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 INTRODUCTION 

In this graduation project, Instruction Set Extension (ISE) [1] is applied on four 

different 32-bit processor: Leon3 ref which is constructed with SparcV8 Instruction 

Set Architecture (ISA) [2], OR 1200 which is constructed with OpenRISC 1000 

ISA[3],ARM Cortex-M0 DesignStart r2p0 which is constructed with v6-M 

Archtecture,----tolga----. Flexibility and efficiency can be achieved with the ISE on 

processors for different applications [4].  

Security is the most important factor of the new generation Internet of Things (IoT) 

applications [5]. Various cryptography algorithms developed for secure 

communication or data storage at mobile phones, computers, wireless networks etc. 

[6], [7]. Because of the length of the key, and the number of the rounds, a software 

implementation of the block ciphers consume high rate of power and time when the 

device is working. Block ciphers also have high power consumption and timing 

problems, ISE is used on processors to implement block ciphers more efficiently [8]. 

There are several examples of block ciphers such as Advanced Encryption Standard 

(AES) [9], Tiny Encryption Algorithm (TEA) [10], Present[?]---tolga---berkay??---. 
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 LEON3 

 Introduction 

Leon3 is designed from Cobham Gaisler research that has made freely available a 

collection of open source IP cores and a design configuration environment for 

developing the Leon3 based Field Programmed Gate Array (FPGA) designs, 

collectively referred to as GRLIB IP library [11]. The block diagram of Leon3 is 

shown in Figure 2.1. 

Security is the most important factor of the new generation Internet of Things (IoT) 

applications [5]. Various cryptography algorithms developed for secure 

communication or data storage at mobile phones, computers, wireless networks etc. 

[6], [7]. Because of the length of the key, and the number of the rounds, a software 

implementation of the block ciphers consume high rate of power and time when the 

device is working. Block ciphers also have high power consumption and timing 

problems, ISE is used on processors to implement block ciphers more efficiently [8]. 

Two examples of block ciphers are Advanced Encryption Standard (AES) [9] and Tiny 

Encryption Algorithm (TEA) [10]. 

 

In this study, Leon3 processor is implemented on Spartan6 FPGA board. A simple 

software is implemented and verified on board. A software that uses the Input / Output 

(I/O) unit of the board is also implemented and tested. Debugger for Leon3 processor 

is installed and tested. Arithmetic Logic Unit (ALU) is extended as it includes main 

operations of the AES block cipher. Instruction set of Leon3 processor is enlarged to 

use these operations.  

 

Previously, Leon3 processor is used for analysis of its performance, memory [12]. It 

also used for image and video processing [13], [14]. Leon3 is used to implement AES 

block cipher without ISE and AES software is written and run on Leon3 [15]. ISE is 

implemented on different processor architectures for different purposes [16]. 

Moreover, ISE is implemented on Leon3 for block ciphers, but new instructions are 

not generated for each of the operations of the AES block cipher. In stead of this, 

encryption and decryption are implemented as two new operations [17]. 
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In this study, ISE is used to implement AES block cipher. Each operation of the AES 

block cipher is added to instructions of the SparcV8. Three new added instructions are 

used in the software of the AES block cipher. Thus, required hardware addition of new 

instructions is reduced. It also reduces usage of the source of the FPGA on target board.  

 

Figure 2.1 : Architectural Block Diagram of the Leon3 processor [10] 

 Leon3 Processor Architecture and SparcV8 Instruction Set Architecture  

Leon3 is developed by a Cobham Gaisler company that provides open source IP library 

called as GRLIB and it contains all source codes of the Leon3 processor [18]. Leon3 

is based on SparcV8 ISA and it developed with Very High Speed Integrated Circuit 

Hardware Description Language (VHDL). It supports designs upon 16 Central 

Processing Unit (CPU) [19]. It contains 7 pipeline stages and it supports several 

communication interfaces. It has integer unit (IU), general purpose registers, Random 

Access Memories (RAMs) and their controllers, Floating Point Unit (FPU), and 

Memory Management Unit (MMU) [18]. Some of the features of Leon3 given below; 

 

• Leon3 is a part of a Gaisler IP Library (GRLIB), thus it can be changed easily.  

Because of this feature, it is useful for System on Chip (SoC) designs.  

• Its performance is really high such that it can work with 400 Mhz clock 

frequency at 0.13 micrometer technology.  
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• It supports power down mode for other CPUs in multiple CPU designs. It can 

also switch clock signal. These features make Leon3 more energy efficient when 

compared to other processor types. 

2.2.1 Gaisler IP library 

Gaisler Integrated Peripheral (IP) Library (GRLIB) contains reusable IP cores that 

designed for SoC development. The IP cores are centered around a common on-chip 

bus and use a coherent method for simulation and synthesis. The library is vendor 

independent, with support for different CAD tools and target technologies [19]. 

2.2.1.1 Library organization 

GRLIB is organized around VHDL libraries, where each major IP (or IP vendor) is 

assigned a unique library name. Using separate libraries avoids name clashes between 

IP cores and hides unnecessary implementation details from the end user. Each VHDL 

library typically contains a number of packages, declaring the exported IP cores and 

their interface types. Simulation and synthesis scripts are created automatically by a 

global makefile. Adding and removing of libraries and packages can be made without 

modifying any global files, ensuring that modification of one vendor’s library will not 

affect other vendors. A few global libraries are provided to define shared data 

structures and utility functions. GRLIB also provides automatic script generators for 

different simulators and implementation tools.[18]  

2.2.2 On-chip bus 

The most of the IP cores will be connected to the common bus and their organization 

is made as all IPs around this common bus. The Advanced Micro-controller Bus 

Architecture (AMBA) 2.0 Advanced High Speed Bus (AHB) / Advanced Peripheral 

Bus (APB) bus has been selected as the common on-chip bus, due to its market 

dominance and because it is well documented and can be used for free without license 

restrictions [18]. The figure below shows an example of a Leon3 system designed with 

GRLIB. It can be seen from 0 that high bandwidth required IP cores connected to 

AHB, but other IP cores which are not required as fast as first ones are connected to 

APB [18]. AHB and APB are connected to each other via AHB/APB bridge. 
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Figure 2.2 : General view of the Leon3 processor [18] 

 Gaisler Monitor 

Gaisler Monitor (GRMON) is the debug tool that used with Leon processors and 

GRLIB oriented SoC designs. GRMON supports Universal Serial Bus (USB), Joint 

Test Action Group (JTAG), RS232, Ethernet, SpaceWire, and 32-bit Peripheral 

Component Interface (PCI) [20]. GRMON connected to the target device via one of 

these interfaces. All debug interfaces are acted as AHB masters on the target system 

with the debug protocol implemented in hardware. Because of this feature, debugging 

does not require any additional software. It can also detect hardware components of 

the target device and its addresses [20]. Figure 2.3 indicates conceptual view of the 

GRMON and Leon3 system that connected to it. C/C++ application or operating 

system can be loaded via GRMON. When GRMON connects to target device first 

time, it scans IP cores that system includes. 
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Figure 2.3 : GRMON Debug tool conceptual view [19] 

 Bare-C Cross Compiler 

The Bare-C Cross Compiler (BCC) is developed for Leon3 processors. It compiles C 

and C++ applications and it supports Floating Point operations, SparcV8 multiply and 

divide instructions [21]. BCC is used to generate elf files which are loaded to the 

processor via GRMON. This cross-compiler is designed for Leon2, Leon3 and Leon4 

processors. It is based on the GNU compiler tools, the newlib C library and a support 

library for programming Leon2, Leon3, and Leon4 systems. The cross-compiler 

allows compilation of C and C++ applications. Applications that are written with C 

programming language for testing or implementing of AES block chiper and complied 

with BCC2. 

 Atlys FPGA Board 

The Atlys circuit board is a complete, ready-to-use digital circuit development 

platform based on a Xilinx Spartan-6 LX45 FPGA, speed grade is -3 [22]. The Atlys 

board has high-end peripherals including Gbit Ethernet, High-Definition Multimedia 

Interface (HDMI) Video, 128MByte 16-bit DDR2 memory, and USB and audio ports.  

The Spartan-6 LX45 is optimized for high-performance logic and offers: 
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• 6,822 slices, each containing four 6-input LUTs and eight flip-flops 

• 2.1Mbits of fast block RAM 

• Four clock tiles (eight DCMs & four PLLs) 

• Six phase-locked loops 

• 58 DSP slices 

• 500MHz+ clock speeds 

 

The Atlys board includes Digilent's newest Adept USB2 system, which offers device 

programming, real-time power supply monitoring, automated board tests, virtual I/O, 

and simplified user-data transfer facilities [22]. 

 

In this study, configuration USB port, Basic I/O ports are used. HDMI Input / Output 

ports, Ethernet, DDR2, and other facilities of this board is not required and not used. 

General view of the Atlys board and used ports of it is shown in Figure 2.4 

 

Figure 2.4 : General view of Atlys board and used ports 
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 Advanced Encryption Standard 

Rijndael algorithm had been developed by two cryptography expert Loan Daemen and 

Vincent Rijmen. In 2000, Rijndael algorithm is named as Advanced Encryption 

Standard (AES) [9] by National Institute of Standards and Technology (NIST) and it 

is approved as data encryption standard aimed to provide electronic data security. 

 

Data Encryption Standard (DES) had been developed by IBM in early 1970s has 54-

bit key [23]. Due to the theoretical weakness of it and new technologies on computer 

systems and integrated circuits, DES is seen as an unsecured algorithm in the 1990s. 

Thus, NIST started a competition for the development of new encryption standard and 

Rijdael algorithm is announced as the winner after 4 years. 

2.6.1 Rijndael algorithm 

Rijndael algorithm includes different cycles depend on the key length and key is 

recalculated with defined operations. These recalculated keys are used to generate 

encrypted data. AES is part of the symmetric key algorithms. The symmetric key is 

defined that same key is used to encrypt and decrypt data.  

 

In this study, 128-bit version of Rijndael algorithm is used. This 128-bit data is 

rearranged as a 4x4 matrix which each cell represents 1-byte or equally 8-bit part of 

the 128-bit data. This matrix called “state” [9]. It is stated that number of cycles of the 

AES algorithm is defined with the length of the key. Security of data or in other words 

reliability of the encryption is increased by the increasing number of cycle. However, 

the number of operations and required memory to store key is increased in the 

meantime. Relationship between number of cycles and length of the key is given in 

Table 2.1. 

Table 2.1 : Relationship between number of cycles and key length [23] 

 Data (Block 

Size) 

Key 

Length 

Number of 

cycles 

AES-128 128-bit 128-bit 10 

AES-192 128-bit 192-bit 12 

AES-256 128-bit 256-bit 14 
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Flow diagram of the AES block cipher is shown in Figure 5. In this diagram, Plain 

Matrix and Encrypted data are 4x4 matrices. Cycles can be defined by loop and 

number of cycles can take one of the values that mentioned before. It can be seen that 

MixColumn operation is not required for last cycle. 

 

Figure 2.5 : Flow diagram of AES block chiper 

2.6.2 Encryption 

AES provide encryption of the 128-bit data on 4x4 matrix named plain or state. Thus, 

input data of the AES should be converted to matrix form. This conversation is shown 

with the following example. For example, input data is “32 43 F6 A8 88 5A 30 8D 31 

31 98 A2 E0 37 07 34” in hexadecimal, a plain matrix of it is shown in Table 2.2. 
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Table 2.2 : Example Plain matrix 

32 88 31 E0 

43 5A 31 37 

F6 30 98 07 

A8 8D A2 34 

This matrix is used to generate encrypted data with the SubByte, ShiftRow, 

MixColumn, and AddRoundKey. 

2.6.2.1 SubByte operation 

SubByte is a nonlinear operation that conducts independent calculations on each byte 

(cell) of the plain matrix. Each cell in the plain matrix is changed its value to new value 

that determined from S-Box. S-Box is a special 16x16 matrix. S-Box matrix is shown 

in Table 2.3. 

Table 2.3 : S-Box matrix for AES block chiper [24] 

 

Figure 2.6 shows the example plain matrix and output matrix of SubByte operation. 

 

Figure 2.6 : Example of S-Box operation [24] 
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2.6.2.2 ShiftRow operation 

In ShiftRow operation, the first row of a plain matrix is not shifted. Second row is 

shifted by 1 cell, third row is shifted by 2 cell, and fourth row is shifted by 3 cell. These 

shift operations are done to left. Example ShiftRow operation are shown in Figure 2.7. 

 

Figure 2.7 : Example of ShiftRow operation [24] 

2.6.2.3 MixColumn operation 

Firstly, rows of the plain matrix are used to generate columns of the plain matrix. Then, 

calculations are done on these columns with the matrix operation in Figure 2.8. As a 

result, output columns of the MixColumn operation is generated. Figure 2.9 indicates 

the example MixColumn operation.  

 

Figure 2.8 : Definition of the matrix operation for MixColumn [24] 

 

Figure 2.9 : Example of the MixColumn operation [24] 

2.6.2.4 AddRoundKey operation 
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AES Algorithm requires different keys for each round and generation of these different 

keys is described next part. AddRoundKey operation is represented addition operation 

on plain matrix and generated key matrix. This addition is a bitwise XOR operation. 

Thus, key generation requires a defined number of cycles and each round key 

calculated from previous keys.  

2.6.3 Key generation 

Round keys are different from each other and each of them is generated one of these 

cases. These cases are on the fly key expansion that calculation of round keys is done 

with encryption at the same time. Other case is pre-computed key schedule. 

 

For the key generation, previous round key is used. Firstly, previous column and 4th 

previous column are threated XOR operation. In Figure 2.10, T operation is used to 

calculate first column of the round key. T operation includes ShiftRow, SubByte, and 

XOR with the Rc(x) vector value. Figure 2.11 shows operations that are used for T 

operation. Rc(x) vector values that are associated with the round number are also listed 

in Table 2.4 

 

Figure 2.10 : General description of the key generation [24] 
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Table 2.4 : Value of the Rc(x) vectors [24] 

Round Number Rc(x) Value 

1 01 00 00 00 

2 02 00 00 00 

3 04 00 00 00 

4 08 00 00 00 

5 10 00 00 00 

6 20 00 00 00 

7 40 00 00 00 

8 80 00 00 00 

9 1B 00 00 00 

10 36 00 00 00 

 

Figure 2.11 : Description of the T operation in key generation [24] 

 Implementation 

2.7.1 Implementation of Leon3 

Implementation of Leon3 can be conducted on Linux operating system or Windows 

with Cygwin tool. For this study, Linux operating system is selected and Ubuntu 16.04 

is installed.  

 

Firstly, one of the Xilinx ISE or Vivado development environments should be 

downloaded and installed. These tools can be obtained with free WebPack license from 

Xilinx website [25]. Xilinx ISE Design Suite 14.7 is used for this study. A folder 

named Xilinx should be created before starting the installation. Write and Read 

permissions should also be given to this folder before installation. Because ISE 

installation is started with /opt/Xilinx directory as the location of the installation. 

Read/Write permission are given with the following command. 
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sudo chmod 777 /opt/Xilinx 

 

When Xilinx ISE installed, cable drivers are not installed via installation phase. Thus, 

cable drivers should be installed after Xilinx ISE installation.  

 

After installation of Xilinx ISE and cable drivers is completed, GRLIB Library file is 

downloaded from Cobham Gaisler website [26]. This file should be ended with 

“tar.gz”. “grlib-gpl-2017.3-b4208” version of GRLIB is used for this study. This file 

can be installed in any location on the host system via “tar xvf” command. In the 

executed file, GRLIB manual and other supporting documents can be found in doc 

folder. Xilinx ISE bin folder should be added to PATH environment with the export 

command or changing the “environment” document in /etc directory in Ubuntu. 

GRLIB and Xilinx ISE directories should be added to environment variables. Setting 

up the environment variables and new Paths via “export” command must be 

rewritten when new terminal opened. Examples of export commands; 

 

export XILINX=/opt/Xilinx/14.7/ISE_DS/ISE 

 

export GRLIB=/home/cihan/Bitirme/Leon/grlib-gpl-2017.3-b4208 

 

export PATH=$PATH:$XILINX/bin/nt 

 

These environment variables can also be set via environment document in /etc folder. 

When new environment variables and Paths have added this document and it runs after 

addition not requires repeated calling of “export” command. Thus, changing the 

“environment” document should be preferred. The document should be opened with 

root permissions. An example command to open this document shown below. 

 

sudo nano /etc/environment  

 

When document is opened, new environment variable is added as follows, 

 

XILINX="/opt/Xilinx/14.7/ISE_DS/ISE" 
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GRLIB="/home/cihan/Bitirme/Leon/grlib-gpl-2017.3-b4208" 

 

New PATH variables are also added at the end of the PATH variable section with “:”. 

Example of this shown below. 

 

:/opt/Xilinx/14.7/ISE_DS/ISE/bin/nt” 

 

To finalize these steps changed /etc/environment document must be run. For this, 

user should enter the /etc directory and run the following command. 

 

. environment 

 

After these variables are set, it is time to go into the GRLIB file and implement Leon3 

for the desired board. GRLIB supports many FPGAs such as Spartan3, Spartan6, 

Virtex2, Virtex4, Virtex6, Zynq etc. [18]. In this study, Atlys board that have Spartan6 

XC6SLX45-CSG324C FPGA is used. After the target board is selected, the folder that 

contains required design files opened like the following command. 

 

cd Bitirme/Leon/grlib-gpl-2017.3-b4208/designs/leon3-digilent-

atlys 

 

In design folder, Graphical User Interface (GUI) of the configuration file is opened 

with “make xconfig” command. This GUI provides a user friendly interface of the 

configuration file of Leon3 design. User can be changed several quantities of the 

Leon3 design such as Integer Unit (IU), Debug Support Unit (DSU), Memory 

Management Unit (MMU), Floating Point Unit (FPU), SDRAM controller, Ethernet, 

Universal Asynchronous Receiver-Transmitter (UART), Timer etc. If the 

configuration is wanted to save, save and exit button can be used. If another 

configuration file wants to be loaded, any configuration file that arranged before can 

be used. Example view of the configuration GUI is shown in Figure 2.12 
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Figure 2.12 : Example view of the main page of configuration GUI 

After configuration is done, required scripts generated by “make scripts” 

command. This command will create an XML project file (TOP.xise). Before using 

“make ise” or “make ise-lauch” the executable of the Xilinx ISE-14.7 should be 

indicated with the source command. Example of this operation shown below. 

 

source /opt/Xilinx/14.7/ISE_DS/settings64.sh 

 

When executing “make ise-launch”, this XML will be used to launch the ISE 

project manager. Synthesis and place&route can also be run in batch mode (preferred 

option) using “make ise” for the XST flow and “make ise-synp” for synplify 

flow. Many Xilinx FPGA boards are supported in GRLIB, and can be re-programmed 

using “make ise-prog-fpga” and “make ise-prog-prom”. All possible targets 

of the “make” command are listed in Figure 2.13. 

 

Figure 2.13 : Possible targets of the make command [18] 
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With the “make ise” command, synthesize and place&route are done. Moreover, ISE 

project manager will be launched with “make ise-launch” command and 

synthesize, place&route are done from ISE project manager. This process continues 

for 30 minutes long. Bitstream that is used to program target device is generated after 

synthesize and place&route finished. Atlys board can be programmable with the 

IMPACT tool of the ISE project manager via program input of it. 

2.7.2 Bare-C Cross Complier installiation 

Bare-C Cross Complier is used to design C/C++ application and it generates elf files 

are loaded into the target device. BCC has its own assembler and disassembler [21]. 

The latest version of BCC can be downloaded from Cobham Gaisler’s website [27].  

In order to recompile BCC from sources, “automake-1.11.1” and “autoconf-2.68” is 

required [21]. Thus, automake-1.11.1 and autoconf-2.68 commands must be checked. 

If they are not installed, installation is done with following commands. This 

installation should be done with root permissions. Required commands for the 

installation of “automake” and” autoconf” is given below. 

 

sudo apt-get install autoconf 

 

sudo apt-get install automake 

 

After obtaining the compressed tar file for the binary distribution, uncompress and 

untar it to a suitable location. The Linux version of BCC has been prepared to reside 

in the /opt/bcc-2.0.2-gcc/ directory. Thus, downloaded tar file should be moved 

to /opt directory. Before the movement of “tar” file, read/write permissions of /opt 

directory must be given. If it is not given, tar file does not be moved to /opt directory. 

After these stages, user should change the current directory to /opt. Then, the 

distribution can be installed with the following command: 

 

tar -C /opt -xf /opt/bcc-2.0.2-gcc-linux64.tar.xz 

 

After the compiler is installed, add /opt/bcc-2.0.2-gcc/bin directory to the 

executables search path (PATH) and /opt/bcc-2.0.2-gcc/man directory to the 
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manual page path (MANPATH). This can be done with the “export” command or 

change the /etc/environment document as described before.  

 

The binary installation of BCC contains the following sub-directories:  

 

bin/     Executables 

doc/     GNU, newlib and BCC documentation 

man/     Manual pages for GNU tools 

sparc-gaisler-elf/   SPARC target libraries, include files and LEON BSP 

sparc-gaisler-elf/bsp/   Board Support Packages for LEON systems 

src/     Various sources, examples and make scripts 

src/examples/    BCC example applications 

src/libbcc/    libbcc source code and make scripts 

 

The following tools are installed with BCC: 

 

sparc-gaisler-elf-addr2line  Convert address to C/C++ line number 

sparc-gaisler-elf-ar   Library archiver 

sparc-gaisler-elf-as   Cross-assembler 

sparc-gaisler-elf-c++   C++ cross-compiler 

sparc-gaisler-elf-c++filt  Utility to demangle C++ symbols 

sparc-gaisler-elf-cpp   The C preprocessor 

sparc-gaisler-elf-g++   Same as sparc-gaisler-elf-c++ 

sparc-gaisler-elf-gcc   C/C++ cross-compiler 

sparc-gaisler-elf-gcov  Coverage testing tool 

sparc-gaisler-elf-gdb   GNU GDB C/C++ level Debugger 

sparc-gaisler-elf-gprof  Profiling utility 

sparc-gaisler-elf-ld   GNU linker 

sparc-gaisler-elf-nm   Utility to print symbol table 

sparc-gaisler-elf-objcopy  Utility to convert between binary formats 

sparc-gaisler-elf-objdump  Utility to dump various parts of elf files 

sparc-gaisler-elf-ranlib  Library sorter 

sparc-gaisler-elf-readelf  ELF file information utility 

sparc-gaisler-elf-size   Utility to display segment sizes 
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sparc-gaisler-elf-strings  Utility to dump strings from elf files 

sparc-gaisler-elf-strip  Utility to remove symbol table 

 

The source code for the BCC 2.0.2 toolchain is distributed in an archive named “bcc-

2.0.2-src.tar.bz2”, available on the Cobham Gaisler website [28]. It contains source 

code for the target C library and the host compiler tools (binutils, GCC, GDB). 

Installing the source code is optional but recommended when debugging applications 

using the C standard library [21]. The target libraries have been built with debug 

information making it possible for GDB to find the sources files. It allows, for 

example, to step through the target C standard library code. The tar file should be 

located into /opt/bcc-2.0.2-gcc/src. The sources can be installed by extraction 

the source distribution archive “bcc-2.0.2-src.tar.bz2” into /opt/bcc-2.0.2-

gcc/src. The required command is given below. 

 

tar xf bcc-2.0.2-src.tar.bz2 

 

For building this source code, a script named “ubuild.sh” which located into a currently 

extracted bcc-2.0.2 folder. To build and install the BCC compiler tools, GDB and the 

C library in /tmp/bcc-2.0.2-local, the following step shall be performed: 

 

./ubuild.sh --destination /tmp/bcc-2.0.2-local --toolchain –gdb 

 

The GCC front-end, “sparc-gaisler-elf-gcc” command has been modified to 

support the following options specific to BCC and LEON systems: 

 

-qbsp=bspname  Use target libraries, startup files and linker scripts for a specific 

LEON  system. The parameter bspname corresponds to a Board 

Support Package (BSP). A description of the BSPs distributed 

with BCC is given in Chapter 7. The BSP leon3 is used as 

default if the -qbsp= option is not given. 

-qnano   Use a version of the newlib C library compiled for reduced foot 

print. Thenano version implementations of the fprintf(), fscanf() 
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family of functions are not fully C standard compliant. Code size 

can decrease with up to 30 KiB when printf() is used. 

-qsvt  Use the single-vector trap model described in SPARC-V8 

Supplement, SPARC-V8 Embedded (V8E) Architecture 

Specification. 

 

Useful (standard) options are: 

-g    Generate debugging information should be used when 

debugging with GDB. 

-msoft-float  Emulate floating-point - must be used if no FPU exists in the 

system. 

-O2 or -Os   Optimize for maximum performance or minimal code size. 

-Og    Optimize for maximum debugging experience. 

-mcpu=leon3  Generate Sparc V8 code. Includes support for the casa 

instruction. 

 

General development flow of new application such as compilation and debugging of 

applications is typically done with the following steps, 

 

1. Compile and link the program with GCC 

2. Debug program using a simulator (GDB connected to TSIM) 

3. Debug program on remote target (GDB connected to GRMON) 

4. Create boot-prom for a standalone application with mkprom2 

 

In this study, second and fourth steps are not included. After BCC is installed, simple 

C code can be compiled and generated elf file. For simplicity, “Hello World” example 

is used. Examples of BCC is located under the following directory: 

 

/opt/bcc-2.0.2-gcc/src/examples/  

 

In this folder, several C/C++ and mkprom2 examples can be found. Example “Hello 

World” C code are given below. 

 

#include <stdlib.h> 
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#include <stdio.h> 

 

int main(void) 

{ 

        printf("hello, world\n"); 

        return EXIT_SUCCESS; 

} 

 

This program basically print “hello, world” string to the terminal. To compile this 

program following command is used.  

 

sparc-gaisler-elf-gcc-7.2.0 -mcpu=leon3 -qbsp=leon3 -msoft-

float -qnano -qsvt hello.c -o hello.exe 

 

First part of the command defined complier option and GCC complier is chosen. With 

the first option -mcpu= leon3 complier generate SparcV8 code and it includes 

support for the casa instruction. Second option -qbsp=leon3 defines board 

supporting package. Third option -msoft-float is used because defined on board 

system does not contain FPU. When fourth option -qsvt is used, complier used 

single-vector trap model described in SparcV8. Enable or disable decision of the single 

vector trapping can be set into the configuration. After these options for input C file 

declared. Output elf file name defined and it is generated with -o option.  

 

After a simple program is compiled and it generates elf file, next step is the loading 

and debugging this application with GRMON debug tool. 

2.7.3 GRMON installiation 

GRMON is a general debug monitor for the Leon processor, and for SoC designs based 

on the GRLIB IP library [20]. GRMON can be downloaded from Cobham Gaisler 

website [29]. It includes the following functions: 

• Read/write access to all system registers and memory 

• Built-in disassembler and trace buffer management 

• Downloading and execution of LEON applications 

• Breakpoint and watchpoint management 

• Remote connection to GNU debugger (GDB) 
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• Support for USB, JTAG, RS232, PCI, Ethernet and SpaceWire debug links 

• Tcl interface (scripts, procedures, variables, loops etc.) 

 

GRMON is serviced in two options; Evaluation/Academic or Professional version 

[20]. GRMON Evaluation/Academic version is used in this study. To install GRMON, 

extract the archive anywhere on the host computer. The archive contains a directory 

for each operating system (OS) that GRMON supports. Each OS folder contains 

additional directories as described in the list below. 

 

grmon-eval-2.0.87/<OS>/bin 

grmon-eval-2.0.87/<OS>/lib 

grmon-eval-2.0.87/<OS>/share 

 

The bin directory contains the executable. For convenience, it is recommended to add 

the bin directory of the host operating system to the environment variable PATH. This 

can be done with “export” command or change the /etc/environment document 

as described before.  

 

GRMON can be found in the directory named “share”. GRMON will try to 

automatically detect the location of the folder. A warning will be printed when starting 

GRMON if it fails to find the shared folder. If it fails to automatically detect the folder, 

then the environment variable GRMON_SHARE can be set to point the 

share/grmon directory. This environment variable can be set to /opt/grmon-

eval-2.0.87/linux64/share/grmon/ via “export” command or change 

/etc/environment document described before. 

 

The lib directory contains some additional libraries that GRMON requires. GRMON 

will fail to start because of some missing libraries that are located in this directory, 

then add this path to the environment variable LD_LIBRARY_PATH. /opt/grmon-

eval-2.0.87/linux64/lib directory can be added to environment variables via 

“export” command or change the /etc/environment document described before. 

An interactive GRMON debug session typically consists of the following steps. Steps 

2 through 6 are performed using the GRMON terminal interface. 
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1. Starting GRMON and attaching to the target system 

2. Examining the hardware configuration 

3. Uploading application program 

4. Setup debugging, for example, insert breakpoints and watchpoints 

5. Executing the application 

6. Debugging the application and examining the CPU and hardware state 

 

The target device can be connected to host computer via several connections such as 

serial debug link, Ethernet debug link, JTAG debug link etc. Serial debug link is used 

for this study. GRMON is starting by giving the “grmon” command in a terminal 

window. For simplicity, current directory should be a directory of the file that is loaded 

to the target device. Else, full directory of the elf file should be indicated when the 

application is loaded to the target device.  

 

The general options are mostly targeted independent options configuring the behavior 

of GRMON. Some of them affect how the target system is accessed both during 

connection and during the whole debugging session. All general options are described 

below. 

 

-abaud baudrate 

 Set baud-rate for all UARTs in the system, (except the debug-link UART). By 

default, 38400 bauds is used. 

-ambamb [maxbuses] 

 Enable auto-detection of AHBCTRL_MB system and (optionally) specifies the 

maximum  number of buses in the system if an argument is given. The optional 

argument to -ambamb is  decoded as below: 

 0, 1: No Multi-bus (MB) (max one bus) 

 2..3: Limit MB support to 2 or 3 AMBA PnP buses 

 4 or no argument: Selects Full MB support 

-c filename 

 Run the commands in the batch file at start-up. 

-cfg filename 

 Load fixed PnP configuration from a xml-file. 
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-echo 

 Echo all the commands in the batch file at start-up. Has no effect unless -c is 

also set. 

-edac 

 Enable EDAC operation in memory controllers that support it. 

-freq sysclk 

 Overrides the detected system frequency. The frequency is specified in MHz. 

-gdb [port] 

 Listen for GDB connection directly at start-up. Optionally specify the port 

number for GDB communications. Default port number is 2222. 

-ioarea address 

 Specify the location of the I/O area. (Default is 0xfff00000). 

-log filename 

 Log session to the specified file. If the file already exists, the new session is 

appended. This should be used when requesting support. 

-ni 

 Read plug&play and detect all system device, but don't do any target 

initialization. 

-nopnp 

 Disable the plug&play scanning. GRMON won't detect any hardware and any 

hardware dependent functionality won't work. 

-nothreads 

 Disable thread support. 

-u [device] 

 Put UART 1 in FIFO debug mode if hardware supports it, else put it in loop-

back mode.  Debug mode will enable both reading and writing to the UART from 

the monitor console.  Loop-back mode will only enable reading. The optional device 

parameter is used to select a  specific UART to be put in debug mode. The device 

parameter is an index starting with 0 for  the first UART and then increasing with 

one in the order they are found in the bus scan. If  the device parameter is not used 

the first UART is selected. 

-udm [device] 
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 Put UART 1 in FIFO debug mode if hardware supports it. Debug mode will 

enable both  reading and writing to the UART from the monitor console. The 

optional device parameter is  used to select a specific UART to be put in debug mode. 

The device parameter is an index  starting with 0 for the first UART and then 

increasing with one in the order they are found in  the bus scan. If the device 

parameter is not used the first UART is selected. 

-ulb [device] 

 Put UART 1 in loop-back mode. Loop-back mode will only enable reading 

from the UART o the monitor console. The optional device parameter is used to select 

a specific UART to be put in debug mode. The device parameter is an index starting 

with 0 for the first UART and then increasing with one in the order they are found in 

the bus scan. If the device parameter is not used the first UART is selected. 

-ucmd filename 

 Load script specified by filename into all shells, including the system shell. 

 

GRMON is starting with the “grmon -u –digilent” command in this study. First 

option -u indicates that debug mode enables both reading and writing to the UART 

from the monitor console. Second option -digilent used to connection to the target 

device and it describes connection type. Output of first connection into the GRMON 

console are shown in Figure 2.14. 

 

Figure 2.14 : GRMON console view of first connection 
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When connecting for the first time it is essential to verify that GRMON has auto-

detected all devices and their configuration correctly. At start-up, GRMON will print 

the cores and the frequency detected. “info sys” command shows all system 

elements with their start addresses, AHB numbers, Interrupt request number etc. 

Example output of the “info sys” command of two CPU Leon3 processor are shown 

below; 

 

grmon2> info sys 

  cpu0      Cobham Gaisler  LEON3 Sparc V8 Processor     

            AHB Master 0 

  cpu1      Cobham Gaisler  LEON3 Sparc V8 Processor     

            AHB Master 1 

  ahbjtag0  Cobham Gaisler  JTAG Debug Link     

            AHB Master 2 

  greth0    Cobham Gaisler  GR Ethernet MAC     

            AHB Master 3 

            APB: 80000E00 - 80000F00 

            IRQ: 12 

            edcl ip 192.168.0.51, buffer 2 kbyte 

  mctrl0    European Space Agency  LEON2 Memory Controller     

            AHB: 00000000 - 20000000 

            APB: 80000000 - 80000100 

            8-bit prom @ 0x00000000 

  apbmst0   Cobham Gaisler  AHB/APB Bridge     

            AHB: 80000000 - 80100000 

  dsu0      Cobham Gaisler  LEON3 Debug Support Unit     

            AHB: 90000000 - A0000000 

            AHB trace: 256 lines, 32-bit bus 

            CPU0:  win 8, hwbp 2, itrace 256, V8 mul/div, srmmu, lddel 1 

                   stack pointer 0x40003ff0 

                   icache 2 * 4 kB, 16 B/line 

                   dcache 2 * 4 kB, 16 B/line 

            CPU1:  win 8, hwbp 2, itrace 256, V8 mul/div, srmmu, lddel 1 

                   stack pointer 0x40003ff0 

                   icache 2 * 4 kB, 16 B/line 

                   dcache 2 * 4 kB, 16 B/line 

  spim0     Cobham Gaisler  SPI Memory Controller     

            AHB: FFF00200 - FFF00300 

            AHB: E0000000 - E1000000 
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            IRQ: 11 

            SPI memory device read command: 0x03 

  ddr2spa0  Cobham Gaisler  Single-port DDR2 controller     

            AHB: 40000000 - 48000000 

            AHB: FFF00100 - FFF00200 

            No SDRAM found 

  adev9     Cobham Gaisler  Generic AHB ROM     

            AHB: 00000000 - 00100000 

  ahbram0   Cobham Gaisler  Single-port AHB SRAM module     

            AHB: 40000000 - 40100000 

            32-bit static ram: 16 kB @ 0x40000000 

  uart0     Cobham Gaisler  Generic UART     

            APB: 80000100 - 80000200 

            IRQ: 2 

            Baudrate 38343, FIFO debug mode 

  irqmp0    Cobham Gaisler  Multi-processor Interrupt Ctrl.     

            APB: 80000200 - 80000300 

  gptimer0  Cobham Gaisler  Modular Timer Unit     

            APB: 80000300 - 80000400 

            IRQ: 8 

            8-bit scalar, 2 * 32-bit timers, divisor 50 

  ps2ifc0   Cobham Gaisler  PS2 interface     

            APB: 80000400 - 80000500 

            IRQ: 4 

  ps2ifc1   Cobham Gaisler  PS2 interface     

            APB: 80000500 - 80000600 

            IRQ: 5 

  adev16    Cobham Gaisler  VGA controller     

            APB: 80000600 - 80000700 

  gpio0     Cobham Gaisler  General Purpose I/O port     

            APB: 80000A00 - 80000B00 

  ahbstat0  Cobham Gaisler  AHB Status Register     

            APB: 80000F00 - 80001000 

            IRQ: 7 

 

Before the application is loaded to the target device via GRMON, the DSU should be 

activated from the configuration of Leon3 and it should also be activated on the 

hardware side. According to “README” document in Atlys design folder, DSU-

Enable signal is mapped to switch SW7 and it should be activated. Otherwise, any 
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application is not loaded to the target device. Status of the DSU can be checked with 

the “info sys” command. Figure 2.15 shows the example output of the “load” 

command that is used to upload a Leon3 software application to the target system 

memory. 

 

Figure 2.15 : GRMON console view of a load command 

The “verify” command can be used to make sure that the file has been loaded 

correctly to memory as in Figure 2.16. Any discrepancies will be reported in the 

GRMON console. 

 

Figure 2.16 : GRMON console view of a verify command 

After the application has been uploaded to the target with “load” command, the “run” 

command can be used to start execution. The entry-point taken from the elf-file during 

loading will serve as the starting address, the first instruction executed. The “cont” 

command resumes execution after a temporary stop, e.g. a breakpoint hit. The “go” 

command also affects the CPU execution, the difference compared to “run” command 

is that the target device hardware is not initialized before starting execution. 

 

The output from the application normally appears on the Leon3 UARTs, not on the 

GRMON console. However, if GRMON is started with the “-u” option as in this study, 

the UART is put into debug mode and the output is tunneled over the debug-link and 

finally printed on the console by GRMON. Since the application changes (at least) the 

.data segment during run-time the application must be reloaded before it can be 

executed again. If the application uses the MMU or installs data exception handlers, 

GRMON should be started with “-nb” option to avoid going into break mode on a 
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page-fault or data exception. To prevent GRMON from interpreting it as its own 

breakpoints and stop the CPU one must use the “-nswb” option. 

 

Breakpoints are inserted with the “bp” command. The subcommand (soft, hard, 

watch, bus, data, delete) given to “bp” determine which type of breakpoint 

is inserted, if no subcommand is given bp defaults to a software breakpoint. “bp” 

command is used to observe register changes when program run. The current value of 

the registers into breakpoints can be displayed with the “reg” command and name of 

the register such as g1, g2, o1, f1. If “reg” command is used without special register 

name, it displays current register window of a Leon3 processor. Example output of 

“reg” command is shown in Figure 2.17. 

 

Figure 2.17 : GRMON console view of reg command 

2.7.4 Led test application 

End of the installation of GRLIB, BCC2 and GRMON, the hardware of the 

implemented Leon3 processor can be tested with a simple application on and off LEDs 

on the Atlys board. First, the General Purpose Input/Output (GPIO) port declaration 

should be examined.  

 

32-bit GPIO port is divided into parts such that, LEDs LD0 to LD5 are mapped to 

GPIO bits 0 to 5, switches SW0 to SW5 are mapped to GPIO bits 8 to 13, buttons 

BTNU, BTNL, BTND, BTNR, BTNC are mapped to GPIO bits 16 to 20 the PMODA 

port is mapped to GPIO bits 24 to 31. In order to set LEDS as output, GPIO registers 

should be set appropriately. Registers of GPIO port is defined in the GRLIB IP core 

User’s Manual that can be found in grlib-gpl-2017.3-b4208/doc/ folder. 
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According to manual required GPIO port registers for this application defined in Table 

2.5. 

Table 2.5 : Required part of the GPIO registers [30] 

 

Other registers such as interrupt mask, interrupt available, bypass etc. are also given 

in this manual. However, this application is required only these three registers for 

implementation. The base register of the GPIO is data register and it is set to 

0x80000A00. This 32-bit hexadecimal value is set before and it can be found in the 

output of the “info sys” command on GRMON console. However, in this example, 

any data is not used as an input. The GPIO output register is set to 0x80000A04 

because, the output register is declared to 0x04 according to GRIP manual. This value 

added to the base address of the GPIO port which is 0x80000A00. The GPIO direction 

register is set as 0x80000A08 because 0x08 is also added to the base address of the 

GPIO port. GPIO direction register is loaded with 0x0000003f to set all LEDs as an 

output. The data register is not used because any input does not necessary for this 

application. The output register can be set to different values depending on users’ 

preference. For this example, the output register is set to 0x00000015. This 

configuration sets LEDs as one on and one off repeatedly. C code of LED test 

application is shown below. 

 

#include <stdlib.h> 

#include <stdio.h> 

 

int main(void) 

{  

 // setting up registers of GPIO 

        unsigned int *gpio_base = (int *) 0x80000A00; 

 unsigned int *gpio_out = (int *) 0x80000A04; 

 unsigned int *gpio_dir = (int *) 0x80000A08; 

  

 //All LEDs are setted as output 

 *gpio_dir = 0x0000003F; 
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 //010101 

 *gpio_out = 0x00000015; 

 

        return EXIT_SUCCESS; 

} 

 

This C code is compiled with BCC2 with the following command and it generates elf 

file is named “blink_led.exe”.  

 

sparc-gaisler-elf-gcc-7.2.0 -mcpu=leon3 -qbsp=leon3 -msoft-

float -qnano -qsvt blink_led.c -o blink_led.exe 

 

After compilation is completed, elf file is loaded to Atlys board via GRMON. The 

loaded application is run with “run” command and its output is seen with LEDs. 

Figure 2.18 shows the example output of Led Test application. Two LEDs, LD7 and 

LD6 are dedicated to debug tool options. Thus, these LEDs cannot be used as GPIO 

port and their values are determined by the processor itself.  

 

Figure 2.18 : Output of the Led Test application 

2.7.5 Test of basic operations  

For the Instruction Set Extension of Leon3 processor, current instructions of the Leon3 

processor which rely on SparcV8 ISA is analyzed. First, main ALU operations are 

considered. Some of these operations are ADD, ADDC (add with carry), SUB, AND, 

OR, NOT, XOR etc. Some of the ALU operations set zero or carry as an output. 

Because of the implementation of AES block cipher, Carry or Zero flags are not 
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required for any a part of this block cipher hardware. In Leon3, ALU operations, flags, 

fetch-decode-execute cycle operations are done in integer unit that is a VHDL file 

named “iu3.vhd”. When this file is analyzed, it is recognized that logical operations is 

the simplest ALU operation that not required any other flag or internal signal can affect 

another part of integer unit. Thus, the addition of the new instructions can be done 

similar to available logic operations. Because of these reasons, basic logical operations 

like AND, OR, NOT, XOR is tested. First, C codes of these operations are written. 

Example C code of AND operation are shown below. 

 

#include <stdio.h> 

int main(void) 

{  

 int x, y, z; 

 x = 6; 

 y = 4; 

 z = x & y;  

 return 0; 

} 

 

Then, these codes are compiled by BCC2 and generate elf file. Then, this file is 

disassembled with the command that disassembles the elf file generated by BCC2. 

Example disassemble command is shown below. 

 

sparc-gaisler-elf-objdump -D and.exe > and.asm 

 

“-D” option is used for disassemble all parts of the elf file. “-d” option can also be 

used to disassemble only .data and .text parts of elf file. “> and.asm” is used to write 

disassembled elf file to other text file named “and.asm”. Without this part, 

disassembled elf file is shown on the terminal. Thanks to the disassembled elf file, 

assembly code of the written C code can be tracked. Disassembled main section of 

“and.asm” are shown below. 

 

40000280 <main>: 

40000280: 9d e3 bf 90  save  %sp, -112, %sp 

40000284: 82 10 20 06  mov  6, %g1 

40000288: c2 27 bf fc  st  %g1, [ %fp + -4 ] 
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4000028c: 82 10 20 04  mov  4, %g1 

40000290: c2 27 bf f8  st  %g1, [ %fp + -8 ] 

40000294: c4 07 bf fc  ld  [ %fp + -4 ], %g2 

40000298: c2 07 bf f8  ld  [ %fp + -8 ], %g1 

4000029c: 82 08 80 01  and  %g2, %g1, %g1 

400002a0: c2 27 bf f4  st  %g1, [ %fp + -12 ] 

400002a4: 82 10 20 00  clr  %g1 

400002a8: b0 10 00 01  mov  %g1, %i0 

400002ac: 81 e8 00 00  restore  

400002b0: 81 c3 e0 08  retl  

400002b4: 01 00 00 00  nop  

 

First value in this example is the memory address of each line. Second 32-bit section 

is the instructions. Last part is the assembly code of the C code that includes AND 

operation with two variables and output is stored another variable. 

 

Compilation of C codes and disassembly of elf files of logical operations completed, 

each elf file is loaded to the board and register values are tracked with breakpoints on 

GRMON console. Figure 2.19and Figure 2.20 show example debugging screens after 

elf file is loaded. 

 

Figure 2.19 : GRMON console view of the debugging (continued) 
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Figure 2.20 :GRMON console view of the debugging 

2.7.6 Addition of new instructions 

Integer Unit of the Leon3 and the sparcV8 instruction definitions analyzed for the 

addition of new instructions. In Integer Unit, names are used to define logical 

operations and these named are assigned to the 3-bit values. These 3-bit values show 

that these operations are ALU operations. Firstly, definitions of these names are found 

in Integer Unit. Blank values that are not assigned to any operation are determined. 

Then, the definition of the logical operation instruction names is detected in SparcV8 

instruction declaration file named “sparc.vhd”.  These instruction declarations are 

connected to the definition of instructions in Sparc V8 manual document that 

downloaded from Cobham Gaisler website [26]. 

 

Instruction formats are defined in Figure 2.21. Logical operations have the value 10 

for op field. The op3 field defines which operation is executed. 
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Figure 2.21 : SparcV8 ISA Instruction Formats [30] 

Definition of instruction fields is given below: 

 

op and op2 : These 2- and 3-bit fields encode the 3 major formats and the format 2 

instructions according toTable 2.6 and Table 2.7. 

Table 2.6 : Different instruction formats according to the value of op [30] 

 

Table 2.7 : Different instruction according to the value of op2 [30]  

 

rd : This 5-bit field is the address of the destination (or source) r or f or coprocessor 

register(s) for a load/arithmetic (or store) instruction. For an instruction that 

read/writes a double (or quad), the least significant one (or two) bits are unused and 

should be supplied as zero by software. 
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a : The a bit in a branch instruction annuls the execution of the following instruction 

if the branch is conditional and untaken or if it is unconditional and taken. 

 

cond : This 4-bit field selects the condition code(s) to test for a branch instruction. 

 

imm22 : This 22-bit field is a constant that SETHI places in the upper end of a 

destination register. 

 

disp22 and disp30 : These 30-bit and 22-bit fields are word-aligned, sign-extended, 

PC-relative displacements for a call or branch, respectively. 

 

op3 : This 6-bit field (together with 1 bit from op) encodes the format 3 instructions.  

 

i : The i bit selects the second ALU operand for (integer) arithmetic and load/store 

instructions. If  

i = 0, the operand is r[rs2]. If i = 1, the operand is simm13, sign-extended from 13 to 

32 bits. 

 

asi : This 8-bit field is the address space identifier supplied by a load/store alternate 

instruction. 

 

rs1 : This 5-bit field is the address of the first r or f or co-processor register(s) source 

operand. For an instruction that reads a double (or quad), the least significant bit (or 2 

bits) are unused and should be supplied as zero by software. 

 

rs2 : This 5-bit field is the address of the second r or f or co-processor register(s) source 

operand when i = 0. For an instruction that reads a double-length (or quad-length) 

register sequence, the least significant bit (or 2 bits) are unused and should be supplied 

as zero by software. 

 

simm13 :  This 13-bit field is a sign-extended 13-bit immediate value used as the 

second ALU operand for an (integer) arithmetic or load/store instruction when i = 1. 
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opf : This 9-bit field encodes a floating-point operate (FPop) instruction or a co-

processor operate (CPop) instruction. 

 

Definition of logical operations and their op3 values and assembly language syntax are 

given in Table 2.8 and Table 2.9. Instruction format of logical operations is also given 

in Figure 2.22. 

Table 2.8 : Definition and op3 values of logical operations [30] 

 

Table 2.9 : Assembly language syntax of logical operation [30] 

 

 

Figure 2.22 : Instruction format of logical operations [30] 

New operations should have different op3 values and different instruction names that 

are used in integer unit. Because using of the same value to different instructions may 

create chaos and overwrite. Blanck spaces in 3-bit values for logical ALU operation 

are determined. Only one value is not assigned any logical ALU operation but AES 

block cipher requires 3 new instructions to perform encryption. Thus, 3-bit value 
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definitions for the logical ALU operations are extended to 4-bit. This change provides 

additional 8 spaces for new operations.  

 

After new operations are defined and hardware implemented with simple calculations 

like “not aluin1 and not aluin2”, Instruction definitions should also be added to 

SparcV8 instruction definition file. op3 value has 6-bit and it is used for all operations 

except call, jump,and branch instructions. Thus, free 6-bit values are searched. It can 

be seen that 8 free space are available for the usage of new instructions.  Three of them 

is used for new instructions. As a result, op3 values of new instructions are determined 

as follows; 

 

op3 of new_ins_1 = 001101, op3 of new_ins_2 = 011001, op3 of new_ins_3 = 011101. 

 

Based on the AND operation and its instruction format, new instructions are defined 

as follows; 

 

new_ins_1 = 82 68 08 01, new_ins_2 = 82 C8 8o 01, new_ins_3 = 82 E8 80 01. 

 

The next step is the generation of elf file that contains new instructions. For this aim, 

previously tested AND operation and its C code is used. In this code AND operation 

is used instead of the new operations. Then, this code is compiled with BCC2 same as 

before. After compilation, currently generated elf file is opened with one of the 

hexadecimal editors.  

 

“Hexedit” is used to edit elf file in this study. After elf file opened with “hexedit”, the 

main part of the application is found with the help of the disassembled “asm” file on 

currently generated elf file. The instruction of AND operation changed with the 

instruction of the new instruction and saved. Changed elf file is loaded to the processor 

with the help of the GRMON. A new application that contains new operation can be 

debugged with the breakpoints as described before. 

2.7.7 Implementation of AES 

AES block cipher is implemented with the new instructions; SubByte, ShiftRow ,and 

MixColumn. It also requires basic operations that are implemented in ALU. These 
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basic operations are XOR, left shift, addition, and AND. Firstly, new operations are 

constructed as a individual hardware with VHDL in Xilinx ISE. Each of the new 

operations is defined as a submodule and they implement their functions within these 

submodules. For example, SubByte operation uses defined 16x16 table that includes 

values changed with an input value of the plain matrix cell. SubByte operation takes 

one input as a row of the plain matrix. ShiftRow operation takes two input. One of 

them is the row of the plain matrix, and the other is the number of the shift operation. 

Shift operation basically implemented with concatenation in VHDL. MixColumn 

operation also requires one input that is a column of the plain matrix. Thus, before the 

MixColumn operation, columns of the plain matrix should be generated. MixColumn 

operation requires calculations and generates a result. After MixColumn operations, 

regeneration of the rows from columns of  the plain matrix should be implemented.  

 

All of these operations are implemented and required row-to-column and column-to-

row conversations are made. Hardware implementation of the first round of AES block 

cipher is tested and desired results observed. The next step is the addition of this 

hardware of operations to the relevant location into Integer Unit of the Leon3.  

 

VHDL implementation of the SubByte, ShiftRow, and MixColumn operations are 

placed to previously defined new instructions which are implemented as simple 

operations. SubByte operation changed with new_ins_1, ShiftRow is changed with 

new_ins_2, and MixColumn is changed with new_ins_3. Only ShiftRow requires the 

second operand, thus the dummy values are assigned to second operands of the 

SubByte and MixColumn operation in C code of AES block cipher.  

 

After these operations are added to Integer Unit of Leon3, processor is re-synthesized 

and Atlys board reconfigured. C application that implements first round of the AES 

block cipher is written. In this code, input data is an array with length 4 that includes 

four rows of the data should be encrypted. Input key also defined as an array with 

length 4 that includes four rows of the key. Plain matrix is constructed from input data 

and the key matrix is constructed from input key. Defined operations and row-to-

column, column-to-row operations are implemented on both plain matrix and key 

matrix. As a result of these operations, result data of first round is obtained.  
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BCC2 cross-compiler does not know new instructions and its input number. Thus, one 

default operation is used instead of the new operations. After BCC2 generates elf file, 

these default operations are changed with the new instructions via “hexedit” tool 

defined before. AND operation is chosen as a default operation because it has two 

operands and its instruction is easily noticeable. If AND operation is used instead of 

SubByte or MixColumn operations, second operand set as dummy value “9” for 

SubByte and “8” for MixColumn. These values are assigned to different variables 

before they are used.  

 

After elf file is generated and required changes are done on elf file with “hexedit”, elf 

file is loaded to the board and it is verified. Application is debugged with the 

breakpoints. It is seen that expected values are calculated according to current register 

values. Control of output data is done with if statements and LEDs on board. If all of 

four row of output data is equal to rows of desired output, 0x0000000f value is passed 

to the output register of GPIO port. Then first four LEDs are on. If one of the rows is 

truly calculated, 0x00000001 is passed to  the output register of GPIO port. Equality 

of two or three rows are visualized by the assign 0x00000003 and 0x00000007 to the 

output register of GPIO port respectively.  

 

Whole AES block cipher includes 10 round. At this stage, AES algorithm is not 

implemented as 10 round, since default on-chip RAM size is not enough to fit 

application that implements 10 round of AES algorithm. Function calls in C 

application may also cause problems with the pointer declarations because 128-bit data 

should be passed to function via array implementation. These problems are expected 

to solve after the interim report.   

 Project Work Plan and Current Position 

Table 2.10 : Timetable of this study (continued) 

# Task Responsible Group 

Member(s) 
WEEKS 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

 1  Hardware 

implementation  ALL X  X X X                     

 2  Executing C/C++ 
codes 

  
ALL         X X X X             
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 3 Changing the 
Arithmetic Logic Unit  ALL                   X X X X X X 

 4  Using the Instruction 

in C/C++ code  ALL                             

5  

 Comparison with soft 

and hard 

implementation of 
cryptography 

algorithms 

 ALL                             

 6 Comparison of all 

given Results   ALL                             

Table 2.11 : Timetable of this study 

# Task Responsible Group 

Member(s) 
WEEKS 

15 16 17 18 19 20 21 22 23 24 25 26 27 28 

 1  Hardware 

implementation  ALL                             

 2  Executing C/C++ 
codes 

  
ALL                             

 3 Changing the 
Arithmetic Logic Unit  ALL   X X                         

 4  Using the Instruction 

in C/C++ code  ALL   X X X X X X X  X          

5  

 Comparison with soft 

and hard 

implementation of 
cryptography 

algorithms 

 ALL                   X X      

 6 Comparison of all 

given results   ALL                         X X 

According to Table 2.10 and Table 2.11, hardware implementation of the Leon3 is 

completed. This process continued more time as expected. Because different Linux 

distributions cause installation and usage problems. Moreover, first board chooses 

Spartan3E has not enough basic logical blocks. Thus, board change to Atlys which has 

Spartan6.  

Executing C/C++ codes on Leon3 processor is completed. BCC2 is installed and some 

basic test codes run on implemented Leon3 processor.  

 

Changing the ALU is implemented and completed. This process requires analysis of 

the SparcV8 ISA especially instruction format of it and blank spaces for new 
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operations. This phase also requires implementation of AES block cipher at hardware 

side and at Integer Unit of the Leon3.  

 

Using new instructions in C/C++ code is completed. New instructions that are used for 

encryption are determined and C/C++ code that implements encryption with AES 

block cipher is written. New instructions are implemented as dummy AND operation 

that is used instead of new instructions in C code. After compilation, dummy and 

operations are changed to new operations on elf file. Then, AES algorithm works 

properly and encrypted data is obtained as expected. 

 

Last two steps of the timetable are shown in Table 11 and Table 12, comparison with 

soft and hard implementation of cryptography algorithms and comparison of all given 

results has not been completed yet.  
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 ORPSoC-v2 

 Introduction 

 

ORPSoC-v2 is a system on chip (SoC) that  found based on OR1200 from OpenRISC 

1000 processor family, and it is supported by various FPGA development board. 

ORPSoC-v2 is written in VerilogHDL, it  includes the codes of CPU and peripheral 

units besides the some auxiliary softwares. Users can download these files and change 

the CPU and its peripherals by increasing or decreasing  the number of units on it 

depending on the user’s desires and needs. These codes, then, can be synthesized by 

softwares provided by Xilinx or Altera companies and then be configured for target  

FPGA development board. 

 PRESENT 

Despite the establishment of AES decreased the need for new block ciphers, 

PRESENT algorithm had been developed, because AES is not suitable for 

implementations on limited source and power consumption such as IOT applications, 

In 2007[31].  

3.2.1 Algorithm  

PRESENT algorithm includes 64 bit block data lenght and two different key length 

options(80-bit, 128-bit). Key is recalculated with defined operations. These 

recalculated keys are used to generate encrypted data. PRESENT is also part of the 

symmetric key algorithms as AES. 

In this study, 80-bit key version of PRESENT algorithm is used in order to decrease 

implementiation area. The process to encyrpt one 64-bit data block completed in 31 

rounds. Each round is identical and composed of three successive different layers: 

addRoundKey layer, sBoxLayer and pLayer. The difference in each round comes from 

the key, which is updated at last of each round. 

Block diagram of the PRESENT algorithm is shown in  Figure 3.1[32]. 
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Figure 3.1 : Encryption procedure of PRESENT[32] 

3.2.2 Operations of PRESENT Algorithm 

PRESENT algorithm basically consist of 4 operation: AddRoundKey, sBoxLayer, 

pLayer and KeyTransform. 

3.2.2.1 AddRoundKey 

Adds the STATE to a 64-bit word from the roundkey using finite field arithmetic. 

3.2.2.2 sBoxLayer 

This layer is consist of 16 copies of a 4-bit to 4-bit S-Box, S0-S15. The current 

state is divided into sixteen 4-bit words fed into S-Boxes[33]. The content of the used 

S-Box in PRESENT is shown in Table 3.1. 

 

Table 3.1 : sBox for PRESENT block cipher[31] 
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3.2.2.3 pLayer 

pLayer is performing permutations on the bits of STATE. This layer changes the place 

of the bits in the STATE. The bit permutation used in PRESENT is given by the Table 

3.2. Bit i of state is moved to bit position P(i). 

 

Table 3.2 : pLayer pattern for PRESENT block cipher[31] 

 

 

3.2.2.4 KeyTransform 

Round keys are different from each other. For the key generation, previous round key 

is used. After the leftmost 64-bit of 80-bit key is extracted for AddRoundKey 

operation, the key register is rotated to left by 61 bit positions then sBox layer is 

applied to the left-most four-bit and then 𝑘19𝑘18𝑘17𝑘16𝑘15  bits are put in exclusive-

or with five-bit round counter value. 

 

 

Figure 3.2 : General description for the key generation of PRESENT[31] 

3.2.3 Hardware Implementation of PRESENT Algorithm 

One can find the requested test-vectors in the original paper. The paper includes test 

vectors for all four cases one request (one or both of key and plaintext are  

00...0000...00 or FF...FFFF...FF). Table 3.3 shows the test vectors. 

 

 

 



   

 

54 

Table 3.3 : Test Vectors for PRESENT block cipher[31] 

 
 

Pure hardware implementation of PRESENT is performed and tested. The simulation 

result is shown in Figure 3.3. 

 

 

Figure 3.3 : Isim simulation result for pure hardware PRESENT algorithm 

As it is seen on Figure 3.3,the ciphertext value is matched with the second row of the 

table x, given plaintext and key. 

 

 OpenRISC 1000 Instruction Set Architecture 

OpenRISC is the project that conducted with the participation of voluntary people in 

order to develop open source ISA based on RISC (Reduced Instruction Set Computing) 

architecture. 

In this context, the written codes are completely open and everyone who wishes have 

the right to use and modify designs. It is possible to show the freedoms that the offered 

license has basicially offers; 

• Right to use codes unlimited 

• Right to access and review source code 

• Right to freely distribute source code 

• Right to change source code 

 

In this architecture, it is aimed to produce 32-bit and 64-bit instructions that can be 

used in a wide range such as embedded systems, automotive, portable computers etc. 

As it is known, processors are designed by creating their instruction sets. The 32 and 
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64 bit supported instruction sets included in the OpenRISC 1000 instruction set is 

shown in Figure 3.4. 

 

Figure 3.4 : Instruction Set of OpenRISC 1000 Family[3] 

 

As shown in Figure 3.4 there are multiple sets of instructions. The OpenRISC Basic 

Instruction Set (ORBIS32) is the compulsory for all kinds of implementations and it 

consist of basic instructions such as addition, subtraction, multiplication, shift, jump 

etc.The 64-bit version of this set is ORBIS64. Besides, the OpenRISC Vector and 

Signal processing instruction set (ORVDX64 - OpenRISC Vector / DSP Extension) 

use 32-bit length instructions and process 64-bit long data..Likewise, the Floating 

Point Numbers Instruction Set (ORFPX32 - OpenRISC Floating Point Extension) is 

designed to handle floating-point numbers. In addition to all these, the custom 

instructions are also designed, so that user can add new instructions that can be useful 

for spesific designs. 

 

 

Figure 3.5 : Sample instruction model for OpenRISC 1000[3] 
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Format: 

 

l.add rD,rA,rB 

 

Description: 

 

The contents of general-purpose register rA are added to the contents of 

general-purpose register rB to form the result. The result is placed into 

general-purpose register rD. 

 

 

32-bit Implementation: 

 

rD[31:0] < - rA[31:0] + rB[31:0] 

SR[CY] < - carry 

SR[OV] < - overflow 

 

64-bit Implementation: 

 

rD[63:0] < - rA[63:0] + rB[63:0] 

SR[CY] < - carry 

SR[OV] < - overflow 

 

Exceptions: 

 

Range Exception 

Figure 3.5 shows a basic addition instruction struct on OpenRISC ISA, likewise one 

of the eight reserved custom instruction’s struct is shown in Figure X. 
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Figure 3.6 : Reserved custom  instruction model for OpenRISC 1000 [3] 

 

Format: 

 

l.cust5 

 

Description: 

 

This fake instruction only allocates instruction set space for custom 

instructions. Custom instructions are those that are not defined by the 

architecture but rather by the implementation itself. 

 

32-bit Implementation: 

 

N/A 

 

64-bit Implementation: 

  

N/A 

Exceptions: 

 

N/A 

 

3.3.1 OR1200 

First implementation of Openrisc 1000 is performed by Damjen Lampret in 2000. This 

implementation is called OR1200 and it is composed of just processor core. OpenRISC 
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1000 is the name for ISA. Hence, it does not contain hardware codes for 

implementation. It is possible to sort the general properties of the OR1200 processor; 

• All features of the processor can be changed by the user. 

• Ability to perform high performance operations 

• High speed data memory and memory management 

• Wishbone interface compatibility 

• processor parameters can be easily changed by the user 

Following these general features, when viewed the processor  a bit closer, the 

functional properties can be sorted in the following order; 

• CPU - DSP (Digital Signal Processing Unit) 

• Instruction and data cache 

• Power (energy) management unit and interface 

• Timer 

• Interrupt control unit and interface 

 

Figure 3.7 : OR1200 Core's architecture[3] 
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Figure 3.8 : OR1200 CPU-DSP Block Diagram[3] 

In this study it is aimed to add each of PRESENT block cipher operation to custom 

instructions of OR1200 processor. Thus, required hardware addition of new 

instructions is reduced. It also reduces usage of the source of the FPGA on target board. 

 Tools for ORPSoC-v2 

3.4.1 ISE Webpack Design Suite Installation 

In this study, ATLYS board, whose features are given before, is used for 

implementation of OR1200 processor. ATLYS board is compatible with ISE Design 

Suite. Hence We used Xilinx ISE Design Suite. Webpack edition is free to use and 

can be downloaded from the following link:    

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNa

v/design-tools/v2012_4---14_7.html. 

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/design-tools/v2012_4---14_7.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/design-tools/v2012_4---14_7.html
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Figure 3.9 : ISE running on Windows10 

ToolBox for OR1200 runs on Linux OS, hence virtual machine is needed for cross 

compiling codes on linux, while hardware implementations are being performed on 

ISE on Windows. Here is the link for free Oracle VM VirtualBox that is used in this 

study: https://www.virtualbox.org/wiki/Downloads 

 

Figure 3.10 : LinuxMint 17.2 running on Oracle VM VirtualBox 

3.4.2 ToolBox installation and usage for OR1200 processor 

https://www.virtualbox.org/wiki/Downloads
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3.4.2.1 Cross compiler installation 

Cross compiler is named  different according to its compiled library; 

 

• or1k-elf- : For applications that doesn’t need operating system (OS)  (bare 

metal) 

• or1k-linux-uclibc : For applications that  runs on Linux  OS (uClibc library) 

• or1k-linux-musl : For applications that  runs on Linux  OS (musl library) 

 

In this study or1k-elf is used as Linux application is not needed for encryption app. 

 

• Downloading and opening the code package of Binutils; 

 

wget http://ftp.gnu.org/gnu/binutils/binutils -2.25.tar.bz2  

tar xjvf binutils -2.25.tar.bz2 

 

• Downloading Gcc code package;  

 

git clone https://github.com/openrisc/or1k-gcc 

 

• Downloading Newlib code package; 

 

get ftp://sourceware.org/pub/newlib/ 

newlib -2.2.0.20150225.tar.gz 

tar xzvf newlib -2.2.0.20150225.tar.gz 

 

Before the installation, environmental variables should be defined and saved to the 

home directory. This definition can be done as below; 

 

export PREFIX=/opt/or1k-elf 

export PATH=\$PATH:\$PREFIX/bin 

 

As it is seen, the variable named PATH shows the or1k-elf folder which is in root/opt 

directory.All compiler tools will be installed in this folder. 



   

 

62 

The read/write permissions must be given to the folder before the installation; 

 

sudo mkdir \$PREFIX 

sudo chown <user>:<user>\$PREFIX 

 

After needed preperations for installation is done as described. The followings must 

be done for Binutils installation; 

Mkdir build-binutils ; cd build-binutils 

../binutils-2.25/configure --target=or1k-elf 

--prefix=\$PREFIX –enable-shared \ 

--disable -itcl --disable –tk –disable-tcl 

--disable -winsup --disable -gdbtk \ 

--disable –libgui --disable -rda --disable -sid 

--disable -sim –with-sysroot 

make 

make install 

cd .. 

 

For Newlib installation followings are to be done; 

 

mkdir build-newlib; cd build-newlib 

../newlib -2.2.0.20150225/configure --target=or1k-elf 

--prefix=\$PREFIX 

make 

make install 

cd .. 

 

For gcc stage 2  installation followings are to be done; 

 

mkdir build-gcc-stage2; cd build-gcc-stage2 

../or1k-gcc/configure --target=or1k-elf --prefix=\$PREFIX 

--enable-languages=c , c++ --disable-shared 

--disable-libssp –with-newlib 

make 
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make install 

cd .. 

 

When these steps of the setup are completed, the code compiler for OpenRISC 

processors and also one of the most important code compilers, GNU GCC is ready. 

It is now quite easy to compile C, C ++  and assembly code for OpenRISC. 

 Implementation of OR1200 Processor 

ORPSoC-v2 project codes can be downloaded from the following link; 

svn co http://opencores.org/ocsvn/openrisc/openrisc/trunk/orpsocv2 

After downloading codes, project file can be opened on ISE 14.7. 

3.5.1 Led Test Application 

End of the installation of needed tools and softwares, the hardware of the implemented 

OR1200 processor can be tested with a simple application on and off LEDs on the 

Atlys board. First, the General Purpose Input / Output (GPIO) port declaration should 

be examined. 

 

Figure 3.11 : GPIO module on orpsoc-v2 

24-bit GPIO port is divided into parts such that, LEDs LD0 to LD7 are mapped to 

GPIO bits 0 to 7, switches SW0 to SW7 are mapped to GPIO bits 8 to 15, buttons 

BTNL, BTND, BTNR, BTNC BTNC are mapped to GPIO bits 16 to 20. In order to 

set LEDS as output, GPIO registers should be set appropriately. 
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Figure 3.12 : Assembly code of Led application 

The codes written in Assembly language in Figure 3.12 sets the direction as an output 

and drive the leds, then step into infinite loop. To get executable file, the following 

commands must be written on terminal: 

or1k-elf-cpp -P  LedTest.S   LedTest.asm #C preprocessor include,define process and 

comment stuffs 

or1k-elf-as -o LedTest.elf LedTest.asm  # create elf formatted executable code from 

pure asm file  

or1k-elf-objcopy -O binary LedTest.elf LedTest.bin # transform elf formatted file to 

flat binary 

To store the application that will run on OR1200, in this study, we prefer to write 

machine codes on bootrom.v file in the orpsoc-v2 project. Hence the time that would 

be lost on spi-flash programming is saved. The following command produce machine 

codes from the executable file and  write it on .v file   

bin2vlogarray < LedTest.bin > bootrom.v 

After the obtained bootrom.v file is added to the project. Design is implemented and 

leds are driven as in the Figure 3.13. 
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Figure 3.13 : Output of the LedTest application on OR1200 processor 

LedTest application comprise of 10 machine codes, but the PRESENT encryption 

algorithm takes higher number of machine codes. OR1200’s bootrom is limited by 64 

machine codes by default. To be able to store encryption algorithm on bootrom the 

rom address width parameter on orpsoc-params.v is changed from 6 to 7. Orpsoc-

params.v is the file that parameters of the SoC is defined in. 

 

Figure 3.14 : ROM Address width parameter of OR1200 

Then, OR1200 boot address parameter is changed also from 32’hf0000100 to 

32’hf0000200 in order to provide space for larger rom memory. Previously the rom0 

module’s local address was kept in between 7. and 2. bit of wbs_i_rom0_adr_i[31:0] 

signal. Hence there was no problem. After the manipulation of rom address width to 

7. rom0 module’s local address is kept in between 8. and 2. bit of the 

wbs_i_rom0_adr_i[31:0] signal. Previous value of boot address parameter result in 

starting from the 64. value of bootrom.v because the 8.bit’s value was always ‘1’. By 

changing the boot address value to 32’hf0000200 that value on 8.bit is shifted to 9.bit 

and the problem is solved. As it is seen on wb_adr_i[8:2] signal on Figure X, up to 128 

machine code is possible with the modification that is done. 
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Figure 3.15 : ISIM simulation result of bootrom modification 

 

Figure 3.16 : Boot Address modification on OR1200 

3.5.1 Custom Instruction Test Application 

Fifth custom instruction of OR1200 performs move byte, set bit and clear bit 

operations for test applications. The following C code is written to test if l.cust5 

instruction work. 

/* Test three operations of custom instruction 5  */ 

  

#include "../support/support.h" 

  

void buserr_except(){} 

void dpf_except(){} 

void ipf_except(){} 

void lpint_except(){} 

void align_except(){} 

void illegal_except(){} 

void hpint_except(){} 

void dtlbmiss_except(){} 

void itlbmiss_except(){} 
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void range_except(){} 

void syscall_except(){} 

void res1_except(){} 

void trap_except(){} 

void res2_except(){} 

  

/* Custom instruction l.cust5: move byte 

  

   Move byte custom instruction moves a least significant byte from source register rB 

and 

   combines it with other bytes from source register rA and places combined result into 

rD. Location 

   of the placed byte in rD depends on the immediate. 

*/ 

#define MOVBYTE(dr,sr,sb,i) asm volatile ("l.cust5\t%0,%1,%2,%3,1" : "=r" (dr) : 

"r" (sr), "r" (sb), "i" (i)); report(dr) 

  

/* Custom instruction l.cust5: set bit 

  

   Take source register rA, set a specified bit to 1 and place result to destination register 

rD. 

   Bit to be set is specified with an immediate. 

*/ 

#define SETBIT(dr,sr,i) asm volatile ("l.cust5\t%0,%1,r0,%2,2" : "=r" (dr) : "r" (sr), 

"i" (i)); report(dr) 

  

/* Custom instruction l.cust5: clear bit 

  

   Take source register rA, clear a specified bit to 0 and place result to destination 

register rD. 

   Bit to be cleared is specified with an immediate. 

*/ 

#define CLRBIT(dr,sr,i) asm volatile ("l.cust5\t%0,%1,r0,%2,3" : "=r" (dr) : "r" (sr), 

"i" (i)); report(dr) 
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/* Test case for "move byte" custom instruction 

  

   Move least significant byte from variable s into different byte positions of variable 

d. 

   Every time a byte move is done compute checksum of variable d. Final checksum is 

used to verify 

   correct operation. 

  

*/ 

unsigned long test_movbyte() 

{ 

 unsigned long s, d, r; 

  

 s = 0x12345678; 

 r = d = 0xaabbccdd; 

  

 MOVBYTE (d, d, s, 0); 

 r += d; 

 MOVBYTE (d, d, s, 1); 

 r += d; 

 MOVBYTE (d, d, s, 2); 

 r += d; 

 MOVBYTE (d, d, s, 3); 

 r += d; 

  

 return (r); 

} 

  

/* Test case for "set bit" custom instruction 

  

   Set a couple of bits of variable d to 1. 

   Every time a bit is set compute checksum of variable d. Final checksum is used to 

verify 
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   correct operation. 

  

*/ 

unsigned long test_setbit() 

{ 

 unsigned long d, r; 

  

 r = d = 0x00000000; 

  

 SETBIT (d, d, 10); 

 r += d; 

 SETBIT (d, d, 15); 

 r += d; 

 SETBIT (d, d, 19); 

 r += d; 

 SETBIT (d, d, 25); 

 r += d; 

  

 return (r); 

} 

  

/* Test case for "clear bit" custom instruction 

  

   Clear a couple of bits of variable d to 0. 

   Every time a bit is cleared compute checksum of variable d. Final checksum is used 

to verify 

   correct operation. 

  

*/ 

unsigned long test_clrbit() 

{ 

 unsigned long d, r; 

  

 r = d = 0xffffffff; 
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 CLRBIT (d, d, 10); 

 r += d; 

 CLRBIT (d, d, 15); 

 r += d; 

 CLRBIT (d, d, 19); 

 r += d; 

 CLRBIT (d, d, 25); 

 r += d; 

  

 return (r); 

} 

  

int main() 

{  

 unsigned long result = 0; 

  

 result += test_movbyte(); 

 result += test_setbit(); 

 result += test_clrbit(); 

  

 printf("RESULT: %.8lx\n", result); 

 report(result); 

 exit(result); 

} 

 l.cust5 custom instruction works properly on c code. 

 Project Work Plan and Current Position 

According to Table 2.10 and Table 2.11, hardware implementation of the OR1200 is 

completed. Installation of the toolchain for OR1200 took time more than expected. 

Because the some packages toolchain use has changed by the time and some files 

needed to be updated.  
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Executing C/C++ codes on OR1200 processor is completed.  

 

Arithmetic logic unit is not changed especially for PRESENT algorithm but custom 

instruction is tested using C/C++ code. 

 

Last two steps of the timetable are shown in Table 2.10 and Table 2.11, comparison 

with soft and hard implementation of cryptography algorithms and comparison of all 

given results has not been completed yet. 
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 ARM Cortex M0 DesignStart-r2p0 

 Introduction 

ARM is one of the leading microprocessor designing company in the world. 

Eventhough the company doesn't manufacture silicon, company designs the most of 

the microprocessors' architecture.  

 

ARM microprocessors are divided into 3 types:  

 

1-A Family: Applications processors for feature rich OS and 3rd party applications. 

 

2-R Family: Embedded processors for real-time signal processing, control applications 

 

3-M Family: Microcontroller-oriented processors for MCU, ASSP, and SoC 

applications 

 

After the rise of the softcore microprocessors like OpenRisc, Leon, Risc and such, 

ARM decided to publish some of the M class microprocessors' hardware description 

codes in order to compete with the softcore microprocessors. Yet, to hold its codes 

confidential, company didn't share all of the codes openly; with only sharing the 

crypted versions of the hardware codes and obfuscated features, such as, not being able 

to debug and interrupt on some versions of the softcore microprocessor. Cortex M0 

DesignStart is the product of this softcored version of the Cortex M0 microprocessor 

[38]. 

 v6-M Architecture 

4.2.1 ARM architecture profiles 

ARMv7 is documented as a set of architecture profiles, defined as follows: 

 

ARMv7-A the application profile for systems supporting the ARM and Thumb 

instruction sets, and requiring virtual address support in the memory management 

model. 
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ARMv7-R the realtime profile for systems supporting the ARM and Thumb instruction 

sets, and requiring physical address only support in the memory management model. 

 

ARMv7-M the microcontroller profile for systems supporting only the Thumb 

instruction set, and where overall size and deterministic operation for an 

implementation are more important than absolute performance. 

 

While profiles were formally introduced with the ARMv7 development, the A-profile 

and R-profile have existed implicitly in earlier versions, associated with the Virtual 

Memory System Architecture (VMSA) and Protected Memory System Architecture 

(PMSA) respectively. 

ARMv6-M is a subset of ARMv7-M, that provides: 

• a lightweight version of the ARMv7-M programming model. 

• the Debug Extension that includes architecture extensions for debug support. 

• ARMv6 Thumb 16-bit instruction set compatibility at the application level. 

• an optional Unprivileged/Privileged Extension.  

• an optional PMSA Extension [34]. 

4.2.2 Instruction set architecture (ISA) 

ARMv6-M implements the ARMv6-M Thumb instruction set, including a number of 

32-bit instructions that use Thumb-2 technology. The ARMv6-M instruction set 

comprises: 

 

• All of the 16-bit Thumb instructions from ARMv7-M, except CBZ, CBNZ, and IT. 

• The 32-bit Thumb instructions, BL, DMB, DSB, ISB, MRS, and MSR [34]. 

 Differences Between Cortex M0 and DesignStart 

As mentioned before, there are slight differences between Cortex M0 processor and 

Cortex M0 processor of DesignStart. Mentioned differences and more can be seen on 

the Table 4.1. 
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Table 4.1 : Differences between DesignStart and Full processor versions [35] 

 

  Nexys 4 Artix-7 FPGA Board 

4.4.1 Introduction 

The Nexys4 DDR board is a complete, ready-to-use digital circuit development 

platform based on the latest Artix-7™ Field Programmable Gate Array (FPGA) from 

Xilinx. With its large, high-capacity FPGA (Xilinx part number XC7A100T-

1CSG324C), generous external memories, and collection of USB, Ethernet, and other 

ports, the Nexys4 DDR can host designs ranging from introductory combinational 

circuits to powerful embedded processors. Several built-in peripherals, including an 

accelerometer, temperature sensor, MEMs digital microphone, a speaker amplifier, 

and several I/O devices allow the Nexys4 DDR to be used for a wide range of designs 

without needing any other components. 
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Figure 4.1 : Nexys 4 Artix-7 FPGA Board [37] 

4.4.2 Features 

The Artix-7 FPGA is optimized for high performance logic, and offers more capacity, 

higher performance, and more resources than earlier designs. Artix-7 100T features 

include:  

 

• 15,850 logic slices, each with four 6-input LUTs and 8 flip-flops  

• 4,860 Kbits of fast block RAM  

• Six clock management tiles, each with phase-locked loop (PLL)  

• 240 DSP slices  

• Internal clock speeds exceeding 450 MHz  

• On-chip analog-to-digital converter (XADC)  

 

The Nexys4 DDR also offers an improved collection of ports and peripherals, 

including:  

 

• 16 user switches  

• 16 user LEDs  

• Two 4-digit 7-segment displays  

• USB-UART Bridge  
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• 12-bit VGA output  

• 3-axis accelerometer  

• Two tri-color LEDs  

• Micro SD card connector  

• PWM audio output  

• PDM microphone  

• Temperature sensor  

• 10/100 Ethernet PHY  

• Serial Flash  

• 128MiB DDR2  

• Four Pmod ports  

• Pmod for XADC signals  

• Digilent USB-JTAG port for FPGA programming and communication  

• USB HID Host for mice, keyboards and memory sticks [37] 

 

 Implementation 

In DesignStart package, from debugging module to internal memories, every internal 

and external modules are included. In order to implement the microprocessor, only 

thing to do is, basicly including the verilog files into a Intel Quartus project and 

following the basic implementation steps. Unfortunately, DesignStart is not %100 

Xilinx Vivado/ISE IDE compatible. So, this approach doesn't work for Xilinx FPGA 

boards. Yet, it clearly can be seen from DesignStart's manual, which modules should 

be included to the project, in order to implement the microprocessor. After including 

the files, we had to "debug" all of the errors by one by -which are occured because the 

system was not compatible for the Xilinx Vivado- before actually implementing the 

microprocessor [36]. 
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Figure 4.2 : Files included into DesignStart [35] 

4.5.1 Simulation 

DesignStart has a pre-made testbench module included, which enables the users to 

simulate the microprocessor working process way before the implemantation. This 

way, one can understand the faulty signals before actually implementing and 

embedding the microprocessor into the FPGA board.  

This testbench module is positioned as the top module of the design, yet it has to be 

deleted before implementing and embedding the microprocessor onto the board, which 

makes cmsdk_mcu the top module. It can be seen the module diagram of the 

DesignStart on Figure 4.3. 
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Figure 4.3 : Testbench and cmsdk_mcu modules [35] 

On Figure 4.4,  it can be seen that synthesized microprocessor design is working and 

responding to our inputs. 

 

Figure 23 : Example simulation 

 Work Plan and Current Position 

It's clearly can be seen that, we are behind our expectations on work plan. This 

happened due to the diffuculties to adjust DesignStart codes one by one in order to 

make it Xilinx FPGA compatible. At this point, we are almost done adjusting the 

module files and trying to understand if our processor is working correctly after our 

changes. 
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 RI5CY 

 Introduction 

RISC-V is a fresh, open-source, ISA designed for high performance and power 

efficiency. It is founded by UC Berkeley. In this project implementation of this ISA is 

by ETH Zurich is used. ETH’s implementation is named Pulpino RI5CY core.  It's 

backed from many powerful IC brands such as nvidia, Google, Microsemi[39]. 

 

 

Pulpino is a System on Chip(SoC) platform which consists multiple io peripherals such 

as Universal Asynchronous Receiver-Transmitter (UART), Serial Peripheral Interface. 

It also consist hardware and instruction level optimizations such as Hardware loops, 

post-increment adds, vector multiplication. The microprocessor in the system is 

RI5CY core which is promised to be highly efficient for ultra low energy. The 

algorithm that will be added is Advanced Encryption Standart (AES) which is 

explained in the section 2.6. 
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 Pulpino Architecture 

Pulpino has many usefull peripherals to communicate with outside world. It also has 

Advanced Extensible Interface (AXI) bus and Advanced Peripheral Bus for high speed 

and low speed peripherals respectively. Rest of the peripherals can be seen in the 

Figure 5.1. 

 

Figure 5.1 : Pulpino SoC[40] 

The core has hardware loop optimizations and post-increment load and stores to further 

increase the performance[41]. It also has floating point support if wanted. A hardware 

loop is an extension in the core which controls the loops in hardware automatically 

which is more faster and energy efficient because it gets rid of redundant instruction's 

fetch cycle. In order to set up hardware loop, loop's end adress and loop count must be 

specified. RI5CY support 2 nested hardware loops. The loop instructions can be seen 

in the figure 5.2. 
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Figure 5.2 : Hardware loop setup instructions[41] 

The core has fully independent pipeline, meaning that whenever possible data will 

propagate through the pipeline and therefor does not suffer from any unneeded 

stalls[41]. The pipeline is designed to be out-of-order compatible. Meaning that 

instructions that does not need Write-Back stages can be completed without going into 

Write-Back stage and create unwanted stalls. The data path of the pipeline can be seen 

in the figure 5.3. 

 

Figure 5.3 : RI5CY pipeline[41] 
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 Cross Compiler   

Cross compiler creates machine code other than the platform that it runs. For 

example, the code for ARM CPU can be created by using a x86 CPU. In this part 

the code for RISC-V ISA(Instruction Set Architecture) is created by using x86 

machine. 

5.3.1 General Flow 

By using cross compiler, any C code can be run on the RI5CY core. GCC compiler 

creates an .elf file. 

 

$ riscv32-unknown-elf-gcc –o program.elf program.c 

 

This file(program.elf) is basically an assembly code of the C code and it is not the 

machine code yet. The assembly code can be examined by using objdump command. 

 

$ riscv32-unknown-elf-objdump –d program.elf 

 

By using objcopy function .bin file(the machine code file) can be created.  

 

$ riscv32-unknown-elf-objcopy -O binary program.elf program.bin 

 

The bin file can be examined by the xxd command. 

 

$ xxd program.bin 
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5.3.2 Setup 

Prequisities are given below: 

Xilinx Vivado 2015.1 

Cmake version >= 2.6 

Gcc >= 5.2 

Python >= 2.7 

5.3.2.1 RI5CY GNU Toolchain 

First, default gcc and g++ compilers must be installed in the system. 

To install these to the system[43]: 

 

$ sudo apt update 

$ sudo apt upgrade 

$ sudo apt install build-essential 

 

 

To check the version of gcc 

$ gcc --version 

 

 

To check the location of the gcc compiler: 

$ which gcc 

 

 

Then the command below must be ran for RISC-V gcc compiler[44]: 

$ sudo apt-get install autoconf automake autotools-dev curl libmpc-dev libmpfr-

dev libgmp-dev gawk build-essential bison flex texinfo gperf libtool patchutils bc 

zlib1g-dev libexpat-dev 

 

 

  



   

 

84 

After these steps, the ri5cy_gnu_toolchain can be downloaded from the 

pulp_platform github.  

 

   After downloading the files, "make" command must be typed in the terminal. It is 

recommended that the installation should be made in the /opt folder. Or the installation 

files can be copied into the /opt folder.  

After the installation the path of the cross compilers must be included to the 

PATH permanently. To do this, "bashrc." in the home folder must be changed. The 

code in "bashrc." is always run when a new terminal window opens. “bashrc.” is 

located in the home folder. To see “bashrc.” user must enable “Show hidden files” by 

right-clicking in the home folder. Then “bashrc.” can be simply opened by double 

clicking on it. 

 

 

To the last line of the "bashrc." the command below must be entered: 

PATH=$PATH:/INSTALL_LOCATION/ri5cy_gnu_toolchain-

master/install/bin 
 

 

 

Figure 5.4 : Inside of “bashrc.”. 
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5.3.2.2 Cmake and Python2 

Cmake and the python must be installed to proceed further. To install cmake any linux 

version greater than 2.6 can be downloaded from https://cmake.org/download/. After 

downloading the files, the commands below must be entered inside the download 

folder to the terminal: 

 

 

 $ ./bootstrap 

 $ make 

 $ make install 

To install python commands below must be entered: 

$ sudo apt-get update 

$ sudo apt-get install build-essential checkinstall 

$ sudo apt-get install libreadline-gplv2-dev libncursesw5-dev libssl-dev libsqlite3-

dev tk-dev libgdbm-dev libc6-dev libbz2-dev 

 

 

$ cd /usr/src 

$ sudo wget https://www.python.org/ftp/python/2.7.14/Python-2.7.14.tgz 

$ sudo tar xzf Python-2.7.14.tgz 

 

 

$ cd Python-2.7.14 

$ sudo ./configure 

$ sudo make altinstall 

Then the version can be checked by the command: 

$ python2.7 -V 

 

 

  

https://cmake.org/download/
https://www.python.org/ftp/python/2.7.14/Python-2.7.14.tgz
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5.3.2.3 Pulpino Master file 

After adding the cross compiler to the PATH, the project files can be downloaded from 

the pulp_platform/pulpino github.  Then, a new folder named "build" must be created 

in the sw folder. Then, the script "cmake_configure.riscv.gcc.sh" must be run in the 

terminal.  

 

 

   The tool installation is now complete. At this moment, apps in the installation folder 

can be compiled using the make command in the build folder. The result will be in the 

build/apps[45].  

 

 

Example: make boot_code.install will create a boot_code.sv in the 

“build/apps/boot_code/boot”. 

 

Figure 5.5 : Successful boot_code.sv compilation. This will create the machine code 

that will be ran when the cpu starts up. Contents of boot_code.sv must be copied into 

the design. Notice that this automatically creates “boot_code.elf”. 
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Figure 5.6 : make boot_code.read will create the assembly code for the given c code 

as boot_code.read located in the “/pulpino-master/sw/build/apps/boot_code”.Notice 

that this automatically creates “boot_code.elf”.  

 

 

 

  



   

 

88 

 Applications 

  In this part, various Pulpino RI5CY labs will be examined. In this labs the 

core is used as a simple microprocessor. The labs are verified by implementation and 

simulation with xsim simulator. 

5.4.1 LED Blink 

 

Figure 5.7 : Main of led blink. 

 

This code will simply write the first byte of the gpio_out pins 0xAA and 0x55 

forever. To connect the gpio pins to the leds, necessary XDC changes need to be 

made. To see the proper locations of the board master XDC file must be downloaded 

via internet.  
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To upload the code to the FPGA, the created “boot_code.sv” contents must be copied 

in to Vivado project. After doing so, standart implementation flow can be followed. 

For code to work “fetch_enable” input also needs to be high. In the default state, 

“fetch_enable” is connected to SW0. 

 

Bear in mind that xsim simulator may sometimes fail to simulate the lab. For 

unknown cause xsim simulator will fail to simulate long loops because it can not 

simulate the resulting assembly code. So, simulating long loops must be avoided.  

 

Figure 5.8 : In the addresses 0x8198 and 0x81b6 a hardware loop(lp.setup) is defined 

for long loops. This is text is result from boot_code.read command 
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5.4.2 UART 

 

 

Figure 5.9 : Main of UART code 

This code will send 2 string with uart_tx pin. Right now it’s configuration 

with “Nexyx4DDR” is 115200 Baud rate with 8n1 setup. To see the result 

“minicom” terminal program need to be used.  By using the command sudo apt-get 

minicom program can be downloaded form the terminal. After downloading the 

program the proper setup can be made by the command sudo minicom -s  this will 

bring setup for UART type and the Port selection. To determine which usb port is the 

uart port, the terminal command ls /dev/tty* can be used. Simply plug-in and out the 

usb and look for the missing ttyUSBx. 
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Figure 5.10 : The ls /devtty* command. In the red circle USB ports can be seen 

 

Minicom program need to be opened with sudo privileges. To have nice format, after 

opening the minicom press CTRL-A then U this will enable cartridge return for ‘\n’ 

character. CTRL-A then C will clear the console. 
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Figure 5.11 : Program’s output seen with minicom 2.7.  

 

 

 

 
Because of the Baud Rate depends highly on system clock, for custom 

implementations UART synchronization problems will occur and rubbish data will be 

displayed to the minicom console. To solve this problem easily, uart_set_cfg 

function can be sweeped and a string can be send each iteration.  

 

 
for(x = 0;x<1000;x++)  

{ 

uart_set_cfg(0,x); 

uart_send(“\n”,1); 

} 
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5.4.3 SPI 

 

 

Figure 5.12 :  Main of spi loopback code 

 

 

This code will make a loopback at desired address in the flash memory. The 

SPI protocol for the “s25fl128s” always need a command to be send from MOSI pin 

no matter if the transmission is quad mode. It will use only the MOSI pin. First of all, 

write enable pin must be sent to the flash before doing anything. 
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In this flash the transitions from 0 to 1 and 1 to 0 needs different instructions. 

To write correct data the flash must be erased(0 to 1). After that programming 

instruction can be run(1 to 0). Sending the correct instruction does not write the data 

instantly. Write in Progress flag in status register 1 must be polled in order to make 

sure that the write operation is successful. 

The most troubling part about the SPI was figuring out which instructions to send in 

order for correct operation. Because of this, the datasheet must be read carefully. 

 
Figure 5.13 : Example instruction sequence with s25fl128s NOR flash. First the 

instruction(READ) is sent with SI(slave in), then the address of the data is sent. 

Then, the flash module will return the data as long as the SCK is kept running. 

Beware that the CS(chip select or slave select) signal is kept low for entire duration 

of the communication. The data from the flash will fill the input fifo of the RI5CY 

core, and the contents can be accessed by the function “read_fifo”[42]. 

 

 

 

 
Figure 5.14 : The Read Status Register command. This can be sent after any 

program or erase commands to check whether the operation is complete. SCK can be 

continuously supplied to continuously read the status register-1[42]. 
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 Boot 

 

Figure 5.15 : Main of boot.c 
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Booting from flash is simply reading the instructions from the flash to the instruction 

memory in the RI5CY core. In this lab a single 4KB block is read from the flash to the 

instruction memory. After reading is complete the programs jumps to “instruction base 

address + 0x80” because reset handler program is stored here. After reset handler, the 

program’s main is ran. 

 

 

To create the boot image, first the programs elf file is needed. After creating the elf 

file it needs to be converted to bin file. This can be done by using objcopy. Lastly the 

endian order of the bin file must be changed. Vivado changes endian when writing to 

the flash. 

 

 

Elf file can be created by using the command:  

make boot_code.elf 

Elf to bin conversion can be made with command:  

riscv32-unknown-elf-objcopy -O binary input.elf output.bin 

Endian change can be made with the command: 

riscv32-unknown-elf-objcopy -I binary -O binary --reverse-bytes=4 input.elf 

output.bin 

 

 

After creating the bin file properly. The bin file can now be transferred to the flash 

memory. To do this hardware manager needs to be opened. After auto connecting and 

selecting the fpga from the hardware list in the hardware tab. Configure Memory 

Device option needs to be selected. 
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Figure 5.16 : Screen Shot for hardware manager 

First select the fpga “xc7a100t” then select Add Configuration Memory device. After 

that select the bin file that is going to be loaded to the flash. After doing that the core 

should boot from the flash. 
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 Project Plan and Current Status 

Right now, I’m able run any c code whether in boot rom or flash. I have an 

understanding of the core and, I know the hiearcy. I was distracted because of GPIO, 

SPI and UART problems which made me behind schedule I am currently at 14th week 

on Table 11. However the problems they caused gave me insight on the core much 

more. Which means that I understand the instruction cycle and the hiearcy better. From 

now on I need to add my extension hardware into ALU then I can call it easily by 

changing the bin file. 
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