

ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICS FACULTY

SENIOR DESIGN PROJECT

JUNE 2019

BLINK DETECTION WITH IN-CAR CAMERA ON NVIDIA JETSON TX2 BY
NEURAL NETWORK

Mehmet Furkan BAĞCI

ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT

ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT

JUNE 2019

ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICS FACULTY

BLINK DETECTION WITH IN-CAR CAMERA ON NVIDIA JETSON TX2 BY
NEURAL NETWORK

SENIOR DESIGN PROJECT

Mehmet Furkan BAĞCI
 040140028

Project Advisor: Assoc. Prof. Dr. Sıddıka Berna ÖRS YALÇIN

SÜRÜCÜNÜN DAVRANIŞLARINDAN DERİN ÖĞRENME İLE ANALİZ
JETSON TX2 GÖMÜLÜ SİSTEMİNİN ÜSTÜNDE

LİSANS BİTİRME TASARIM PROJESİ

Mehmet Furkan BAĞCI
(040140028)

Proje Danışmanı: Doç. Dr. Sıddıka Berna ÖRS YALÇIN

HAZİRAN, 2018

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ

İSTANBUL TEKNİK ÜNİVERSİTESİ
 ELEKTRİK-ELEKTRONİK FAKÜLTESİ

iv

Project Advisor: Doç. Dr. Sıddıka Berna ÖRS YALÇIN …………….

Mehmet Furkan BAĞCI ……………
(040140028)

We are submitting the Senior Design Project Report entitled as “Blink Detection with in-
Car Camera on Nvidia Jetson TX2 by Neural Networks”. The Senior Design Project
Report has been prepared as to fulfill the relevant regulations of the Electronics and
Communication Engineering Department of Istanbul Technical University. We hereby
confirm that we have realized all stages of the Senior Design Project work by ourselves
and we have abided by the ethical rules with respect to academic and professional
integrity.

v

FOREWORD

First, I really want to give my endless thanks to my supervisor, Assoc. Prof. Dr. S.

Berna ÖRS YALÇIN for giving advice, sparing her precious time and sharing her

knowledge with me. In addition, I would like to express my gratitude to my co-

workers Çağlar KILCIOĞLU and Okan ULUSOY for their supports and efforts.

Finally, I really appreciate to my managers Uğur HALATOĞLU and Serkan

ÖNCÜL who believed in me to achieve this project.

JUNE 2019

Mehmet Furkan BAĞCI

vi

vii

TABLE OF CONTENTS

viii

ix

ABBREVIATIONS

AF : Activation Function

API : Application Programming Interface

AI : Artificial Intelligent

ANN : Artificial Neural Network

BAIR : Berkeley AI Research

BSD : Berkeley Software Distribution

CPU : Central Processing Unit

CSI : Camera Serial Interface

ECG : Electrocardiogram

FPS : Frame per Second

GB : Gigabyte

GPU : Graphics Processing Unit

MIPI : Mobile Industry Processor Interface

MP : Mega Pixel

NHTSA : National Highway Traffic Safety Administration

PC : Performance Computer

RGB : Red Green Blue

SOM : System on module

x

xi

xii

LIST OF FIGURES

Page

 Nvidia Jetson TX2 Development Kit. ... 2
 The Adam Algorithm ... 5

Figure 2.3 : Relu Activation Function. .. 6
Figure 2.4 : Cross Entropy Loss .. 7
Figure 2.5 : Convolutional ANN. .. 8
Figure 2.6 : Max-Margin Object Detection (MMOD) .. 10
Figure 3.1 : Structure of The Code. ... 14
Figure 3.2 : Network Structure. ... 19
Figure 3.3 : Optimization Function. .. 20
Figure 3.4 : Loss Function. ... 20
Figure 3.5 : Train Loader .. 20
Figure 3.6 : Train Script. ... 20
Figure 3.7 : Validation and Train Loss Plot. ... 21
Figure 3.8 : Dataset Format. .. 24

xiii

BLINK DETECTION WITH IN CAR CAMERA ON NVIDIA JETSON TX2
BY NEURAL NETWORKS

SUMMARY

Traffic accidents cause loss of life and property. Most of these accidents caused by
human origin. Some of the accidents caused by driver’s sleepiness and distraction.
Solving these human based problems will be a very important benefit for humanity.
Many automobile companies implement their own solutions in their vehicles. Some
of these products determine problem by comparing the data obtained from the
driver's behaviour data beforehand, and some of them read the ECG data of the
driver with the help of sensor and determine the fatigue.
In this thesis, fatigue and drowsiness situations are observable by real-time
processing with the help of an in-vehicle camera placed in front of the driver. The
system instantly captures the image of all individuals in the vehicle and detects the
driver from these people. The driver’s image process with computer vision systems.
Those systems extract specific points from the face in high FPS. The condition of the
driver's eyelids have analyzed with the help of ANN technology. The model that used
is especially created for this thesis and if required system alerts the driver. The
dataset carefully selected and features expanded. Whole system runs on the Nvidia
Jetson TX2 development kit. The performance of the kit provides to handle high-
resolution images in 50 ms.

xiv

ARAÇ İÇİ KAMERA İLE SÜRÜCÜNÜN GÖZ KIRPMASININ TESPİTİNİN
NVIDIA JETSON TX2 ÜZERİNDE GERÇEKLEŞTİRİLMESİ

ÖZET

Günümüzde traf൴k kazaları can ve mal kaybına sebep olmaktadır. Bu kazaların
b൴rçoğunun ൴nsan kaynaklı olduğu görülmekted൴r. Sürücüler൴n sebep olduğu kazaların
b൴r kısmının sebeb൴ uykusuzluk ve d൴kkat dağınıklığıdır. Bu ൴nsan kaynaklı sorunların
çözülmes൴ ൴nsanlık yararına çok öneml൴ b൴r kazanç olacaktır. B൴rçok otomob൴l f൴rması
kend൴ çözümler൴n൴ araçlarında uygulamktadır. Bu ürünler൴n b൴r kısmı sürücünün daha
önce sürüşler൴nden elde ed൴len ver൴ler൴n anlık olarak karşılaştırılamsı ൴le tesp൴t
etmekte, b൴r kısmı da sensör yardımı ൴le sürücünün EKG ver൴ler൴n൴ okuyarak
yorgunluk ve uykusuzluğunu saptamaktadır.
Bu tez ൴çer൴ğ൴nde d൴ğer s൴stemlerden farklı olarak araç ൴ç൴ kamera ൴le anlık olarak
sürücünün göz kapaklarının durumunu anal൴z ederek yorgunluk ve uyuklama
durumunu anında tesp൴t ederek ve sürücüyü uyarır. S൴stem araç ൴çer൴s൴ndek൴ herkes൴n
görüntüsünü yüksek FPS’de alıp sürücüyü tesp൴ted൴p, görüntüsü üzer൴nden yüzde
bulunan bel൴rl൴ noktaları tesp൴t eder. Göz kapaklarının poz൴syonunu yapay s൴n൴r ağı
teknoloj൴s൴ ൴le anal൴z ederek sonuç vermekted൴r. Bu noktaların b൴r bu tez ൴ç൴n
gel൴şt൴r൴lm൴ş ve eğ൴t൴m൴ş b൴r YSA model൴ne g൴r൴ş olarak ver൴lm൴şt൴r. Projede Nv൴d൴a
Jetson TX2 gel൴şt൴rme Board’u kullanılmıştır. S൴stem൴n sah൴p olduğu güçlü GPU
sayesn൴nde yüksek çözünürlükte görseller൴n ൴şlenmes൴ne olanak sağlamıştır.
Görüntüler 50 ms g൴b൴ kısa b൴r sürede ൴şleneb൴lmekted൴r.

1

 INTRODUCTION

A neural network is an interconnected assembly of simple processing elements, units

or nodes, whose functionality is loosely based on the animal neuron. The processing

ability of the network is stored in the inter unit connection strengths, or weights,

obtained by a process of adaptation to, or learning from, a set of training patterns [7].

Several open source models and environments help us to produce new

implementations of artificial neural network.

Theory of neural networks discovered several decades ago but due to lack of

computing power it could not used widely. Thanks to supreme speed of computers,

scientists and engineers are helping the world become a better place now. It has

countless implementation areas, such as marketing, defense, agriculture, biomedical,

finance, entertainment and telecommunication and so on. One of the implementation

of ANN is computer vision intelligent. In the thesis computer vision applications

widely used.

According to police reports, the US National Highway Traffic Safety Administration

(NHTSA) determined that driver drowsiness directly causes 100,000 vehicle crashes

each year. These crashes resulted in approximately 1,550 deaths, 71,000 injuries and

$12.5 billion in financial losses [15]. The situation in Turkey is not different form

USA, every year many people are losing their lives due to traffic accidents.

We aimed to solve this problem with the help of artificial intelligence technology.

Fatigue and sleepiness tried to be determine by the position of the eyelids. Open

source Opencv and Dlib libraries used. Due to the specially developed artificial

intelligence model, the driver's eyelids situation could be detect. Our artificial

intelligence model performed on Nvidia Jetson TX2. Images taken from the

developer board’s camera. Thanks to its powerful processing capability, successful

and high-speed results are achievable.

2

In the second part of the thesis, mathematical expressions, hardware description and

concepts are explained.The implementation and evaluation process have clearly

explained in the third part. In the last section, results and general evaluation take

place.

3

 FOREKNOWLEDGE AND MATHEMATICAL BACKGROUND

 Nvidia Jetson TX2

Jetson TX2 is a GPU added SOM device as seen on the figure 2.1. NVIDIA Corp.

produces it in order to supply a need of high performance device that required on the

edge implementations. It integrates: 256 core NVIDIA Pascal GPU, ARMv8 (64-bit)

Multi-Processor CPU Complex Denver 2 (Dual-Core) CPU, 128-bit Memory

Controller, 8GB LPDDR4 and 32 GBeMMC [Jetson TX2 data sheet]. The developer

board includes 5 MP Fixed Focus MIPI CSI camera. The camera mostly used in

mobile industry and supports high-resolution inputs. This SOM does not support

every libraries we needed in the project so some additional libraries required.

 Artificial Neural Network

Various advances made in creating ANN, some inspired from natural neural systems.

Specialists from numerous logical orders are structuring artificial neural systems to

take care of an assortment of issues in example acknowledgment, expectation,

improvement, cooperative memory, and control [8]. Since ANN started to be widely

Figure 2.1:Nvidia Jetson TX2 Development Kit

4

used, many development libraries developed. We have benefited from some libraries

in our project.

2.2.1 Development Libraries

The library is a set of program codes and data that software developers use

when developing a program. Software libraries, developers and compilers

help in the development of executable programs. Software libraries usually

contain pre-made codes, classes, procedures, scripts, configuration data.

2.2.1.1 Pytorch

Pytorch is a Python-based logical research platform focused on a profound learning

research stage that gives greatest adaptability and speed [18]. It is also provides

model that can be run on Opencv 3.4.6 but our embedded system foes not support

Opencv’s that version.

2.2.1.2 OpenCV Deep Neural Network

OpenCV (Open Source Computer Vision Library) is an open source computer vision

and AI programming library. OpenCV was worked to give a typical framework to

PC vision applications and to quicken the utilization of machine learning in the

business items. Being a BSD-authorized item, OpenCV makes it simple for

organizations to use and adjust the code [13]. OpenCV does have a great supporters

and it provides strong structure and reliable functions. In addition, it develops itself

continuosly. The part of OpenCV used in the project is its DNN (Deep Neural

Network) Class. DNN class has functions that can read models in different formats

else than OpenCV Original format.

5

2.2.1.3 Caffe

Caffe is a profound learning system made with indication, speed, and particularity as

a primary concern. It is created by Berkeley AI Research (BAIR) and by network

supporters. Yangqing Jia made the undertaking amid his PhD at UC Berkeley. Caffe

is discharged under the BSD 2-Clause license [1]. In the thesis, Caffe used because it

is a comperable old framework and previous versions of OpenCV DNN has support

to the Caffe models.

2.2.2 Mathematical Explanations

The functions and algorithms have been used in the project have serious

mathematical background. However, there is no need to know all these information

for using them. On the other hand, lack of knowledge can cause serious errors. For

that, reason every possible method should worked on to achieve a good project.

2.2.2.1 Optimization Algorhtim

Optimization is one of the most essential ingredient in the recipe of AI algorithms. It

begins with characterizing misfortune loss and cost capacity and closures with

limiting the utilizing either improvement schedule. The decision of streamlining

calculation can have any kind of effect between getting a succesful precision in

serious amount of time. The utilization of enhancement is boundless and broadly

examined theme in industry and the scholarly world.

2.2.2.1.1 Adam Optimization Algorithm

Adam is an adaptive learning rate advancement calculation and is exhibited in

calculation (Figure 2.2). The name "Adam" gets from the expression "adaptive

moments." with regards to the prior calculations, it is maybe best observed as a

variation on the mix of RMSProp and energy with a couple of significant

qualifications. In the first place, in Adam, force is joined legitimately as a gauge of

the first-request snapshot of the angle. The most direct approach to add force to

RMSProp is to apply force to the rescaled angles. The utilization of force in blend

with rescaling does not have a reasonable hypothetical inspiration. Second, Adam

6

incorporates inclination revisions to the evaluations of both the first-request minutes

and the second-request minutes to represent their introduction at the cause (see figure

1). RMSProp likewise fuses a gauge of the second-request minute; nevertheless, it

does not have the adjustment factor. Accordingly, not at all like in Adam, the

RMSProp second-request minute gauge may have high inclination right off the bat in

preparing. Adam is largely viewed as being genuinely vigorous to the decision of

hyperparameters, however the learning rate here and there should be changed from

the proposed default [6].

Figure 2.2: The Adam Algorithm

2.2.2.2 Activation Function

Activation functions are mathematical functions utilized in neural systems to

registers the weighted total of info and predispositions, of which is utilized to choose

if a neuron can be fire or not. It controls the exhibited information through some

slope preparing for the most part angle plunge and a short time later produce a yield

for the neural system, that contains the parameters in the information [20]. The AF

7

has great impact on the success of the neural network some good functions are not

usable for digital base system due to their complex calculation processes.

2.2.2.2.1 Rectified Linear Unit (ReLU) Function

The rectified linear unit (ReLU) activation function was submited by Nair and

Hinton 2010 [16]. ReLu is a widely used activation function due to its fast

calculatiblty on algorithem base implementations. It discribed at (2.1).

ReLU(x) = max(0, x) (2.1)

 It can be seen that it is turning negative input values to the zero and not changing the

positive inputs. It is illustrated as below.

Figure 2.3 : ReLu Activation Function

2.2.2.3 Loss Function

Loss function is a significant part in ANN systems, which is utilized to gauge the

irregularity between predicted value and actual label.

2.2.2.3.1 Cross Entropy Loss Function

The mathematical formula of cross entropy can be seen on figure 2.4.

 L: Loss

Figure 1.4:Cross Entropy Loss

8

 M : number of classes

 y : binary indicator

 p : predicted probability observation

Cross entropy estimates the disparity between two likelihood appropriation, if the

cross entropy is huge, which implies that the contrast between two conveyance is

huge, while if the cross entropy is little, which implies that two dissemination is like

one another [11].

 Computer Vision

Computer vision is a field of software engineering that chips away at empowering

computers to see, recognize and process pictures similarly that human vision does,

and afterward give fitting yield. It resembles conferring human knowledge and

senses to a machine. In actuality however, it is a troublesome undertaking to

empower PCs to perceive pictures of various articles. Computer vision is firmly

connected with produced consciousness, as the devices must decipher what it sees,

and after that perform proper examination or act in like manner [17].

2.3.1 Dlib

Dlib is a C++ toolbox containing AI calculations and devices for making complex

programming in C++ to tackle genuine issues. It is utilized in both industry and the

scholarly community in a wide scope of spaces including mechanical autonomy,

installed gadgets, cell phones, and huge superior registering situations. Dlib's open

source permitting enables you to utilize it in any application, complimentary [2].

Dlib provides permission to commercial products. For that, reason the parts build

with Dlib can be use in the mercantile projects.

2.3.1.1 Face Detection and Land Mark

Face detecting is the first step in the process, without a successful algorithm

application could not reach success. In the Project Dlib Maximum-Margin Object

9

Detector (MMOD)[3] has been used. It is based on convolutional neural network

(CNN) features. CNN is type of artificial neural network that used widely on the

image-based problems with supervised learning. Structure of CNN does look like

figure 2.5. First input passed through filters and that results made small by pooling

after repeating the same procedure layers shift to the fully connected layers, at the

end the out predictions take place for results. The MMOD is published in 2015 and it

is successful on various of face positions. This method does not perform aby sub-

sampling, but instead optimizes over all sub-windows. It also can be used with HoG

(Histogram of Gradient) method to improve models.

Figure 2.5: Convolutional ANN

 After we detected the face 68 points on the face extracted by Dlib landmark

detection function. These points are on the face such as the corners of the mouth,

along the eyebrows, on the eyes, and so forth. This functions uses the classic

Histogram of Oriented Gradients (HOG) feature combined with a linear classifier, an

image pyramid and sliding window detection scheme. The pose estimator was

created by using dlib's implementation of Kazemi’s paper[10].

 The reason both of the algorithm have been used is to increasing the speed of

the system and ocuring more knowledge about the driver. The MMOD face detecter

can obtain face even though they are not frontal but frontal face detector could not

detect faces that are not frontal and it does give clue about the drivers’ face position.

If MMOD detects but Frontal cannot, that system assumes pace is not directed to the

road. In addition frontal face detector is comperatively slower than MMOD face

detector so The face cropped by MMOD given to the frontal face detector and this

method provides speed to the system.

10

 Blinks Dataset

This is a dataset for eye blink recognition made by W. J. Faithfull and meticulously

hand-marked in 2015. It comprises of HD webcam film of the essences of 6

volunteers viewing a nature narrative. There are 5 minutes of film for each volunteer,

the recordings show an extensive spread of flickering rates, squint lengths, and

different difficulties [5] .The states are:

0 The volunteer's eyes are open.

1 It is not evident whether the volunteer’s eyes are open or shut.

2 The volunteer's eyes are shuted.

The recordings are in MPEG4 format. Videos recorded from direct view to the

subjects. Total number and atenuations showed in the table 2.1.

 Table 2.1: Dataset Values Distribution

11

 IMPLEMENTATION AND DEVELOPMENTS

 Algorithm Structure

The projects pseudo code given in the figure 3.1. First values assigns out of the while

loop because if the values assign in side of the loops they would allocate memory

and it causes to memory storage it kills the program. The camera receives frame in

the while loop. Then looks to image for face detection if it finds more than one,

systems assign the face, which has biggest area on the screen, as the driver’s face.

The face-land mark function extracts the eyelids points and system normalize the

these points to form that network can receive .If the function cannot find a face as in

put it gives alert because it means driver is not looking to the road. If the results says

Figure 3.1 : Structure of The Code

12

the eyes are open loops starts from beginning, if the eyes are closed and it was been

for a while system gives an alert to warn driver.

 Installations of Libraries

3.2.1 Host PC

The host PC has i7 Intel processor and Nvidia Gtx 640. As operating system Ubuntu

16.04 prefered. Some of the installations completed for flashing jetson TX2 somes

were for training the neural network.

 Firstly, the Nvidia’s jetpack 3.3 files downloaded from official website and

instructions have completed [9]. The benefit of using jetpack is it does install cuDNN

v7.1.5, Multimedia API v28.2, OpenCV 3.3.1 by itself.

 Secondly, the Pytorch neural network training environment installed by

Anaconda environment. Using Anaconda environment provides benefits for example

if some libraries’ different versions are needed them might break each other and

changing versions most of the time not working properly. In addition, anaconda

provides easier installations to its environments. Some libraries which need source

installation or could not be installed by pip can be installed only a few commands.

First updating the operatin system than installing curl to download Anaconda

installing file.

$ sudo apt-get update

$ sudo apt-get install curl

Then downloading .sh file of installation.

$ curl -O https://repo.continuum.io/archive/Anaconda3-4.3.1-Linux-x86_64.sh

To verify the data integrity of the installer, we use a cryptographic hash algorithm

called SHA-2 (Secure Hash Algorithm).

$ sha256sum Anaconda3-4.3.1-Linux-x86_64.sh

Than running .sh file is required.

$ bash Anaconda3-4.3.1-Linux-x86_64.sh

In order to activate installations bashrc file should source by typing following

command.

$ source ~/.bashrc

After installation an environment should be created. Python3 based environment

named myenv. With this command.

13

$ conda create -n myenv python=3 anaconda

 To activate environment:

$ conda activate myenv

To deactivate environment:

$ conda deactivate

Now environmnet is ready and needed libraries can be installed on it.

Pytorch:

$ conda install -c pytorch pytorch

Numpy:

$ conda install -c anaconda numpy

Matplotlib:

$ conda install -c conda-forge matplotlib

$ conda install -c conda-forge/label/testing matplotlib

$ conda install -c conda-forge/label/testing/gcc7 matplotlib

$ conda install -c conda-forge/label/gcc7 matplotlib

$ conda install -c conda-forge/label/broken matplotlib

$ conda install -c conda-forge/label/rc matplotlib

$ conda install -c conda-forge/label/cf201901 matplotlib

3.2.2 Jetson TX2

The Nvidia Jetson TX2 has processor has arm64 processor for that reason normal

installations sometimes not properly working so they required source installation.

Previously some OS libraries should be installed to the Jetson TX2:

$

$

$

sudo apt-get install build-essential cmake pkg-config

sudo apt-get install libx11-dev libatlas-base-dev

sudo apt-get install libgtk-3-dev libboost-python-dev

14

Opencv 3.4.0 installation:

First of all the Opencv3.3.1 has to be uninstall because it does notworking the
development’s boards camera properly. The couple of scripts should run on the
device:
Removing old opencv files installed by Jetpack
$ sudo apt-get purge libopencv*

Removing other unused apt package

$ sudo apt autoremove

The script published at

https://github.com/AastaNV/JEP/blob/master/script/install_opencv3.4.0_TX2.sh

Used and successfully work on the device.

Dlib 19.17 installation:The latest version of Dlib library is 19.17 and can be installed

from official website. However it does not required because it can be done by

terminal.

First the ziped form should be download

$wget http://dlib.net/files/dlib-19.6.tar.bz2

Than it should be unzipped

$tar xvf dlib-19.17.tar.bz2

For installing some commands should be run:

$ cd dlib-19.6/

$ mkdir build

$ cd build

$ cmake ..

$ cmake --build . --config Release

$ sudo make install

$ sudo ldconfig

We can check the installation by calling the import dlib on the python

As:

15

$ Python

$ >> import dlib

If this commands does not give an error, the installation completed successfully.

Caffe:

Caffe has installed because Opencv 3.4.0 does not have support to the pytorch

models but Caffe models. The trained models converted to the Caffe model from

Pytorch model for that Caffe librarie required to install to the system. Firstly the

source of caffe download to the home file

$ git clone https://github.com/BVLC/caffe.git

However continuing the installation is not possible without some changes on the files

of Makefile.config.

First (Removed lines showed after – sign and new added lines showed with + sign):

- LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_hl

hdf5

+ LIBRARIES += glog gflags protobuf boost_system boost_filesystem m

hdf5_serial_hl hdf5_serial

- INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include

+ INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include

/usr/include/hdf5/serial/

Than The Setup completed successfully.

16

 Artificial Neural Network Development

The eye’s situation determinate by the trained neural network. The network structure

created and the input values normalized.

3.3.1 Creating and Training ANN Model with Pytorch

The training is the fundamental of the ANN models. First a structure should be

created. In out neural network the layers’ nodes fully connected, Relu activation

function chosen and bias set. Several structures been tested and the final structure

shaped as 15x105x105x100x100x100x100x10x2 in linear form shown in figure 3.2.

While choosing final structure first its ability to over fitting was tested with a small

data set.

class Net(nn.Module):

 def __init__(self):
 super(Net, self).__init__()

 self.fc1 = nn.Linear(15, 105)
 self.fc2 = nn.Linear(105, 105)
 self.fc3 = nn.Linear(105, 100)
 self.fc4 = nn.Linear(100, 100)
 self.fc5 = nn.Linear(100, 100)
 self.fc6 = nn.Linear(100, 100)
 self.fc7 = nn.Linear(100, 10)
 self.fc8 = nn.Linear(10, 2)
 def forward(self, x):
 x = F.relu(self.fc1(x))
 x = F.relu(self.fc2(x))
 x = F.relu(self.fc3(x))
 x = F.relu(self.fc4(x))
 x = F.relu(self.fc5(x))
 x = F.relu(self.fc6(x))
 x = F.relu(self.fc7(x))
 x = self.fc8(x)
 return x

The Adam optimizer used to train model, the learning rate and momentum set to

0.0001 and Beta set to 0.9, 0.999 from default value.

learning_rate=0.0001
optimizer = optim.Adam(net.parameters(), lr = learning_rate)

Figure 3.2 : Network Structure

Figure 3.3 : Optimization Function

17

The dataset split to 3 part: 80% given to the training-set, %10 given to the validation-

set and 10% given to the test-set.

Cross entropy loss chosen as loss function.

criterion = nn.CrossEntropyLoss()

Training batch size set to the 100. It provided more stable loss graph.

batch_size_train=100
trainloader = torch.utils.data.DataLoader(transformed_trainset,
batch_size=batch_size_train,shuffle=True, num_workers=2)

The training started for 30000 epoch but if loss of validation-set does not less for 10

epoch system break the process.

number_of_epoch=30000
for epoch in range(number_of_epoch):
 running_loss=0.0
 for i, data in enumerate(trainloader, 0):
 result, dists = data
 #result ve dists seperated
 optimizer.zero_grad()
 #Before Training gradiants set to the 0 because it may
spoiled with previous results
 outputs = net(dists)
 #The outputs came from network assign to the variant
 loss = criterion(outputs, torch.max(result, 1)[1])
 #loss assign to variant
 loss.backward()
 #To take gradiant it taken to backward
 optimizer.step()
 #all weigths are reshaped with gradiant
 running_loss += loss.item()
 #Running loss calculated for displaying to terminal
 loss_val = criterion(outputs_valid, torch.max(result_val,
1)[1])
 towrite_loss_val = np.append(towrite_loss_val,
[running_loss_val / 10], axis=0)
 if((np.mean(yazilacak_loss_val[-10:-
1])>np.mean(yazilacak_loss_val[-20:-11])))
 break

Figure 3.4 : Loss Function

Figure 3.5 : Train Loader

Figure 3.6 : Training Script

18

The Pytorch development environment have used and training done in Python

programing language. The model achieved 90% at validation and %88 at test.

3.3.2 Transforming Pytorch Model to Caffe Model

The model trained in the Pytorch (Python) saved in its own format. The inference

script writen in C++ and due to Jetson TX2 has ARMv8 processor and it does not

support Pytorch C++(lib Torch). For that reason, the model transformed to the caffe

model that has support by Opencv 3.4.0 by script available in appendex. The script

taken from a GitHub account [19].

3.3.3 Inferencing ANN Model on Jetson TX2

The code have written in C++ because it is faster compare to python.The model

embedded to the net:

netw = cv::dnn::readNetFromCaffe("model_val.prototxt", "model_val.caffemodel");

Figure 3.7 : Validation and Train Loss Plot

19

The input given to the model, C is the input array 15 valuable long:

cv::Mat C(1, 15, CV_32FC1, input);

netw.setInput(C);

The output variable type should be Mat. The output assigned to the cikti:

cv::Mat cikti=netw.forward();

The output normalized to 1-0 or 0-1:

minMaxLoc(cikti.reshape(1, 1), 0, &confidence, 0, &classIdPoint);

 Computer Vision Implementations

3.4.1 Face Detection

Dlib’s mmod face detection function used. It excracts faces and receives the biggest

face as driver than gives the face to landmark excracter.

First, the mmod_human_face_detector model embedde to a network:

//Argv[1]-> mmod_human_face_detector.data

net_type net;

deserialize(argv[1]) >> net;

The receiving the outputs of face detector.

auto dets = net(img);

 for (auto&& d : dets

{ if (en_buyuk_yuz.rect.area()<d.rect.area())

en_buyuk_yuz=d; }

20

3.4.2 Land Mark extraction

The biggest face landmarks extracted with following command:

std::vector<full_object_detection> shapes;

shape_predictor pose_model;

The shape_predictor_68_face_landmarks.dat file is pretrained landmark model:

deserialize("shape_predictor_68_face_landmarks.dat") >> pose_model;

The pose_model gives 68 point of the face:

theShape = pose_model(croimg, faces[i]);

shapes.push_back(theShape);

The points between 36 to 41 are eyelid’s points:

for (unsigned long i = 36; i <= 41; ++i)

{

draw_solid_circle (croimg,theShape.part(i),1.5,color);

dist[(i-36)*2]=theShape.part(i).x();

dist[1+(i-36)*2]=theShape.part(i).y();

}

After that the dist array will be given the to our blink detector model.

 Data-set Improvement

The one of the most important step in the ANN training is the choosing correct training

data. The Blinks dataset was barely satisfying project`s requirements. There was not

enough information to train our network model so some extra information added to the

dataset. First, specific ids have given to the each frame. Video numbers and 12 points

that locations of the eyelids added to the attenuation list as showen on the figure 3.8.

The 12 point extracted from the Dlib face landmark detection function, which

previously explained in the thesis. The points labelled as half opened which labelled

as 1 removed from the dataset to obtain sharper results. The final form of the data set

mixed with all together.

ID of Frame Number of Video Eye`s Situation
1 1 0 553,412 571,404 591,405 610,415 591,42 571,42 681,417 700,407 719,409 736,417 720,424 701,423

12 Eye points cordinates

Figure 3.8 : Dataset Format

21

 CONSTRAINTS AND CONCLUSIONS

 Comparison

The blink detection have been a issue to solve for a long time and several methods

produced.One of the solutions have created by ITU Computer Science department.

They aim to warn computer users who forgets to blink in front of the computer. Their

solution method is very similar to us: They are first detecting eye’s location and than

analyzing the situation [12]. Mr. Nusraddinov journals’s results are:

Mr. Pauly also wrote a journal about blink detection. The histogram of oriented

gradients (HOG) is used for blink detection in their paper [14]. The results are given

in the table 4.2.

Table 4.1 : Test Results of Nusraddinov’ s System

Table 4.2 : Test Results of Pauly’s System

22

Results of thesis are given at table 4.3:

The situation of

Eye

True False Over-all

Open 135 15 %90

Close 129 21 %86

The given results are out networks test results but succes of face detection and

landmark detection should be calculated to decide solid results. 3 ANN model have

used and their mistakes should sum and it may causes more error than using one

ANN model.

Table 4.3 : Test Results

23

 Realistic Constraints

4.2.1 Social, Environmental and Economic Impact

The projects’ success would be very help full to the society. The number of the

accidents that related with the fatigue would decrease. Thanks to that the less people

would lost their lives.

4.2.2 Cost analysis

Our system has to work on the cars and they would not have internet acces all the time

for that reason projects requires a strong edge device. The Nvidia Jetson TX2 is a

powerful module that satisfy projects’s needs. On the other hand, the development kit

is unnecessary big for cars so module needs to entegrated to a carrier. The final cost

would be similar to the table 4.4.

Equipment Name Cost

NVIDIA® Jetson™ TX2 Module 519.00 USD

Orbitty Carrier for NVIDIA® Jetson™

TX2/TX2i

174.00 USD

Total: 693.00 USD

 Table 4.4: Cost of Products

 Future Work and Recommendations

Analyzing a face is a complicated task but it gives a lot of feature about the driver.

For example, the system can detect the position of the driver’s head and can give

warning for other distractions such as if driver looking to a telephone. In addition,

the car renter companies can grade their costumers driving skills and attention. They

can gifted if costumer gets high scores with a discount for next renting process.

Every day millions of people driving cars but not every car owner would want to

have this sort of innovations but there would be companies who can be use this

project for their needs.

24

REFERENCES

[1] Caffe. (n.d.). Retrieved May 18, 2019, from https://caffe.berkeleyvision.org/
[2] Dlib C Library. (n.d.). Retrieved May 17, 2019, from http://dlib.net/
[3] E., D. (2015, January 31). Max-Margin Object Detection. Retrieved May 17,
2019, from https://arxiv.org/abs/1502.00046
[4] Eye blink detection with OpenCV, Python, and dlib. (2017, April 13). Retrieved
from https://www.pyimagesearch.com/2017/04/24/eye-blink-detection-opencv-
python-dlib/
[5] Faithfull W. J.,(2015). Blink Detection Dataset https://will.faithfull.me/blinks-
dataset/ Bangor University, School of Computer Science
[6] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge
(EE. UU.): MIT Press. pp.305
[7]Gurney, K. (2014). An Introduction to Neural Networks. Hoboken: CRC Press.
[8] Jain, A. K., Jianchang Mao, & Mohiuddin, K. M. (1996). Artificial neural
networks: a tutorial. Computer, 29(3), 31–44. doi:10.1109/2.485891
[9] JetPack 3.3 Release Notes. (2018, September 07). Retrieved May 18, 2019, from
https://developer.nvidia.com/embedded/jetpack-3_3
[10] Kazemi, V., & Sullivan, J. (2014). One millisecond face alignment with an
ensemble of regression trees. 2014 IEEE Conference on Computer Vision and
Pattern Recognition. doi:10.1109/cvpr.2014.241
[11] Loss Functions. May 18, 2019 Retrieved from https://ml-
cheatsheet.readthedocs.io/en/latest/loss_functions.html
[12] Nusraddinov, T., & Ekenel, H. K. (2015). Eye blink based warning system for
eye health while using computers. 2015 Medical Technologies National Conference
(TIPTEKNO). doi:10.1109/tiptekno.2015.7374588
[13] OpenCV. (n.d.). Retrieved from https://opencv.org/about/ [14]Pauly, L., &
Sankar, D. (2015). A novel method for eye tracking and blink detection in video
frames. 2015 IEEE International Conference on Computer Graphics, Vision and
Information Security (CGVIS). doi:10.1109/cgvis.2015.7449931
[15]Rau P. Drowsy Driver Detection and Warning System for Commercial Vehicle
Drivers: Field Operational Test Design, Analysis, and Progress. National Highway
Traffic Safety Administration; Washington, DC, USA: 2005.
[16] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” Haifa, 2010, pp. 807–814. [Online]. Available:
https://dl.acm.org/citation.cfm
[17] What is Computer Vision? - Definition from Techopedia. (n.d.). Retrieved from
https://www.techopedia.com/definition/32309/computer-vision
[18] What is PyTorch. (n.d.). Retrieved from
https://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html
[19] Xxradon. (2019, March 12). Xxradon/PytorchToCaffe. Retrieved from
https://github.com/xxradon/PytorchToCaffe [20] XXV International Mineral
Processing Congress: IMPC 2010, "Smarter processing for the future": Brisbane,
Australia 6-10 September 2010: Congress proceedings. (2010). Carlton, Vic.:
Australasian Institute of Mining and Metallurgy.

25

APPENDICES
APPENDIX A: CD

26

27

RESUME

Name Surname : Mehmet Furkan BAĞCI

Place and Date of Birth : Antalya, 1995

High School : Mira Mesa High School 2010-2011

 Ankara Atatürk Lisesi 2009-2010, 2011-2014

Batchler Degre : Electronics and Communication Engineering
program, Istanbul Technical University

E-Mail : mehmetfurkanbagci@gmail.com

