
i

ISTANBUL TECHNICAL UNIVERSITY

ELECTRICAL-ELECTRONICS ENGINEERING FACULTY

Implementatıon Of Dıffıe-Hellman Key Exchange Protocol Usıng Mıcroblaze On Fpga

BSc Thesis by

Onur ŞAHİN

(040110098)

Department: Electronics and Communication Engineering

Programme: Electronics and Communication Engineering

Supervisor: Assoc. Prof. Dr. Sıddıka Berna Örs Yalçın

MAY 2017

ii

iii

İSTANBUL TEKNİK ÜNİVERSİTESİ

ELEKTRİK-ELEKTRONİK FAKÜLTESİ

FPGA ÜZERİNDE MICROBLAZE KULLANILARAK DIFFIE-HELLMAN ANAHTAR

DEĞİŞİMİ PROTOKOLÜNÜN GERÇEKLENMESİ

Bitirme Ödevi

Onur ŞAHİN

(040110098)

Bölümü: Elektronik ve Haberleşme Mühendisliği

Programı: Elektronik ve Haberleşme Mühendisliği

Danışmanı: Doç. Dr. Sıddıka Berna Örs Yalçın

MAY 2017

iv

v

To my beloved family,

vi

vii

PREFACE

First of all, I would like to show my greatest appreciation to my supervisor, Assoc. Prof.

Dr. Sıddıka Berna Örs Yalçın for her brilliant assitance and guidance during this thesis

preparation time. Also I would like to thank my friend Arda Tanrıkulu for his all helps

and to thank to Research Asst. Latif Akçay for his help and guidance. Above all, I would

like to thank my family fo their endless support.

May 2017

Onur Şahin

viii

ix

CONTENTS

Page

PREFACE..vii

INDEX...ix

ABBREVIATIONS...xi

LIST OF FIGURES...xii

ÖZET...xiii

SUMMARY...xiv

1. INTRODUCTION...1

2. CRYPTOGRAPHY...3

 2.1 Overview...3

 2.2 Symmetric-key Cryptography...3

3. DIFFIE-HELLMAN KEY EXCHANGE..4

 3.1 The Diffie-Hellman Key Exchange Protocol...4

 3.2 Security..6

 3.3 Diffie-Hellman Key Exchange Implementation..7

4. ADDER-SUBTRACTOR MODULE DESIGN...9

 4.1 Verilog Hardware Description Language..9

 4.2 Xilinx ISE..9

 4.3 Full Adder..9

 4.4 Ripple Carry Adder..11

 4.5 17-bit Adder-Subtractor...12

5. MICROBLAZE..15

 5.1 Overview..15

 5.2 Xilinx Embedded Development Kit (EDK)...16

 5.2.1 Xilinx Platform Studio...17

5.2.1.1 Overview..17

 5.2.1.2 Custom IP Implementation..18

x

 5.2.2 Xilinx Software Development Kit...21

 5.2.2.1 Overview..21

 5.2.2.2 C Project...21

6. HARDWARE DESIGN...22

 6.1 Communication Between FPGA and Computer..22

 6.1.1 UART Protocol...22

 6.1.2 SDK Terminal Configurations..23

7. RESULTS ..23

REFERENCES...??

RESUME..??

xi

ABBREVIATIONS

DH : Diffie Hellman

EDK : Embedded Development Kit

FPGA : Field Programmable Gate Array

ISE : Integrated Software Environment

RCA : Ripple Carry Adder

RTL : Register Transfer Level

SDK : Software Development Kit

UART : Universal Asynchronous Receiver/Transmitter

USB : Universal Serial Bus

XPS : Xilinx Platform Studio

IP: Intellectual Property

BFM: Bus Functional Model

xii

FIGURE LIST

Figure 2.1: Model of shared secret key encryption

Figure 3.1: Schematic of Diffie-Hellman key exchange method

Figure 3.2: Register function codes in SDK

Figure 3.3: Fast exponentiation algorithm codes in C language

Figure 4.1: Gate-level diagram for full adder

Figure 4.2: Verilog code for full adder with parameters

Figure 4.3: Ripple carry adder diagram for 4 full adder

Figure 4.4: Verilog code for RCA with option parameter

Figure 4.5: Example operations for two’s complement

Figure 4.6: Verilog code of adder-subtractor top module

Figure 5.1: MicroBlaze Core Block Diagram

Figure 5.2: Embedded Development Kit (EDK) tools architecture

Figure 5.3: PLB interconnect scheme

Figure 5.4: BFM simulation system architecture diagram

Figure 5.5: Verilog code of AND gate

Figure 5.6: User Logic implementation

Figure 6.1: Simulation results just before the information come to the AND gate

Figure 6.2: Simulation results when the information is carried to the AND gate

Figure 6.3: Base and High addresses values

Figure 6.4: Design summary of AND gate module

Figure 6.5: Protocol results screen from the SDK

Figure 6.6: Base and High addresses and sizes of instances

Figure 6.7: Design summary of adder-subtractor module

xiii

FPGA ÜZERİNDE MICROBLAZE KULLANILARAK DIFFIE-HELLMAN ANAHTAR

DEĞİŞİMİ PROTOKOLÜNÜN GERÇEKLENMESİ

ÖZET

Kriptografi günümüzde gönderilen bir bilginin istenmeyen şahışlar tarafından ulaşılmasını

engelleyerek güvenli haberleşme tekniklerini uygulayan ve araştıran bir şifreleme bilimidir. Bu

bilimi kullanan verici bir sistem şifrelenmemiş bir mesajı şifreyelerek alıcı sisteme yollar ve

ortak paylaşılmış bir anahtar sayesinde güvenlik sağlanır ve haberleşme gerçeklenir. 1949 yılında

Claude Shannon, “Bell Systems Techincal” dergisinde haberleşme teorisi ve gizlilik sistemleri

üzerine bir makale yayınlamıştır. Bu makale kriptografi araştırmalarına katalitik etkide bulunmuş

ve modern kriptografinin gelişiminde önemli rol oynamıştır. Diffie-Hellman anahtar değişimi

protokolü ise dijital dünyada temel bir kriptografi sistemi olarak görülür ve güvenli

haberleşmenin temel taşlarından biridir. Protokolün gerçeklenebilmesi için bir adet alanda

programlanabilir kapı dizileri (FPGA) kartı kullanılmıştır.

Bu projenin ilk aşamasında bir yazılımsal çekirdek işlemci olan MicroBlaze, Xilinx Platform

Studio programı kullanılarak FPGA üzerinde devreye alındı. İlk olarak Verilog Donanım

Tanımlama Dili ile yazılmış VE kapısı modülü özel IP oluşturulmasında kullanıldı. Bu

oluşturulan özel IP’nin MicroBlaze ile bağlantısı kurularak SDK ortamına geçildi. Simulasyonda

sağlıklı bir gözlem yapabilmek için ve kapısının girişlerine gerçekleşebilecek olası değerler

gönderildi ve oluşturulan elf dosyası sonucunda simulasyon çalışıtırıldı. Ve kapısının

MicroBlaze ile sağlıklı bir şekilde haberleşebildiği gözlendi. Diffie-Hellman algoritmasının

gerçeklenebilmesi için ise bir toplayıcı-çıkarıcı modülüne ihtiyaç duyuldu. Verilog dilinde bu

toplama çıkarma işlemlerini yapabilen modül tanımlandı. 1 işaret biti ve 16 büyüklük biti olmak

üzere toplam 17 bitten oluşan bu modül yeniden bir özel IP yaratılarak MicroBlaze ile

Haberleşmesi sağlandı. SDK ortamına geçildi ve Diffie-Hellman anahtar değişim protokolü

gerçeklendi. Sonuçlar SDK ortamında FPGA üzerinde bulunan UART çıkışından terminalde

okundu ve program çıktısında anahtar değişimi protokolünün düzgün bir şekilde çalıştığı

gözlendi.

xiv

IMPLEMENTATION OF DIFFIE-HELLMAN KEY EXCHANGE PROTOCOL ON

FPGA USING MICROBLAZE

SUMMARY

Cryptography is a science of ciphering, which today implements and investigates

secure communication techniques by preventing the transmission of information by

unwanted persons. A transmitting system that uses this knowledge encrypts an

unencrypted message to the receiving system, and a common shared key provides

security and communication. In 1949, Claude Shannon published an article on

communication theory and privacy systems in "Bell Systems Techincal" magazine. This

article has catalytic effect on cryptography research and plays an important role in the

development of modern cryptography. The Diffie-Hellman key exchange protocol is seen

as a basic cryptography system in the digital world and is one of the cornerstones of

secure communications. One field programmable gate array (FPGA) card is used to

implement the protocol.

In the first phase of this project, MicroBlaze, a software core processor, was

deployed on the FPGA using the Xilinx Platform Studio program. First it was written in

Verilog Hardware Description Language AND gate module was used to create a custom

IP. This created custom IP was connected to MicroBlaze and switched to SDK

environment. In order to make a healthy observation in the simulation, the possible

values that can be realized at the entrance of the gate were sent and the simulation was

run as the result of the generated elf file. And it was observed that the gate could

communicate with MicroBlaze in a healthy way. To implement the Diffie-Hellman

algorithm, a adder-subtractor module was needed. In Verilog language, this module is

able to perform subtraction operations. This module consists of a total of 17 bits

including 1 sign bit and 16 magnitude bits, and a custom IP is created to communicate

with MicroBlaze again. SDK environment, and the Diffie-Hellman key exchange

protocol was implemented. The results were read in the SDK environment from the

UART output on the FPGA and it was observed that the key exchange protocol worked

properly on the program output.

xv

1

1. INTRODUCTION

This section includes a detailed description of the use of MicroBlaze, why it is

needed, what programs are used to implement and simulate it.

In this digital epoch truly there is no any condition where the security is not crucial

because of universal electronic connectivity, of viruses and hackers, of electronic

fraud [1]. At this point software and hardware security measures are at the

forefront. One of these security measures is to create a cryptographic system. The

first step of a cryptographic system is sharing a common key between two system

which cannot be detected by 3rd party system. Common key do not take place in

the communication channel in this way the security is provided. One of the

particular methods for exchanging cryptographic keys between two system over a

public channel is the Diffie-Hellman key exchange method. The Diffie-Hellman

algorithm depends on the complexity of calculating discrete logarithms [1].

The difficulty of resolving a password increases with its length. Considering the

key size used in this project, although today's computer processors have large

processing capacities, there is also a need for hardware for the purpose. The FPGA

hardware description language is a hardware block ready to program, and it

satisfies this need. The necessary hardware used in this project for the algorithm to

implement the Diffie-Hellman protocol is the adder-subtractor module which is the

basis of the algorithm. Processors that can be used on FPGAs, such as MicroBlaze,

allow us to transfer and manipulate the module that performs the operations that

require rapid implementation of the key exchange protocol to the software

environment. First, this module will be communicated with MicroBlaze to an

AND gate without being programmed onto the FPGA. The aim here is to check

whether the MicroBlaze and the AND gate communicate in a healthy manner via

simulation. Once this communication has been observed, the collector-extractor

module can now be designed.

2

The adder-subtractor module was written with Verilog, one of the hardware

description languages. Using Xilinx ISE it was tested that these modules can be

added and subtracted properly by sending appropriate values to their inputs. At this

point, the communication of the MicroBlaze and adder-subtractor modules had to

be carried out. A custom IP was created using the Xilinx Platform Studio and the

design was transferred to the Xilinx Software Development Kit program. The

purpose here is to provide the ability to write the algorithm of the Diffie-Hellman

protocol in C language. In the C project, we have realized the algorithm by means

of the adder-extractor module and it is observed that the protocol is run properly

from the terminal on the SDK by FPGA programming.

3

2. CRYPTOGRAPHY

2.1 Overview

Cryptography is where security engineering meets mathematics[3]. So the existence

purpose of cryptography is secure communication that fundamentally originates in two

parts. The first one is secured key establishment. It is obvious that secured key

establishment essentially amounts to Alice and Bob sending messages to one another

such that at the end of this protocol, there's a shared key that they both decided, shared

key X, and beyond just a shared key, simply Alice would know that she's talking to Bob

and Bob would know that he's talking to Alice. But the attacker who listens the

communication channel has no idea what the X is. And also an attacker cannot even rake

this traffic up without being detected. After they have a shared key, Bob and Alice want

to exchange their messages trustfully using this key.

The significant point about the cryptography for this project is length of the key. In this

project 16-bit key is used. Longer the key means more the safety. Therefore FPGA’s are

the one of the solution for seeing the results quickly. There is no doubt any circuit design

can be implemented into FPGA. Togetherness of this embedded system and security

algorithms like Diffie-Hellman key exchange allows to digital world progress rapidly in

terms of security measure.

2.2 Symmetric-key Cryptography

Symmetric-key cryptography is one type of cryptography where the same cryptographic

keys for both encryption of plaintext and decryption of ciphertext are used[4]. There is

five main things in a cryptosystem. These things are: plaint text, encryption algorithm,

secret key, ciphertext and the decryption algorithm. Plain text is the pure data which is

input of encryption algorithm. Encryption algorithm is the machine that performs

complex mathematical operations onto plaintext. Secret key is the main part of this

4

cryptosystem which is applied both encryption and decryption algorithm. If the key

changes the output of encryption algorithm also differs because of the particular

mathematical operation. Ciphertext is the encryption algorithm’s output information

that sent in communication channel. The last one is decryption algorithm. It refers the

reversal process of the encryption algorithm. As said before the main point of this

symmetric-key cryptosystem is secret key. Attacker shouldn’t discover the key so it never

sent in transmission channel. The following figure shows the model of symmetric-key

cryptography system.

Figure 2.1: Model of shared secret key encryption[1]

3. DIFFIE-HELLMAN KEY EXCHANGE

3.1 The Diffie-Hellman Key Exchange Algorithm

The Diffie-Hellman key exchange method makes way for two systems that have no

initial knowledge of each other to specify commonly a shared secret key over an

unsecured transmission channel[3]. This key exchange method was evolved in 1976

and released in “New Directions in Cryptography”. The Diffie-Hellman key exchange

leads to solution of following problem. System X and system Y are both symmetric-

5

key cryptographic systems. System X and system Y are intentioned to share their

secret key for the secure communication with each other. Both systems X and Y must

have a common shared secret key so the hacker must not have any idea what the secret

key is.

The mechanism of Diffie-Hellman key exchange will be explained basically. First

pick a large prime “𝑁”, in fact “𝑁” is usually used to represent primes, and an integer

“𝛼”, that take place in the range of [1, . . . , 𝑁]. Both “𝑁” and “𝛼” are parameters of

Diffie-Hellman protocol that are chosen once and are constant forever. System X and

Y select a random number “𝑎” and “𝑏” respectively, in the range of [1, . . . , 𝑁 − 1].

Then system X is going to compute Result 𝑋 = αa 𝑚𝑜𝑑 𝑝. So system X computes the

exponentiation and reduces the result to the modulo of 𝑝, and the result is sent to the

system Y. System Y also calculates the Result 𝑌 = αb 𝑚𝑜𝑑 𝑝 and sends to the system

X. So system X sends Result X to system Y and system Y sends Result Y to system X,

and now a shared secret key can be generated. So there is a question properly which

one is the shared key? It is named as Sab and it is defined as α𝑎𝑏 𝑚𝑜𝑑 𝑝. This

spectacular investigation that Diffie-Hellman had 41 years ago is that indeed both

sides can calculate the value of 𝑆 = αab. System X can compute this value since, it can

take the value Result Y, that it had received from system Y, and raise to the power of

“𝑎” . Also the system Y compute the value in same style as system X, and as a result

both systems X and Y, have computed the S and resulted in the same secret key. This

protocol opened a road to new era in cryptography.

6

Figure 3.1: Schematic of Diffie-Hellman key exchange method[1]

3.2 Security

It is obvious that both systems X and Y end up with the same shared key. The

attractive point of this protocol is the reason of trustworthy[1]. In other saying, what is

the reason behind the attacker can not solve the same shared key that both systems X

and Y have calculated themselves? The hacker or earwitness figures out α and N

which are constant and known by everybody what they are. He or she also gets the

value that system X sends to system Y named as Result X and he sees the value that

system Y sends to system X named as Result Y. The point is whether attacker can

7

compute αab just given these four values. The explanation of this problem is that the

hacker has to solve the Discrete Logarithm Problem (DLP) and then he can figure out

random generated numbers “a” and “b” after which is very simple for hacker to

calculate αab [10].

The DLP is the problem of solving “d” if c ≡ αd (𝑚𝑜𝑑 N), with c, α and p are known.

Two solutions are exist but there is no any algorithm that can succeed this in a decent

time. First solution is Brute Force, which is not an impressive solution, since it needs

“N” steps to calculate the solution and in every try needs a really long time of work.

3.3 Diffie-Hellman Key Exchange Implementation

In this thesis the Diffie-Hellman key exchange algorithm is designed with C Language

in Xilinx SDK and is both implemented and tested in a Spartan-6 FPGA. The diffie-

hellman key exchange is designed for 16-bit key. Fundamentally, in SDK the exported

adder-subtractor design is used because of the mathematical operations like

multiplication and exponentiation. There is no way to accomplish any mathematical

expression without perfoming addition or subtraction process.

Firstly the modulo algorithm should be designed. If the subtraction repeats while the

subtrahend is less than or equal to minuend this process results in successful modulo

operation. The following figure shows how it is written in C language.

Figure 3.2: Register function codes in SDK

8

Addition operation has the same structure with AND gate implementation which is

explained later in this thesis. Secondly the algorithm should calculate A+B (mod N) so

the addition function is called before the modulo function in addition-modulo

function. The remaining functions are the multiplication-modulo function and the

exponentiation-modulo function. These are different from the addition-modulo

function and requires some conditional operations. For the multiplication-modulo

function the addition-modulo is called for the 16 times which is length of the key and

if the i-th bit of B is 1 the addition-modulo is called again. Multiplication-modulo

function returns C variable which is defined firstly 0. This operation is repeated for

the exponentiation-modulo function and the differences are pre-defined C is 1 for this

time and multiplication function is called instead of addition-modulo function. This

algorithm allows the calculation of fast modular exponentiation. The following code

figure shows how it is completed.

Figure 3.3: Fast exponentiation algorithm codes in C language

 In the main the Diffie-Hellman function is called for the calculation of Result X and

Result Y. After that Diffie-Hellman function is called again for this time parameter A

is changed with Result X and Result Y for the calculation of keys respectively System

9

Y and System X. From the terminal of FPGA’s serial port it is easy to see this

algorithm works very well. In simulation part it will be mentioned.

4. ADDER-SUBTRACTOR MODULE DESIGN

4.1 Verilog Hardware Description Language

Verilog Hardware Description Language (Verilog HDL) is a formal demonstration

designed by Xilinx for use in all phases of an electronic system setup. As both

machine and human readable, it supports the development, validation, synthesis and

testing of equipment [10]. Verilog HDL serves as a tool that is a major force in digital

system design because a designer offers the designer the advantage of the design

simulation he or she receives to make critical decisions about the designer's design.

The designer can also analyze how the design will behave if it is designed to be

synchronous or asynchronous with the addition of its own command. As mentioned

above, the readability of Verilog HDL makes it very attractive and useful for

engineers. All of these synthesis, simulation, verification, etc. operations were

compiled in a tool designed by Xilinx and known as Xilinx ISE.

4.2 Xilinx Integrated Software Environment

Xilinx ISE is a software tool produced by Xilinx for synthesizing and analyzing HDL

designs, allowing developers to synthesize their designs, perform timed analysis,

display RTL diagrams, simulate an adaptation as a different stimulus response, and

configure the target device with the programmer. Simulation for system level testing

can be done with ISIM logic simulator. Test programs should also be written in HDL

languages. In this project, ISIM is used for logical verification to ensure that the 17-bit

add-subtract module produces the expected result.

4.3 Full Adder

10

In digital systems adder is an inevitable logic unit for the implementation of any

mathematical operation[10]. Each operation is related to sum operation logically.

There is two type of adder, the first one is half adder and the second one is full adder.

Half adder, adds two 1-bit operands X and Y, producing a 2-bit sum. The sum can

range from 0 to 2, which requires two bits to express. The low-order bit of the sum

may be named HS (half sum), and the high-order bit may be named Cout (carry out).

It can be seen from the following equations for HS and Cout:

 𝐻𝑆 = 𝑋. 𝑌′ + 𝑋′. 𝑌 (4.1)

 𝐶𝑜𝑢𝑡 = 𝑋. 𝑌 (4.2)

For this project full adders are used instead of half adders because the chain structure

should be implemented to compound 17-bit together. Full adder has Cin(carry in)

input except the addend-bit inputs X and Y. The sum of the three inputs can range

from 0 to 3 that means two output bit still enough. Following equations show how it is

different from the half adder equations and the following figure shows gate-level

circuit diagram for full adder.

𝑆(𝑠𝑢𝑚) = 𝑋. 𝑌’. 𝐶𝑖𝑛’ + 𝑋’. 𝑌. 𝐶𝑖𝑛’ + 𝑋’. 𝑌’. 𝐶𝑖𝑛 + 𝑋. 𝑌. 𝐶𝑖𝑛 (4.3)

𝐶𝑜𝑢𝑡 = 𝑋. 𝑌 + 𝑋. 𝐶𝑖𝑛 + 𝑌. 𝐶𝑖𝑛 (4.4)

11

Figure 4.1: Gate-level diagram for full adder[10]

In verilog language it is really simple to create this structure. Following figure

indicates the full adder with parameters x,y,cin,sum and cout. This module is the

keystone of Diffie-Hellman key exchange algorithm, in other words this is the

undermost module in this project.

Figure 4.2: Verilog code for full adder with parameters

4.4 Ripple Carry Adder

Creation of a logical circuit using full adders to add N-bit numbers is possible[10].

Each full adder inputs a Cin, which is the Cout of the previous adder. This kind of

chain adder is called a ripple-carry adder, since each carry bit "ripples" to the next full

adder. In this project 17-bit adder-subtractor module is designed. Therefore 17 full

adder are connected to each other. The following figure is an example for 4-bit ripple

carry adder.

12

Figure 4.3: Ripple carry adder diagram for 4 full adder[10]

Calling 17 times the full adder module with the carry wire parameter in Verilog allows

to us unite them. The important point is the first Cin(C0) should be the option bit for

the making decision about which operation is going to be executed addition or

subtraction? In this project it is named as “option” input. The following verilog code

shows the ripple carry adder connections.

13

Figure 4.4: Verilog code for RCA with option parameter

4.5 17-bit Adder-Subtractor

Here in this project Adder-Subtractor module is going to be 17-bit because of there

should be 1 sign bit and 16 magnitude bit for realization of subtraction operation[10].

Combining 17 full adder is not enough to make subtraction operation. Two’s

complement should be applied to complete our design. Two’s complement number

representation is used for signed numbers. While the signed-magnitude system negates

a number by changing only its sign, a complement number system negates a number

14

by taking its complement as defined by the system[desktop]. The following figure

exactly shows how two’s complement work.

Figure 4.5: Example operations for two’s complement

15

For subtraction operation the subtrahend’s two’s complement form is calculated and

then the addition can be applied. If the minuend, subtrahend’s two’s complement form

and 1 are summed and the subtraction operation has successfully done. As mentioned

before all mathematical operations are related to addition operation. At this point it is

obvious that if the option 0 is zero the circuit is going to produce addition operation. If

it is 1 the circuit is going to produce subtraction operation. The reason for this the

option bit and i-th bit of the subtrahend are the inputs of XOR gate. If we XOR the bit

A with 1 the result is always be the inverse of the A. If we XOR the bit A with 0 the

result is always be the same of the A. The following code figure simply shows us how

the adder-subtractor module is implemented.

Figure 4.6: Verilog code of adder-subtractor top module

16

5. MICROBLAZE

5.1 Overview

Designed modules are used as a peripheral part of a microprocessor and the

microprocessor takes over the controller role by controlling these peripherals and

applying a secure data communication protocol. The soft-core microprocessor that can

be used with Xilinx Field Programmable Gate Arrays (FPGAs) through the Xilinx

Embedded Development Kit (EDK) software known as MicroBlaze [2].

Figure 5.1: MicroBlaze Core Block Diagram[6]

17

The MicroBlaze, a virtual microprocessor, which is constructed by integration of

blocks of code named as core placed in the internal of a Xilinx FPGA[2].The main

point of MicroBlaze is the architecture (RISC) for Universal Asynchronous

Receiver/Transmitter, Flash, General Purpose Input / Output and similar Xerox®

Xilinx FPGAs for the Harvard Reduction Instruction Set Computer. Separate 32-bit

data and command buses run at high speed to perform programs and provide data at

the same time to provide both chipset and external memory[2].

5.2 Xilinx Embedded Development Kit (EDK)

The Xilinx Development Kit (EDK) provides an environment in which the designer

can create a processor system embedded in all the features that can be implemented in

a Xilinx FPGA device. EDK is an integral part of the Xilinx programmable logic

components, as defined by the Integrated Software Environment (ISE®) Design Suite

Embedded System Edition [5], developed by Xilinx. The EDK components are:

1- The Xilinx Platform Studio

2- The Software Development Kit (SDK)

3- Intellectual Property (IP) cores

The design flow in the EDK, in other words the features of the designer to start with

an ISE project, then to add an embedded processor source in the ISE project. When the

ISE components are complete, EDK starts synthesizing the design in the

microprocessor hardware, matches the FPGA and generates the bitstream as the final

step.

An embedded hardware platform consists of one or more processors, peripherals and

inter- connections via a memory block and processor path [10]. As a tool, EDK has

been left to focus on the designer as it provides a great convenience to the designer as

a link between designers, peripherals, and FPGA hardware designs, address mapping

of the system being designed, communication protocols and other interconnection

tools. Hardware and software designs. The following figure shows the design flow

diagram of a system designed using microcontroller in the FPGA. The steps shown in

18

the picture are created by EDK and presented to the designer through a user interface,

making it easier and faster to implement complex designs.

Figure 5.2: Embedded Development Kit (EDK) tools architecture[5]

It was stated that MicroBlaze could be configured in the previous section. This case is

applied in the EDK tool. The EDK base system comes with the Base System

Generator (BSB). BSB, hardware based on micro-blaze Intellectual Property (IP)

cores, the connections of these systems are made from EDK.

5.2.1 Xilinx Platform Studio

5.2.1.1 Overview

19

One of the components of the EDK is Xilinx Platform Studio (XPS), which provides

an environment for building embedded processor systems based on MicroBlaze and

PowerPC processors [5]. In XPS, the address mapping phase of peripherals connected

to MicroBlaze is completed. Later, synthesis and application phases of the design

project were realized.

5.2.1.2 Custom IP Implementation

For the simple implementation in this project a two-input AND gate is selected.

Firstly, base system builder is used for the creating new project. PLB interconnect

system is selected. In the peripheral configuration section only the “dlmb_cntlr” and

“ilmb_cntlr” are used as MicroBlaze peripherals because there is no need external

hardwares for this implementation. Two necessary operation creating and importing

peripheral are applied in Xilinx Platform Studio. There are some important points

when the creating new peripheral, the peripheral name should be the same with top

verilog module which is implemented later. In the slave service and configuration

section only the user logic software register is selected.

Figure 5.3: PLB interconnect scheme[7]

20

3 registers are enough for AND gate implementation because there is two input and

one output. BFM simulation platform must be generated for the observation main

communication signals between the MicroBlaze and the peripheral which is created by

user.

Figure 5.4: BFM simulation system architecture diagram[8]

There is another remarkable language option about the “user_logic” module which

allows to user making new connections and some arrangements between soft core

processer and the peripheral. Although the periheral template file is always written in

VHDL language, the stub user_logic template file can be in Verilog for a mixed

language design. All modules in this project are written in Verilog language so the

“user_logic” template should be generated in Verilog language for the easiness.

Figure 5.5: Verilog code of AND gate

21

User_logic module should be edited for the making required connections accurately.

Firstly the output should be defined as a wire. In this project o_wire element is driven

by the AND gate’s output o. The last bit of registers is used because 1-bit operation is

enough for the observation bus signals. The third register(slv_reg2) is the combination

of 31-bit zeros and the least significant bit is o_wire.

Figure 5.6: User Logic implementation

After the all connections are made, the peripheral is imported by the implementation

of following steps. Firstly the peripheral analysis order file is selected and the order

must be respectively AND gate verilog module, user_logic verilog module and AND

gate VHDL module. In this project there is no need to indicate the attribute of the

interrupt signal. After these steps are accomplished the local peripheral core carried

22

into bus interfaces section because of making connection between custom IP and the

MicroBlaze. Custom IP and the soft core processor are connected over PLB bus by the

selection of bus mb_plb. For the addition of new peripheral address into MicroBlaze’s

address map the generation of address option is used. This design is exported to SDK

after all the phases are done.

5.2.2 Xilinx Software Development Kit

5.2.2.1 Overview

Another component of EDK is Xilinx Software Development Kit (SDK), which

provides to the designer a development environment based on the Eclipse open-source

standard for software application projects [6]. As a tool includes some feature that it

includes[5]:

1- Feature-rich C/C++ code editor and compilation environment

2- Project management

3- Supports environment for group working

4- Imports the hardware platform definitions generated by XPS

5.2.2.2 C Project

SDK allows to user creating a project in C language and sending information to the

registers by using the header files of xparameters, platform and the custom IP which is

automatically produced by XPS after the SDK exportation. This software’s most

significant feature is making developer’s job easier by providing C language to control

hardware system. For AND gate implementation we need two write register to define

which two data will be written to input and one read register to save of output result.

In the following code figure these registers can be seen easily.

23

For programming FPGA over SDK three type files are needed. These are Bitstream,

BMM file and the ELF file. ELF file is used for the initialization Block RAM and it is

a common standard file format for executable files, object code and shared libraries.

After coding part is done firstly linker script is generated to provide protection and

organization of all related files before the elf file update. In this project elf file is going

to be used for simulation in XPS and programming FPGA.

6. HARDWARE DESIGN

6.1 Communication between FPGA and the computer

One FPGA board is planned to communicate with the computer. The communication

method is selected as Universal Asynchronous Reciever/Transmitter (UART)

protocol. Usually, RS232 cable is used for the UART communication. This cable

enables the transmission of data by serial communication.

Spartan-6 FPGA which is used in this project does not have the RS232 socket so the

information sharing is made by using Rx and Tx ports to send and receive data.

6.1.1. UART protocol

The UART performs serial-to-parallel conversions on data received from a peripheral

device and parallel-to-serial conversion on data received from the CPU. The CPU can

read the UART status at any time. The UART includes control capability and a

24

processor interrupt system that can be tailored to minimize software management of

the communications link[9].

Sending serial data on a single line accurately needs some control to be applied.

Therefore UART protocol, except the data bits, has a parity bit which is optional, a

stop bit and a start bit. When there is no data to send the line is in idle case. Idle case

terminates when the start bit is seen and sends data until the stop bit is raised. Parity

bit is optional that comes before the end bit. Tx line is used to transmit data and Rx is

to receive data. Every single bit of data is sent according to the Baudrate which is the

rate of data sent per second. Baudrate is generally set to 9600.

6.1.2. SDK Terminal Configurations

After the FPGA programmed the results should have seen from the terminal. Firstly

the vcp driver kit must be installed for the UART communication over usb. When the

board is connected to computer, driver allows the computer to see UART output as a

virtual com port. From the terminal settings connection type selected as serial,

Baudrate set to 9600 and port selected as COM3 with encoding ISO-8859-1. When all

the changes are done the result is seen from the SDK’s terminal window.

6. RESULTS

6.1 AND Gate Implementation Simulation Results

After the Bus2IP (master-to-slave) becomes logically 1 the values which are sent from

SDK is carried to the AND gate’s input. Here 𝑎, 𝑏 and 𝑜 represents AND gate’s inputs

and the output. The following figures show exactly what is happening between IP and

MicroBlaze in terms of communication.

25

Figure 6.1: Simulation results just before the information come to the AND gate

26

Figure 6.2: Simulation results when the information is carried to the AND gate

27

In EDK the base and high addresses are generated for the custom IP. The base address

must be lower than the high address it can be seen from following figure.

Figure 6.3: Base and High addresses values

Figure 6.4: Design summary of AND gate module

28

6.2 Diffie-Hellman Key Exchange Protocol Implementation Results

The alice function calculates the 𝐴^𝐵 𝑚𝑜𝑑 𝑁 and 𝐴^𝑋 𝑚𝑜𝑑 𝑁 and they are assigned

to 𝑠𝑜𝑛𝑢𝑐_𝑎 and 𝑠𝑜𝑛𝑢𝑐_𝑏 respectively. These parameters are called again instead of

integer 𝐴 in alice function as the protocol required and they are assigned to

𝑟𝑒𝑠𝑢𝑙𝑡_𝑎𝑙𝑖𝑐𝑒 and 𝑟𝑒𝑠𝑢𝑙𝑡_𝑏𝑜𝑏. Xil_printf is used because it takes really small space in

the memory by comparison with printf. By the following it can be seen final results

are equal to each other and the key exchange protocol successfully implemented.

29

Figure 6.5: Protocol results screen from the SDK

For the memory optimization dlmb_cntlr and ilmb_cntlr sizes are increased to 16

kilobyte from 8 kilobyte. Basically longer code means bigger memory size need. Uart

addresses are also generated for this time it can be seen from the figure below.

Figure 6.6: Base and High addresses and sizes of instances

Figure 6.7: Design summary of adder-subtractor module

30

According to the results, the numbers 𝐴, 𝐵 and 𝑋 were chosen as appropriate for 16

bits. However, when this length is increased, it will become very difficult for a third

person to find the key. In the future, as more security solutions require longer ciphers,

this 16-bit limited design is likely to be an example for future larger designs.

31

REFERENCES

[1] Stallings,W. (2011). Cryptography and network security principles and practice

(5th ed.). United States of America: Pearson Education Inc., pp. xv

[2] Jesman, R. Vallina, Fernando M. Saniie, J. (nd). MicroBlaze Tutorial Creating a

Simple Embedded System and Adding Custom Peripherals Using Xilinx EDK

Software Tools. Illinois Institute of Technology, pp. 4-5

[3] Boneh, D. (2014). Cryptography I. Retrieved from Stanford University,

https://class.coursera.org/crypto-009

[4] Ayushi. (2010). A Symmetric Key Cryptographic Algorithm, International Journal

of Computer Applications (0975 - 8887), pp. 2

[5] Xilinx. (2010). Embedded System Tools Reference Manual, pp: 19-24

[6] Xilinx. (2008). MicroBlaze Processor Reference Guide, pp: 10

[7] Xilinx Custom IP (n.d.). Retrieved May 22, 2017, from <

https://www.xilinx.com/support/documentation/ip_documentation/plb_v34.pdf>

[8] Xilinx BFM Simulation (n.d.). Retrieved May 21, 2017, from <

https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/bfm_simulation.

pdf>

[9] Wakerly, John F. (1999). Digital Design Principles and Practices(4th ed.). United

States of America: Pearson Education Inc., pp. 33-34, 391-393

[10] Srouji, J. & Fitzpatrick, T. & Korpusik, N. & Sutherlan, S. (2005). IEEE

Standard for Verilog Hardware Description Language. United States of America, pp: 1

https://www.xilinx.com/support/documentation/ip_documentation/plb_v34.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/bfm_simulation.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/bfm_simulation.pdf

