
i

ISTANBUL TECHNICAL UNIVERSITY

ELECTRICAL-ELECTRONICS FACULTY

SENIOR DESIGN PROJECT

JULY, 2020

APPLICATION-SPECIFIC EXTENSION OF THE INSTRUCTION SET OF

RISCV PROCESSOR

Adem EREN

Mehmet Emre YAĞAR

ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT

ii

ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT

JULY, 2020

ISTANBUL TECHNICAL UNIVERSITY

ELECTRICAL-ELECTRONICS FACULTY

APPLICATION-SPECIFIC EXTENSION OF THE INSTRUCTION SET OF

RISCV PROCESSOR

SENIOR DESIGN PROJECT

Adem EREN

(040170719)

Mehmet Emre YAĞAR

(040170711)

Project Advisor: Assoc. Prof. Dr. Sıddıka Berna ÖRS YALÇIN

iii

Project Advisor: Assoc. Prof. Dr. Sıddıka Berna ÖRS YALÇIN

Adem EREN Mehmet Emre YAĞAR

 (040170719) (040170711)

We are submitting the Senior Design Project Report entitled as “APPLICATION-

SPECIFIC EXTENSION OF THE INSTRUCTION SET OF RISCV PROCESSOR”.

The Senior Design Project Report has been prepared as to fulfill the relevant regulations

of the Electronics and Communication Engineering Department of Istanbul Technical

University. We hereby confirm that we have realized all stages of the Senior Design Project

work by ourselves and we have abided by the ethical rules with respect to academic and

professional integrity .

iv

FOREWORD

Thanks to our assistant mentor Assoc. Prof. Dr. Sıddıka Berna Örs Yalçın who helped

us find this project and assisted us in all our failures, to achieve total success and at

least do our best to sustain successfully our project. We are also grateful to Latif

Akçay, who has opened our way with the knowledge he has in the field of riscv

architecture. We would like to thank our dear friend Mehmet Doğan, who always

supported and helped us in this project, and also Ebru Nur Yağar, Gülsün Yağar,

Hüseyin Yağar and Eren family who did not withhold their endless support from us.

July 2020

Adem Eren

Mehmet Emre Yağar

v

vi

TABLE OF CONTENTS

Page

TABLE OF CONTENTS .. vi

ABBREVIATIONS .. 7

LIST OF FIGURES ... 8

SUMMARY ... 9

1.INTRODUCTION ... 11

1.1 General Informations And Consepts .. 11

1.1.1 CISC architacture .. 11

1.1.2 RISC architacture .. 11

1.1.2.1 RISC-IMAC instruction set .. 12

 1.1.2.2 RISC-V assembler and compiler toolchain .. 13

1.1.2.3 Ariane core view .. 13

1.1.3 Modular multiplication algorithm ... 16

1.1.3 General flow of project ... 18

1.2 Literature Review .. .18

1.2.1 Literature review at Istanbul Technical University 19

1.2.2 Literature review at Turkey .. 19

1.2.3 Global Literature review .. 20

2.IMPLEMENTING ARIANE PROCESSOR ... 22

2.1 Gathering Required Environment ... 22

2.1.1 Ubuntu operating system ... 22

2.1.2 RISC-V GNU toolchain .. 23

2.1.3 RISC-V tools ... 23

2.1.4 Verilator ... 24

2.1.5 GTKWave simulator .. 26

 2.2 Running User-Space Applications ... 26

 2.2.3 Assembly level test .. 27

 2.2.4 C level test………………………………………………………………..29

3.ALU INSTRUCTION EXTENSION .. 35

 3.1 Trace File ... 35

 3.2 Text Analyzer……….……………………………………………………..36

 3.3 Instruction implementation on ALU………………………………………38

4. CONCLUSION AND FUTURE WORK………..42

REFERENCES ... 44

CURRICULUM VITAE .. 46

7

ABBREVIATIONS

ALU : Arithmetic Logic Unit

CPU : Central Processing Unit

FPGA : Field Programmable Gate Array

FPU : Floating Point Unit

IDE : Integrated Development Environment

ISA : Instruction Set Architecture

JDK : Java Development Kit

OS : Operating System

PC : Personal Computer

PK : Proxy Kernal

RISC : Reduced Instruction Set Computing

RTL : Register Transfer Level

SoC : System on Chip

VHDL : Very High –Speed Integrated Circuit Hardware Description

Language

8

LIST OF FIGURES

Page

Figure 1.1 : RISCV instruction sets. ... 12

Figure 1.2 : RISC-V assembler and compiler toolchain ... 13

Figure 1.3 : Ariane core overview. .. 14

Figure 1.4 : Issue and execute stage of ariane. .. 16

Figure 1.5 : The C code for the test of ariane RISCV core. 17

Figure 1.6 : RISC-V core comparisons ... 20

Figure 2.1 : Bootrom addresses and their values .. 27

Figure 2.2 : The bootrom of ariane core ... 28

Figure 2.3 : Linux terminal after modification of bootrom. 29

Figure 2.4 : Simulation result of addition operation ... 29

Figure 2.5 : The simulation of hello.c on the ariane processor. 30

Figure 2.6 : C code for modular multiplicaion algorithm for fisrt example. 31

Figure 2.7 : Trace file of modular multiplication algorithm for first example 32

Figure 2.8 : The simulation of modular multiplication algorithm for first example . 32

Figure 2.9 : The trace file of modular multiplication for second example 33

Figure 2.10 The simulation of modular multiplication for second example 33

Figure 3.1 : The example output of text analyzer. ... 36

Figure 3.2 : Text analyzer software in Java. .. 37

Figure 3.3 : The output of text analyzer for trace file of modular multiplication 38

Figure 3.4 : The hardware of shift instructions on ALU ... 39

Figure 3.5 : The hardware of addition instruction. .. 39

Figure 3.6 : The hardware of CUSTOM1 instruction. .. 40

Figure 3.7 : Compiler unrecognized opcode error. ... 40

9

APPLICATION-SPECIFIC EXTENSION OF THE COMMAND SET FOR

OPEN SOURCE PROCESSORS

SUMMARY

Time is a phenomenon that should not be wasted for human life anymore. Therefore,

the planned works must be completed quickly, regularly and accurately. Processors

are called electronic devices, or their brains, that control the operation of computer

units and the data flow between them, performing data processing tasks. Producing

processors is an activity that few companies in the world can do, so there is no common

processor structure. For this reason, these companies sell the processors and software

they designed at a very high price. Open source processors, which is a term that we

hear a lot today, and that we will even hear in the future, enable people to design their

own processors and use them in their own machines. RISC-V is an open, free ISA that

allows for a new era of processor innovation via the open standard collaboration. Born

in academia and researchat the University of California, Berkeley, RISC V ISA

provides architecture with a new level of free, extensible software and hardware

freedom, opening the way for computing design and innovation in the next 50 years.

Speed is a very important concept for processors, and with the development of

technology, efforts to increase performance are increasing. In this project, Ariane core,

which is one of the RISC-V processors, will be implemented and an extension on ALU

is aimed to increase performance of the core. For the implementation of this project,

Ariane core works on Linux OS and to complete implementation modular

multiplication algorithm is used. For the extension planned to be made on ALU, the

most appropriate extension will be made on the ALU by first determining the

appropriate instructions selected in our algorithm, writing with system verilog

encoding, and finally a bit file will be produced to control the increase in performance.

In conclusion, the outcome of this project also give results how to make

implementation on the processor and making extension of ALU . Also it is clear that,

there is not so much studies on this area and no developed processors done in the

Turkey so these open source processors are a leading process and advantageous to

follow the technological deveelopments in this area.We can clearly say that working

with these open source processors will give us time, resources, work, expense, and

prototyping advantages.

10

AÇIK KAYNAKLI İŞLEMCİLERDE KOMUT SETİNİN UYGULAMAYA

ÖZEL GENİŞLETİLMESİ

ÖZET

Zaman artık insan hayatı için boşa harcanmaması gereken bir olgudur. Bu nedenle

planlanan çalışmalar hızlı, düzenli ve doğru bir şekilde tamamlanmalıdır. İşlemcilere,

bilgisayar birimlerinin çalışmasını ve aralarındaki veri akışını kontrol ederek veri

işleme görevleri gerçekleştiren elektronik cihazlar veya beyinleri denir. İşlemci

üretmek, dünyadaki birkaç şirketin yapabileceği bir faaliyettir, bu nedenle ortak

işlemci yapısı yoktur. Bu nedenle, bu şirketler tasarladıkları işlemcileri ve yazılımları

çok yüksek bir fiyata satmaktadırlar. Bugün çok duyduğumuz ve gelecekte

duyacağımız bir terim olan açık kaynaklı işlemciler, insanların kendi işlemcilerini

tasarlamalarını ve kendi makinelerinde kullanmalarını sağlıyor. RISC-V, açık standart

işbirliği yoluyla yeni bir işlemci yeniliği çağına izin veren açık ve ücretsiz bir ISA'dır.

Akademi doğumlu ve California Üniversitesi, Berkeley'de yeniden araştırma yapan

RISC V ISA, mimariye ücretsiz, genişletilebilir yazılım ve donanım özgürlüğü

sunarak önümüzdeki 50 yıl içinde tasarım ve yeniliği hesaplamanın yolunu açıyor.

Hız, işlemciler için çok önemli bir kavramdır ve teknolojinin gelişmesiyle performansı

artırma çabaları artmaktadır. Bu projede, RISC-V işlemcilerinden biri olan Ariane

çekirdeği uygulanacak ve çekirdeğin performansını arttırmak için ALU üzerinde bir

genişletme yapılması hedefleniyor. Bu projenin uygulanması için, Linux işletim

sisteminde “Batch mode” ile Ariane çekirdeği oluşturulmuş ve uygulamanın

tamamlanması için modüler çarpma algoritması kullanılmıştır. ALU'da yapılması

planlanan genişletme için, öncelikle algoritmamızda seçilen uygun komutlar

belirlenerek, sistem verilog kodlaması ile yazılarak, en uygun genişletme ALU'da

yapılacak ve son olarak, artışı kontrol etmek için bir bit dosyası üretilecektir.

Sonuç olarak, bu projenin çıktısı hem işlemci üzerinde nasıl uygulama yapılacağı hem

de ALU'nun nasıl genişletileceği ile ilgili sonuçlar vermektedir. Ayrıca, bu alanda çok

fazla çalışma yapılmadığı ve Türkiye'de gelişmiş bir işlemcinin yapılmadığı açıktır,

bu nedenle bu açık kaynak işlemcileri bu alandaki teknolojik gelişmeleri takip etmek

için öncü bir süreçtir ve avantajlıdır. bu açık kaynaklı işlemciler bize zaman, kaynak,

iş, gider ve prototip avantajları sağlayacaktır.

11

1. INTRODUCTION

The aim of this graduation project is the reducing process time for specific application

by using the method which is the extension of arithmetic logic unit. There is two

different processor architecture in the literature: Complex Instructşon Set

Computer(CISC) and Reduced Instruction Set Computer(RISC). In this project Ariane

chip was designed from RISC architecture which was choosen because of open source

availability. Later, ALU extension will be implemented and performance comparison

tests will be done in simulation waveforms by using GTK waveform simulater. For

the test program, modular multiplication algorithm will be implemented on Ariane

chip. In this section, general information has been explained about CISC and RISC

architecture and then the Ariane chip will be examined in detail.

1.1 General Information And Concepts

In this section, firstly, a description will be made about the processor architectures and

then detailed information will be given about the software and tools required for the

realization of the project. Each section will include a comprehensive overview of all

the tools and software used in the project. What each is and what the purpose serves

in the project will be specified ..

1.1.1 CISC architecture

A complex instruction set computer is a computer where single instructions can

perform various low-level operations such as memory loading, arithmetic operation,

and memory store, or are performed in single instructions via multi-step processes or

mode addressing, as its name suggests "Complex Instruction Set."

Based on the description of program compilers, the CISC machines have good actions;

as the variety of creative instructions can be obtained in one set of instructions. They

conceive compound instructions in a simple set of instructions. They achieve low-level

processes, which makes it easier to have large address nodes and additional types of

data in a machine's hardware.

1.1.2 RISC Architecture

In the RISC architecture, the set of instructions are reduced and each instruction here

is expected to achieve very small function. Because of the instruction sets in this

12

architacture are plain and simple, complex codes can be implemented easily. Each

instruction is about the same length; these are wound together in a single operation to

get compound tasks done.

1.1.2.1 RISC-IMAC Instruction Set

RISC-V was originally developed to support research and education in computer

architecture, but we hope now it is also a standard free and open architecture for the

industry.

IMAC stands for integer, multipilication, atomic and compressed instruction set.

Ariane ISA is consist of the combination of these instruction sets.[1]

Figure 1.1 : RISCV instruction sets

13

1.1.2.2 RISC-V assembler and compiler toolchain

In the project, we are evaluating the RISC-V open source instruction set architecture

and ariane core with our own implementation. We need a software, as named RISC-V

GNU Toolchain, to compile, assemble and link our source files in order to execute in

both a simulator and FPGA. Because we are using Ariane core, our GCC flow is a

little bit different from that figure with some additional terminal commands. In the

project, we will be using the Verilator with the riscv-fesvr for simulation results.

Figure 1.2: RISC-V assembler and compiler toolchain

1.1.2.3 Ariane core view

PULP is a silicon-proven Parallel Ultra Low Power platform that has an aim to get

high energy qualification. The platform is established as clusters of RISC-V cores

that share a tightly-coupled data memory. This platform cooperate with ETH Zürich

(Integrated Systems Laboratory) and University of Bologna (Energy-effecient

14

Embedded Systems) to find out modern and effecient cores for high energy

effeciency and low power processing.[2] Ariane core;

 6-Stage, single issue, out-of-order write-back, in-order-commit

 64-bit RISC-V instruction set with in-order CPU

 It implements I(Integer instructions), M(Multiplication and Division

instructions), A(Atomic instructions) and C(Compressed Instructions).

 Also implemets three privilege levels M, S, U to fully support a Unix-like

operating system.

 Configurable size

 Seperate TLBs

 Hardware PTW(Page Table Walker)

 Branch-Prediction(branch target and branch history table)

 The first important aim is to reduce the critical path length

Figure 1.3 Ariane core overview

15

As the Ariane core architecture, we would like to give some informations in the “Issue”

part. The purpose of the issue stage is to receive the decoded instructions and issue

them to the different functional units. The issue stage also keeps track of all the

instructions issued, the functional unit status and collects the write-back data from the

execution stage and additionally, it includes the register file for the CPU. By using the

data structure, known as scoreboard, it exactly knows the instructions are issued, the

functional unit they are in and the register they are going to write back to. We can

splits the execution process in the four parts; issue, read operands, write-back and

execute. Except the second part(read operands), issue handles the other parts.

Actually, we are going deeper of the structure with getting information on execute

stage and then ALU(Arithmetic Logic Unit).

The execution stage is a logical process encapsulating each of the functional units

(FUs). Each FU must be capable of its operation separately of any other unit. Also

every functional unit retains a correct signal to give the valid signal output data, and a

ready signal to inform the issue logic whether or not it can accept a new request.

Execute stage contains CSR buffer and divide-multiply unit and ALU, branch unit and

load store unit(LSU).

The most important part of the core in this project is the ALU structure. The arithmetic

logic unit (ALU) is a specific piece of hardware that implements addition, subtraction,

comparisons, and shifts of 32 and 64-bit. It always completes its process in one cycle

and therefore includes no full-state entities. It also receives an operator, together with

the two operands, that informs it which operation to perform.[2]

16

 Figure 1.4 : Issue and execute stage of ariane

1.1.3 Modular multiplication algorithm

If only certain people are required to access information, we need to encrypt it. Many

algorithms have been developed due to security concerns in the encryption area.

Various encryption operations can be performed using the Modular Multiplication

algorithm. The modification to be made in Ariane Core's ALU will be made to make

this algorithm work faster. There are some explanations about this algortihm according

to the following code.

Step1: INPUT → X,Y,M

Step2: OUTPUT→ RESULT

Step3: RESULT = X*Y

Step4: M << N

Step5: for i=N down to 0 do

if (RESULT >= M)

RESULT = RESULT - M

17

M = M >> 1

endfor

Step6: return RESULT

The modular multiplication algorithm, the general scheme of which is given, can be

written in different high-level languages. The algorithm can also be updated to avoid

overflow. In this graduation project, a “C” code was written to test the Ariane core.

Additional commands have been added to prevent overflow in this c code.

This algorithm can be written in C language as in the Figure 1.8.

Figure 1.5 : The c code for the test of ariane RISCV core.

Riscv compiler converted this c code into machine code. Then the "verilator" program

was used to test in Ariane core. The resulting test file was simulated with the "spike"

18

program. The result based on the entered values was calculated as expected. Each of

these phases will be described in detail in the implementation section.

After testing core processes, the waveform of signals in Ariane core will be shown by

using verilator and GTK wave simulation programs. For this purpose the assembly

code is more advantageous to use because of speed. Therefore the assembly codes of

this algorithm is needed to written. After this operation, The simulation tests could be

observed in GTK wave.

1.1.4 General flow of project

In this section, the steps of the project will be discussed in detail. First of all the

operational system which in the implementation of Ariane core is decided to Windows

because of the simplicity. But later, there is a change of operational system with Linux.

Because the creator of Ariane core has designed in “batch mode”. The meaning of that

we need to use terminal in Linux so we need an internal or external disk to install the

Ubuntu 18.04 operating system. Ariane core can be implemented only for Genesys 2

board. Also in order to get the Genesys 2 board files, you need to get the fully licenced

version of the Vivado not the Webpack version but because of the lack of the Genesys

2 board in the laboratory, we will work on the project in the simulation level. The

simulation tool that is used in that project is GTK Wave simulator associated with

Verilator tool. How they are installed and worked will be explained in the next chapter.

Also, in order to compile the core we will need the some software programs. After all

needed installation tools are downloaded, we write the C code of the Modular

Multiplication algorithm. With converting the C code into assembly code, we will edit

the bootrom of the Ariane core. Then, we can control the signal on the GTK Wave

simulation whether it simulate correctly or not. The final process is to check the

algorithm that which part is more repeated. Because the most repeated part of the

algorithm occupies the processors most. Then we will edit the ALU of the Ariane core

with adding some logical operands and make the performance measurement.

1.2 Literature Review

In this section, the researches in literature that are relevent with the RISC-V core and

extension of the command set will be explained in detail.

19

1.2.1 Literature review at Istanbul Technical University

 (Güngör, Öndeş, Sarı, Uçkun; 2018) “Instruction Set Extension Of Some

Processors For Secure Iot Implementations”

The next generation Internet of Things (IoT) technologies are primarily concerned

with security. Therefore the cryptology was chosen as the application area in the

research. The key theme of this study is the use of AES(Advanced Encryption

Standard) and present cryptology algorithms in open source processors, with

instartcion set extension (ISE) and to improve protection for IoT applications for these

processors. The Pulpino RI5CY, part of the ETH Zurich, is at the center of the project.

The one of developer in this project, implement this core on Xilinx's Nexys4 DDR

Development Board and then found it worked through checking. After that point, the

main theme of the AES thesis application was successfully implemented using the

instruction set extention method.[3]

 (Sürer, Bartu; 2019) “Implementatıon Of A Soc By Usıng Lowrısc Processor

On An Fpga For Image Fılterıng Applıcatıons”

The purpose of this project is using the Image Processing Algorithm with instruction

set extension in open source processors and make some filters such as, Gauss blur

filter, sharpening filter which is applied to images with pure C code without using

libraries. The project manager is Bartu Sürer decided to make research on the lowRISC

core and used Nexys DDR4 FPGA board which is produced by Xilinx and then made

observations that whether the Image Filtering is working correctly or not. At the end

of the project, the result of the implementation is that, lowRISCV system on chip could

be used on FPGA board as well as prototyping and testing on FPGA board correctly.

[4]

1.2.2 Literature review at Turkey

No thesis research on this subject in our country has been done so far. But a member

of the RISC-V group, listed as silver, is one of the largest defense industry firm in

Turkey ASELSAN.

20

1.2.3 Global Literature review

 (F. Zaruba and L. Benini; 2019) “The Cost of Application-Class Processing:

Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V

Core in 22-nm FDSOI Technology”

This research mentions that promoting application-class execution involves an

unavoidable reduction in energy-efficiency and more computational performance is

cost-effectively improved, instead of high-frequency operations, with instruction

extensions. They made efficiency analysis about power consumption based on the

Ariane core on a functional unit level. In addition to this there is a comparison with

other RISC-V 64-Bit cores . The data of this comparison about speed, required area,

power consumption, IPC, energy per operation is available in this research. In the

light of such information Ariane has a big advantageous in energy efficiency and

performance in own class. The performance tests can be examined by using Verilator

and QuestaSim simulation or after the generating bitstream on the FPGA[5].

 Figure 1.6 : RISC-V core comparisons[5]

21

22

2. IMPLEMENTING ARIANE PROCESSOR

2.1 Gathering Required Environment

In this section all software and tools requirements will be explained in particularly.

2.1.1 Ubuntu operating system

Firstly, the operationg system of “Ubuntu 18.04” should be installed on the external

or internal disk and there should be at least 250GB memory space in disk. Internal disk

is preferred because of making process takes less time.

Also, Ubuntu should be installed in English version. Installation of Ubuntu in Turkish

bring problems because of Turkish characters.

Firstly we will write a few commands on terminal as the following way.

$sudo apt-get update

The command "sudo apt-get update" is used to retrieve information about the packages

from all configured sources.

$ sudo apt-get upgrade

$ sudo apt install build-essential

To install available updates of all currently installed packages on the device from

sources configured via sources.list file, you run "sudo apt-get upgrade."

Also in order to get the sources file from github we need to install “git” with

following command

$ sudo apt-get install git

Because we do not use FPGA board, we do not need Vivado program exactly because

we will use GTKWave as a simulator. But in order to get bit file from bitstream we

need Xilinx Vivado 2018.2 version and it should be installed with licenced version

because Genesys 2 board files only could be seen in licenced version. After

installation, we should write a command in “.bashrc” file in order to open vivado with

command in terminal.

$source /opt/Xilinx/Vivado/2018.1/settings64.sh

$vivado

23

2.1.2 RISC-V GNU toolchain

GNU Compilar Toolchain is the RISC-V C++ and C cross-compiler. It has two modes:

Newlib/Elf toolchain and Linux-Elf/glibc toolchain but we will use the first one,

Newlib toolchain because we do not perform on Linux, we will use machine codes

directly. The fact that we work on Linux operating system for implementation of

required software and tools. However Ariane core would not be implemented with a

operating system, as a pure structure.

We will obtain its sources or repository with writing that command in terminal.[6]

$ git clone --recursive https://github.com/riscv/riscv-gnu-toolchain

This will download the repository as “riscv-gnu-toolchain” at home directory.

Also in order to build the toolchain, we need to download some additional packages.

With writing this command,[7]

$ sudo apt-get install autoconf automake autotools-dev curl python3 libmpc-dev

libmpfr-dev libgmp-dev gawk build-essential bison flex texinfo gperf libtool

patchutils bc zlib1g-dev libexpat-dev

Now, we should enter the toolchain directory,

$ cd riscv-gnu-toolchain

In order to configure the Newlib cross-compiler, we will pick an installation path then

build it in that directory.

$./configure --prefix=/opt/toolchain --with-arch=rv64imac --with-abi=lp64

Then finally writing that command will install the toolchain in the “/opt/toolchain”

path.

$ make

2.1.3 RISC-V tools

RISC-V tools contains a set of RISC-V simulators, compiler and other tools.

Riscv-fesvr: RISC-V Frontend Server

Riscv-isa-sim: ISA simulator(Spike)

Riscv-qemu: Higher-performance ISA simulator

https://github.com/riscv/riscv-gnu-toolchain

24

Riscv-pk: RISC-V Proxy Kernel

We can download the RISC-V tools repository with these commands[8]:

$ git clone https://github.com/riscv/riscv-tools

$ cd riscv-tools

$ git submodule update --init –recursive

$ export RISCV=/opt/riscv/riscv-tools

$ export PATH=${PATH}:${RISCV}/bin

$./build.sh

Also in Ubuntu system, some packages are needed and with writing a command as:

$ sudo apt-get install autoconf automake autotools-dev curl libmpc-dev libmpfr-dev

libgmp-dev libusb-1.0-0-dev gawk build-essential bison flex texinfo gperf libtool

patchutils bc zlib1g-dev device-tree-compiler pkg-config libexpat-dev

There is an important requirement that riscv-tools needs a compiler with GCC>=4.8

so with writing this command we can handle it:

$ CC=gcc-5 CXX=g++-5 ./build.sh

2.1.4 Verilator

Verilator is a free open source software tool that translates Verilog to C++ or SystemC

into a cycle-accurate behavioral model. In the sense of general design flows ASIC and

FPGA and for performance and power analysis, researchers use Verilator to create new

co-simulation environments. Verilator is also a common tool for student dissertations.

Not only does Verilog Convert HDL to C++ or SystemC. Alternatively, Verilator

compiles the code into a much faster-optimized thread-divided model, packaged inside

a C++/SystemC / C++-under-Python module. Verilator is called up with parameters

similar to GCC(GNU Compiler Colection). Verilator reads the Verilog or

SystemVerilog code, performs lint checks, and optionally puts assertion checks and

covers. The code "Verilated" produces single or multi-threaded.cpp and.h files. The

outcome is a compiled Verilog model, which also works 100 times faster on one thread

than Verilog’s interpreted simulators.

https://github.com/riscv/riscv-tools

25

Verilator can be conveniently mounted by writing the following order to the

terminal.[9]

$ apt-get install verilator

However, as certain applications and software needed for verilator are out of date it

may not be possible to successfully install them. So installing the verilator via Git

would be more useful. In our work, we loaded by the following way[1].

First of all requirements are needed to install as the following three lines. They may

be give an error but this is not a serious issue, please continue to type codes.

$sudo apt-get install git make autoconf g++ flex bison

$sudo apt-get install libfl2

$sudo apt-get install libfl-dev

Secondly the repository of verilator is needed to download in it’s own source.

$git clone https://git.veripool.org/git/verilator # Only first time

Every time you need to type the following two lines when the installation of verilator

for C shell and bash. If there is taken an error, do not get any trouble and just pass this

commands.

$unsetenv VERILATOR_ROOT

$unset VERILATOR_ROOT

Now enter the directory of verilator.

$cd verilator

Ensure that git is an updated repository

$git pull # Make sure git repository is up-to-date

$git tag # See what versions exist

$git checkout master # Use development branch (e.g. recent bug fixes)

$git checkout stable # Use most recent stable release

$git checkout v{version} # Switch to specified release version

$autoconf # Create ./configure script

$./configure

26

$make

$sudo make install

2.1.5 GTKWave simulator

GTKWave is an analysis tool used to test simulation models on Verilog or VHDL.

This is not intended to run interactively with simulation except for interactive VCD

viewing, but rather relies on a postmortem approach through the use of dumpfiles. It

supports various dumpfile formats but we will use vcd format file in that project.

GTKWave was designed to perform debug tasks on a chip on large systems and was

used as an offline substitute for third party debug tools in this ability.

For Verilog, GTKWave allows users to debug simulation results at both the net level

by providing a bird's eye view of multiple signal values over varying time periods

and also at the RTL level by annotating the signal values back into the RTL for a giv-

en time step.

In order to compile and install the simulator, the following steps should be followed:

Un-tar the source code into any temprorary directory and enter the file and make

configure.[10]

$./configure

$ make

This will take some time depends on the PC and then

$ su

This will ask the password, with writing the password by user, write this command

$ make install

Wait for finishing installation then GTKWave will be installed.

2.2 Running User-Space Applications

The Ariane processor can be tested in two ways. The first can be achieved with

Bootrom inside the processor. The second can be done directly with a high-level

language with instruction memory.[2]

27

We will use Makefile in the repository of Ariane to build the Verilator model of Ariane

and “work-ver” file will be created.

$ make verilate

Then we will build the Verilator model of core in order to obtain vcd format file and

“work-ver” file will be debugged with this command;

$ make verilate DEBUG=1

2.2.1 Assembly level test

As seen in the simulation. Instruction set takes the instructions from bootrom in order

so we can say that when we make some operations on core. Instruction set works

correctly.

Also another check about core is program counter and we will control that when the

instruction set gets the instructions program counter(pc) increases or not. As clearly

seen program counter increases gradually on the top of the simulation signals.

Figure 2.1: Bootrom addresses and their values

We have seen that instruction set gets the instructions from bootrom and now we will

write a small addition operation of assembly code in bootrom file and will check

28

whether the Ariane core do this operation correctly. In the directory;

/Ariane/boorom/bootrom.S

Here is the bootrom file content and we have added a set of commands as written in

red.

Figure 2.2: The bootrom of ariane core

After writing assembly commands we will compile it and see simulation result and

want to see the result of addition of 3+4=7.

In the directory of ariane/bootrom , write this command in terminal

$ make all

It will give the output as;

29

 Figure 2.3: Linux terminal after modification of bootrom

Now it is time to create vcd format file to see the simulation result and we will write

the same commands on terminal as done before.

Figure 2.4: Simulation result of addition operation

Here is the simulation result and as seen clearly, “operand_a” and “operand_b” take

the values properly and then makes addition operation and shows the result in

“adder_result” signal as 7.

There are two way to test Ariane core. First way is to write some assembly commands

on bootrom file but the aim of project is not writing Assembly code and it is hard to

write this way each time so there is an another way to make operations on the core.

2.2.2 C level test

Let’s write a simple C code to test Ariane processor as the following;

$ echo '

#include <stdio.h>

int main(int argc, char const *argv[]) {

printf("Hello Ariane!\\n");

return 0;

}' >$ ariane.c

30

Then riscv compiler will be used to compile this code and convert this file into elf

format file.

$ riscv64-unknown-elf-gcc ariane.c -o ariane.elf

Now it’s time to create vcd format to work with the simulation.

$ make verilate DEBUG=1

$ work-ver/Variane_testharness -v ariane.vcd $RISCV/riscv64-unknown-elf/bin/pk

ariane.elf

This process take about 30 minutes because it’s size is about 20 GB and also if you

work with the numbers not extra functions like printf it takes less minutes and smaller

size. The size is about 12GB.

Figure 2.5: The simulation of hello.c on the ariane processor

This simulation is the interface of GTKWAVE Simulator and we will trace the signals

to check whether the core do calculations or operations correctly or not.

We will write a C code then compile it with riscv gcc compiler and obtain the vcd

format file and will try to observe the simulation results. Now we will use modular

multiplication algorithm with different values in order to complete “Ariane core

31

Implementation”. There will be three values for the same code to ensure that code is

working correctly on the core.

Firstly we will write our C code in the Ariane file then compile it and convert it into

elf format and finally create the vcd format file and the logfile will be obtained to

follow the instructions and We will stop after we reach the desired instruction. Here is

the required commands written on the terminal.[2]

$ riscv64-unknown-elf-gcc C_name.c -o arbitrary_name.elf

$ make verilate DEBUG=1

$ work-ver/Variane_testharness -v arbitrary_name.vcd $RISCV/riscv64-unknown-

elf/bin/pk arbitrary_name.elf

$ spike-dasm < trace_hart_00.dasm > logfile.txt

(In order to follow the instructions. Log file is created with this command.)

There are two example of C level test for modular multiplication algorithm with

different input values.

The first example is as follows;

 Let’s make another implementation with different values; we have “a =225 “ “b=17”

and “mod=39” so the result will be rem[(225*17)/39]=8 so will see the result in the

simulation.

Figure 2.6: C code for modular multiplication algorithm for first example

32

 Figure 2.7: Trace file of modular multiplication algorithm for first example

Figure 2.8: The simulaiton of modular multiplication algorithm for first example

 The second example is as follows;

We have “a =11 “ “b=14” and “mod=10” so the result will be rem[(11*14)/10]=4 so

will see the result in the simulation.

As seen, our C code starts when the “000047ad” instruction has come and our values

are loaded properly and when the “ret” command has come as shown in the second

figure as “00008082” instruction, the modular multiplication code finishes and get the

result.

33

Figure 2.9: The trace file of modular multiplication for second example

Now we will observe the simulation whether the result is obtained correctly or not.

Actually as seen in the simulation, when the “80826145” has come, “ret” command is

obtained and it gives us the result as “4”.

Figure 2.10: The simulation of modular multiplication for second example

34

35

3. ALU INSTRUCTION EXTENSION

To add a new instruction to the Ariane core's ALU, we first had to determine the new

instruction’s function. Since this instruction will be done to improve the modular

multiplication algorithm for better performance, we first performed this process three

times with different input values in the processor. Each time we created a trace file and

obtained every process that took place in the processor. After generating trace file, this

text file will be analyzed to decide which two instructions will be choosen to replace

with new instruction. This text analyzer program will be written in Java in this project.

3.1 Trace File

Trace file is a text file that includes the instruction mnemonics in Assembly Language.

These mnemonics show the operations the processor performs during the process. To

generate a trace file of a C code, which is modular multiplication algorithm in our case,

the following steps should be done.

First of all, The Elf file is obtained from the modular multiplication algorithm in C

file. To do that following command is typed to Linux terminal.

$ riscv64-unknown-elf-gcc mod_mult.c -o mod_mult.elf

Secondly, ariane core is verilated on mode DEBUG=1. Hence if it necessary to

simulate the “.vcd” file can be procured from verilator model. Note that, the

environmental variable must be specified before.

$ RISCV=/opt/riscv/toolchain

$ make verilate DEBUG=1

Thirdly, the elf file, which was generated in first step,is used with the Verilator model

to run the RISC-V ELF by the following command.

$ work-ver/Variane_testharness $RISCV/riscv64-unknown-elf/bin/pk mod_mult.elf

The verilator model will produce trace logs. The instruction mnemonics can be

obtained from this trace logs into a text file.[2]

$ spike-dasm < trace_hart_00.dasm > logfile.txt

36

3.2 Text Analyzer

Text Analyzer program is used to calculate and list how much instruction pairs are in

the text. This program takes a text file as input and gives a text as output on console.

However, there is no need to graphical user interface to do these processes. However,

Java JDK and Eclipse IDE is required to write console application. There are many

other language and environment options to write text analyzer program. For instance,

Python language and Pycharm IDE also could be choosen. In our case, Java and

Eclipse IDE is used to code this program because of our competences.

An example output of text analyzer program as follows:

Figure 3.1: The example output of text analyzer

By using text analyzer program, three different trace files were analyzed in this

program. As a result the most repitative and appropriate instruction pair is “srliw -

c.addw”. One of the results can be seen in figure.

37

 Figure 3.2: Text analyzer software in java

38

Figure 3.3: The output of text analyzer for trace file of modular multiplication

3.3 Instruction Implementation on ALU

It is known to create an instruction that performs the function of the instruction pair

we found in the previous step. We have named this instruction CUSTOM1. Since this

instruction will be a combination of Shift Right Logical (SRL) and Addition(ADD)

intruction, the system verilog code has been written similar to the SRL instruction, and

the output of the srl instruction has been entered in the ADD instruction. Since the

SRL instruction is known to always have a 31-bit shift done, there is no need for

additional input.[11]

srliw a5, a5, 31

addiw a4, a5

If we consider CUSTOM1 mnemonic, we can say that a5 and a4 are the inputs of

instruction and a4 is also the output of instruction. Firstly, a5 will be shifted 31-bit

right and then will be added to a4. The result of addition will be saved to a4 register

again.

39

 Figure 3.4: The hardware of shift instructions on ALU

Figure 3.4 shows the hardware of shift operations on ALU. We need to make similar

hardware for the first part of CUSTOM1. There are two different result for shift

operations at the end. Because Ariane is 64-bits processor. Hence, there might be

calculations for 64-bits numbers. Also another situation is different kinds of shift

operations can be done. In the hardware it has been managed with control signals such

as shift_left. However, we will just focus the hardware of SRL.

Figure 3.5: The hardware of addition instruction

Figure 3.5 shows the ADD instruction hardware. Now, the combination of these two

instruction hardware will give us the hardware of the new instruction.

40

 Figure 3.6: The hardware of CUSTOM1 instruction

The hardware of CUSTOM1 instruction is coded as above picture in System Verilog.

After the modification of ALU, we need to make sure the truth of hardware. Therefore

we verilate Ariane processor again with these commnad in the ariane class:

$ make verilate DEBUG=1

 Because of the verilator model was produced correctly, the modification of ALU is

successful. After the modification process on ALU, we wanted to generate an

executable file to test the Ariane processor and see its simulation at GTKwave.

However, the compiler did not detect the new instruction. Because after adding a new

instruction to ALU, the compiler needs to be modified accordingly. We take the

following error during the test.[12]

 Figure 3.7: Compiler unrecognized opcode error

To sum up, we have to modify riscv compiler after extension of ALU. The compiler

has to know what is new in the ALU.

41

42

4. CONCLUSION AND FUTURE WORK

 Ariane implements the 64-bit RISC-V instruction set which is a 6 stage, in order CPU

and single issue. Also Ariane chip is designed for RISCV architecture due to its open

source availability. The first process done in the project is to complete the

implementation of Ariane core with modular multiplication algorithm and check

whether it works correctly or not. After implementation and analyzing the simulation

resuults, the next step is to make extension on ALU with adding some costom

instructions.

In conclusion, we completed implementation of core and ALU extension in correct

way but we could not do the reducing process time for modular multiplication because

of Riscv GNU Toolchain. The problem is that compiler does not identify the

instructions we add as CUSTOM1 in the ALU and there should be made some changes

in complier as well that's why the modular multiplication algorithm with extended

ALU could not be compiled accordingly and bitsteam of the core could not completed

as well.

The first future work is the speed analysis of the modular multiplication algorithm can

be done by generating the bitstream file by removing the compiler error with the proper

extension to be made in riscv gcc compiler. Secondly, in any area such as complex

cryptology algorithms, artificial intelligence studies and even image processing

studies, in terms of performance , better results can be obtained by making proper

extensions in the future of this study.

43

44

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovi, “The RISCV

instruction set manual: User-level ISA, version 2.0,” Dept. Elect.

Eng. Comput. Sci., Univ. California, Berkeley, Berkeley, CA, USA,

Tech. Rep. UCB/EECS-2016-118, 2014, vol. 1.

Openhwgroup/cva6. GitHub. (2020). Retrieved 15 July 2020, from

https://github.com/openhwgroup/cva6.

C. B. Güngör, Y. Öndeş, T. T. Sarı and B. Uçkun, "Instructoıon Set Extension of Some

Processors for Secure IoT Implementation", Istanbul, 2018.

B. Sürer, "Implementation Of A Soc By Using Lowrisc Processor On An Fpga For Image Filtering

Applications”, Istanbul, 2019.

F. Zaruba and L. Benini, "The Cost of Application-Class Processing: Energy and Performance

Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in 22-nm FDSOI Technology," in IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 11, pp. 2629-2640, Nov.

2019, doi: 10.1109/TVLSI.2019.2926114.

"riscv/riscv-gnu-toolchain", GitHub, 2020. [Online]. Available: https://github.com/riscv/riscv-gnu-

toolchain. [Accessed: 18- Jan- 2020].

Xu Lin, Y. (2019). An Architectural Journey into RISC Architectures for HPC Workloads [Ebook]

(pp. 34-35). Ying Hao Xu Lin. Retrieved 15 November 2019, from

https://upcommons.upc.edu/handle/2117/131610.

"riscv/riscv-tools", GitHub, 2020. [Online]. Available: https://github.com/riscv/riscv-tools.

[Accessed: 18- Jan- 2020].

"Documentation - Verilator - Veripool", Veripool.org, 2020. [Online]. Available:

https://www.veripool.org/projects/verilator/wiki/Documentation. [Accessed: 1- Feb- 2020].

"GTKWave", Gtkwave.sourceforge.net, 2020. [Online]. Available: http://gtkwave.sourceforge.net/.

[Accessed: 5- Feb- 2020].

S. Payvar, E. Pekkarinen, R. Stahl, D. Mueller-Gritschneder and T. D. Hämäläinen, "Instruction

Extension of a RISC-V Processor Modeled with IP-XACT," 2019 IEEE Nordic Circuits and Systems

Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC),

Helsinki, Finland, 2019, pp. 1-5, doi: 10.1109/NORCHIP.2019.8906975.

G. Tagliavini, S. Mach, D. Rossi, A. Marongiu and L. Benini, "Design and Evaluation of

SmallFloat SIMD extensions to the RISC-V ISA," 2019 Design, Automation & Test in Europe

Conference & Exhibition (DATE), Florence, Italy, 2019, pp. 654-657, doi:

10.23919/DATE.2019.8714897.

https://github.com/openhwgroup/cva6

45

46

CURRICULUM VITAE

Name Surname : Adem Eren

Place and Date of Birth : Denizli 09.07.1996

E-Mail : erena17@itu.edu.tr

Adem Eren finished primary school at Kızılcasöğüt primary school in Denizli and high

school at Şevkiye Özel Anatolian Teacher High School in Denizli. He is currently

senior year student at Electronics and Communication Engineering in Istanbul

Technical University Electrical-Electronics Faculty. He completed his interships at

Arçelik A.Ş. in Tekirdağ and ASELSAN A.Ş. in Ankara.

Name Surname : Mehmet Emre Yağar

Place and Date of Birth : Konya 09.02.1995

E-Mail : yagar17@itu.edu.tr

Mehmet Emre Yağar finished primary school at Barboros primary school in Konya

and high school at Konya Karatay Toki Anatolian High School in Konya. He is

currently senior year student at Electronics and Communication Engineering in

Istanbul Technical University Electrical-Electronics Faculty. He completed his

interships at Türk Telekom. in Konya and TÜBİTAK in Gebze.

mailto:erena17@itu.edu.tr
mailto:yagar17@itu.edu.tr

