga/xilinx/prim_clock_gating.sv

pulpino/rtl/components/cluster_clock_inverter.sv

the makefile provided in the project and it is then converted to memory file (text file

with each instruction written as hexadecimal) with a script. This memory file is used

for initializing the ram. It is added to the Vivado project and then bitstream for the

project is generated in order to test it on the FPGA board. The example code simply

makes the LEDs blink with a delay.

6.3 Peripherals

After confirming that the core works fine on the board, we have started to edit the

project and add peripherals. In the top module, size and addresses of the peripherals

are changed into an enum style to modify them in an easier way as seen in Figure 6.1.

To put it simple, there is an enum for masters and another enum for slaves. The size

and address of a slave are stored in separate arrays at the index of enum corresponding

to that slave. The peripherals are accessed by either reading from or writing to the

registers of the peripheral so, each peripheral should be given enough size (address

space) to address all the registers contained in that peripheral.
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Figure 6.1: HDL code for peripheral enums.

Wishbone interfaces for each master and slave are also stored in arrays which can also

be indexed by using enums. This makes adding, removing, and editing peripherals

much simpler. Module instantiations can be seen in Figure 6.2.

The size of the RAM is increased from the default, since it might be required for later

applications. This has caused some problems about the clock signal so, the 25MHz

clock generator (soc/fpgs/arty-a7-100/rtl/crg.sv) that comes with ibex_wb is changed

with the 50MHz clock generator (ibex/shared/rtl/fpga/xilinx/clkgen_xil7series.sv)

which used in original Ibex. ibex_wb project also includes a debug module. Since
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Figure 6.2: HDL code for peripheral module instantiations.

it is not used in this project, the debug module is conditionally removed. It can be

readded simply by defining the macro DEBUG_MODULE_ACTIVE.

6.3.1 GPIO

A wishbone GPIO module, whose HDL code can be seen in Figure 6.3, is added to

the project in order to use LEDs, switches and buttons on the board . These are mostly

used for debug purposes. GPIO module contains three registers: One for setting the
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pin directions (which pins are input and which pins are output), one for reading the

inputs and one for setting the outputs.

Figure 6.3: HDL code for GPIO module.

A C library is written to use the GPIO module easily. The library is simple to use.

First a gpio struct is initialized with the base address of GPIO module using gpio_init

function, then the pin directions are set using gpio_set_direction function. Then

the inputs and outputs can be controlled with gpio_get_input and gpio_set_output

functions. To modify only a single pin, gpio_set_pin and gpio_clear_pin functions can

be used.
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6.3.2 Timer

Second, a wishbone timer module, whose HDL code can be seen in Figure 6.4, is added

to keep track of performance in future tests. The timer module contains two registers:

One holds the control bits while the other holds the count. Control register holds run

and clear flags. When run flag is set, count register is incremented with every clock

cycle. When clear flag is set, count register is cleared and the clear flag is reset. Clear

flag has higher priority to run flag so when they are both set at the same time, first the

count register is cleared, then it is continued to be incremented with the next clock.

Figure 6.4: HDL code for timer module.
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Again, a C library is written for timer module as well. First a timer struct is initialized

with the base address of timer module using timer_init function. timer_start starts the

timer to increment. timer_stop stops the timer from incrementing and holds the current

value in count register. timer_clear clears the count register of timer. timer_reset both

stops and clears the timer. timer_get_count returns the current value in count register

while time_set_count sets a desired value to the count register.

Later we have realized that ibex implements performance counters of RISC-V (control

and status registers). So, instead of the external timer module, we decided to use the

internal performance counters to keep track of clock cycles.

6.3.3 UART

Lastly a wishbone UART module is added to establish communication between

computer and ibex core. The wishbone UART module is taken from wbuart32 [31]

project. A wrapper module which can be seen in Figure 6.5 is written to make port

connections and addresses fit with the current ibex_wb project. With the UART module

it is possible to get text output or input with a serial port communication program.

Minicom [32] is used for that purpose. This UART module contains four registers:

SETUP, FIFO, RX_DATA, and TX_DATA. SETUP register holds the baudrate and

some other configuration flags which are unused in this project. FIFO register is a

read-only register which holds status flags for both RX and TX FIFOs. RX register is

used for reading the received data and TX register is used for transmitting data.

A C library is written to easily send and receive data via UART communication. A

uart struct instance is initialized with the base address of UART module by uart_init

function. Before actually using the UART module, the baudrate must be set using

uart_set_baudrate function. For more detailed configurations using the other flags in

SETUP register, uart_configure function can be used. This is not required in this case.

There are several functions to use for transmitting data. uart_tx function transmits a

single byte, but uart_tx_ready function must be used to check if there is any space TX

FIFO. In order to send an entire string, uart_tx_string is used which internally checks

if the TX FIFO is available. If the FIFO is full, then the function waits until a space is

cleared. There is also a uart_printf function which transmits a formatted string. Since
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Figure 6.5: HDL code for UART wrapper module.

the standard printf function is too big for small systems like this, a smaller, lightweight

version of printf is taken from PULPino project and integrated with the UART module.

Similar to transmit functions, there are also several functions for receiving data. uart_rx

reads and returns a single byte. uart_rx_ready must be used to check if there is

any available data in the RX FIFO. uart_rx_line keeps reading data until a newline

character is read. It internally checks if there is any data in the FIFO and waits if there

is not. The received data is copied to a string and the newline at the end is replaced
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with a null character. The function returns the amount of bytes received including the

newline character.

6.4 Utilities

A small library called "utils" is written for general utility functions. This library

includes a sleep function, several functions to access performance counters using inline

assembly code, and a function to convert clock cycles to microseconds.

6.5 Bootloader

A problem for the development of this project was that it takes too much time to

generate the bitstream file and it has to be generated again, using a new memory file,

every time there is a simple change in the software. In order to eliminate this delay

and make the development faster, a simple bootloader program is written inspired by

the bootloader from Potato project. Then the memory file of bootloader is generated

which is used for initializing the RAM. When the core starts working, bootloader

awaits data from UART. The machine code of the program is then sent via UART

as a binary file. Bootloader reads the machine code from UART and copies it to the

RAM. Once all the machine code is copied, program jumps to the address with the

new code. This configuration makes development much faster since there is no need

to generate bitstream again and again unless there is a change in the hardware.

The bootloader was first designed to read a fixed amount of data from UART to fill all

of the remaining space in the RAM. Since most of the time the binary file generated

from the code is much smaller than the size of remaining RAM, the binary file is

padded with zeros to the RAM size. At this point, the RAM size to be used by the

program was set to 128KB. In order to pad the binary file with zeros, the following

recipe is added to the makefile.

%_128k.bin: %.bin

cat $(PROGRAM).bin /dev/zero | head -c128k > $(PROGRAM)_128k.bin

Then the padded binary file can be sent to the device via UART with the following

command in terminal.

cat $(PROGRAM)_128k.bin > /dev/ttyUSB1
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Here ttyUSB1 may be different depending on other USB serial port adapters connected

to the computer and $(PROGRAM) is the name of the C file with the main function.

The problem with this approach is that the binary code is usually much smaller than

the RAM but the RAM needs to stay larger since the remaining memory is going to

be used as stack by the program. It still takes a long time to send a big binary file

each time a code needs to be loaded to the device. In order to eliminate that delay,

bootloader is modified to first get the size of the binary file from UART, then read that

many bytes and copy them to the RAM. Once all the binary code is copied to the RAM,

the remaining space is filled with zeros by the bootloader. This significantly improves

the time required to load the device with new code. To automate this process a small

script is written called sendapp.sh. This script first sends the file size as a string, then

sends the file itself.

#!/bin/sh

# Script for sending image to Ibex bootloader.

filename=$1

imagesize=$(wc -c < $filename)

echo $imagesize > /dev/ttyUSB1

cat $filename > /dev/ttyUSB1

The script is then added to the makefile.

SENDAPP = ../../../scripts/sendapp.sh

run: $(SENDAPP) $(PROGRAM).bin

Now the device can be loaded with a new binary image by simply typing make run at

the terminal.

6.6 Makefile For Software

Several modifications are made on the makefile supplied with with the project. Since

the libraries can be used commonly by separate applications, they are stored in a

different directory then the main source code of the application. In order to compile

and link the libraries, source file paths and include directories must be added to the

makefile.
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SRCS = $(PROGRAM).c $(wildcard ../../libs/soc/*.c)

INCS = -I../../libs/soc

The memory file extension is changed from .vmem to .mem since this is the default

memory file extension used in Vivado.

CC, OBJCOPY, and OBJDUMP variables are written in a more compact way. This is

not mandatory, but makes the file more readable.

PREFIX ?= riscv32-unknown-elf

CC := $(PREFIX)-gcc

OBJCOPY := $(PREFIX)-objcopy

OBJDUMP := $(PREFIX)-objdump

In order to remove unused library functions from the application image, following flags

are added. // Compile flags (CFLAGS): -ffunctions-sections -fdata-sections // Linker

flags (LDFLAGS): -Wl,–gc-sections

-Wl,–Map,$(PROGRAM).map linker flag is added to output the .map file which shows

how the memory is mapped.

6.7 Linker Scripts

The default linker script must be modified for the bootloader configuration and

increased RAM size. For linking the bootloader application, two memory sections

are defined: rom and stack, 16KB each. Those sections will take up the first 32KB

of the RAM. For the rest of the application, which will be loaded to the device via

bootloader, only one memory section is defined: ram. This sections starts at 64K and

has a length of 448KB which fills the rest of the RAM. This section will be used for

both storing the application image and as stack. The memory between 32K and 64K

is left unused intentionally to create a bumper between bootloader and application in

case of any unexpected behaviours.
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6.8 NTRU

After all of the modules and bootloader are tested, development and testing for the

post quantum crypto algorithms has started. First NTRU algorithm is tested on Ibex as

well. In order to measure the performance, the mtime register is used. The performance

counts are reset and started, NTRU algorithm runs, then mtime is stopped and the clock

cycle count is read. Which is then transmitted to the computer via UART and printed

on terminal using Minicom.

32-bit NTRU algorithm took 105,855,607 clock cycles to complete.

48-bit NTRU algorithm took 320,417,348 clock cycles to complete.

64-bit NTRU algorithm took 365,122,489 clock cycles to complete.

It is seen that the performance is much better compared to potato core.

6.9 NewHope

NewHope algorithm NIST submission package is obtained from NewHope official

website [15]. From the optimized implementations, newhope512cca [?] is used for

this project. Almost all of the algorithm is implemented using standard C libraries

except the random number generation. Since we are not concerned with random

number generation method, in order to simplify things, OpenSSL library [33] is

removed and rand function from stdlib.h is used instead. This is made by conditional

compiling using the preprocessor commands. The rand function is used when

SIMPLE_RNG macro is defined. It can be defined by adding -DSIMPLE_RNG flag

to PROGRAM_CFLAGS in the makefile. No changes are made to the code other than

this. The source file paths and include directories should be added to the makefile with

the following code:

SRCS = $(PROGRAM).c $(wildcard ../../libs/soc/*.c) $(wildcard

../../libs/newhope512cca/*.c)

INCS = -I../../libs/soc -I../../libs/newhope512cca

There are three important functions to use NewHope algorithm for key encapsulation

mechanism (KEM): crypto_kem_keypair, crypto_kem_enc, crypto_kem_dec. These

functions are provided by the NewHope library. crypto_kem_keypair generates a

public and private key pair, crypto_kem_enc generates cypher text and shared secret
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for the given public key, and crypto_kem_dec generates shared secret for given cipher

text and private key. Once the key is safely excahnged, the communication can be

established by any method using the previously exchanged key.

For the test in this project, all three functions (keypair, enc, dec) are called and

the amount of clock cycles passed is read from performance counters while also

checking whether the functions work correctly. To verify that the functions work

correctly, returns values are checked, and shared secrets generated by encapsulation

and decapsulation methods are compared. If all the return values are zero and

the shared secrets match, it indicates that the functions work correctly. Once the

performance counters are read, the results are then transmitted to computer via UART

and printed on terminal using Minicom.

At the beginning the codes were compiled with -Os optimization flag. This was the

default in the makefile provided by ibex_wb project. Upon trying other optimization

flags, we have noticed that -O1 flag gives the best performance result in this case. The

clock counts and code sizes with all optimization flags are given on Table 6.2.

Table 6.2: Compiling results with different GCC flags

Optimization -Os -O0 -O1 -O2 -O3

Clock Count 8,664,162 29,628,211 7,373,240 11,902,160 11,283,484
Code Size 20,580 36,124 21,460 25,500 44,356

Upon these results, we have decided to use -O1 optimization for further tests.

6.9.1 Extending the ISA

6.9.1.1 Profiling

In order to further analyze the code and do the profiling of the function calls, we have

used both GNU Debugger (GDB) and static counters at C code. With GDB we have

used breakpoints on every function and tracked the number of function calls through

these breakpoints and with also internal static counters we have confirmed our profiling

results.

GNU Compiler Collection (GCC) project has already a support for RISC-V

instructions but to be able to compile the new custom instructions with GCC, adding
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new instruction definitions to the GCC source code were needed.To do this, source

code of GCC has been inspected and opcode related codes have been discovered.

6.9.1.2 Adding Custom Instruction Hardware

There are two kinds of extensions in RISC-V architecture: greenfield and brownfield

extensions. Greenfield extensions use a new encoding space which means they should

have new opcodes. Brownfield extensions on the other hand, use existing encoding

spaces. For example the opcode for register-register operations have a lot of available

slots on the funct3/funct7 spaces. This does not have any time performance effect. The

difference is about conflicts with different extensions. Since this is not a priority for

this project, brownfield extensions are used.

For the extensions both ALU and the instruction decoder must be modified. In Ibex,

ALU result is selected using an enum defined in ibex_pkg.sv for the ALU operator.

This enum must be extended with the new instruction. The circuit which calculates the

instruction result is added in ALU and the result is added to the result multiplexer as

seen in Figure 6.6.

Figure 6.6: HDL code of result multiplexer in ALU module.
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The extensions must be added to decoder too. We have decided to use brownfield

extensions to register-register opcode. There is no need to edit any control signals

except ALU operator. Under the case for funct3 and funct7, custom instructions are

added with corresponding operators as seen in Figure 6.7. Five custom extensions are

added in advance in case it is needed for future use.

Figure 6.7: HDL code for added custom extension in instruction decoder.

6.9.1.3 Custom Instruction 0: Hamming Weight Difference

The first custom instruction added is Hamming weight difference which is used in

poly.c. Inside this library there is a function called hw which takes the Hamming

weight of a value. Hamming weight is the number of set bits in a binary number. This

hw function is called twice in poly_sample function with different values and then the

difference of weights is calculated.

The added instruction takes two values from registers, counts the amount of set bits

in each of them and takes the difference of those amounts then writes the result to

a register. This is used in polynomial sampling. The hardware is implemented with

look-up tables and adders. First a look-up table with 4-bit control input is designed to

count the number of set bits in a 4-bit input as seen in Figure 6.8.
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Figure 6.8: HDL code of look-up table for Hamming weight.

The 32-bit values from registers are separated to 4-bit slices and each slice is connected

to a look-up table to count the number of set bits. Then the results are added in pairs

until the total number of set bits in each 32-bit value is obtained which can be seen

in Figure 6.9. Finally, the difference of those amounts is calculated with a subtractor.

In order to use less space, each adder/subtractor has minimum width input/output.

Normally newhope512cca library takes the Hamming weight of only 8-bit values,

but in order to make it a more general instruction, it is designed for 32-bit values

in hardware.
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Figure 6.9: HDL code of custom instruction 0 in ALU module.

The custom instruction is used in the C code with inline assembly code. It is added

with conditional compiling as seen in Figure 6.10. If the macro BAM_CUST0 is

defined, then the custom instruction is used, otherwise the standard instructions are

used. This definition is added to the makefile with the flag -DBAM_CUST0 to

PROGRAM_CFLAGS.

6.9.1.4 Custom Instruction 1: coeff_freeze

The second custom instruction is a part of the coeff_freeze function in poly.c. It

consists of a subtraction followed by a series of logic operations as seen in the Figure

6.11. For the subtraction the adder/subtractor that already exists in the ALU is used.

In the software, right shift is used to fill the value with sign bit. In hardware instead of

shifting, the sign bit is directly copied.
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Figure 6.10: C code of usage of custom instruction 0.

Figure 6.11: HDL code of custom instruction 1 in ALU module.

Again, as seen in Figure 6.12, the custom instruction is added as inline assembly code

to the software with conditional compiling using he flag -DBAM_CUST1.
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Figure 6.12: C code of usage of custom instruction 1.

6.9.1.5 Custom Instruction 2: flipabs

The third custom instruction is a part of flipabs function in poly.c. Similar to previous

one, it consists of a subtraction, copying the sign bit, addition and XOR operation as

seen in Figure 6.13. The subtractor in ALU is used for the initial subtraction.

Figure 6.13: HDL code of custom instruction 2 in ALU module.

Again, as seen in Figure 6.14, the custom instruction is added as inline assembly code

to the software with conditional compiling using he flag -DBAM_CUST2.
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Figure 6.14: C code of usage of custom instruction 2.

6.9.1.6 Performance Improvements

Table 6.3 shows the performance and area changes with the added custom instructions.

Table 6.3: Performance and area changes with different custom instructions

Without extensions With Cust0 With Cust1 With Cust2 All together

Clock Cycles 7,374,191 6,882,431 7,360,469 7,371,121 6,865,637
Clock reduced - 491,760 13,722 3,070 508,554

Clock reduced (%) - 6.67% 0.18% 0.04% 6.90%
LUTs used 5,586 5,799 5,756 5,713 5,930

LUTs increased - 213 170 127 344
LUTs increased (%) - 3.81% 3.04% 2.27% 6.16%
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7. REALISTIC CONSTRAINTS AND CONCLUSIONS

7.1 Practical Application of this Project

7.2 Realistic Constraints

7.2.1 Social, environmental and economic impact

Post-quantum cryptography algorithms has not been standardized yet. Therefore, its

impact on social, environmental and economic figures has not been analyzed. But

instruction extension for these algorithms increases the reliability of the quantum

computing technology.

7.2.2 Cost analysis

In the project FPGA board and personal computers are used. In the Form 3, we have

mentioned that the Nexys 4 DDR FPGA board is $265 and we have obtained that board

from "Embedded Systems Design Laboratory".

7.2.3 Standards

In this project, Institute of Electrical and Electronics Engineers (IEEE) standard have

been followed. Also, post-quantum cryptography algorithms are under development

of standardization.

7.2.4 Health and safety concerns

This project is not classified as an risky project and behaviours of the project is mostly

simulated.
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7.3 Future Work and Recommendations

In the project, a post-quantum cryptography algorithm has been analyzed and an

instruction extension have been created for it to work faster. New set of instructions

was able to reduce the runtime by 10% but other than analyzing the C code of the

algorithm with a full post-quantum cryptography block, runtime can be reduced more

and it might became much faster. Thus, a new crypto algorithm block might be better

to be considered. Also, with a much detailed analyze of the assembly code of the

algorithm instruction extension might be expanded.
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APPENDIX A.1 : Makefiles
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APPENDIX A.1

Figure A.1: NewHope software makefile.
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Place and Date of Birth: Istanbul, 17.10.1998

E-Mail: atesb16@itu.edu.tr

EDUCATION:

• B.Sc.: Senior student, Istanbul Technical University, Electrical-Electronics Faculty,
Department of Electronics and Communication Engineering

• B.Sc.: Double major program student, Istanbul Technical University,
Electrical-Electronics Faculty, Department of Control and Automation Engineering

PROFESSIONAL EXPERIENCE AND REWARDS:

• 2020-present Internship at Borda Technology as Embedded Software Developer

• 2019 Internship at Istanbul Technical University Embedded System Design
Laboratory

60



CURRICULUM VITAE

Name Surname: Musa Antike

Place and Date of Birth: Ankara 26.07.1995

E-Mail: antike16@itu.edu.tr

EDUCATION:

• B.Sc.: Senior Student, Istanbul Technical University, Electrical - Electronics
Faculty, Electronics and Communication Engineering

PROFESSIONAL EXPERIENCE AND REWARDS:

• 2017-2019 Istanbul Technical University - Solar Car Team - Embedded Systems.

• 2019-2020 Borda Technology - Part Time Embedded Software Developer

• 2020-Present Borda Technology - Embedded Software Developer

61


	FOREWORD
	TABLE OF CONTENTS
	ABBREVIATIONS
	LIST OF TABLES
	LIST OF FIGURES
	SUMMARY
	ÖZET
	1. INTRODUCTION
	2. POST-QUANTUM CRYPTOGRAPHY
	Lattice Based Cryptography
	Learning With Error
	NewHope PQC Algorithm
	Randomness and sampling
	Number Theoretic Transformation (NTT)
	Encryption Scheme
	NewHope Real Life Implementations


	3. RISC-V
	RISC-V Applications
	RISC-V GNU Toolchain
	Setup
	Toolchain Modifications


	4. PULPino
	PULPino Architecture
	Setup
	RISC-V GNU Toolchain
	Implementation on FPGA

	Simulation Environment
	Applications
	Tests

	5. Potato RISC-V
	Potato RISC-V Architecture
	Setup

	6. Ibex
	Introduction
	Vivado Project
	Peripherals
	GPIO
	Timer
	UART

	Utilities
	Bootloader
	Makefile For Software
	Linker Scripts
	NTRU
	NewHope
	Extending the ISA
	Profiling
	Adding Custom Instruction Hardware
	Custom Instruction 0: Hamming Weight Difference
	Custom Instruction 1: coeff_freeze
	Custom Instruction 2: flipabs
	Performance Improvements



	7. REALISTIC CONSTRAINTS AND CONCLUSIONS
	Practical Application of this Project
	Realistic Constraints
	Social, environmental and economic impact
	Cost analysis
	Standards
	Health and safety concerns

	Future Work and Recommendations

	REFERENCES
	APPENDICES
	APPENDIX A.1

	CURRICULUM VITAE


