ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICSFACULTY

IMPLEMENTATION OF ASOCBY USING LOWRISC PROCESSOR ON AN
FPGA FOR IMAGE FILTERING APPLICATIONS

SENIOR DESIGN PROJECT

Bartu SURER

ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT

JANUARY 2019

ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICSFACULTY

IMPLEMENTATION OF ASOCBY USING LOWRISC PROCESSOR ON AN
FPGA FOR IMAGE FILTERING APPLICATIONS

SENIOR DESIGN PROJECT

Bartu SURER
(040160706)

ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT

Project Advisor: Assoc. Prof. Dr. Siddika Berna ORS YALCIN

JANUARY 2019

We are submitting the Senior Design Project Report entitled as “IMPLEMENTATION
OF A SOC BY USING LOWRISC PROCESSOR ON AN FPGA FOR IMAGE
FILTERING APPLICATIONS”. The Senior Design Project Report has been prepared
as to fulfill the relevant regulations of the Electronics and Communication Engineering
Department of Istanbul Technical University. We hereby confirm that we have realized all
stages of the Senior Design Project work by ourselves and we have abided by the ethical
rules with respect to academic and professional integrity .

Bartu SURER i
(040160706)

Project Advisor: Assoc. Prof. Dr. Siddika Berna ORS YALCIN

Vi

FOREWORD

I would like to thank to my mentor Assoc. Prof. Dr. Siddika Berna Ors Yalgm who
helped me to find this project and who supported me in all my mistakes, to reach
flawless success and at least work as much as | to complete my project successfully.
Secondly, | would like to offer my gratitude to my mentor Res. Assist. M.Sc. Latif
Akgay, who gave his endless support and even sacrificed his own time in every stage
of the project. Without him, | would never find my way in this project. Finally, 1would
like to emphasize that I owe to my friends, my girlfriend Serra Onder for her endless
support and my family who has the biggest role on my successes for my entire life.

January 2019 Bartu SURER

Vii

vii

TABLE OF CONTENTS

Page

FOREWORD ...ttt ettt e e sntaeee e vii
TABLE OF CONTENTS.....oiiiiiiiiiie et saae e e e iX
ABBREVIATIONS.... .ottt Xi
LIST OF TABLES..... .ot xiii
LIST OF FIGURES.t XV
SUMMARY ettt XVii
OZET ettt Xix
LINTRODUCTION ...ttt ettt e e e e naea e 1
1.1 Basic Information ANd CONCEPLS.....eeeeeiiuiriieeeiiiiiiie e e e et e e 1
1.1.10PEN SOUICE CPUS....uiiiiiiiiiiiiie ettt n e 1
0 N 1] o PSPPSR 2

0 2 T o o PP PR RTT TR 2

1.1.1.3 OPENSPARC. ...t 2

LL2 RISCV oo 2
1.1.2.1 RISC-V compiling to0IScceeiiiiiiiiieiiii e 5
LLBLOWRISC ... 6
1.1.3.1 ROCKET-COrE VIBWcciuiiiieiiiiieiiiie ettt 7

1.1.4 Image processing and fIlters. ... 11
I T =T 11T PSPPSR 12

1.1.4.2 Convolution OPeration............cccceeeeiiiiiiiiiiiiiiiiiie e e 12

1.1.5 General flow Of ProJeCtccoiviiiiiiee i 12

1.2 LItErature REVIEBW .. .ceeiiiiiiiiie ettt e et e e e e e e e e s a e e e e nnaeeees 13
1.2.1 Literature review at Istanbul Technical Universityccccccovvveeeennee. 13
1.2.2 Literature review at TUIKEYoooiiiiiiiiiiiie e 13
1.2.3 Global LIterature TeVIBWcc.evvieeiiiiiiiiie ettt 14
2.IMPLEMENTING LowRISC PROCESSOR ON AN FPGA..........ccccovvernnn. 15
2.1 Gathering Required ENVIrONMENtccooiiiiiiieiiiiiiccce e 15
2.1.1 Installation of cable driversccccceeeiiiiiei e 15
2.1.2 Installation of CMAaKE...........oviiiiiiiiiie e 16
2.1.3 Downloading LOWRISC chip git repoSItorycccoevviiiiiiiviriiiiiiireeeenn. 16
2.1.4 Installing RISC-V GNU toolchain.........ccccocviiiiiieceee, 18

2.2 Installing LinuX t0 JOWRISCccviiiieiiie e 19
2.3 Peripherals OF SYSIEM........oiiiiiie s 29
2.4 Implementing image filter algorithms to IoWRISC ..., 30
24 L PPM TOIMAL.....ci i e 30
2.4.2 Converting PNG tO PPM........ooooiiiii e 31
2.4.3 Sending input image t0 IOWRISCccoiiiieiiiiie e 32
2.4.4 C COUE TOr TIREIS .. .eeiiieei et e e 32
2.4.4.1 Common parts of filter in COUES.........coovvviiiiiiiiiiicce e 33
2.4.4.2 Red ONIY FIIET ...oveiiiieee e 35
2.4.4.3 Green ONly FIler.......ccvviii i 36
2.4.4.4 BlIUE ONIY TIRET ..eveee e 37
2.4.4.5 Sobel Operation filterccvvvvie i 38
2.4.4.6 RGB edge detection fiercoooveiiiiiiii 40
2.4.4.7 Sharpen fIlErovvveiiie e 41
2.4.4.8 EMBDOSS FHTEI......eiiiiiiieiiiiie s 42

2.4.4.9 GausSian BIUr FIIEE ... oo 43

2.4.5 Autamatization of filtering image algorithm............cccccoiiiiiin, 44
3.REALISTIC CONSTRAINTS AND CONCLUSIONS.......cccccveeiiiiiieeeeee, 49
3.1 Practical Application of this Project.........cccvvvviiiiieiiiiiiiiiiiiiiiiiiiccee e 49
3.2 RealiStIC CONSLIAINTS ...ceeiiiiiiiieeiiiiiee et 49
3.2.1 Social, environmental and economic impact.............ccccvvveeeeiiiiinneeeenne, 49
3.2.2 COSt ANAIYSIS ..ot 49
3.2, 3 SEANUAITSee ettt 49
3.2.4 Health and safety CONCEINSuveiiiiiiiiiiie e 50

3.3 Future Work and Recommendations.............ceeeiiiiiieeeeiiiiiiiiee e 50
REFERENCES ...ttt 51
CURRICULUM VITAE ... oottt ettt a e nnana e 53

ABBREVIATIONS

ALU
CPU
FPGA
FPU
ISA
0S
PC
RISC
RTL
SoC
VHDL

. Arithmetic Logic Unit

: Central Processing Unit

: Field Programmable Gate Array

: Floating Point Unit

. Instruction Set Architecture

: Operating System

: Personal Computer

: Reduced Instruction Set Computing

- Register Transfer Level

: System on Chip

L

: Very High —Speed Integrated Circuit Hardware Description

anguage

Xi

Xii

LIST OF TABLES

Page
Table 1.1 : Some cores that used RISC-V ISA [2]......cccooviiiiiiiiiiiiii e 3
Table 1.2 : Some SoCs that used RISC-V ISA[2] ..., 4
Table 1.3 : Some basic RISC instructions [9].coovvvreeiiiiiiiic e 5

Xiii

Xiv

LIST OF FIGURES

Figure 1.1 :

Page
RISC-V GCC toolflow. Greens are input files and blues are output files

[0 e 6
Figure 1.2 : Top view of IoOWRISC SOC [10]cvvvveeiiiiiiiee e 7
Figure 1.3 : Instruction cache which includes pcgen and fetch stages [12]............... 8
Figure 1.4 : Other stages of pipeling [12].cccuviiiiiiiiii e 8
Figure 1.5 : All pipeline stages inone diagram [9].ccccoveeeiiiiiiiie e, 9
Figure 1.6 : L1 data cache overview [12].......ccccoiiiiiiiiiiiiiiiiiiiiiiiiieeer e 9
Figure 1.7 : General microarchitecture of all system [9].cooovvivveeiiiiiiieeeii 10
Figure 1.8 : Image processing algorithm general flow [14].........ccocovveiiiiiiinnnnns 11
Figure 1.9 : Convolution OPEration.cooeiiiiiiieee e 12
Figure 2.1 : Bashrc commad WINAOW.cooiiiiiiiiiiiiiiiiieeeeiieee e 19
Figure 2.2 : 16 GB SD Card.........ccoooiiiiiiiiee e 20
Figure 2.3 : After commands worked properly.ccoccvvveeeeiiiiiiee e 21
Figure 2.4 : Jumper positions to boot from SD cardccccoovveiiiiiiiiiiiieniiiees 21
Figure 2.5 : Boot screen at VGA display...........ccccciiiiiiiiiiic i 22
Figure 2.6 : Waiting INPUL MOTE.couiiiiieeiiiiiiee e 23
Figure 2.7 : Booting from SD card ChOSENoccoiiiiiiiiie e 23
Figure 2.8 : Successfully boot operation started.ccccceevviiieeeeeiiiiiiieee e 24
FIQUIE 2.9 e e e e e e e e e e e e 24
FIGUIE 2,00 ittt 25
Figure 2.11 : First stage bootloader OULPUL.coooiiiiiieieiiiiiiiiie e 25
Figure 2.12 : Hash code of kernel.ooooeiiiiiiiii e 26
Figure 2.13 : There could be some warns. It will continueccovveeeeennn, 26
Figure 2.14 : Other boot INfOrMatioNS...........ccoviuiiiiiiiieiiiie e 27
Figure 2.15 : Ethernet connection is 0Key t00.cccceiiiiiiiiiiieniiiiie e 27
Figure 2.16 : Login screen and first login must be root..............ccccovvvivieiiiiiienennn, 28
Figure 2.17 : Login screen With PromptS.uvvveiiiieieeeeeiiiiiii e 28
Figure 2.18 : Bash cOMMmMand SCIEEN.ccoiiiiuiieeee e 29
Figure 2.19 : Full peripheral CONNECHION.cccuviiiiiiiiiiiiee e 30
Figure 2.20 : Example iNPUE IMAGE.evieiiiiieiiiieeieee e 33
Figure 2.21 : Reading input and writing output file pointerscccceeiiineens 33
Figure 2.22 : Reading image information and writing output file same informations.

.. 34
Figure 2.23 : Some variables for rgb datas and reading image and storing to

VaETADIES. ... 35
Figure 2.24 : Grayscale of image if needed.ccooiiiiiiiieiii e 35
FIQUIE 2,25 e 36
FIQUIE 2.26 ...ttt e e e e e e e e e e e a e e e e e annees 36
FIQUIE 2,27 et e e et e e e e e e e a e e e e e 36
FIQUIE 2.28 ... i 37

FIQUIE 2.29 ... e e e e e e e 37

FIGUIE 2.30 ...ttt 38
Figure 2.31 : Horizontal Kernel...........ccoooiiiiiiiiiiii e 38
Figure 2.32 : Vertical Kernel............ooooiiiiiiii e 38
Figure 2.33 : Convolution operation code and blending operation horizontal and
VEITICAI TINES... e 39
Figure 2.34 : Sobel 0peration OUEPUL.ooviiiiiiiiiiee e 39
FIQUIE 2,35 L.t 40
Figure 2.36 : Convulution and reduction of lower 0 and upper 255 values. 40
FIQUIE 2. 37 e 41
FIUIE 2,38 ... i 41
FIGUIE 2.30 .. ettt 42
FIGUIE 2,40 ...t 42
FIQUIE 2,41 . et e e 43
FIQUIE 2,42 ... et e e e e e 43
FIQUIE 2,43 . it e e e e e e et e e e e e e e e e e e s 44
Figure 2.44 : Usage of Automatization COUe.cccvrveeiiiiiiiiieee e 47

IMPLEMENTATION OF LOWRISC SOC
ON FPGA FOR IMAGE FILTERING APPLICATIONS

SUMMARY

The rapid increase in technology is one of the major factors that lead to a rapid increase
in human needs. Inevery areaof our lives, we now carry out our daily and professional
life with the help of machines. For these reasons, the importance of processors that
give mind and purpose to machines comes to the fore. But the biggest problem with
all the increasing importance is the lack of a standard in the architecture of these
processors. Although each company creates its own standard and architectural
structure, today there is no architectural structure in which these companies have
shared. Inaddition, large chip manufacturers develop their own chips and software and
sell them at high prices. Because chip development requires years of knowledge and
research, and at the same time, this process creates high costs. For this reason,
countries and institutions that could not create their own chip architecture will benefit
from using open source processors instead of purchasing high-priced and non-open-
source firms’ chips for their smart machines. In this context, open source processors
are becoming more and more important in order to be able to benefit economically and
to be highly effective in terms of performance / price. In this project, with using "RISC-
V" instruction set architecture which was created eight years ago at the University of
California, Berkeley and is closely followed by many large companies like Nvidia and
Western Digital, based "lowRISC" SoC is aimed to be implemented and image
processing algorithms will be executed on that SoC. This SoC created with Rocket
cores.

For the implementation of the project, FPGA (field programmable gate series)
technology, which is one of the most important blessings offered by the technology to
the electronics engineers, is used. In general, the project first deals with the proper
operation of the lowRISC chip system on the "Nexys 4 DDR" produced by Xilinx
properly. Then, a Linux operating system version which works with lowRISC installed
on this chip, certain filters have been applied to the images with pure "C" programming
language without installing any additional libraries. For this purpose, Gauss blur filter,
Sobel operation filter, Embossing filter, sharpening filter, black-white filter and many
more are used in this project, which are essential for image processing applications
and which are essential for image feature detection purpose.

As aresult, the outcome of the project also shows us the working conditions and cost
of a system developed using this processor. Even though we haven't developed an
architecture as a country yet, open source processors are shown in this project which
will be extremely helpful to us in the technological tools we produce. Here, it is seen
that choosing these processors are extremely wise decision for developers in terms of
time, price and labor, both for prototyping and technological studies.

Xviii

FPGA UZERINDE GORUNTU iSLEME AMACIYLA LOWRISC CiP
SISTEMININ GERCEKLESTIRILMESI

OZET

Teknolojinin hizla artmasi, insan ihtiyaclarmin da hizla artmasma yol agan biiyiik
etmenlerden biri. Hayatmizn her alaninda artik makinelerin yardimlariyla giinlik ve
profesyonel hayattaki islerimizi gerceklestiriyoruz. Tiim bu sebeple makinelere akil ve
amac¢ veren iglemcilerin 6nemi 6n plana ¢ikmaktadr. Ancak tiim artan 6nemin
getirdigi en biiylik sikmti bu igslemcilerin mimarisinde bir standartm olmamasi. Her
firma kendi standartmi ve mimari yapismi olustursa da, gliniimiizde bu firmalarin
ortaklastigi bir mimari yapt bulunmamakta. Ayrica biiyiik ¢ip iireticileri kendi ¢iplerini
ve yazihmlarini gelistirmekte ve bunlar1 yiiksek fiyatlarda satmaktadr. Ciinkii ¢ip
gelistrmek yillarm bilgi birikimi ve arastrmasm gerektirmekte ve ayni zamanda bu
siregte yliksek maliyet ortaya c¢ikarmaktadwr. Bu sebeple kendi ¢ip mimarisini
olusturamamus iilkeler ve kurumlar, kendi gelistirecekleri makineler i¢in yiiksek fiyath
ve acik kaynakh olmayan firmalarm c¢ip mimarisini satm almak yerine, acik kaynak
kodlu olan iglemcileri kullanmalarmda biiyiik fayda saglayacaklardr. Bu baglamda
ozellikle ekonomik olarak da faydalanabilmek ve performans/fiyat agisindan son
derece efektif olmasi i¢in, diinyann bir¢ok yerinde rdvasta olan acik kaynak kodlu
islemciler git gide 6nem kazanmakta. Bu projede ise sekiz yil once Berkeley’deki
California Universitesi tarafindan gelistirilen, giiniimiizde de bir ¢ok biiyiik firma
tarafindan da (Nvidia, Western Digital) yakindan takip edilen "RISC-V" komut seti
mimarisi ile olusturulmus Rocket ¢ekirdegi tabanh olan "lowRISC” ¢ip iizeri sistemi
¢ip tlizeri sistemi gerceklenmesi ve iizerinde goriintli isleme algoritmalarnin
cabstrlmas1 hedeflenmistir. Bu amagla goriintii isleme uygulamalarinda kullanilan
olmazsa olmaz filtrelerden Gauss bulaniklastrma filtresi, Sobel operasyonu filtresi,
Kabartma filtresi, keskinlestirme filtresi, siyah-beyaz filtre ve daha pek g¢ogu, bu
projede gerceklestirilmistir.

Projenin gergeklestirilmesi igin, teknolojinin elektronik miihendislerine sundugu en
onemli nimetlerden biri olan FPGA (alan programlanabilir geg¢it seri) teknolojisi
kullaniimigtr. Proje genel olarak once lowRISC ¢ip tizeri sisteminin, Xilinx firmasi
tarafindan iiretilen "Nexys 4 DDR" iizerinde kurulmasi ve c¢ahstrimasmi ele ahyor.
Daha sonra bu ¢ipe kurulan Linux igletim sistemi iizerinde, hi¢ bir ek kiitliphane
kurmadan saf "C" programlama dili ile goriintiilere belirli filtreler uygulanmustr. Bu
amagla, gorlintii isleme uygulamalarinda kullanllan ve goriintiiniin iglenmesi i¢in
gerekli olan ozellklerini 6n plana ¢ikaran, olmazsa olmaz filtrelerden Gauss
bulaniklagtrma filtresi, Sobel operasyonu filtresi, Kabartma filtresi, keskinlestirme
filtresi, siyah-beyaz filtre ve daha pek ¢ogu bu projede gergeklestirimistir.

Sonug olarak, projenin getirisinin de bize gosterdigi sonug, bu islemci kullamlarak
gelistirilen bir sistemin ¢alisma sartlar1 ve maliyeti kolayca hesaplanabilir. Heniiz
iilke olarak bir mimari gelistrmemis olsak bile acik kaynak kodlu islemciler, kendi
iiretecegimiz teknolojik araglarda bize son derece yardimci olacagi bu projede gozler
Oniine serilmistir. Burada hem prototiplenmesi hem de teknolojik ¢ahsmalara

XiX

ayrilacak zaman, fiyat ve emek agismdan, bu islemcilerin gelistiriciler icin son
derece akillica bir se¢im oldugu goriilmiistiir.

1. INTRODUCTION

In this graduation project, firstly the "lowRISC" chip [1], which was created from the
open source processors "RISCV" architecture [2], will be implemented on the Nexys4
DDR [3] which belongs to Xilinx and then the image processing algorithm will be run
on the Linux operating system which will be run by this process. In addition, the
"lowRISC" architecture in the project has been examined in detail and will be

explained in this section.

Recently, the increasing trend and need for image processing and machine learning is
the main reason for the use of this project and the processor. In this project, the use of
image processing algorithms on the system and evaluation of the results will be

discussed.

1.1 Basic Information And Concepts

A detailed description of all equipment, tools and software used in the project will be
made in this section. It will be stated what each one is and what the purpose serves in

the project..

1.1.1 Opensource CPUs

Over the years, the word “open source"” has only been talked about software in the
world of technology [4]. The main reason for this is that developing a software requires
less resources than developing hardware. These sources can be listed as basic
economic, commercial, time and research studies. However, with the advancing
technology nowadays, many developer groups are now less dependent on these
resources. In addition, the development of their own architectural structures of large
firms and the competition among themselves, these companies do not bring any
standard to the chip world. For this reason, the importance and value of open source
processors in the last decade has been understood by the big companies that develop

other technologies. Some of thems are listed below.

1.1.1.1 Amber

Amber is a processor core that supports the "ARM" architecture and has a 32 bit RISC
calculation [5]. The processor is open source and is located on the website of the action
called “OpenCores”. The Amber processor has an instruction set fully compatible with
ARMv2a and has full support by the "GNU toolchain™. The reason why the processor
has this old version instruction setis that it is not patented by ARM [5].

1.1.1.2 Leon

LEONis a32-bit CPU microprocessor core, with used the SPARC-
V8 RISC architecture and its instruction setdesigned by Sun Microsystems [6]. It was
firstly designed by the European Space Research and Technology Centre, and after
that designing the project was continued by Gaisler Research. LEON was written in
synthesizable Verilog HDL (Hardware Description Language) [6]. LEON has two
different license model, a LGPL/GPLFLOSS license that can be used without any
payment for licensing, and other is a proprietary license that can be purchased for

integration in a proprietary product [6].

1.1.1.3 OpenSPARC

OpenSPARC is a 64-bit and 32-threaded processor written in verilog in 2005 by Sun
Microsystems' register-transfer level (RTL) [7]. OpenSPARC with two different
models, UltraSPARC T1 and UltraSPARC T2, has GNU General Public license [7].

1.1.2 RISC-V

RISC-V is an open-source, ISA (instruction set architecture) designed for high
performance with great power efficiency which was created eight years ago at the
University of California, Berkeley [8]. RISC-V is the fifth generation of the “reduced
mstruction set computer” type of architecture. What makes the "RISCV" architecture
unigue is not a great performance or technology. What makes this architecture unique
is that it is completely redundant and therefore gives great promise to developers in
terms of time and economy. RISC-V ISA delivers a new level of free open source
which extensible hardware freedom on architecture, which makes this ISA innovative
and futuristic. In addition, this ISA has many software tools, simulation tools, compiler
tools, bootloaders, kenrels, OSs and debug tools avaible by the RISC-V foundation.
Because of all these features, many developers and companies have created many

http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvMzItYml0
http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvQ2VudHJhbF9Qcm9jZXNzaW5nX1VuaXQ
http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvTWljcm9wcm9jZXNzb3I
http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvU1BBUkM
http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvUmVkdWNlZF9pbnN0cnVjdGlvbl9zZXRfY29tcHV0aW5n
http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvSW5zdHJ1Y3Rpb25fc2V0
http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvU3VuX01pY3Jvc3lzdGVtcw
http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvRXVyb3BlYW5fU3BhY2VfUmVzZWFyY2hfYW5kX1RlY2hub2xvZ3lfQ2VudHJl
http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvR2Fpc2xlcl9SZXNlYXJjaA
http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvVkhTSUNfSGFyZHdhcmVfRGVzY3JpcHRpb25fTGFuZ3VhZ2U
http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvR05VX0xlc3Nlcl9HZW5lcmFsX1B1YmxpY19MaWNlbnNl
http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvR05VX0dlbmVyYWxfUHVibGljX0xpY2Vuc2U
http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvRkxPU1M

cores created by using RISC-V. Some of these cores are shown in the Table 1.1 and

some other SoCs are shown in Table 1.2.

Name
rocket
freedom
Berkeley Out-of-Order
Machine (BOOM)

ORCA

RISCY

fero-riscy

Ariane

Riscy Processors
OPenV/mriscv
WexRiscv

Roa Logic Rv12

SCR1

Hummingbird E200

Shakti

ReonV
PicoRV32

MR

Links

GitHub

GitHub

GitHub

GitHub

GitHub

GitHub

Website GitHub

Website GitHub
GitHub
GitHub

GitHub

GitHub

GitHub

Website GitHub

GitHub
GitHub

GitHub

Priv.
spec

1.11-
draft

1.11-
draft

1.11-
draft

1.9.1

1.10

User
spec

2.3-draft

2.3-draft

2.3-draft

RV32IM

RV32IMC

RV32IMC

RvVB4IMC

RV321(7)
RVI2I[MILC]

21

2.2,
RV32I/E[MC]

2.2,
RV3IZIMAC

2.2,
RVB4IMAFD

RV321/E[MC]

RV32I

License

BsD

B=D

B5D

B5D
Solderpad
Hardware
Licensev. 0.51
Solderpad
Hardware
Licensev. 0.51
Solderpad
Hardware
License v. 0.51
MIT

MIT

MIT

MNon-
Commercial
Licenze
Solderpad
Hardware
License v. 0.51

Apache 2.0

B5D

GPLW3
15C

Unlicense

Table 1.1 : Some cores that used RISC-V ISA [2]

Maintainers
SiFive, UCE Bar
SiFive
Esperanto, UCB
Bar
VectorBlox
ETH Zurich,
Universita di
Bologna
ETH Zurich,
Universita di
Bologna
ETH Zurich,
Universita di
Bologna
MIT C5AIL C5G
onChipUis
SpinalHDL

Roa Logic

Syntacore

Bob Hu

IIT Madras

Clifford Wolf

Tom Verbeurs

Mame

Rocket
Chip

LowRISC

PULPino

FULFi==imo

PicosoC

Icicle

Links

GitHub,Simulator

GitHub

Website GitHub

Website GitHub

GitHub
GitHub

GitHub

GitHub

GitHub

Core

Rocket

RWV32IM

RISCY, Zero-
riscy, Ariane

RISCY, Zero-
riscy, Ariane

VexRisow
R\l

FicoRV32

FicoRV32

Rv32I

License

BsD

BsD

Solderpad Hardware
License v. 0.51

Solderpad Hardware
License v. 0.51

MIT
MIT

I5C

I5C

I5C

Table 1.2 : Some SoCs that used RISC-V ISA [2]

Maintainers

SiFive, UCB BAR

LowRISC CIC

ETH Zurich, Universita di
Bologna

ETH Zurich, Universita di
Bologna

SpinalHDL
AleksandarkKostovic

RTimothyEdwards,
mkkassem (efabless.com)

Clifford Waolf

Graham Edgecombe

In this project, LOwWRIS SoC (System on chip) is used which shown in Table 1.2.

Some basic RISC-V instructions are similar to old RISC ISA’s like OpenRISC some

of them are shown in Table 1.3

31 27 25 22 21 17 16 12 1110 9 7 6 L1}
jump target opcode

rd upper immediate opcode

rd rsl | imm|11:7] imm |60 functd | opeode
imm|[11:7] | 1sl rs2 imm |6:0) functd | opcode
il rsl rs2 funct 10 opcode

rd rsl rs2 r=d | functh opcode
Imm?25 1101011

imm?25 1101111

1 1 2hi rsl rs2 imm12lo 000 L1001
imm 12hi rsl rs2 imm12lo 001 L1011
imm12hi rsl rs2 imm12lo 100 L100011
imm12hi rsl rs2 imml2lo 101 1100011
rd rsl imm12 000 ao0o011

rd rsl imml2 001 ao0o011

el rsl imml2 01n QOC0011

1 1 2hi rsl rs2 imm12lo 000 0100011
imm 12hi rsl rs2 imml2lo 001 0100011
imm12hi rsl rs2 imm12lo 010 0100011
il rsl imml2 [0010011

rd rsl (00000 | shamt 001 o101l

rd rsl mml2 010 oo1o011

Tl rsl imml2 100 0010011

rd rsl (00000 shamt 101 oo10011

rd rsl 000001 shamt 101 oo10011

rd rsl mml2 110 oolo011

el rsl imml2 111 0010011

rd rsl rs2 QOO0 [IT1] 0110011

rd rsl rs2 L0000 000 0110011

rd rsl rs2 [I3} 0110011

rd rsl rs2 [010 0110011

rd rsl rs2 QOO0 011 0110011

rd rsl rs2 QOO0 100 0110011

rd rsl rs2 QOO0 101 0110011

rd rsl rs2 L0000 101 0110011

rd rsl rs2 QOO0 110 0110011

rd rsl rs2 DOOCOC0 111 o1i0011

1.1.2.1 RISC-V compiling tools

RISC-V has a standart toolchain like other devices which is GNU cross compiler
toolchain. It just reimplemented for RISC-V ISA. Compiling flow just like normal
GCC tools except it produce a unique binary for RISC-V ISA. However in this project,
lowRISV SoC is used. So this part is not applied on project because of these tools are
for standalone RISC-V cores. LowRISC also using this GCC tools but with different

terminal commands. Toolchain usage diagram shown in Figure 1.1 for general flow

map.

J-type
U-tyvpe
I-type
B-type
R-tvpe
R4-type

Jimm25

JAL imm?25

BECQ) rsl.rs2,imm12
BNE rslrs2imml2
BLT rsl.rs2imml?2
BGE r=l.r=2.imml2
LB rd.rsl imml2
LH rd.rsl.imml2
LW rd.rsl.imm12
SB rslrs2.0mml2
SH ral,rs2 imml2
SW rsl.rs2.imml2
ADDI rd.rsl.imml2
SLLI rd.rsl shamt
SLTT rd.rslimml2
XORI rd.rsl.imml2
SRLI rd.rsl shamt
SRAI rd.rsl.shamt
ORI rd.rsl imml2
ANDI rd.rsl.imml2
ADD rd.rsl.rs2
SUB rd.rsl.rs2

SLL rd.rsl.rs2

SLT rd.rsl rs2
SLT rd.rsl,rs2
XOR rd.rsl.rs2
SRL rd.r=l.rs2
SEA rd.rslrs2

OR rd.rsl.rs2

AND rd.rsl.rs2

Table 1.3 : Some basic RISC instructions [9].

Assambly C

Source Source
Code Coda
Mscv-0oe
Rocket RISC-V
Chizal Binary
Source / \
[Chisel] elf2hex] [spike]
RN ' !
RISC-V
C Test
Varilog Emulator MSEEIS& Outputs
v
[vCS]
¥
vCs [Execute C Emulator]
Simulator ’{r \
4
'L Tast
[Exacma VG5 Slmulamr_] Moz Outputs
Tast
Waveforms Outputs

Figure 1.1 : RISC-V GCC toolflow. Greens are input files and blues are output files
[9].

This is just a standalone RISC-V coding toolflow. In our project, RISC-V core will

run our applications on a Linux OS and will execute C language commands.

1.1.3 LowRISC

LowRISC an organisation that creating its own unique open sourced SoC based on 64
bit RISC-V ISA. This SoC is capable of running on a debian Linux OS. Organisation
also working closely with University of Cambridge and with a community that aims
to improve this SoC in terms of hardware and software design [1]. The LowRISC

team is developing the system for the sake of three main objectives.

e Their designs are licensed and developed as allowed together with co-

developers from many parts of the world. Free and open RISC-V ISA is being

implemented. Thus, a common open-source SoC will be completely

standardized.

e The advantage of being open source is that it is a fully auditable system and it
is aimed at being as safe as it is economically by using technologies tagged

memory.

e By trying to reflect the flexibility and diversity of the software to the hardware,
to develop a future SoC by creating a system that can be improved in real-time

applications.

A high level top view of lowRISC chip can be seenin Figure 1.2.

Rocket-Chip
Rocke| Rock Rock
paiay Y IR R Y RO : lowRISC-Chip
‘ ‘ ‘ & — TileLink
2 — Axl
I L1s5 ."'I L1 % II L1% I H —— Debug network
i RTC Chisel modules
Fi Verilog modules
i B Tag storage
TileLink TilsLink .
MEM network WO REtwo
-+- L2 Keyboard Screen
Mein BootROM
A.C(?HSS (devicetree)
Buffer Minion
- Subsystem
A% mem network AX] 1D network (PULPino)
DDR System ®omrar] [®arT| |SPI| |BRAM
Host | |Flash SD Card | | GPIOs

Figure 1.2 : Top view of lowRISC SoC [10]
However, version of lowRISC chip used in this project is 0.6 which does not include

minion subsystem. Reason is that running Linux with that core makes Linux slow. In
future releases it will come again. But still we can use SD Card, vga screen, ps2
keyboard. And also L2 caches removed from this version with upgrade of new version
of TileLink network [11].

1.1.3.1 Rocket-Core view

Rocket core contains a 5-stage pipeline and is built on RISCV64G, which includes one

integer ALU and one optional FPU. In some aspects it is called 6-stage pipeline

because of “pcgen” stage is included with it. But lowRISC team differs this stage like
a standalone stage. Pcgenand fetch stages are shown in Figure 1.3.

Instruction
s1pe Cache
4 s2_pc
L/L\ pepd '
w cpu.req stal , .
predicted_pc | <1 pe
BTB
cpu.pc
- miss | s2_pc
RAS 2 I
3 | vpn
predicted_npc |
BHT | TLB
I ppn
|

If miss, trigger refill

Data ——+— cpu.resp.data
I

(instruction)

A [
| I

Figure 1.3 : Instruction cache which includes pcgen and fetch stages [12].

Remained stages are shown in Figure 1.4.

st dmem_resp
toint_data = =
u - Core Pipeline
fromint_data
. L . .
ex_reg_pc mem_reg_pc |
id_pc .|J_| »
l)-r—l /em_reg rs2 | wh_reg rs2
|) I ’ Coprocessor
| bypass 'kIJ " S o
> roce +— =
o
id_addr(0), 3
mcmln_\p_wdata | rocc.resp.data L
. ex_rs{0) >
RegFile exrsl] . > j
+ > .
id_addr(1) | /b ” - J RegFile
| g | ‘uFu'l;_rvg_wllau| c 'E_L >
hypass El g -
| _:: | dmumrcq.dal.«l 5 E.
= E E g
| 4 ex_rs(0) il DCache |— p"fd"u
| H = b
| | div.resp.data | CRegFile &
MulDiv
s M M M
k'_l ex_reg Inst L_rjucm_mg_lnsl L_\fl\«'h_rn(_lmil
Decode | Execute | Memory | Write Back

Figure 1.4 : Other stages of pipeline [12].

General pipeline diagram can be shown in Figure 1.5.

BTE

{ ecoce "r
IS D% 1
RF
pcgen fatch decoda execute mem commit

Figure 1.5 : All pipeline stages in one diagram [9].

L1 data cache is in Figure 1.6.

mem.finish mem.req mem.grant mem.probe
'S S - 5 " 3
wb }
[rre————
: L L
% mShrS req wh_req 0 = data_resp |
1= MRt febeacheseala] meta/dataread rep 1l = req release I
B mshr - meta_write line_state Iv—) (=2 |
B L] s L |
5 S — mshrs.wh_req prober.release I 2
£ | 2
’E mshrs.meta_write "D%
chre . mshrs.request @
_g. mshrs.replay q prober.meta_write 8
E
= 51 _recycled _| s2_recycle I -
8) Aival g Data
g _IJ s2| valid = |
| =2
] 52_req s3_req|
g — = Cache
s1_reqaddr ||
s2_data
dt]bﬂ_” amoalu (corrected)

racket/iibazala]

QeI RIEPTZS

mydnda
B B e

o B
E £
5 g
F: B data
5 uket/nbdcache scaal
2
z =
= = write
: o
y 72 data A
d
Stage 2 {uncorrecte: Stage 4 J

cpu.resp.bits.data cpu.resp.valid

Figure 1.6 : L1 data cache overview [12].

And all architecture of Rocket Core in Figure 1.7.

N3IDOdN

i epe T Gl |
Erm ehpe) Regs
= i(Read),
S on o It m
TRSpred] Priority L TLE
L
e Eoder [T\ | e] PTW
mresp_tag —
NPC meoop, a8 —el
lv Chack o
DTLB
EPC AUSE| Y] |_ _ R | BT
¥a3 § eall_fetch @
a
4’11
_______________ i
' Prafatchier

¥
[Erc [cause] v]-

I e

Tile
Link

r
|EPG |CAUSE]| V |

3 i
; FPU 1
""" Integer HTIF
Instruction Resp Request
Queus Queus Queue
stall_decode ? {;I -
m nm ord sat ¥ = = - —
De ! raﬁ {;m _'L %
Scoreboard| | Arbitration, |an] Sign
Regfile Reqs g
(Read/Set) Stal ool | | megs | [enna

r
EPGEAUSE VE----F

—[

Timer ~BooptonTyER 0 7 | e
¥ intermupt_f mr. El-g E'.I TAGS ﬂ DATA Il :_',::: 2815
de busy, o lays el miss PTW ﬂ‘@ [$; =
dc_miss] Tl contict [Toad/Store J E.ﬂ:::r R"H'"El"‘g‘ L . uuh
$ — st_addr E é ?. ?;f—b Tile Link
B |& |2 i

FPU FPU FPU
Command Load Integer
Queue Data Operand
Reorder Queus
Queue

E"“ E ---E'-Cumm'rt Foint---t--1

E [XBAR + Sign | daa
| Extension s 9
VI Ve w e ‘ 3
ﬁ i) EEE RL;SS Scoreboard %
Regfile | |owritey] | (Clear)

10

Figure 1.7 : General microarchitecture of all system [9].

1.1.4 Image processing and filters

Image processing can be defined by extracting features to be used from any camera
image, video image, or image, and making a result by using these features after
rendering the computer to process [13]. Images can be considered mathematically two-
dimensional arrays in digital media. On top of that, the signal processing algorithms
can be processed just like a normal analog signal. For this reason, it has an important
place in today's machine learning algorithms and many computer science. Today, in
our world, from the medicine to the automotive sector, military and scientific research
has a very important importance. This recent importance of image processing also
plays animportant role in what this project is working on. Although the algorithms are
tried to be optimized by software, the importance of hardware comes to the fore as
well. For these algorithms, many companies are very stable in designing their own
equipment and transferring cost, time and labor to these designs. For this reason, it is
appropriate to use the lowRISC project, which is open source in this graduation
project, for image processing. A general flow for image processing algorith can be

shown in Figure 1.8.

Digital Data
¥
Pre processing

¥

Feature Extraction
|
+ v

Image Enhancement Selection of training

l Data
Manual l Ancillary Data

Interpretation Decision & Classification

Supervised Unsupervise

: '

Classification cutput

|

Post processing operations

|

A55e55 accuracy

A T

Images Data Reports

Figure 1.8 : Image processing algorithm general flow [14].

11

1.14.1 Kernel

In image processing, the kernel canbe defined as asquare mask or convolution matrix,
which multiplies certain pixels in the image with their weights and add these weighted

pixels with each other and creates new pixels of the resulting image.

1.1.4.2 Convolution operation

Convolution operation is generally can be described as any pixel in an image will be
additioned with pixels in the neighbor of central pixel values which multiplied by the
kernel weights of each pixels, and every pixel in the picture sees this process in
sequence. Briefly, it is an arithmetic that allows the new picture to be formed by sliding
the kernel on to image from left to right and from top to bottom. Process can be shown

in Figure 1.9.

Image Matrix /ﬁ}g
102 / 101 g

4 103 10

< |40 -

Kernel Matrix

TR

304

Output Matrix

Figure 1.9 : Convolution operation.
1.1.5 General flow of project

The overall flow of the project will be covered under this heading. Each step written
here will be explained in detail in the next chapter. What we need first is a computer
and an external or internal disk for installing the Ubuntu operating system. Then, to
run the lowRISC chip in the FPGA, the Vivado program of Xilinx will be installed.
There may also need a monitor to connect the FPGA to the monitor, especially in terms

of visual comfort. There is also a need for an ethernet cable for remote communication

12

with the lowRISC Soc in the FPGA. A minimum of 4 GB (16 GB recomended) SD
card and a pc compatible card reader requires to install linux and some applications.
Other option is connecting and using a keyboard through USB interface of FPGA and
executes commands from there. Once the Ubuntu disk has been installed, the necessary
software programs for the compilation of lowRISC and the execution of the software
will be installed and some variables will be defined in the operating system. After this
step, the compiled software and hardware files will be thrown into the FPGA and the
lowRISC will be running. The format of the image to be processed will be changed for
processing with C. The C codes of the image processing algorithm and the image to
be processed will be transferred to the lowRISC SoC using the SSH protocol. The
algorithms will be run on the lowRISC and the resulting image will be transferred to

the host computer using the SSH protocol to be monitored again.

1.2 Literature Review

1.2.1 Literature reviewat Istanbul Technical University
e (Giingor, Ondes, San, Uckun; 2018) “Instruction Set Extension Of Some
Processors For Secure Iot Implementations”

The main subject of this thesis is using AES and PRESENT cryptology algoritms with
instartcion set extention (ISE) in open source processors and to increase the security
of these processors for 10T applications. One of the core of the project is the Pulpino
RISCY which belongs to the ETH Zurich. The developer Talip Tolga Sari first placed
this core on the Nexys4 DDR development board which belongs to Xilinx and then
observed that it was working by testing. After this stage, the main subject of the thesis
AES application was implemented by using the instruction set extention method,

successfully performed [15].

1.2.2 Literature reviewat Turkey

So far, no thesis work about this subject has been done in our country yet. However,
one of Turkey's largest defense industrial firm ASELSAN is a member of RISC-V

organisation ranked as silver member.

13

1.2.3 Global Literature review

e (T. Liu, G. Shi, L. Chen, F. Zhang, Y. Yang and J. Zhang; 2018) “TMDFI:
Tagged Memory Assisted for Fine-Grained Data-Flow Integrity Towards
Embedded Systems Against Software Exploitation”

Modern software attacks often benefit from problems caused by memory corruption.
While the classical data flow integrity provides a good solution to these problems, they
have a large impact on the speed of the applied system and create time problems
because of origin of this algorithm is software based. For all these reasons, a new data
stream integrity hardware, which supports the tagged memory system, is presented by
the developers. In particular, the hardware prototype has been tested on the lowRISC
with the RISCV-based core and major improvements in speed and time have been
observed. According to the results, the data flow integrity hardware system in the real-
time tests reduced the pressure of system from 104% to 39%, the space overhead
shrinks from 50% to 12.5% [16].

e (A. Ramos, A. Ullah, P. Reviriego and J. A. Maestro; 2018) “Efficient
Protection of the Register File in Soft-Processors Implemented on Xilinx
FPGAs”

The main reason for this study is that software processors are designed on FPGA by
using SRAM and also the register structure is one of the most critical information
carrier elements for a processor. Regarding external factors, especially in the aviation
and space sectors, the register values in the processors can be changed and data losses
or errors are experienced. In this study, error tolerance system has been tried to be
applied to register file. This system is used to add the register file to the memory
element in the processor. The RISCV-based LowRISC SoC was used for testing. A
parity based error finder and interchangeable logic system designed to eliminate
single-bit errors. As a result, the designed system not only saves the faulty bits but also
occupies much less space than the general "Triple Modular Redundancy” module [17].

14

2. IMPLEMENTING LowRISC PROCESSOR ON AN FPGA

2.1 Gathering Required Environment

First, the "Ubuntu 16.04.5 LTS" [18] operating system must be installed on an external
or internal disk. A second method, the virtual machine method, has also been tried, but
the use of virtual machines is not recommended because of some tools and hardware

constraints [19].

Immediately after this process, it is necessary to install Vivado 2018.1 [20], which is
owned by Xilinx and is required to place lowRISC in FPGA. In installation tab you
must use WebPackedition of Vivado. It is also important that 2018.1 must be installed
for the lowRISC v0.6. Because in feature releases of Vivado some IP Cores would
change. This will create a conflict while creating lowRISC Vivado project After
installation fallowing command must be entered at bottom of .bashrc file in your home

directory.

e source /opt/Xilinx/Vivado/2018.1/settings64.sh

After enterence of that command starta new terminal and write Vivado. If program is
starting than everything is until now is okey.

2.1.1 Installation of cable drivers

Installation of Vivado on Ubuntu needs also cable driver setup. If these drivers are not
installed, Vivado program does not recognise FPGA board on bitstream process.
Fallowing driver packages are delivered from Digilent. These are recommended
drivers for board [19].

e Adept 2.16.1 Runtime, X64 DEB
e Adept 2.2.1 Utilities, X64 DEB

Drivers can be downloaded from Digilent’s website [21]. After downloading them, do

not forget to install these drivers.

15

https://reference.digilentinc.com/reference/software/adept/start

After these driver installation JTAG driver also must be installed. Open a fresh
terminal and enter fallowing codes.

e cd/opt/Xilinx/Vivado/2018.1/data/xicom/cable_drivers/lin64/install_script/install_drivers
e sudoshinstall_digilent.sh

Now everything is setand ready to next installations.

2.1.2 Installation of Cmake

Cmake [22] must be installed to compile some sowftwares for lowRISC. To install

cmake linux version 3.13.2, it can be downloaded from https://cmake.org/download/

[22]. After downloading the files, the commands below must be entered inside the

download folder to the terminal

e ./bootstrap
e make

e make install

2.1.3 Downloading LowRISC chip git repository

This repository contains all software and toolchains including with all LowRISC files.
Before downloading this repo make sure all packages are updated. Following
command update all packages [23].

e sudo apt-get install autoconf automake autotools-dev curl \ libmpc-dev
libmpfr-dev libgmp-dev gawk build-essential bison \ flex texinfo gperf
libncurses5-dev libusb-1.0-0-dev libboost-dev \ swig git libtool libreadline-dev
libelf-dev python-dev\microcomchrpath gawk texinfo nfs-kernel-server xinetd
pseudo \ libusb-1.0-0-dev hugo device-tree-compiler zlib1g-dev libssl-dev \
debootstrap debian-ports-archive-keyring gemu-user-static iverilog \ openjdk-
8-jdk-headlessiperf3libglib2.0-dev libpixman-1-dev

After these commands make sure Ubuntu has git. Git also can be installed with
fallowing command;

e sudo apt-getinstall git

16

https://cmake.org/download/

With proper installation of git, now lowRISC v0.6 could be downloaded from git repo.

Following command must entered in work directory. In my case it is in

/home/user/vivado/.

e git clone -b refresh-v0.6 --recursive https://github.com/lowrisc/lowrisc-chip.git

lowrisc-chip-refresh-v0.6 cd lowrisc-chip-refresh-v0.6

When entering “lowrisc-chip-refresh-v0.6” directory, some main directories can be

seen. Their purposes and usages are listed below [23];

fpga: FPGA demo implementations

o board: Demo projects for individual development boards.

= nexys4: Files for the Nexys™4 DDR Artix-7 FPGA Board.

debian-riscv64: Scripts to bootstrap a Debian Linux RISCV system
riscv-linux: The Linux RISCV kernel with LowRISC device drivers
rocket-chip: The Rocket core and its sub-systems.

o firrtl: Hardware description intermediate language

o hardfloat: Hardware floating-point arithmetic unit

o torture: Tricky tests that stress the CPU

o riscv-tools: The cross-compilation and simulation tool chain.

= riscv-fesvr: The front-end server that serves system calls on the

host machine.

» riscv-gnu-toolchain: The GNU GCC cross-compiler for RISC-
V ISA.

* riscv-isa-sim: The RISC-V ISA simulator Spike

= riscv-opcodes: The enumeration of all RISC-V opcodes

executable by the Spike simulator.

= riscv-pk: The proxy kernel need for running legacy programs
in the Spike simulator.

= riscv-tests: Tests for the Rocket core.

src: The top level code of lowRISC chip.

17

https://github.com/riscv/riscv-isa-sim#risc-v-isa-simulator

o main: The Verilog code for hardware implementation.
o test: The Verilog/C++(DPI) test bench files

e gemu: User mode emulation of RISCV instruction set

2.1.4 Installing RISC-V GNU toolchain
Firstly, default gcc and g++ must be updated. Fallowing commands will work for it.
e sudo aptupdate
e sudo aptupgrade
e sudo aptinstall build-essential
Gcc version must be higher than 5.2.
e gcc—version
e whichgcc

After these steps, Reopen “lowrisc-chip-refresh-v0.6” folder and open terminal at this
folder.

e cd/rocket-chip/riscv-tools
e ./build.sh

This process is really takes a long time depending computer system. Like 30min- 2
hours. If everything is correct next step is updating .bashrc commands. Open new

terminal at “lowrisc-chip-refresh-v0.6” folder
e ./set_env.sh

At command window result of bash commands will seen in terminal screen. Copy all

variables paste to .bsahrc file. Final version of .bashrc can be seenin Figure 2.1

18

source [fopt/Xilinx/Vivado/2018.1/settingsé4.sh

export TOP=/homes/bartu/Vivado/lowrisc-chip-refresh-v0.6

export RISCV=/home/bartu/Vivado/lowrisc—-chip-refresh-
v0.&/riscv

export C0SD RCOT=/home/bartu/Vivado/lowrisc-chip-refresh-
v0.&/tools

export BEYTHONEATH=/home/bartu/Vivado/lowrisc—chip-refresh-
v0.6/tools/lib/python2.7/site-packages:

sexport PATH=/homs/bartu/Vivado/lowrisc-chip-refresh-
vD.&/tools/bin: fopt/Xilinx/SDE/2018.1/bin: /opt/Xilinx/SDE/2018
.1l/gnu/microblaze/lin/bin: fopt/¥11linx/SDE/2018.1/gnu/arm/1lin/b
in:/opt/Xilinx/SDE/2018.1/gnu/microblaze/linux toolchain/ling4
_le/bin:/opt/Xilinx/SDE/2018.1/gnu/aarch32/1lin/gcc—arm—linux-
gnueabi/bin:/opt/¥ilinx/SDE/2018.1/gnu/aarch32/lin/gcc—arm—
none—eabi/bin: fopt/¥ilinx/SDE/2018.1/gnu/aarché4/1lin/aarché4—
linux/bin:/opt/Xilinx/SDE/2018.1/gnu/aarche4/lin/aarched—-
none/bin: fopt/¥1linx/SDE/2018.1/gnu/armr5/1lin/gcc—arm—none—
eabi/bin: /opt/Xilinx/SDE/2018.1/tps/1lnxEd/cmake—2.3.2/bin: fopt
fE1linx/DocNav: /opt/¥ilinx/Vivado/2018.1/bin: /home/bartu/bin:/
homs/bartu/.local/bin:/usr/local/skin: /fusr/local/bin: /fusr/sbin
r/usr/bin: /shin: /bin: fusr/game=s:/usr/local/games: /snap/bin: /ho
me/bartu/Vivado/lowrisc—-chip-refresh-v0.&/riscv/bin

export LD LIBRARY PATH=/home/bartu/Vivado/lowrisc-chip-
refresh—v0.6/tools/lib: /home/bartu/Vivado/lowrisc—chip—
refresh—v0.&6/riscv/1lib

export PEG CONFIG PATH=/homs/bartu/Vivado/lowrisc-chip-—
refresh—v0.6/tools/lib/pkgconfig

export FPGA BOARD-nexys4 ddr

Figure 2.1 : Bashrc commad window.

If getting response for fallowing command, toolchain has successfully installed.

e which riscv64-unknown-elf-gcc

2.2 Installing Linux to lowRISC

From now there are two ways to get Linux to lowRISC, first one is create your own
Linux kernel from tools or, get binary release from lowRISC tutorial page [24].
Creation new Kernel is amore complex way and making mistakes at this stage is really
critical. For now it is safe chogice to getting binary release and continue on uploading
Linux system to IlowRISC. A detailed guide could be seen on
https://www.lowrisc.org/docs/download-install-debian/ to continue on building own
Kernel [19].

To install binary release input fallowing codes to terminal

e git clone https://github.com/lowRISC/lowrisc-quickstart.git

19

https://github.com/lowRISC/lowrisc-quickstart.git

e cd lowrisc-quickstart
e make getrelease
After these commands three important files will be appear in directory [24].
e boot.bin —includes Linux kernel, Berkeley bootloader, and initial ramdisk.

e chip_top.bit - The FPGA bitstream containing the lowRISC SoC which

includes RISCV processor and peripherals and the first-stage booter

e rootfs.tar.xz - The compressed tape archive containing the Debian root filing
system for RISCV

After that process insert your SD card to card reader and to your computer. After
recognized from your Ubuntu, type Isblkk command to your command window too see
all storage devices listed on your computer. It is really dange rous that choosing right
name on that list. If wrong choice has choosen, own PC data could be formatted
without any chechkpoint. In Figure 2.2 a default 16 GB SD Card shwon at Isblk list.

MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
8:0

931.5G 0 disk
243M 0 part /boot
1K 0 part
931.3G 0 part
923.4G6 0 lvm /
7.96 0 lvm [SWAPI]
14.9G6 0 disk
56M © part /media/ /boot
3G 0 part /media/ /13d368bf -6dbf
1024M 0O rom

ubuntu-root (dm-0) 25
ubuntu-swap 1 (dm-1) 25

= 00 000NN 0 0o
ORREFROUNR
HRERRNOOOOOO®

[

Figure 2.2 : 16 GB SD Card
A new fresh SD Card only been as sdx1 as 14.9 GB strorage. Check twice SD Card

device name and never forget! In fallowing commands name of device entered as sdx

for copy paste safety. X letter must be changed with correct SD Card name.
e make umount USB=sdx

If SD card used before type instead:
e Make USB=sdx cleandisk partition

If any error occurs during these processes repeat all steps two steps above
independently after reinserting SD Card to PC. After operations run Isblk to see results
at Figure 2.3.

20

sdc

F—Sdcl
F—Sdcz
F—Sdc3

L sdca

8:32
8:33
8:34
8:35
8:36

14.5G
32M
206G
512M
12.3G

8 disk
8 part
8 part
8 part
8 part

Figure 2.3 : After commands worked properly.

After that typing fallowing command will install all 3 files above proper locations to

SD Card.

e make USB=sdx mkfs fatdisk extdisk

Say yes on terminal if asks any question. First question is asking to user create new
file system for lowRISC. Second step asks for write permission of kernel and BBL to
DOS partition. After all these steps now unplug SD Card from computer and Plug it to
FPGA. Also on FPGA board JP1 must stand at QSPI mode and JP2 must stand at SD

mode as shown in Figure 2.4 [24].

Figure 2.4 : Jumper positions to boot from SD card

21

From now its all setto boot lowRISC to FPGA. Fallowing code will install bitstream
file to QSPI Flash.

e make program-cfgmem

After these process Vga screen conncected to the FPGA seems like at Figure 2.5.

Calling main with MAC = eeel:e2e3edel
0:0

803: 0

Selftest iteration 1, next buffer = 0, rx_start = 4000
Selftest matches=2/2, delay = 9

Selftest 1teration 2, next buffer = |, rx_start = 4800
Selftest matches=4/4, delay = 9

Selftest iteration 3, next buffer = 2, rx_start = 5000
Selftest matches=8/8, delay = 9

Selftest iteration 4, next buffer = 3, rx_start = 5800
Selftest matches=16/16, delay = 16

Selftest iteration 5, next buffer = 4, rx_stert = 6000
Selftest matches=32/32, delsy = 31

Selftest iteration 6, next buffer = 5, rx_start = 6800
Selftest matches=64/64, delsy = 60

Selftest iterstion 7, next buffer = 6, rx_stert = 7000
Selftest natches=128/128, delsy = 119

Selftest iterstion 8, next buffer = 7, rx_stert = 7600
Selftest matches=187/187, delsy = 173

1owRISC boot program

Hello LowRISC! Tue Aug 14 10:40:47 2018; Turn on SO for gdb loeding, SWI for SD-card leading, or S¥2 for Ethernet loading

Figure 2.5 : Boot screenat VGA display.
And FPGA waits in waiting input mode at Figure 2.6.

22

TR
£ XILINX.

ANALOG 514

DEVICES 9,\(0)

o -

Figure 2.6 : Waiting input mode.
In this step, we should choose boot from SD Card and making switch 1 high will do

job which shown in Figure 2.7.

Figure 2.7 : Booting from SD card chosen

Choice must be done when before giving power FPGA. After restarting FPGA with
choice which swl goes up, Figure 2.8, Figure 2.9 and 2.10 shows FPGA u-boot based
operations.

23

D el

Figure 2.9

24

e

-
a4
4
L
¥

-

.

lowRISC boot program

Hello LowRISC! Tue Aug 14 10:48:47 2018: Booting from FLASH because SW1 is high ..

Figure 2.10
Output of First stage bootloader in Figure 2.11. If it does not write “Bus Width : 4 bit”

it means your SD card does not set properly [24].

OEN: 5344
Hame: SC166

Bus Speed: 5000000

High Capacity: Yes

Capacity:

lu.14 GiB

Bus Fidth: 4-bit

B YE R 85T 8y =
wmww&mﬁmmwd&mmmm
TS U838 8s
nBR82889z883Trary
SBTBIBRuyBISNLER
mmwmm&wmmmmam &
g SssygzgBsdNigsgg
Wﬂd&mmﬂ%mﬁmwwa&ﬁﬂﬁ
s¥ECSReeB2aT s
mmmmmmmmmmmmmmmm
M..Qrmwnm e.mrm"wmﬂ.ﬂ”“mm
w8 I8SBg B3 25288
= S s e eeanns
2afiEsmSge=SEI8U8
sBEB8As= 18 B8R

Mmmmmmmﬁwnummmmu
sz aeexgBsssE" 88
MHMwﬁumwuﬂmwJWLNMWqIAJ.D.D.DMW_w B
e ToeceaTS T YLBESSR
S enaseaSE93

t
40
meno

8848

Load boot. bin inte

Figure 2.11 : First stage bootloader output.

From now fallowing figures which are Figure 2.12, 2.13, 2.14, 2.15 are serial stages

of booting Linux to lowRISC.

25

TIETRUCTION SETS YANT TO BE FRER

-lh;hl BOEEDR hwtan 40 ...;n"-— 27000000 from boot. bin of B0SS208 bytes
Sectina(D) "mWMM)

Sectioa(1]

‘4! -‘: l.? 130007000, D=5 T00B000, 053 :

Sectica2):

wencyy (B020000), a8 7008000,
Boot. the Londed progren .. ISRON0:

Figure 2.12 : Hash code of kernel.

el md) san L1
! maclE) pl p2 13 p4

t done

8 ;s.Uﬂ HT¢-is mrl.k)y‘ nowmted £114
Somting proc

Bownt 182 rv; s

Figure 2.13 : There could be some warns. It will continue

26

1 INLOWAN) TRV, G A0l Swt

Tomting devinpis

Temting denpls

Bomting \npis

Execeting snitch rost for mac
CTHT: v 2.8 booting

{info) Wsing nskefilestyle concurreant boot 1o rnlevel §
[info] Setting the systen clok.

| brclock: Camot sceess the Bardewre Clock via wy Jnown methed

| brclock: Use the —verbese option to see the details of our sewrch for o sccess method
[rere] Yasble 1o set Systen Clock to: The Jun 1 00:00:29 VOC 1970
dwe.

Ivarning)
L) betivating semp. [30.720000] Mding SO svip on /dw/rechlipd Pricrity =2 extests:] scross:S24284k 55
l‘ .1000] DTix GneblMR): revomted. Opts: ull)

...) Ohecking rost £ile systen . fsck frem util-linex 2.2 |

ndlm clem, ZT01/1310M2 £iles, 22004/S24288 M ocks

[3%.15000] B0tfs ndliy?): rememted Opts (all)

[rarn) Creating emgatibility syalink frem fetefuted to frocfnemts. . tyarning)
[o] betivsting Im ol ol oy, ..

L...] Cheching file systens .. fxck frem wtil-lism 2.0 |

ok fat 41 CIT-O1-N)

| Sevfmdblipt- 1 files, JOA/1630 clusters

t{m cem, 11/30T040 £iles, 9132/2225728 blocks
[o] Clesing files.. [t
b] e ot e (9
dune.

{
{

Elesystens . [S3.870000) X745 lenchli0pd): nomnted filesyste with ordered dets nede
1 hetivating srapfile somp. . dune.
) Clewming wp tanperaey £iles

Opts: foell)

Figure 2.14 : Other boot informations

BL.53000] Pvh. ADDRCURF (NETDEY UP). eth0: link 1s not ready
| $0.90000) Thvd:. AUBRCONF (RETDEY CHABGE): oth0: Link becomes resdy
Internet Systens Consertim DR Client 4.3.5

Copyright 2004-2016 Tnternet Systens Consortium.
N1 rights reserved.

Yor info, please visit bidps://wev. ise. orefsoftvare/dhep/

Listening on LR/ ethdfee el 2.3 ed:e)
Sending on LPH/etl)fer el 2.3 kel
Sending on Secket/fallback

DICRUISCOVER on «(b0 to 255.295.255. 255 port 67 intervel 7
DICPBISTOVER on eth) to 255 755 755 265 nart A7 intaryql §
DICYRERUEST «£ 180.75.77.58 on eth0 to 255.255.255. 25 part 67
DICRORTER of 180.75.27.88 fren 160.75.27.254
DICRICE of 130.75.21.68 from 180.75.27.254

bomd Lo 160.15.21.88 — renersl in 1637 secends.
done.

{ ok] Starting C port napper deenen: rpcbind,
[HIL) Starting WIS comnon wilities: statd 1dnepd foiledl
1L ok) Cleaning wp tenporary files. ...
UAIL) startpar: servicels) returned £ailure: nfs-common ...
THIT: Entering runlevel: 2
s VUsing makefile-style concurrent boot in runlevel 2
Stariing cgroup namagenent daenon’ cgnanager,

Figure 2.15 : Ethernet connection is okey too.
After these steps all boot operations are set and at the last screen user will see login
screen like in Figure 2.16.

27

| Debisn GW/Linex buster/sad lomse iyl

Figure 2.16 : Login screenand first login must be root.
First login must be root and givin any root password key is okey to root. After that
lowRISC will prompt user for superuser set then creates a normal user which is also
has same name of your Ubuntu computer name. In my example it is bartu. Also a

password key must be entered to that user. Same password with root will work which
shown in Figure 2.17.

Jebian GWU/Linwx buster/s:d lovrise tiyl

wrise login. root
Linex lowrise 4.18.0-¢cB1£50d #48 Thu Oct 18 16:00:24 BT 2018 risoéd

The prograns 1ncloded vith the Debian GHV/Linux system ere free software
the mc*..d:str:h‘.no_h temns for esch progren are described in the
individual files in fusr/ share/doc/*/ copyr1 ght.

Debian GW/Linax cones vith ABSOLVTELY B0 TARRANTY, to the extent
pem’tted by spplicable . '
[159.060000) systend-Log1nd[1169): Mer sest sestl

This 15 the firstbost seript. It will displey only omee

Set the swperuser (root) passeord beloy
Enter ner VALY passeord

Betype ner VI passvord

!tssvd pesseord wpdated suecessfully
wresting mornal user barty
Mding vser ‘Barty

Méing ver growp barty’ (1000)

Méing ver user ‘barty' (1000) yith /

. w (1000) barty’ ...
Creating bone directory n'lnt/itiu'g.q? B
Copying files fron 'fete/skel’ .

Enter ver VLY passyord =

Figure 2.17 : Login screenwith prompts.

28

After all these setups, now lowRISC will ask user name and password key to login
machine. Afterentering either root or Ubuntu user, a bash command screenwill appear
at VGA display which shwon in Figure 2.18.

Debian GO/ Linux buster/s1d lowmise iyl

lomrise login: root

| Pusseerd:

| Last login: Tue Dee 25 15:24:06 GIT 2018 on tiyl

| Linex loerise 4.18.0~geB1£04 #48 Thu Oct 18 16:00:24 BST 2018 riscvbd

' The prograas included mith the Debian GH/Linux system ere free softvere;
e avet distribation tems for each progran are described in the
| individual files in fusr/sharef doeftcopyright.

A Debina GB/Livux cones vith ABSOLVTELY IO VARRANTY, to the extent

| pernitted by aplicble Lo

| rootllorrise 7

Figure 2.18 : Bash command screen.
From now, there is 2 way to use lowRISC. First way is using your Ubuntu machine
and connect and control lowRISC with SSH protocol. Other is directly with PS2 FPGA
keyboard and VGA monitor. It is recommanded that updating or installing any
program to lowRISC must be from FPGA keyboard. SSH protocol gives shows some

problems and errors at this stage.

2.3 Peripherals of system

LowRISC 0.6 version has some good peripherals to use system like standalone PC.
One is a ps2 — USB connection keyboard which is easy to use lowRISC with bash
commands. Second peripheral is ethernet cable support. This allows lowRISC to
connect internet and get some new apps for ported RISCV architecture. These app list

and app repository can be shown at this page [25]. And last peripheral is VGA display

port. LowRISC team makes this VGA display as a text display which only encodes
and writes some character with support of color. So if user want to show picture from
lowRISC to VGA display for now it is not possible to do. Figure 2.19 shows all
connected peripherals to FPGA.

29

http://riscv.mit.edu/

Figure 2.19 : Full peripheral connection.

2.4 Implementing image filter algorithms to lowRISC

Since package support for RISCV is limited for now, | decided to use pure C language
to image filtering and processing operations. But the great constraint is pure C which
has no additional library is not able to common image formats. For this purpose a little
research shows us there is some formats even pure C could read an image and write a

output image file. Project chose to use .ppm file.

2.4.1 PPM format

This format is a lowest common denominator color image format. Format is so
inefficient in terms of compressing and image quality. Also format does not include
really little information about file. What makes this format good is format makes any
image read easy and makes easy to process data of image which is essential for our

system. Format in Hex reader shown at this format:

30

e A “magic number” that gives file type, which is “P6” for ppm.
e CRASCII.

e Width information as ASCII.

e Whitespace.

e Height information as ASCII.

e CR ASCII.

e Maximum color value of a pixel. General maximum 255 and mininmum 0 in
ASCII format.

e CR ASCILI.

e And image vector values in ASCII format. Image starts From left to right and
Upper Line is first line to start writing. There is no whitespace characters
between pixels and rgb values. First value is Red of pixel 1, second is Green
of pixel 1, third is blue of pixel 1 and after that goes pixel 2 rgb values and so
on.

2.4.2 Converting PNG to PPM

Since ppm format is not common as like jpeg or png, input image firtly must converted
on ppm from png. However for now there is no converter for lowRISC system, we
should convert it at Ubuntu machine and after that give ppm image to lowRISC as
input image. For this purpose a program named ImageMagick msut be installed on
Ubuntu. To install enter fallowing code:

e sudo apt-getinstall imagemagick
e sudo apt-getinstall gcc php-common
e sudo apt-getinstall php-imagick
e service apache?2 restart
After correct installation, faloowing command convert any png image to ppm file:
e mogrify -format ppminput.png

From now input image is ready to send to lowRISC Linux with SSH.

31

2.4.3 Sending input image to lowRISC

Since ethernet connection is enabled and it is easyto use ssh protocol to send or receive
any data between two system at same LAN, it better send ppm data through this way.
Only need for ssh connection from Ubuntu to lowRISC is ip address of lowRISC which
already taken at Figure 2.15. However with using ifconfig command at bash screen of
lowRISC will reveal ip address of ethernet again. After ssh command shold entered in
bash screen of Ubuntu machine:

e 3sh160.75.27.68

It is just for controlling lowRISC bash remotely. Fallowing command must entered

image location terminal, will send input.ppm image to lowRISC chosen directory:
e scpinput.ppm160.75.27.68:/home/bartu/

It will ask password. Type password and send file.

2.4.4 C code for filters

These codes are written in C language and general flow for running program on

lowRISC should be in this order at bash command:
e gccsobel.c -o program—Im
e ./program

GCC first reads program and compile an executeble file which anmes as program.
After next command, execution is occurs. But do not try to compile program in Ubuntu
machine because exe files are system spesific. This means only running exe on
lowRISC will not work because it was compiled an x64 machine. So all commands
must be entered at lowRISC’s bash comand screen. Figure 2.20 will show input image

which is widely used for image processing application as subject.

32

Py i

Fi

Figure 2.20 : Example input image.
2.44.1 Common parts of filter in codes

Fallowing Figures which are 2.21, 2.22, 2.23, 2.24 are same for all filter codes.

main(
FILE *file;
FILE *fp = fopen(

file = fopen("i

thre

printf(’

Figure 2.21 : Reading input and writing output file pointers

33

while (c != 18)
{
c = getc(file);
fprintf{fp, ‘. C);
}
fprintf(fp,
j a;
while{c != "

= getc(fil
fprintf{fp,
strx[j] = c;
Ji;

}
width = atoi(strx);
j=8;

= strx[@];
while{c != 18)

= getc(file);
fprintf{fp,

fprintf{fp,

€ = getc(file);
i++;
fprintf{fp, "

c = getc(file);
fprintf{fp,

c = getc(file)
fprintf(fp,

Figure 2.22 : Reading image information and writing output file same informations.

34

rgbc ;

datar[width*heigth];
datag[width*heigth];
datab[width*heigth];
datat[width*heigth];
gray;

grayx[width*heigth];
grayy[width*heigth];
grayt[width*heigth];

while(i < width*heigth*3})
I
rgbc = getc(file);
;3 == 8) datar[k] = rgbc;
3 == 1) datag[k] = rgbc;

datab[k] = rgbc;
k++;

Figure 2.23 : Some variables for rgb datas and reading image and storing to
variables.

8; 1 < k; 1++)

gray = (datar[i] + datag[i] + datab[i]) / 3;

Figure 2.24 : Grayscale of image if needed.

2.4.4.2 Red Only filter

Fallowing Figure 2.25 shows Red mask algorithm and Figure 2.26 shows output of
image.

35

%& datar[i] > datab[i] + threshold)
[i],datab[i]);

Figure 2.26

2.44.3 Greenonly filter

Fallowing Figure 2.27 shows Green mask algorithm and Figure 2.28 shows output of
image.

(datag[i]
fprintf(fp,

fprintf({fp,

Figure 2.27

36

Figure 2.28
2.4.4.4 Blue Onlyfilter
Fallowing Figure 2.29 shows Blue mask algorithm and Figure 2.30 shows output of

image.

(datab[i] » datar[i] + threshold && datab[i] » datag[i] + threshold)
fprintf(fp, o . [i],datab[i]);

fprintf(fp,

Figure 2.29

37

Figure 2.30

2.4.4.5 Sobel Operation filter

Sobel operation is used for edge detection. Two kernels is used to make filtering. First
kernel is used for vertical lines and other is used for horizontal line detection. After
both of them applied independantly each pixel will blend with ratio. Figure 2.31 and
Figure 2.32 shows kernel values for convolution.

-1*p, kerne

-2*p, kerne

-1*p, kernelx32

Figure 2.32 : Vertical kernel

Next part is convole each kernel on image which shown in Figure 2.33

38

if (1 + width + width + 2 ¢ k)

i] = (kernelx11 * gray[i] #+ kernelx12 * gray[i + 1] + kernelx13 * gray[i + 2]
ray[i + width] + kernelx22 * gray[i + width + 1] + kernelx23 * gray[i + width + 2]
+ kernelx31 * gray[i + width + width] + kernelx32 * gray[i + width + width + 1] + kernelx33 * gray[i + width + width + 2]);
grayy[i] = (kernelyll * gray[i] + kernelyl2 * gray[i + 1] + kernelyl3 * gray[i + 2]
+ kernely21 * gray[i + width] + kernely22 * gray[i + width + 1] + kernely23 * gray[i + width + 2]
+ kernely31 * gray[i + width + width] + kernely32 * gray[i + width + width + 1] + kernely33 * gray[i + width + width + 2]);

grayx[i] = e

grayt[i] = (int) sqgrt(()(grayx[i] * grayx[i] + grayy[i] * grayy[i]));
(grayt[i] »= 255) datat[i
<= @) datat[i] - ©;
rayt[i];
datat[i],datat[i],datat[i]);

Figure 2.33 : Convolution operation code and blending operation horizontal and
vertical lines

Output image shown in Figure 2.34.

Figure 2.34 : Sobel operation output.

39

2.4.4.6 RGB edge detectionfilter

It is same as sobel but in rgb mode. Kernel can be seen in Figure 2.35 Algorithm can

be seen Figure at 2.36.

kernelxll kernelxl2 -1-p, kernelx13 = -1-p;
kernelx21 kernelx22 8+8*%p, kernelx23 = -1-p;

kernelx31 kernelx32 -1-p, kernelx33 = -1-p;

Figure 2.35

if (i + width + width + 2 < k)

x[i] = (kernelx1l * datar[i] + kernelx12 * datar[i + 1] + kernelx13 * datar[i + 2]
+ kernelx “ datar[i + width] + kernelx22 * datar[i + width + 1] + kernelx23 * datar[i + width + 2]
+ kernelx31 * datar[i + width + width] + kernelx32 * datar[i + width + width + 1] + kernelx3 atar[i + width + width + 2]);
grayy[i] = (kernelx1l * datag[i] + kernelx12 * datag[i + 1] + kernelx13 * datag[i + 2]
+ kernelx21 * datag[i + width] + kernelx22 * datag[i + width + 1] + kernelx23 * datag[i + width + 2]
+ kernelx31 * datag[i + width + width] + kernelx32 * datag[i + width + width + 1] + kernelx3 datag[i + width + width + 2]);
[i] = (kernelx11l * datab[i] + kernelx12 * datab[i + 1] + kernelx13 * datab[i + 2]
* datab[i + width] + kernelx22 * datab[i + width + 1] + kernelx23 * datab[i + width + 2]
+ kernelx31 * datab[i + width + width] + kernelx32 * datab[i + width + width + 1] + kernelx3 atab[i + width + width + 2]);

yx[i]
rayy[i]

= a;

i] >
yx[i] <= @) grayx[i]
- grayx[il;

55

a;

[:H

Figure 2.36 : Convulution and reduction of lower 0 and upper 255 values.
Output file can be seenin Figure 2.37.

40

2.4.4.7 Sharpen filter

Figure 2.37

This filter makes images looks sharper than normal. After RGB edge detection filter

all convolution operations are same C code. They will not shown fallowing filters.

Kernel of Sharpen is shown at Figure 2.38 and output shown in Figure 2.39.

int kernelxiil

int kernelx21 =

int kernelx31 =

8, kernelx1? = -1-p, kernelxi3 = 8;
-1-p, kernelx22 = 5+4%*p, kernelx23 = -1-p;
8, kernelx32 = -1-p, kernelx33 = @;

Figure 2.38

41

Figure 2.39
2.4.4.8 Emboss filter

This filter makes images looks like embossed in 3D view. Kernel of emboss filter is

shown at Figure 2.40 and output shown in Figure 2.41.

Figure 2.40

42

Figure 2.41
2.4.49 Gaussian Blur filter

This filter makes images blurrish. It is widely used after or before edge detection to
get proper edges from image. Kernel of gaussian blur filter is shown at Figure 2.42
and output shown in Figure 2.43.

Figure 2.42

43

Figure 2.43

2.4.5 Autamatization of filtering image algorithm

Since converting and sending image and applying filter is easy to forget process, a
general sh code written and can be run on Linux lowRISC. Fallowing code converts
input.png to ppm, ask user for which filter will applied and writes time to bash screen
to see starting time and applys filter. After that output image is written and again time
is shown at bash to see how much time elapsed for processing part. It converts output
image to png again. Then removes ppm files from location to better harware storage

control.

cd /home/bartu/Desktop
mogrify -format ppm input.png
echo "Creating exe file"

echo "Enter 1 for Sobel"

echo "Enter 2 for OnlyRed"
echo "Enter 3 for OnlyGreen”
echo "Enter 4 for OnlyBlue"
echo "Enter 5 for RGBEdges"
echo "Enter 6 for Sharpen”
echo "Enter 7 for Emboss"

44

echo "Enter 8 for Gaussian Blur"
read choice
if ["$choice"-eql1];
then
now=3$(date +"%T")
echo " Generating Sobel! - Time : $now"
gcc sobel.c -0 program -Im
./program
now=3$(date +"%T")
echo "Sobel operation finished - Time : $now"
elif ["$choice" -eq 21];
then
now=$(date +"%T")
echo " Generating OnlyRed! - Time : $now"
gcconly _red.c -o program -Im
Iprogram
now=$(date +"%T")
echo "OnlyRed operation finished - Time : $now"
elif ["$choice" -eq 31];
then
now=3$(date +"%T")
echo " Generating OnlyGreen! - Time : $now"
gcconly_green.c -o program -Im
Jprogram
now=$(date +"%T")
echo "OnlyGreen operation finished - Time : $now"
elif ["$choice" -eq 41];
then
now=$(date +"%T")
echo "Generating OnlyBlue! - Time : $now"
gcconly_blue.c -o program -Im
./program
now=$(date +"%T")
echo "OnlyBlue operation finished - Time : $now"
elif ["$choice" -eq 51;
then
now=3$(date +"%T")
echo "Generating RGBEdges! - Time : $now"
gcc RGBEdgeDetector.c -0 program -Im
Jprogram
now=$(date +"%T")
echo "RGBEdges operation finished - Time : $now"
elif ["$choice" -eq 6];
then
now=$(date +"%T")
echo " Generating Sharpened! - Time : $now"
gcc Sharpen.c -0 program -Im
/program
now=$(date +"%T")
echo "Sharpen operation finished - Time : $now"
elif ["$choice" -eq 71];
then
now=$(date +"%T")
echo "Generating Embossed! - Time : $now"
gcc Emboss.c -0 program -Im

45

./program
now=$(date +"%T")
echo "Emboss operation finished - Time : $now"
elif ["$choice" -eq 81;
then
now=3$(date +"%T")
echo "Generating Gaussian Blur! - Time : $now"
gcc gb.c -0 program -Im
.Jprogram
now=$(date +"%T")
echo "Gaussian Blur! operation finished - Time : $now"
fi;
mogrify -format png output.ppm
echo "output.png file created to current folder"
rm output.ppm
rm input.ppm
rm program

Usage on bash command screen can be seenon Figure 2.44.

46

u@bartu-System-Product-Name: ~/Desktop

Enter Power of Emboss (Ex:1) =-> 2

Emboss operation finished - Time : 06:22:00
output.png file created to current folder
bartu@bartu-System-Product-Name:~/Desktop$./local filter order.sh
Creating exe file

Enter for Sobel

Enter 2 for OnlyRed

Enter for OnlyGreen

Enter for OnlyBlue

Enter for RGBEdges

Enter for Sharpen

Enter for Emboss

Enter for Gaussian Blur

8

Generating Gaussian Blur! - Time 86:22:37
Enter Power of Emboss (Ex:1) =->

Emboss operation finished - Time : 06:22:39
output.png file created to current folder
bartu@bartu-System-Product-Name:~/Desktop$./local_filter_order.sh
Creating exe file

Enter for Sobel

Enter for OnlyRed

Enter for OnlyGreen

Enter for OnlyBlue

Enter 5 for RGBEdges

Enter for Sharpen

Enter for Emboss

Enter for Gaussian Blur

8

Generating Gaussian Blur! - Time 06:24:10
Enter Power of Emboss (Ex:1) =->

Emboss operation finished - Time : 06:24:13
output.png file created to current folder
bartu@bartu-System-Product-Name:~/Desktop$./local filter order.sh
Creating exe file

Enter for Sobel

Enter for onlyRed

Enter for OnlyGreen

Enter 4 for OnlyBlue

Enter for RGBEdges

Enter for Sharpen

Enter for Emboss

Enter for Gaussian Blur

8

Generating Gaussian Blur! - Time : 06:26:47
Emboss operation finished - Time : 06:26:47
output.png file created to current folder
bartu@bartu-System-Product-Name:~/Desktop$./local_filter_order.sh
Creating exe file

Enter for Sobel

Enter for OnlyRed

Enter for OnlyGreen

Enter for OnlyBlue

Enter for RGBEdges

Enter for Sharpen

Enter for Emboss

Enter for Gaussian Blur

8

Generating Gaussian Blur! - Time : 06:28:23
Gaussian Blur operation finished - Time : 086:28:23
output.png file created to current folder
bartu@bartu-System-Product-Name:~/Desktop$ [

Figure 2.44 : Usage of Automatization code.

47

48

3. REALISTIC CONSTRAINTS AND CONCLUSIONS

3.1 Practical Application of this Project

In real life, lowRISC SoC can be used on FPGA as well as on prototyping and testing
on FPGA and after design on a custom chip. In the current version of the open source
coded SoC, there will be no access to the general purpose input output pins, but in the
following versions it will come as update. In addition, the advantage of open sourced,
chip developers as they want to customize the possibility that they want, they can use

this chip some other spesific industries like automation and aviation.

3.2 Realistic Constraints

3.2.1 Social, environmental and economic impact

The biggest advantage of open source processors is that developers don't have to
design a unique processor. This advantage will give the developers enormous benefits
in terms of time and resources. Both countries that cannot produce their own chips and
developers will benefit greatly in the advancement of technology. In addition, the
standardization of being open source, thanks to the innovations offered by any
company or developer has always been open to the opportunity to follow the global

technology.

3.2.2 Costanalysis

First of the my necessary materials is FPGA evaluation boards (one for each member
of group) that faculty management meets. But In addition to the FPGA evaluation
boards, | also used Vivado development environment thatis used for a implementation
LowRISC chip. Since this project worked with full open sourced software and
hardware and operating system like Linux Ubuntu, there is no cost for any of hardware
or software environment.

Other costs for the project is similar to Form 3.

3.2.3 Standards

The purpose of this project is to show the level of applications that can be done using
open source processors. Open source processors, which are still in development, are

already in compliance with many standards with their low power consumption.

49

Moreover, since they are within the framework of legal standards, the standards here
are completely free to the extent determined by the producers. Since the project is run
by many developers, it is already designed to comply with IEEE standards. However,
as there are no studies in our country, standards will be created over time and my

project will be included in these standards.

3.2.4 Health and safety concerns

This project has not aimed to design and implement any harmful or risky product that

may affect users. Created systems impelemented in FPGA and it is totally safe.

3.3 Future Work and Recommendations

e Since there is no "GPIO" access in this version, the camera cannot be
connected. In future work, either wait for the new version and access the
"GPIO", or connect the camera to the lowRISC without waiting for the new
version with implementation of spesific camera interface.

e Any autonomous outgoing vehicle canbe made using image processing filters
and also using "GP10™ access. Thus, LowRISC, which is an open source, can
be tested, observed and improved on such issues.

e Software applications for performing image filtering steps can also be
performed hardware in terms of targeting certain customized applications. In
this way, the hardware can be designed for a new purpose by integrating the
lowRISC into a customized image processing chip.

50

REFERENCES

[1] L. Team, "About LowRISC," LowRISC, 08 2018. [Online]. Available:
https://www.lowrisc.org/about/. [Accessed 26 12 2018].

[2] R.-V.Foundation, "RISC-V Cores and SoC," RISC-V, 05 2017. [Online]. Available:
https://riscv.org/risc-v-cores/#. [Accessed 28 12 2018].

[3] D.Inc., "Nexys 4 DDR," Digilent Inc., 2012. [Online]. Available:
https://reference.digilentinc.com/reference/programmable-logic/nexys-4-ddr/start. [Accessed 12 11
2018].

[4] Opensource.com, "Opensource.com,” 11 2019. [Online]. Available:
https://opensource.com/resources/what-open-source.

[5] A.R. Core, "32bitMicro," 02 02 2015. [Online]. Available:
https://web.archive.org/web/20150202024204/http//32bitmicro.com/component/content/artic le/457 -
soft-processor/973-amber-risc-core. [Accessed 25 12 2018].

[6] K. Afef, E. Wajih, R. Velazco and R. Tourki, "An exhaustive analysis of SEU effects in the SRAM
memory of soft processor,” vol. 13, pp. 58-68, 2018.

[7] Oracle, "About OpenSPARC," Oracle, December 2005. [Online]. Available:
https://www.oracle.com/technetwork/systems/opens parc/opensparc-overview-1562924. html.
[Accessed 25 12 2018].

[8] R.-V.Foundation, "About the RISC-V ISA" RISC-V Foundation, 25 11 2018. [Online]. Available:
https://riscv.org/risc-v-isa/.

[9] B. Keller, "Handouts for CS250: VLSI Systems Design,” 17 9 2013. [Online]. Available:
http//www-inst.eecs.berkeley.edu/~cs250/fal3/handouts/lab2-riscv.pdf#13. [Accessed 24 12 2018].

[10] LowRISC, "Overview of the ethernet infrastructure,” LowRISC, 12 2017. [Online]. Available:
https://www.lowrisc.org/docs/ethernet-v0.5/overview/. [Accessed 28 12 2018].

[11] LowRISC, "Frequently asked questions,” LowRISC, 6 2018. [Online]. Available:
https://www.lowrisc.org/docs/current-re lease-fag/. [Accessed 27 12 2018].

[12] LowRISC, "Rocket core overview,"” LowRISC, 4 2015. [Online]. Available:
https://www.lowrisc.org/docs/tagge d-memory-v0.1/rocket-core/. [Accessed 25 12 2018].

[13] A.P.D. G. A. (Shahab), "Digital Image Processing,” University of Tartu, 1 2014. [Online].
Available: https:/sisu.ut.ee/imageprocessing/book/1.

[14] EngineersGarage, "Introduction to Image Processing,” EngineersGarage, 5 2011. [Online].
Available: https://www.engineersgarage.com/artic les/image-processing-tutorial-applications.
[Accessed 29 12 2018].

[15] C. B. Giingdr, Y. Ondes, T. T. Sar1 and B. Uckun, "Instructolon Set Extension of Some Processors
for Secure 10T Implementation,” Istanbul, 2018.

[16] T. Liu, G. Shi, L. Chen, F. Zhang and Y. Y. a. J. Zhang, "TMDFI: Tagged Memory Assisted for
Fine-Grained Data-Flow Integrity Towards Embedded Systems Against Software Exploitation,” in
17th IEEE International Conference On Trust, Security And Privacy In Computing And
Communications/ 12th IEEE International Conference On Big Data Science And Engineering, New
York, 2018.

[17] A. Ramos, A. Ullah and P. R. a. J. A. Maestro, "Efficient Protection of the Register File in Soft-
Processors Implemented on Xilinx FPGAs," 1 2 2018. [Online]. Available:

ol

http//ieeexplore.ieee.org/stamp/stamp. jsp?tp=&arnumber=8008792& isnumber=8255532.
[Accessed 1 1 2019].

[18] Ubuntu, "Ubuntu,” Canonical, 28 12 2018. [Online]. Available: https://www.ubuntu.com/.

[19] LowRISC, "Download and install Debian,” LowRISC, 5 2018. [Online]. Available:
https://www.lowrisc.org/docs/download-install-debian/. [Accessed 2 11 2018].

[20] Xilinx, "Vivado," Xilinx, 30 12 2018. [Online]. Available: https//www.xilinx.com/products/design-
tools/vivado.html.

[21] Digilent, "Digilent Adept 2," Digilent, 2 2015. [Online]. Available:
https://store.digilentinc.com/digilent-ade pt-2-download-only/.

[22] Kitware, "About CMake," Kitware, 25 12 2018. [Online]. Available: https://cmake.org/.

[23] LowRISC, "Structure of the git repository,” LowRISC, 5 2018. [Online]. Available:
https://www.lowrisc.org/docs/download-the-code/. [Accessed 10 10 2018].

[24] LowRISC, "Getting started,” LowRISC, 52018. [Online]. Available:
https://www.lowrisc.org/docs/getting-started/. [Accessed 20 12 2018].

[25] "Debian Ports,” 23 03 2018. [Online]. Available: http:/ftp.ports.debian.org/debian-ports/. [Accessed
22 12 2018].

52

CURRICULUM VITAE

Name Surname : Bartu Siirer
Place and Date of Birth - Sakarya 24.08.1994

E-Mail : surerb16@itu.edu.tr

Bartu Siirer finished primary school at Ahmet Akkog primary school in Adapazari and
high school at Sakarya Anatolian High School in Adapazari. He is currently senior
year student at Electronics and Communication Engineering in Istanbul Technical
University Electrical-Electronics Faculty. He completed his interships at Argelik A.S.
in Tuzla and Otokar Otomotiv ve Savunma Sanayi A.S in Sakarya.

53

