

ISTANBUL TECHNICAL UNIVERSITY

ELECTRICAL-ELECTRONICS FACULTY

SENIOR DESIGN PROJECT

JANUARY 2019

IMPLEMENTATION OF A SOC BY USING LOWRISC PROCESSOR ON AN

FPGA FOR IMAGE FILTERING APPLICATIONS

Bartu SÜRER

ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT

ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT

JANUARY 2019

ISTANBUL TECHNICAL UNIVERSITY

ELECTRICAL-ELECTRONICS FACULTY

IMPLEMENTATION OF A SOC BY USING LOWRISC PROCESSOR ON AN

FPGA FOR IMAGE FILTERING APPLICATIONS

SENIOR DESIGN PROJECT

Bartu SÜRER

(040160706)

Project Advisor: Assoc. Prof. Dr. Sıddıka Berna ÖRS YALÇIN

v

Project Advisor: Assoc. Prof. Dr. Sıddıka Berna ÖRS YALÇIN

Bartu SÜRER

(040160706)

We are submitting the Senior Design Project Report entitled as “IMPLEMENTATION

OF A SOC BY USING LOWRISC PROCESSOR ON AN FPGA FOR IMAGE

FILTERING APPLICATIONS”. The Senior Design Project Report has been prepared

as to fulfill the relevant regulations of the Electronics and Communication Engineering
Department of Istanbul Technical University. We hereby confirm that we have realized all
stages of the Senior Design Project work by ourselves and we have abided by the ethical
rules with respect to academic and professional integrity .

vi

vii

FOREWORD

I would like to thank to my mentor Assoc. Prof. Dr. Sıddıka Berna Örs Yalçın who
helped me to find this project and who supported me in all my mistakes, to reach

flawless success and at least work as much as I to complete my project successfully.
Secondly, I would like to offer my gratitude to my mentor Res. Assist. M.Sc. Latif
Akçay, who gave his endless support and even sacrificed his own time in every stage
of the project. Without him, I would never find my way in this project. Finally, I would

like to emphasize that I owe to my friends, my girlfriend Serra Önder for her endless
support and my family who has the biggest role on my successes for my entire life.

January 2019

Bartu SÜRER

viii

ix

TABLE OF CONTENTS

Page

FOREWORD... vii
TABLE OF CONTENTS.. ix

ABBREVIATIONS... xi
LIST OF TABLES.. xiii
LIST OF FIGURES ... xv
SUMMARY ... xvii

ÖZET .. xix
1.INTRODUCTION .. 1

1.1 Basic Information And Concepts..1
1.1.1 Open source CPUs..1

1.1.1.1 Amber ...2
1.1.1.2 Leon ..2
1.1.1.3 OpenSPARC..2

1.1.2 RISC-V ..2

1.1.2.1 RISC-V compiling tools ...5
1.1.3 LowRISC ...6

1.1.3.1 Rocket-Core view ..7
1.1.4 Image processing and filters .. 11

1.1.4.1 Kernel ... 12
1.1.4.2 Convolution operation .. 12

1.1.5 General flow of project ... 12
1.2 Literature Review .. 13

1.2.1 Literature review at Istanbul Technical University 13
1.2.2 Literature review at Turkey .. 13
1.2.3 Global Literature review .. 14

2.IMPLEMENTING LowRISC PROCESSOR ON AN FPGA 15

2.1 Gathering Required Environment ... 15
2.1.1 Installation of cable drivers ... 15
2.1.2 Installation of Cmake .. 16
2.1.3 Downloading LowRISC chip git repository ... 16

2.1.4 Installing RISC-V GNU toolchain ... 18
2.2 Installing Linux to lowRISC .. 19
2.3 Peripherals of system... 29
2.4 Implementing image filter algorithms to lowRISC .. 30

2.4.1 PPM format.. 30
2.4.2 Converting PNG to PPM... 31
2.4.3 Sending input image to lowRISC .. 32
2.4.4 C code for filters ... 32

2.4.4.1 Common parts of filter in codes .. 33
2.4.4.2 Red Only filter ... 35
2.4.4.3 Green only filter... 36
2.4.4.4 Blue Only filter .. 37

2.4.4.5 Sobel Operation filter ... 38
2.4.4.6 RGB edge detection filter ... 40
2.4.4.7 Sharpen filter ... 41
2.4.4.8 Emboss filter.. 42

x

2.4.4.9 Gaussian Blur filter ..43
2.4.5 Autamatization of filtering image algorithm...44

3.REALISTIC CONSTRAINTS AND CONCLUSIONS 49
3.1 Practical Application of this Project..49

3.2 Realistic Constraints ..49
3.2.1 Social, environmental and economic impact...49
3.2.2 Cost analysis ...49
3.2.3 Standards..49

3.2.4 Health and safety concerns ..50
3.3 Future Work and Recommendations ...50

REFERENCES .. 51
CURRICULUM VITAE .. 53

xi

ABBREVIATIONS

ALU : Arithmetic Logic Unit

CPU : Central Processing Unit

FPGA : Field Programmable Gate Array

FPU : Floating Point Unit

ISA : Instruction Set Architecture

OS : Operating System

PC : Personal Computer

RISC : Reduced Instruction Set Computing

RTL : Register Transfer Level

SoC : System on Chip

VHDL : Very High –Speed Integrated Circuit Hardware Description
Language

xii

xiii

LIST OF TABLES

Page

Table 1.1 : Some cores that used RISC-V ISA [2] .. 3
Table 1.2 : Some SoCs that used RISC-V ISA [2] .. 4
Table 1.3 : Some basic RISC instructions [9]. .. 5

xiv

xv

LIST OF FIGURES

Page

Figure 1.1 : RISC-V GCC toolflow. Greens are input files and blues are output files
[9]. .. 6

Figure 1.2 : Top view of lowRISC SoC [10] ... 7
Figure 1.3 : Instruction cache which includes pcgen and fetch stages [12]............... 8
Figure 1.4 : Other stages of pipeline [12]. .. 8
Figure 1.5 : All pipeline stages in one diagram [9]. .. 9

Figure 1.6 : L1 data cache overview [12]. ... 9
Figure 1.7 : General microarchitecture of all system [9]. 10
Figure 1.8 : Image processing algorithm general flow [14]. 11
Figure 1.9 : Convolution operation. ... 12

Figure 2.1 : Bashrc commad window... 19
Figure 2.2 : 16 GB SD Card .. 20
Figure 2.3 : After commands worked properly. .. 21
Figure 2.4 : Jumper positions to boot from SD card ... 21

Figure 2.5 : Boot screen at VGA display.. 22
Figure 2.6 : Waiting input mode. ... 23
Figure 2.7 : Booting from SD card chosen ... 23
Figure 2.8 : Successfully boot operation started. .. 24

Figure 2.9 ... 24
Figure 2.10 ... 25
Figure 2.11 : First stage bootloader output. .. 25
Figure 2.12 : Hash code of kernel. ... 26

Figure 2.13 : There could be some warns. It will continue 26
Figure 2.14 : Other boot informations.. 27
Figure 2.15 : Ethernet connection is okey too. ... 27
Figure 2.16 : Login screen and first login must be root. .. 28

Figure 2.17 : Login screen with prompts. ... 28
Figure 2.18 : Bash command screen. ... 29
Figure 2.19 : Full peripheral connection. ... 30
Figure 2.20 : Example input image. ... 33

Figure 2.21 : Reading input and writing output file pointers 33
Figure 2.22 : Reading image information and writing output file same informations.

.. 34
Figure 2.23 : Some variables for rgb datas and reading image and storing to

variables. ... 35
Figure 2.24 : Grayscale of image if needed. ... 35
Figure 2.25 ... 36
Figure 2.26 ... 36

Figure 2.27 ... 36
Figure 2.28 ... 37

xvi

Figure 2.29 ... 37
Figure 2.30 ... 38
Figure 2.31 : Horizontal kernel .. 38
Figure 2.32 : Vertical kernel.. 38

Figure 2.33 : Convolution operation code and blending operation horizontal and
vertical lines... 39

Figure 2.34 : Sobel operation output. ... 39
Figure 2.35 ... 40

Figure 2.36 : Convulution and reduction of lower 0 and upper 255 values. 40
Figure 2.37 ... 41
Figure 2.38 ... 41
Figure 2.39 ... 42

Figure 2.40 ... 42
Figure 2.41 ... 43
Figure 2.42 ... 43
Figure 2.43 ... 44

Figure 2.44 : Usage of Automatization code. ... 47

xvii

IMPLEMENTATION OF LOWRISC SOC

ON FPGA FOR IMAGE FILTERING APPLICATIONS

SUMMARY

The rapid increase in technology is one of the major factors that lead to a rapid increase
in human needs. In every area of our lives, we now carry out our daily and professional
life with the help of machines. For these reasons, the importance of processors that
give mind and purpose to machines comes to the fore. But the biggest problem with

all the increasing importance is the lack of a standard in the architecture of these
processors. Although each company creates its own standard and architectural
structure, today there is no architectural structure in which these companies have
shared. In addition, large chip manufacturers develop their own chips and software and

sell them at high prices. Because chip development requires years of knowledge and
research, and at the same time, this process creates high costs. For this reason,
countries and institutions that could not create their own chip architecture will benefit
from using open source processors instead of purchasing high-priced and non-open-

source firms’ chips for their smart machines. In this context, open source processors
are becoming more and more important in order to be able to benefit economically and
to be highly effective in terms of performance / price. In this project, with using "RISC-
V" instruction set architecture which was created eight years ago at the University of

California, Berkeley and is closely followed by many large companies like Nvidia and
Western Digital, based "lowRISC" SoC is aimed to be implemented and image
processing algorithms will be executed on that SoC. This SoC created with Rocket
cores.

For the implementation of the project, FPGA (field programmable gate series)
technology, which is one of the most important blessings offered by the technology to

the electronics engineers, is used. In general, the project first deals with the proper
operation of the lowRISC chip system on the "Nexys 4 DDR" produced by Xilinx
properly. Then, a Linux operating system version which works with lowRISC installed
on this chip, certain filters have been applied to the images with pure "C" programming

language without installing any additional libraries. For this purpose, Gauss blur filter,
Sobel operation filter, Embossing filter, sharpening filter, black-white filter and many
more are used in this project, which are essential for image processing applications
and which are essential for image feature detection purpose.

As a result, the outcome of the project also shows us the working conditions and cost
of a system developed using this processor. Even though we haven't developed an

architecture as a country yet, open source processors are shown in this project which
will be extremely helpful to us in the technological tools we produce. Here, it is seen
that choosing these processors are extremely wise decision for developers in terms of
time, price and labor, both for prototyping and technological studies.

xviii

xix

FPGA ÜZERİNDE GÖRÜNTÜ İŞLEME AMACIYLA LOWRISC ÇİP

SİSTEMİNİN GERÇEKLEŞTİRİLMESİ

ÖZET

Teknolojinin hızla artması, insan ihtiyaçlarının da hızla artmasına yol açan büyük
etmenlerden biri. Hayatımızın her alanında artık makinelerin yardımlarıyla günlük ve
profesyönel hayattaki işlerimizi gerçekleştiriyoruz. Tüm bu sebeple makinelere akıl ve
amaç veren işlemcilerin önemi ön plana çıkmaktadır. Ancak tüm artan önemin

getirdiği en büyük sıkıntı bu işlemcilerin mimarisinde bir standartın olmaması. Her
firma kendi standartını ve mimari yapısını oluştursa da, günümüzde bu firmaların
ortaklaştığı bir mimari yapı bulunmamakta. Ayrıca büyük çip üreticileri kendi çiplerini
ve yazılımlarını geliştirmekte ve bunları yüksek fiyatlarda satmaktadır. Çünkü çip

geliştirmek yılların bilgi birikimi ve araştırmasını gerektirmekte ve aynı zamanda bu
süreçte yüksek maliyet ortaya çıkarmaktadır. Bu sebeple kendi çip mimarisini
oluşturamamış ülkeler ve kurumlar, kendi geliştirecekleri makineler için yüksek fiyatlı
ve açık kaynaklı olmayan firmaların çip mimarisini satın almak yerine, açık kaynak

kodlu olan işlemcileri kullanmalarında büyük fayda sağlayacaklardır. Bu bağlamda
özellikle ekonomik olarak da faydalanabilmek ve performans/fiyat açısından son
derece efektif olması için, dünyanın birçok yerinde rövaşta olan açık kaynak kodlu
işlemciler git gide önem kazanmakta. Bu projede ise sekiz yıl önce Berkeley’deki

California Üniversitesi tarafından geliştirilen, günümüzde de bir çok büyük firma
tarafından da (Nvidia, Western Digital) yakından takip edilen "RISC-V" komut seti
mimarisi ile oluşturulmuş Rocket çekirdeği tabanlı olan "lowRISC” çip üzeri sistemi
çip üzeri sistemi gerçeklenmesi ve üzerinde görüntü işleme algoritmalar ının

çalıştırılması hedeflenmiştir. Bu amaçla görüntü işleme uygulamalarında kullanılan
olmazsa olmaz filtrelerden Gauss bulanıklaştırma filtresi, Sobel operasyonu filtresi,
Kabartma filtresi, keskinleştirme filtresi, siyah-beyaz filtre ve daha pek çoğu, bu
projede gerçekleştirilmiştir.

Projenin gerçekleştirilmesi için, teknolojinin elektronik mühendislerine sunduğu en
önemli nimetlerden biri olan FPGA (alan programlanabilir geçit seri) teknolojis i

kullanılmıştır. Proje genel olarak önce lowRISC çip üzeri sisteminin, Xilinx firması
tarafından üretilen "Nexys 4 DDR" üzerinde kurulması ve çalıştırılmasını ele alıyor.
Daha sonra bu çipe kurulan Linux işletim sistemi üzerinde, hiç bir ek kütüphane
kurmadan saf "C" programlama dili ile görüntülere belirli filtreler uygulanmıştır. Bu

amaçla, görüntü işleme uygulamalarında kullanılan ve görüntünün işlenmesi için
gerekli olan özelliklerini ön plana çıkaran, olmazsa olmaz filtrelerden Gauss
bulanıklaştırma filtresi, Sobel operasyonu filtresi, Kabartma filtresi, keskinleştirme
filtresi, siyah-beyaz filtre ve daha pek çoğu bu projede gerçekleştirilmiştir.

Sonuç olarak, projenin getirisinin de bize gösterdiği sonuç, bu işlemci kullanılarak
geliştirilen bir sistemin çalışma şartları ve maliyeti kolayca hesaplanabilir. Henüz

ülke olarak bir mimari geliştirmemiş olsak bile açık kaynak kodlu işlemciler, kendi
üreteceğimiz teknolojik araçlarda bize son derece yardımcı olacağı bu projede gözler
önüne serilmiştir. Burada hem prototiplenmesi hem de teknolojik çalışmalara

xx

ayrılacak zaman, fiyat ve emek açısından, bu işlemcilerin geliştiriciler için son
derece akıllıca bir seçim olduğu görülmüştür.

1

1. INTRODUCTION

In this graduation project, firstly the "lowRISC" chip [1], which was created from the

open source processors "RISCV" architecture [2], will be implemented on the Nexys4

DDR [3] which belongs to Xilinx and then the image processing algorithm will be run

on the Linux operating system which will be run by this process. In addition, the

"lowRISC" architecture in the project has been examined in detail and will be

explained in this section.

Recently, the increasing trend and need for image processing and machine learning is

the main reason for the use of this project and the processor. In this project, the use of

image processing algorithms on the system and evaluation of the results will be

discussed.

1.1 Basic Information And Concepts

A detailed description of all equipment, tools and software used in the project will be

made in this section. It will be stated what each one is and what the purpose serves in

the project..

1.1.1 Open source CPUs

Over the years, the word "open source" has only been talked about software in the

world of technology [4]. The main reason for this is that developing a software requires

less resources than developing hardware. These sources can be listed as basic

economic, commercial, time and research studies. However, with the advancing

technology nowadays, many developer groups are now less dependent on these

resources. In addition, the development of their own architectural structures of large

firms and the competition among themselves, these companies do not bring any

standard to the chip world. For this reason, the importance and value of open source

processors in the last decade has been understood by the big companies that develop

other technologies. Some of thems are listed below.

2

1.1.1.1 Amber

Amber is a processor core that supports the "ARM" architecture and has a 32 bit RISC

calculation [5]. The processor is open source and is located on the website of the action

called “OpenCores”. The Amber processor has an instruction set fully compatible with

ARMv2a and has full support by the "GNU toolchain". The reason why the processor

has this old version instruction set is that it is not patented by ARM [5].

1.1.1.2 Leon

LEON is a 32-bit CPU microprocessor core, with used the SPARC-

V8 RISC architecture and its instruction set designed by Sun Microsystems [6]. It was

firstly designed by the European Space Research and Technology Centre, and after

that designing the project was continued by Gaisler Research. LEON was written in

synthesizable Verilog HDL (Hardware Description Language) [6]. LEON has two

different license model, a LGPL/GPLFLOSS license that can be used without any

payment for licensing, and other is a proprietary license that can be purchased for

integration in a proprietary product [6].

1.1.1.3 OpenSPARC

OpenSPARC is a 64-bit and 32-threaded processor written in verilog in 2005 by Sun

Microsystems' register-transfer level (RTL) [7]. OpenSPARC with two different

models, UltraSPARC T1 and UltraSPARC T2, has GNU General Public license [7].

1.1.2 RISC-V

RISC-V is an open-source, ISA (instruction set architecture) designed for high

performance with great power efficiency which was created eight years ago at the

University of California, Berkeley [8]. RISC-V is the fifth generation of the “reduced

instruction set computer” type of architecture. What makes the "RISCV" architecture

unique is not a great performance or technology. What makes this architecture unique

is that it is completely redundant and therefore gives great promise to developers in

terms of time and economy. RISC-V ISA delivers a new level of free open source

which extensible hardware freedom on architecture, which makes this ISA innovative

and futuristic. In addition, this ISA has many software tools, simulation tools, compiler

tools, bootloaders, kenrels, OSs and debug tools avaible by the RISC-V foundation.

Because of all these features, many developers and companies have created many

http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvMzItYml0
http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvQ2VudHJhbF9Qcm9jZXNzaW5nX1VuaXQ
http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvTWljcm9wcm9jZXNzb3I
http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvU1BBUkM
http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvUmVkdWNlZF9pbnN0cnVjdGlvbl9zZXRfY29tcHV0aW5n
http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvSW5zdHJ1Y3Rpb25fc2V0
http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvU3VuX01pY3Jvc3lzdGVtcw
http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvRXVyb3BlYW5fU3BhY2VfUmVzZWFyY2hfYW5kX1RlY2hub2xvZ3lfQ2VudHJl
http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvR2Fpc2xlcl9SZXNlYXJjaA
http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvVkhTSUNfSGFyZHdhcmVfRGVzY3JpcHRpb25fTGFuZ3VhZ2U
http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvR05VX0xlc3Nlcl9HZW5lcmFsX1B1YmxpY19MaWNlbnNl
http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvR05VX0dlbmVyYWxfUHVibGljX0xpY2Vuc2U
http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvRkxPU1M

3

cores created by using RISC-V. Some of these cores are shown in the Table 1.1 and

some other SoCs are shown in Table 1.2.

Table 1.1 : Some cores that used RISC-V ISA [2]

4

Table 1.2 : Some SoCs that used RISC-V ISA [2]

In this project, LowRIS SoC (System on chip) is used which shown in Table 1.2.

Some basic RISC-V instructions are similar to old RISC ISA’s like OpenRISC some

of them are shown in Table 1.3

5

Table 1.3 : Some basic RISC instructions [9].

1.1.2.1 RISC-V compiling tools

RISC-V has a standart toolchain like other devices which is GNU cross compiler

toolchain. It just reimplemented for RISC-V ISA. Compiling flow just like normal

GCC tools except it produce a unique binary for RISC-V ISA. However in this project,

lowRISV SoC is used. So this part is not applied on project because of these tools are

for standalone RISC-V cores. LowRISC also using this GCC tools but with different

terminal commands. Toolchain usage diagram shown in Figure 1.1 for general flow

map.

6

Figure 1.1 : RISC-V GCC toolflow. Greens are input files and blues are output files
[9].

This is just a standalone RISC-V coding toolflow. In our project, RISC-V core will

run our applications on a Linux OS and will execute C language commands.

1.1.3 LowRISC

LowRISC an organisation that creating its own unique open sourced SoC based on 64

bit RISC-V ISA. This SoC is capable of running on a debian Linux OS. Organisation

also working closely with University of Cambridge and with a community that aims

to improve this SoC in terms of hardware and software design [1]. The LowRISC

team is developing the system for the sake of three main objectives.

• Their designs are licensed and developed as allowed together with co-

developers from many parts of the world. Free and open RISC-V ISA is being

7

implemented. Thus, a common open-source SoC will be completely

standardized.

• The advantage of being open source is that it is a fully auditable system and it

is aimed at being as safe as it is economically by using technologies tagged

memory.

• By trying to reflect the flexibility and diversity of the software to the hardware,

to develop a future SoC by creating a system that can be improved in real-time

applications.

A high level top view of lowRISC chip can be seen in Figure 1.2.

Figure 1.2 : Top view of lowRISC SoC [10]

However, version of lowRISC chip used in this project is 0.6 which does not include

minion subsystem. Reason is that running Linux with that core makes Linux slow. In

future releases it will come again. But still we can use SD Card, vga screen, ps2

keyboard. And also L2 caches removed from this version with upgrade of new version

of TileLink network [11].

1.1.3.1 Rocket-Core view

Rocket core contains a 5-stage pipeline and is built on RISCV64G, which includes one

integer ALU and one optional FPU. In some aspects it is called 6-stage pipeline

8

because of “pcgen” stage is included with it. But lowRISC team differs this stage like

a standalone stage. Pcgen and fetch stages are shown in Figure 1.3.

Figure 1.3 : Instruction cache which includes pcgen and fetch stages [12].

Remained stages are shown in Figure 1.4.

Figure 1.4 : Other stages of pipeline [12].

General pipeline diagram can be shown in Figure 1.5.

9

Figure 1.5 : All pipeline stages in one diagram [9].

L1 data cache is in Figure 1.6.

Figure 1.6 : L1 data cache overview [12].

And all architecture of Rocket Core in Figure 1.7.

10

Figure 1.7 : General microarchitecture of all system [9].

11

1.1.4 Image processing and filters

Image processing can be defined by extracting features to be used from any camera

image, video image, or image, and making a result by using these features after

rendering the computer to process [13]. Images can be considered mathematically two-

dimensional arrays in digital media. On top of that, the signal processing algorithms

can be processed just like a normal analog signal. For this reason, it has an important

place in today's machine learning algorithms and many computer science. Today, in

our world, from the medicine to the automotive sector, military and scientific research

has a very important importance. This recent importance of image processing also

plays an important role in what this project is working on. Although the algorithms are

tried to be optimized by software, the importance of hardware comes to the fore as

well. For these algorithms, many companies are very stable in designing their own

equipment and transferring cost, time and labor to these designs. For this reason, it is

appropriate to use the lowRISC project, which is open source in this graduation

project, for image processing. A general flow for image processing algorith can be

shown in Figure 1.8.

Figure 1.8 : Image processing algorithm general flow [14].

12

1.1.4.1 Kernel

In image processing, the kernel can be defined as a square mask or convolution matrix,

which multiplies certain pixels in the image with their weights and add these weighted

pixels with each other and creates new pixels of the resulting image.

1.1.4.2 Convolution operation

Convolution operation is generally can be described as any pixel in an image will be

additioned with pixels in the neighbor of central pixel values which multiplied by the

kernel weights of each pixels, and every pixel in the picture sees this process in

sequence. Briefly, it is an arithmetic that allows the new picture to be formed by sliding

the kernel on to image from left to right and from top to bottom. Process can be shown

in Figure 1.9.

Figure 1.9 : Convolution operation.

1.1.5 General flow of project

The overall flow of the project will be covered under this heading. Each step written

here will be explained in detail in the next chapter. What we need first is a computer

and an external or internal disk for installing the Ubuntu operating system. Then, to

run the lowRISC chip in the FPGA, the Vivado program of Xilinx will be installed.

There may also need a monitor to connect the FPGA to the monitor, especially in terms

of visual comfort. There is also a need for an ethernet cable for remote communication

13

with the lowRISC Soc in the FPGA. A minimum of 4 GB (16 GB recomended) SD

card and a pc compatible card reader requires to install linux and some applications.

Other option is connecting and using a keyboard through USB interface of FPGA and

executes commands from there. Once the Ubuntu disk has been installed, the necessary

software programs for the compilation of lowRISC and the execution of the software

will be installed and some variables will be defined in the operating system. After this

step, the compiled software and hardware files will be thrown into the FPGA and the

lowRISC will be running. The format of the image to be processed will be changed for

processing with C. The C codes of the image processing algorithm and the image to

be processed will be transferred to the lowRISC SoC using the SSH protocol. The

algorithms will be run on the lowRISC and the resulting image will be transferred to

the host computer using the SSH protocol to be monitored again.

1.2 Literature Review

1.2.1 Literature review at Istanbul Technical University

• (Güngör, Öndeş, Sarı, Uçkun; 2018) “Instruction Set Extension Of Some

Processors For Secure Iot Implementations”

The main subject of this thesis is using AES and PRESENT cryptology algoritms with

instartcion set extention (ISE) in open source processors and to increase the security

of these processors for IoT applications. One of the core of the project is the Pulpino

RI5CY which belongs to the ETH Zurich. The developer Talip Tolga Sarı first placed

this core on the Nexys4 DDR development board which belongs to Xilinx and then

observed that it was working by testing. After this stage, the main subject of the thesis

AES application was implemented by using the instruction set extention method,

successfully performed [15].

1.2.2 Literature review at Turkey

So far, no thesis work about this subject has been done in our country yet. However,

one of Turkey's largest defense industrial firm ASELSAN is a member of RISC-V

organisation ranked as silver member.

14

1.2.3 Global Literature review

• (T. Liu, G. Shi, L. Chen, F. Zhang, Y. Yang and J. Zhang; 2018) “TMDFI:

Tagged Memory Assisted for Fine-Grained Data-Flow Integrity Towards

Embedded Systems Against Software Exploitation”

Modern software attacks often benefit from problems caused by memory corruption.

While the classical data flow integrity provides a good solution to these problems, they

have a large impact on the speed of the applied system and create time problems

because of origin of this algorithm is software based. For all these reasons, a new data

stream integrity hardware, which supports the tagged memory system, is presented by

the developers. In particular, the hardware prototype has been tested on the lowRISC

with the RISCV-based core and major improvements in speed and time have been

observed. According to the results, the data flow integrity hardware system in the real-

time tests reduced the pressure of system from 104% to 39%, the space overhead

shrinks from 50% to 12.5% [16].

• (A. Ramos, A. Ullah, P. Reviriego and J. A. Maestro; 2018) “Efficient

Protection of the Register File in Soft-Processors Implemented on Xilinx

FPGAs”

The main reason for this study is that software processors are designed on FPGA by

using SRAM and also the register structure is one of the most critical information

carrier elements for a processor. Regarding external factors, especially in the aviation

and space sectors, the register values in the processors can be changed and data losses

or errors are experienced. In this study, error tolerance system has been tried to be

applied to register file. This system is used to add the register file to the memory

element in the processor. The RISCV-based LowRISC SoC was used for testing. A

parity based error finder and interchangeable logic system designed to eliminate

single-bit errors. As a result, the designed system not only saves the faulty bits but also

occupies much less space than the general "Triple Modular Redundancy" module [17].

15

2. IMPLEMENTING LowRISC PROCESSOR ON AN FPGA

2.1 Gathering Required Environment

First, the "Ubuntu 16.04.5 LTS" [18] operating system must be installed on an external

or internal disk. A second method, the virtual machine method, has also been tried, but

the use of virtual machines is not recommended because of some tools and hardware

constraints [19].

Immediately after this process, it is necessary to install Vivado 2018.1 [20], which is

owned by Xilinx and is required to place lowRISC in FPGA. In installation tab you

must use WebPack edition of Vivado. It is also important that 2018.1 must be installed

for the lowRISC v0.6. Because in feature releases of Vivado some IP Cores would

change. This will create a conflict while creating lowRISC Vivado project After

installation fallowing command must be entered at bottom of .bashrc file in your home

directory.

• source /opt/Xilinx/Vivado/2018.1/settings64.sh

After enterence of that command start a new terminal and write Vivado. If program is

starting than everything is until now is okey.

2.1.1 Installation of cable drivers

Installation of Vivado on Ubuntu needs also cable driver setup. If these drivers are not

installed, Vivado program does not recognise FPGA board on bitstream process.

Fallowing driver packages are delivered from Digilent. These are recommended

drivers for board [19].

• Adept 2.16.1 Runtime, X64 DEB

• Adept 2.2.1 Utilities, X64 DEB

Drivers can be downloaded from Digilent’s website [21]. After downloading them, do

not forget to install these drivers.

https://reference.digilentinc.com/reference/software/adept/start

16

After these driver installation JTAG driver also must be installed. Open a fresh

terminal and enter fallowing codes.

• cd /opt/Xilinx/Vivado/2018.1/data/xicom/cable_drivers/lin64/install_script/install_drivers

• sudo sh install_digilent.sh

Now everything is set and ready to next installations.

2.1.2 Installation of Cmake

Cmake [22] must be installed to compile some sowftwares for lowRISC. To install

cmake linux version 3.13.2, it can be downloaded from https://cmake.org/downloa d/

[22]. After downloading the files, the commands below must be entered inside the

download folder to the terminal

• ./bootstrap

• make

• make install

2.1.3 Downloading LowRISC chip git repository

This repository contains all software and toolchains including with all LowRISC files.

Before downloading this repo make sure all packages are updated. Following

command update all packages [23].

• sudo apt-get install autoconf automake autotools-dev curl \ libmpc-dev

libmpfr-dev libgmp-dev gawk build-essential bison \ flex texinfo gperf

libncurses5-dev libusb-1.0-0-dev libboost-dev \ swig git libtool libreadline-dev

libelf-dev python-dev \ microcom chrpath gawk texinfo nfs-kernel-server xinetd

pseudo \ libusb-1.0-0-dev hugo device-tree-compiler zlib1g-dev libssl-dev \

debootstrap debian-ports-archive-keyring qemu-user-static iverilog \ openjdk-

8-jdk-headless iperf3 libglib2.0-dev libpixman-1-dev

After these commands make sure Ubuntu has git. Git also can be installed with

fallowing command;

• sudo apt-get install git

https://cmake.org/download/

17

With proper installation of git, now lowRISC v0.6 could be downloaded from git repo.

Following command must entered in work directory. In my case it is in

/home/user/vivado/.

• git clone -b refresh-v0.6 --recursive https://github.com/lowrisc/lowrisc-chip.git

lowrisc-chip-refresh-v0.6 cd lowrisc-chip-refresh-v0.6

When entering “lowrisc-chip-refresh-v0.6” directory, some main directories can be

seen. Their purposes and usages are listed below [23];

• fpga: FPGA demo implementations

o board: Demo projects for individual development boards.

▪ nexys4: Files for the Nexys™4 DDR Artix-7 FPGA Board.

• debian-riscv64: Scripts to bootstrap a Debian Linux RISCV system

• riscv-linux: The Linux RISCV kernel with LowRISC device drivers

• rocket-chip: The Rocket core and its sub-systems.

o firrtl: Hardware description intermediate language

o hardfloat: Hardware floating-point arithmetic unit

o torture: Tricky tests that stress the CPU

o riscv-tools: The cross-compilation and simulation tool chain.

▪ riscv-fesvr: The front-end server that serves system calls on the

host machine.

▪ riscv-gnu-toolchain: The GNU GCC cross-compiler for RISC-

V ISA.

▪ riscv-isa-sim: The RISC-V ISA simulator Spike

▪ riscv-opcodes: The enumeration of all RISC-V opcodes

executable by the Spike simulator.

▪ riscv-pk: The proxy kernel need for running legacy programs

in the Spike simulator.

▪ riscv-tests: Tests for the Rocket core.

• src: The top level code of lowRISC chip.

https://github.com/riscv/riscv-isa-sim#risc-v-isa-simulator

18

o main: The Verilog code for hardware implementation.

o test: The Verilog/C++(DPI) test bench files

• qemu: User mode emulation of RISCV instruction set

2.1.4 Installing RISC-V GNU toolchain

Firstly, default gcc and g++ must be updated. Fallowing commands will work for it.

• sudo apt update

• sudo apt upgrade

• sudo apt install build-essential

Gcc version must be higher than 5.2.

• gcc –version

• which gcc

After these steps, Reopen “lowrisc-chip-refresh-v0.6” folder and open terminal at this

folder.

• cd /rocket-chip/riscv-tools

• ./build.sh

This process is really takes a long time depending computer system. Like 30min- 2

hours. If everything is correct next step is updating .bashrc commands. Open new

terminal at “lowrisc-chip-refresh-v0.6” folder

• ./set_env.sh

At command window result of bash commands will seen in terminal screen. Copy all

variables paste to .bsahrc file. Final version of .bashrc can be seen in Figure 2.1

19

Figure 2.1 : Bashrc commad window.

If getting response for fallowing command, toolchain has successfully installed.

• which riscv64-unknown-elf-gcc

2.2 Installing Linux to lowRISC

From now there are two ways to get Linux to lowRISC, first one is create your own

Linux kernel from tools or, get binary release from lowRISC tutorial page [24].

Creation new Kernel is a more complex way and making mistakes at this stage is really

critical. For now it is safe choğice to getting binary release and continue on uploading

Linux system to lowRISC. A detailed guide could be seen on

https://www.lowrisc.org/docs/download-install-debian/ to continue on building own

Kernel [19].

To install binary release input fallowing codes to terminal

• git clone https://github.com/lowRISC/lowrisc-quickstart.git

https://github.com/lowRISC/lowrisc-quickstart.git

20

• cd lowrisc-quickstart

• make getrelease

After these commands three important files will be appear in directory [24].

• boot.bin – includes Linux kernel, Berkeley bootloader, and initial ramdisk.

• chip_top.bit - The FPGA bitstream containing the lowRISC SoC which

includes RISCV processor and peripherals and the first-stage booter

• rootfs.tar.xz - The compressed tape archive containing the Debian root filing

system for RISCV

After that process insert your SD card to card reader and to your computer. After

recognized from your Ubuntu, type lsblk command to your command window too see

all storage devices listed on your computer. It is really dangerous that choosing right

name on that list. If wrong choice has choosen, own PC data could be formatted

without any chechkpoint. In Figure 2.2 a default 16 GB SD Card shwon at lsblk list.

Figure 2.2 : 16 GB SD Card

A new fresh SD Card only been as sdx1 as 14.9 GB strorage. Check twice SD Card

device name and never forget! In fallowing commands name of device entered as sdx

for copy paste safety. X letter must be changed with correct SD Card name.

• make umount USB=sdx

If SD card used before type instead:

• Make USB=sdx cleandisk partition

If any error occurs during these processes repeat all steps two steps above

independently after reinserting SD Card to PC. After operations run lsblk to see results

at Figure 2.3.

21

Figure 2.3 : After commands worked properly.

After that typing fallowing command will install all 3 files above proper locations to

SD Card.

• make USB=sdx mkfs fatdisk extdisk

Say yes on terminal if asks any question. First question is asking to user create new

file system for lowRISC. Second step asks for write permission of kernel and BBL to

DOS partition. After all these steps now unplug SD Card from computer and Plug it to

FPGA. Also on FPGA board JP1 must stand at QSPI mode and JP2 must stand at SD

mode as shown in Figure 2.4 [24].

Figure 2.4 : Jumper positions to boot from SD card

22

From now its all set to boot lowRISC to FPGA. Fallowing code will install bitstream

file to QSPI Flash.

• make program-cfgmem

After these process Vga screen conncected to the FPGA seems like at Figure 2.5.

Figure 2.5 : Boot screen at VGA display.

And FPGA waits in waiting input mode at Figure 2.6.

23

Figure 2.6 : Waiting input mode.

In this step, we should choose boot from SD Card and making switch 1 high will do

job which shown in Figure 2.7.

Figure 2.7 : Booting from SD card chosen

Choice must be done when before giving power FPGA. After restarting FPGA with

choice which sw1 goes up, Figure 2.8, Figure 2.9 and 2.10 shows FPGA u-boot based

operations.

24

Figure 2.8 : Successfully boot operation started.

Figure 2.9

25

Figure 2.10

Output of First stage bootloader in Figure 2.11. If it does not write “Bus Width : 4 bit”

it means your SD card does not set properly [24].

Figure 2.11 : First stage bootloader output.

From now fallowing figures which are Figure 2.12, 2.13, 2.14, 2.15 are serial stages

of booting Linux to lowRISC.

26

Figure 2.12 : Hash code of kernel.

Figure 2.13 : There could be some warns. It will continue

27

Figure 2.14 : Other boot informations

Figure 2.15 : Ethernet connection is okey too.

After these steps all boot operations are set and at the last screen user will see login
screen like in Figure 2.16.

28

Figure 2.16 : Login screen and first login must be root.

First login must be root and givin any root password key is okey to root. After that

lowRISC will prompt user for superuser set then creates a normal user which is also

has same name of your Ubuntu computer name. In my example it is bartu. Also a

password key must be entered to that user. Same password with root will work which

shown in Figure 2.17.

Figure 2.17 : Login screen with prompts.

29

After all these setups, now lowRISC will ask user name and password key to login

machine. After entering either root or Ubuntu user, a bash command screen will appear

at VGA display which shwon in Figure 2.18.

Figure 2.18 : Bash command screen.

From now, there is 2 way to use lowRISC. First way is using your Ubuntu machine

and connect and control lowRISC with SSH protocol. Other is directly with PS2 FPGA

keyboard and VGA monitor. It is recommanded that updating or installing any

program to lowRISC must be from FPGA keyboard. SSH protocol gives shows some

problems and errors at this stage.

2.3 Peripherals of system

LowRISC 0.6 version has some good peripherals to use system like standalone PC.

One is a ps2 – USB connection keyboard which is easy to use lowRISC with bash

commands. Second peripheral is ethernet cable support. This allows lowRISC to

connect internet and get some new apps for ported RISCV architecture. These app list

and app repository can be shown at this page [25]. And last peripheral is VGA display

port. LowRISC team makes this VGA display as a text display which only encodes

and writes some character with support of color. So if user want to show picture from

lowRISC to VGA display for now it is not possible to do. Figure 2.19 shows all

connected peripherals to FPGA.

http://riscv.mit.edu/

30

Figure 2.19 : Full peripheral connection.

2.4 Implementing image filter algorithms to lowRISC

Since package support for RISCV is limited for now, I decided to use pure C language

to image filtering and processing operations. But the great constraint is pure C which

has no additional library is not able to common image formats. For this purpose a little

research shows us there is some formats even pure C could read an image and write a

output image file. Project chose to use .ppm file.

2.4.1 PPM format

This format is a lowest common denominator color image format. Format is so

inefficient in terms of compressing and image quality. Also format does not include

really little information about file. What makes this format good is format makes any

image read easy and makes easy to process data of image which is essential for our

system. Format in Hex reader shown at this format:

31

• A “magic number” that gives file type, which is “P6” for ppm.

• CR ASCII.

• Width information as ASCII.

• Whitespace.

• Height information as ASCII.

• CR ASCII.

• Maximum color value of a pixel. General maximum 255 and mininmum 0 in

ASCII format.

• CR ASCII.

• And image vector values in ASCII format. Image starts From left to right and

Upper Line is first line to start writing. There is no whitespace characters

between pixels and rgb values. First value is Red of pixel 1, second is Green

of pixel 1, third is blue of pixel 1 and after that goes pixel 2 rgb values and so

on.

2.4.2 Converting PNG to PPM

Since ppm format is not common as like jpeg or png, input image firtly must converted

on ppm from png. However for now there is no converter for lowRISC system, we

should convert it at Ubuntu machine and after that give ppm image to lowRISC as

input image. For this purpose a program named ImageMagick msut be installed on

Ubuntu. To install enter fallowing code:

• sudo apt-get install imagemagick

• sudo apt-get install gcc php-common

• sudo apt-get install php-imagick

• service apache2 restart

After correct installation, faloowing command convert any png image to ppm file:

• mogrify -format ppm input.png

From now input image is ready to send to lowRISC Linux with SSH.

32

2.4.3 Sending input image to lowRISC

Since ethernet connection is enabled and it is easy to use ssh protocol to send or receive

any data between two system at same LAN, it better send ppm data through this way.

Only need for ssh connection from Ubuntu to lowRISC is ip address of lowRISC which

already taken at Figure 2.15. However with using ifconfig command at bash screen of

lowRISC will reveal ip address of ethernet again. After ssh command shold entered in

bash screen of Ubuntu machine:

• ssh 160.75.27.68

It is just for controlling lowRISC bash remotely. Fallowing command must entered

image location terminal, will send input.ppm image to lowRISC chosen directory:

• scp input.ppm 160.75.27.68:/home/bartu/

It will ask password. Type password and send file.

2.4.4 C code for filters

These codes are written in C language and general flow for running program on

lowRISC should be in this order at bash command:

• gcc sobel.c -o program –lm

• ./program

GCC first reads program and compile an executeble file which anmes as program.

After next command, execution is occurs. But do not try to compile program in Ubuntu

machine because exe files are system spesific. This means only running exe on

lowRISC will not work because it was compiled an x64 machine. So all commands

must be entered at lowRISC’s bash comand screen. Figure 2.20 will show input image

which is widely used for image processing application as subject.

33

Figure 2.20 : Example input image.

2.4.4.1 Common parts of filter in codes

Fallowing Figures which are 2.21, 2.22, 2.23, 2.24 are same for all filter codes.

Figure 2.21 : Reading input and writing output file pointers

34

Figure 2.22 : Reading image information and writing output file same informations.

35

Figure 2.23 : Some variables for rgb datas and reading image and storing to
variables.

Figure 2.24 : Grayscale of image if needed.

2.4.4.2 Red Only filter

Fallowing Figure 2.25 shows Red mask algorithm and Figure 2.26 shows output of

image.

36

Figure 2.25

Figure 2.26

2.4.4.3 Green only filter

Fallowing Figure 2.27 shows Green mask algorithm and Figure 2.28 shows output of

image.

Figure 2.27

37

Figure 2.28

2.4.4.4 Blue Only filter

Fallowing Figure 2.29 shows Blue mask algorithm and Figure 2.30 shows output of

image.

Figure 2.29

38

Figure 2.30

2.4.4.5 Sobel Operation filter

Sobel operation is used for edge detection. Two kernels is used to make filtering. First

kernel is used for vertical lines and other is used for horizontal line detection. After

both of them applied independantly each pixel will blend with ratio. Figure 2.31 and

Figure 2.32 shows kernel values for convolution.

Figure 2.31 : Horizontal kernel

Figure 2.32 : Vertical kernel

Next part is convole each kernel on image which shown in Figure 2.33

39

Figure 2.33 : Convolution operation code and blending operation horizontal and

vertical lines

Output image shown in Figure 2.34.

Figure 2.34 : Sobel operation output.

40

2.4.4.6 RGB edge detection filter

It is same as sobel but in rgb mode. Kernel can be seen in Figure 2.35 Algorithm can

be seen Figure at 2.36.

Figure 2.35

Figure 2.36 : Convulution and reduction of lower 0 and upper 255 values.

Output file can be seen in Figure 2.37.

41

Figure 2.37

2.4.4.7 Sharpen filter

This filter makes images looks sharper than normal. After RGB edge detection filter

all convolution operations are same C code. They will not shown fallowing filters.

Kernel of Sharpen is shown at Figure 2.38 and output shown in Figure 2.39.

Figure 2.38

42

Figure 2.39

2.4.4.8 Emboss filter

This filter makes images looks like embossed in 3D view. Kernel of emboss filter is

shown at Figure 2.40 and output shown in Figure 2.41.

Figure 2.40

43

Figure 2.41

2.4.4.9 Gaussian Blur filter

This filter makes images blurrish. It is widely used after or before edge detection to

get proper edges from image. Kernel of gaussian blur filter is shown at Figure 2.42

and output shown in Figure 2.43.

Figure 2.42

44

Figure 2.43

2.4.5 Autamatization of filtering image algorithm

Since converting and sending image and applying filter is easy to forget process, a

general sh code written and can be run on Linux lowRISC. Fallowing code converts

input.png to ppm, ask user for which filter will applied and writes time to bash screen

to see starting time and applys filter. After that output image is written and again time

is shown at bash to see how much time elapsed for processing part. It converts output

image to png again. Then removes ppm files from location to better harware storage

control.

cd /home/bartu/Desktop

mogrify -format ppm input.png

echo "Creating exe file"

echo "Enter 1 for Sobel"
echo "Enter 2 for OnlyRed"

echo "Enter 3 for OnlyGreen"

echo "Enter 4 for OnlyBlue"

echo "Enter 5 for RGBEdges"

echo "Enter 6 for Sharpen"
echo "Enter 7 for Emboss"

45

echo "Enter 8 for Gaussian Blur"

read choice

if ["$choice" -eq 1];

then

 now=$(date +"%T")
 echo "Generating Sobel! - Time : $now"

 gcc sobel.c -o program -lm

 ./program

 now=$(date +"%T")

 echo "Sobel operation finished - Time : $now"

elif ["$choice" -eq 2];
then

 now=$(date +"%T")

 echo "Generating OnlyRed! - Time : $now"

 gcc only_red.c -o program -lm

 ./program
 now=$(date +"%T")

 echo "OnlyRed operation finished - Time : $now"

elif ["$choice" -eq 3];

then

 now=$(date +"%T")
 echo "Generating OnlyGreen! - Time : $now"

 gcc only_green.c -o program -lm

 ./program

 now=$(date +"%T")

 echo "OnlyGreen operation finished - Time : $now"

elif ["$choice" -eq 4];
then

 now=$(date +"%T")

 echo "Generating OnlyBlue! - Time : $now"

 gcc only_blue.c -o program -lm

 ./program
 now=$(date +"%T")

 echo "OnlyBlue operation finished - Time : $now"

elif ["$choice" -eq 5];

then

 now=$(date +"%T")
 echo "Generating RGBEdges! - Time : $now"

 gcc RGBEdgeDetector.c -o program -lm

 ./program

 now=$(date +"%T")

 echo "RGBEdges operation finished - Time : $now"

elif ["$choice" -eq 6];
then

 now=$(date +"%T")

 echo "Generating Sharpened! - Time : $now"

 gcc Sharpen.c -o program -lm

 ./program
 now=$(date +"%T")

 echo "Sharpen operation finished - Time : $now"

elif ["$choice" -eq 7];

then

 now=$(date +"%T")
 echo "Generating Embossed! - Time : $now"

 gcc Emboss.c -o program -lm

46

 ./program

 now=$(date +"%T")

 echo "Emboss operation finished - Time : $now"

elif ["$choice" -eq 8];

then
 now=$(date +"%T")

 echo "Generating Gaussian Blur! - Time : $now"

 gcc gb.c -o program -lm

 ./program

 now=$(date +"%T")

 echo "Gaussian Blur! operation finished - Time : $now"
fi;

mogrify -format png output.ppm

echo "output.png file created to current folder"

rm output.ppm

rm input.ppm
rm program

Usage on bash command screen can be seen on Figure 2.44.

47

Figure 2.44 : Usage of Automatization code.

48

49

3. REALISTIC CONSTRAINTS AND CONCLUSIONS

3.1 Practical Application of this Project

In real life, lowRISC SoC can be used on FPGA as well as on prototyping and testing

on FPGA and after design on a custom chip. In the current version of the open source

coded SoC, there will be no access to the general purpose input output pins, but in the

following versions it will come as update. In addition, the advantage of open sourced,

chip developers as they want to customize the possibility that they want, they can use

this chip some other spesific industries like automation and aviation.

3.2 Realistic Constraints

3.2.1 Social, environmental and economic impact

The biggest advantage of open source processors is that developers don't have to

design a unique processor. This advantage will give the developers enormous benefits

in terms of time and resources. Both countries that cannot produce their own chips and

developers will benefit greatly in the advancement of technology. In addition, the

standardization of being open source, thanks to the innovations offered by any

company or developer has always been open to the opportunity to follow the global

technology.

3.2.2 Cost analysis

First of the my necessary materials is FPGA evaluation boards (one for each member

of group) that faculty management meets. But In addition to the FPGA evaluation

boards, I also used Vivado development environment that is used for a implementation

LowRISC chip. Since this project worked with full open sourced software and

hardware and operating system like Linux Ubuntu, there is no cost for any of hardware

or software environment.

Other costs for the project is similar to Form 3.

3.2.3 Standards

The purpose of this project is to show the level of applications that can be done using

open source processors. Open source processors, which are still in development, are

already in compliance with many standards with their low power consumption.

50

Moreover, since they are within the framework of legal standards, the standards here

are completely free to the extent determined by the producers. Since the project is run

by many developers, it is already designed to comply with IEEE standards. However,

as there are no studies in our country, standards will be created over time and my

project will be included in these standards.

3.2.4 Health and safety concerns

This project has not aimed to design and implement any harmful or risky product that

may affect users. Created systems impelemented in FPGA and it is totally safe.

3.3 Future Work and Recommendations

• Since there is no "GPIO" access in this version, the camera cannot be

connected. In future work, either wait for the new version and access the

"GPIO", or connect the camera to the lowRISC without waiting for the new

version with implementation of spesific camera interface.

• Any autonomous outgoing vehicle can be made using image processing filters

and also using "GPIO" access. Thus, LowRISC, which is an open source, can

be tested, observed and improved on such issues.

• Software applications for performing image filtering steps can also be

performed hardware in terms of targeting certain customized applications. In

this way, the hardware can be designed for a new purpose by integrating the

lowRISC into a customized image processing chip.

51

REFERENCES

[1] L. Team, "About LowRISC," LowRISC, 08 2018. [Online]. Available:
https://www.lowrisc.org/about/. [Accessed 26 12 2018].

[2] R.-V. Foundation, "RISC-V Cores and SoC," RISC-V, 05 2017. [Online]. Available:
https://riscv.org/risc-v-cores/#. [Accessed 28 12 2018].

[3] D. Inc., "Nexys 4 DDR," Digilent Inc., 2012. [Online]. Available:

https://reference.digilentinc.com/reference/programmable-logic/nexys-4-ddr/start. [Accessed 12 11
2018].

[4] Opensource.com, "Opensource.com," 1 1 2019. [Online]. Available:
https://opensource.com/resources/what-open-source.

[5] A. R. Core, "32bitMicro," 02 02 2015. [Online]. Available:
https://web.archive.org/web/20150202024204/http://32bitmicro.com/component/content/article/457-

soft-processor/973-amber-risc-core. [Accessed 25 12 2018].

[6] K. Afef, E. Wajih, R. Velazco and R. Tourki, "An exhaustive analysis of SEU effects in the SRAM
memory of soft processor," vol. 13, pp. 58-68, 2018.

[7] Oracle, "About OpenSPARC," Oracle, December 2005. [Online]. Available:
https://www.oracle.com/technetwork/systems/opensparc/opensparc-overview-1562924.html.
[Accessed 25 12 2018].

[8] R.-V. Foundation, "About the RISC-V ISA," RISC-V Foundation, 25 11 2018. [Online]. Available:

https://riscv.org/risc-v-isa/.

[9] B. Keller, "Handouts for CS250: VLSI Systems Design," 17 9 2013. [Online]. Available:
http://www-inst.eecs.berkeley.edu/~cs250/fa13/handouts/lab2-riscv.pdf#13. [Accessed 24 12 2018].

[10] LowRISC, "Overview of the ethernet infrastructure," LowRISC, 12 2017. [Online]. Available:
https://www.lowrisc.org/docs/ethernet-v0.5/overview/. [Accessed 28 12 2018].

[11] LowRISC, "Frequently asked questions," LowRISC, 6 2018. [Online]. Available:
https://www.lowrisc.org/docs/current-release-faq/. [Accessed 27 12 2018].

[12] LowRISC, "Rocket core overview," LowRISC, 4 2015. [Online]. Available:

https://www.lowrisc.org/docs/tagged-memory-v0.1/rocket-core/. [Accessed 25 12 2018].

[13] A. P. D. G. A. (Shahab), "Digital Image Processing," University of Tartu, 1 2014. [Online].
Available: https://sisu.ut.ee/imageprocessing/book/1.

[14] EngineersGarage, "Introduction to Image Processing," EngineersGarage, 5 2011. [Online].
Available: https://www.engineersgarage.com/articles/image-processing-tutorial-applications.
[Accessed 29 12 2018].

[15] C. B. Güngör, Y. Öndeş, T. T. Sarı and B. Uçkun, "Instructoıon Set Extension of Some Processors

for Secure IoT Implementation," Istanbul, 2018.

[16] T. Liu, G. Shi, L. Chen, F. Zhang and Y. Y. a. J. Zhang, "TMDFI: Tagged Memory Assisted for
Fine-Grained Data-Flow Integrity Towards Embedded Systems Against Software Exploitation," in
17th IEEE International Conference On Trust, Security And Privacy In Computing And
Communications/ 12th IEEE International Conference On Big Data Science And Engineering, New

York, 2018.

[17] A. Ramos, A. Ullah and P. R. a. J. A. Maestro, "Efficient Protection of the Register File in Soft-
Processors Implemented on Xilinx FPGAs," 1 2 2018. [Online]. Available:

52

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8008792&isnumber=8255532.

[Accessed 1 1 2019].

[18] Ubuntu, "Ubuntu," Canonical, 28 12 2018. [Online]. Available: https://www.ubuntu.com/.

[19] LowRISC, "Download and install Debian," LowRISC, 5 2018. [Online]. Available:
https://www.lowrisc.org/docs/download-install-debian/. [Accessed 2 11 2018].

[20] Xilinx, "Vivado," Xilinx, 30 12 2018. [Online]. Available: https://www.xilinx.com/products/design-
tools/vivado.html.

[21] Digilent, "Digilent Adept 2," Digilent, 2 2015. [Online]. Available:
https://store.digilentinc.com/digilent-adept-2-download-only/.

[22] Kitware, "About CMake," Kitware, 25 12 2018. [Online]. Available: https://cmake.org/.

[23] LowRISC, "Structure of the git repository," LowRISC, 5 2018. [Online]. Available:

https://www.lowrisc.org/docs/download-the-code/. [Accessed 10 10 2018].

[24] LowRISC, "Getting started," LowRISC, 5 2018. [Online]. Available:
https://www.lowrisc.org/docs/getting-started/. [Accessed 20 12 2018].

[25] "Debian Ports," 23 03 2018. [Online]. Available: http://ftp.ports.debian.org/debian-ports/. [Accessed
22 12 2018].

53

CURRICULUM VITAE

Name Surname : Bartu Sürer

Place and Date of Birth : Sakarya 24.08.1994

E-Mail : surerb16@itu.edu.tr

Bartu Sürer finished primary school at Ahmet Akkoç primary school in Adapazarı and

high school at Sakarya Anatolian High School in Adapazarı. He is currently senior
year student at Electronics and Communication Engineering in Istanbul Technical
University Electrical-Electronics Faculty. He completed his interships at Arçelik A.Ş.
in Tuzla and Otokar Otomotiv ve Savunma Sanayi A.Ş in Sakarya.

