ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL-ELECTRONICS ENGINEERING FACULTY

Implementation Of Diffie-Hellman Key Exchange Protocol Using Microblaze On Fpga

BSc Thesis by
Onur SAHIN
(040110098)

Department: Electronics and Communication Engineering

Programme: Electronics and Communication Engineering

Supervisor: Assoc. Prof. Dr. Siddika Berna Ors Yalgin

MAY 2017

ISTANBUL TEKNIK UNIVERSITESI

ELEKTRIK-ELEKTRONIK FAKULTESI

FPGA UZERINDE MICROBLAZE KULLANILARAK DIFFIE-HELLMAN ANAHTAR
DEGISIMI PROTOKOLUNUN GERCEKLENMESI

Bitirme Odevi
Onur SAHIN

(040110098)

Boliimii: Elektronik ve Haberlesme Miihendisligi

Programi: Elektronik ve Haberlesme Miihendisligi

Danismani: Dog. Dr. Siddika Berna Ors Yal¢in

MAY 2017

To my beloved family,

Vi

PREFACE

First of all, I would like to show my greatest appreciation to my supervisor, Assoc. Prof.
Dr. Siddika Berna Ors Yalgin for her brilliant assitance and guidance during this thesis
preparation time. Also I would like to thank my friend Arda Tanrikulu for his all helps
and to thank to Research Asst. Latif Akcay for his help and guidance. Above all, I would

like to thank my family fo their endless support.

May 2017
Onur Sahin

Vii

viii

CONTENTS

Page

PREFACE ... oottt b bbbttt b bt et b st bbb e et e e e e vii
I D X et nae s IX
ABBREVIATIONS. ..ottt e e e e e e e nra e e e seeeanes XI
LIST OF FIGURES........ctiiiiiieieee sttt Xii
OZET oo X111
SUMMARY L.ttt e et e e st e e s st e e e ta e e e ta e e e st e e e anae e e reeeaneeean Xiv
1. INTRODUCTION.... .ottt e e e naeeennes 1
2. CRYPTOGRAPHY ...ttt bbb 3
2.1 OVEIVIBW...eiiiiiiiictee ettt b e bbbttt e bbb bbb e ne e et e e 3
2.2 Symmetric-key Cryptography........cccoeiiiiiiiiiiiieee e, 3

3. DIFFIE-HELLMAN KEY EXCHANGE.........cccooi i 4
3.1 The Diffie-Hellman Key Exchange Protocol..............ccccooeiviiiieieieciinenenn, 4

I 1= ol V| YRS 6

3.3 Diffie-Hellman Key Exchange Implementation..............cccccoovviniiiiicnennn, 7

4, ADDER-SUBTRACTOR MODULE DESIGN......cccccooiieiiieisee e 9
4.1 Verilog Hardware Description Language...........cccvevveieeieeieieeiie e, 9

4.2 XIHHNXISE. ..o e 9

B U | 1 [0 [OSSR 9

4.4 RIPPIE Carry AdUEN.......cviiiiiiiieeeee e 11

45 17-bit Adder-SUDIFACION.cviiiieiee e 12

5. MICROBLAZE........coo ottt ettt 15
T8 A O 1V V1 USRS 15

5.2 Xilinx Embedded Development Kit (EDK).........ccccoiviininiiniieiiiicieieeen 16
5.2.1 Xilinx Platform StUdiO.........ooeeiiiiiieieeesec e 17

5211 OVEIVIBW.....iiiiiiciie ittt e 17

5212 Custom IP Implementation.............ccocevvveieneneiencscnens 18

5.2.2 Xilinx Software Development Kit...........ccccceveiieiiiiiiic e 21

5221 OVEIVIBW. ...ttt 21

5.2.2.2 C PIOJECT ..ot 21

6. HARDWARE DESIGN......cciiiiiiiiiiiseie e 22
6.1 Communication Between FPGA and COMPULEr...........cccevveveiieeseeie e 22
6.1.1 UART PrOtOCOL......ciiieiiiiiiie et 22

6.1.2 SDK Terminal Configurations...........cccoerererinininineeeeee s 23

7. RESULTS <.ttt ettt bbb nre s 23
REFERENGCES.......c.oo ottt ettt sttt bbbttt nne e ??
RESUMEttt sttt ettt et e e te e s e e st et e stesbesteeneeneeneensennens ??

ABBREVIATIONS

DH : Diffie Hellman

EDK : Embedded Development Kit
FPGA : Field Programmable Gate Array
ISE : Integrated Software Environment
RCA : Ripple Carry Adder

RTL : Register Transfer Level

SDK : Software Development Kit

UART : Universal Asynchronous Receiver/Transmitter
USB : Universal Serial Bus

XPS : Xilinx Platform Studio

IP: Intellectual Property

BFM: Bus Functional Model

Xi

FIGURE LIST

Figure 2.1:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 6.1:
Figure 6.2:
Figure 6.3:
Figure 6.4:
Figure 6.5:
Figure 6.6:
Figure 6.7:

Model of shared secret key encryption

Schematic of Diffie-Hellman key exchange method
Register function codes in SDK

Fast exponentiation algorithm codes in C language
Gate-level diagram for full adder

Verilog code for full adder with parameters

Ripple carry adder diagram for 4 full adder

Verilog code for RCA with option parameter
Example operations for two’s complement

Verilog code of adder-subtractor top module
MicroBlaze Core Block Diagram

Embedded Development Kit (EDK) tools architecture
PLB interconnect scheme

BFM simulation system architecture diagram

Verilog code of AND gate

User Logic implementation

Simulation results just before the information come to the AND gate
Simulation results when the information is carried to the AND gate
Base and High addresses values

Design summary of AND gate module

Protocol results screen from the SDK

Base and High addresses and sizes of instances

Design summary of adder-subtractor module

xii

FPGA UZERINDE MICROBLAZE KULLANILARAK DIFFIE-HELLMAN ANAHTAR
DEGIiSiMi PROTOKOLUNUN GERCEKLENMESI

OZET

Kriptografi giinimiizde gonderilen bir bilginin istenmeyen sahiglar tarafindan ulasiimasin
engelleyerek giivenli haberlesme tekniklerini uygulayan ve arastiran bir sifreleme bilimidir. Bu
bilimi kullanan verici bir sistem sifrelenmemis bir mesaji1 sifreyelerek alici sisteme yollar ve
ortak paylasilmis bir anahtar sayesinde giivenlik saglanir ve haberlesme gergeklenir. 1949 yilinda
Claude Shannon, “Bell Systems Techincal” dergisinde haberlesme teorisi ve gizlilik sistemleri
iizerine bir makale yayinlamistir. Bu makale kriptografi aragtirmalarina katalitik etkide bulunmusg
ve modern kriptografinin gelisiminde 6nemli rol oynamustir. Diffie-Hellman anahtar degisimi
protokolii ise dijital diinyada temel bir kriptografi sistemi olarak goriiliir ve giivenli
haberlesmenin temel taglarindan biridir. Protokoliin ger¢eklenebilmesi igin bir adet alanda

programlanabilir kap1 dizileri (FPGA) kart1 kullanilmistir.

Bu projenin ilk asamasinda bir yazilimsal ¢ekirdek islemci olan MicroBlaze, Xilinx Platform
Studio programi kullanilarak FPGA iizerinde devreye alindi. 1k olarak Verilog Donanim
Tanimlama Dili ile yazilmis VE kapis1 modiilii 6zel IP olusturulmasinda kullanildi. Bu
olusturulan 6zel IP’nin MicroBlaze ile baglantisi kurularak SDK ortamina gegildi. Simulasyonda
saglikli bir gozlem yapabilmek i¢in ve kapisinin girislerine gerceklesebilecek olasi degerler
gonderildi ve olusturulan elf dosyas1 sonucunda simulasyon ¢alisitirildi. Ve kapisinin
MicroBlaze ile saglikli bir sekilde haberlesebildigi gézlendi. Diffie-Hellman algoritmasinin
gerceklenebilmesi icin ise bir toplayici-gikarict modiiliine ihtiya¢ duyuldu. Verilog dilinde bu
toplama ¢ikarma iglemlerini yapabilen modiil tanimlandi. 1 isaret biti ve 16 biiyiiklik biti olmak
tizere toplam 17 bitten olusan bu modiil yeniden bir 6zel IP yaratilarak MicroBlaze ile
Haberlesmesi saglandi. SDK ortamina gegildi ve Diffie-Hellman anahtar degisim protokolii
gerceklendi. Sonuglar SDK ortaminda FPGA {izerinde bulunan UART g¢ikisindan terminalde
okundu ve program c¢iktisinda anahtar degisimi protokoliiniin diizgiin bir sekilde calistig

gozlendi.

Xiii

IMPLEMENTATION OF DIFFIE-HELLMAN KEY EXCHANGE PROTOCOL ON
FPGA USING MICROBLAZE

SUMMARY

Cryptography is a science of ciphering, which today implements and investigates
secure communication techniques by preventing the transmission of information by
unwanted persons. A transmitting system that uses this knowledge encrypts an
unencrypted message to the receiving system, and a common shared key provides
security and communication. In 1949, Claude Shannon published an article on
communication theory and privacy systems in "Bell Systems Techincal" magazine. This
article has catalytic effect on cryptography research and plays an important role in the
development of modern cryptography. The Diffie-Hellman key exchange protocol is seen
as a basic cryptography system in the digital world and is one of the cornerstones of
secure communications. One field programmable gate array (FPGA) card is used to
implement the protocol.

In the first phase of this project, MicroBlaze, a software core processor, was
deployed on the FPGA using the Xilinx Platform Studio program. First it was written in
Verilog Hardware Description Language AND gate module was used to create a custom
IP. This created custom IP was connected to MicroBlaze and switched to SDK
environment. In order to make a healthy observation in the simulation, the possible
values that can be realized at the entrance of the gate were sent and the simulation was
run as the result of the generated elf file. And it was observed that the gate could
communicate with MicroBlaze in a healthy way. To implement the Diffie-Hellman
algorithm, a adder-subtractor module was needed. In Verilog language, this module is
able to perform subtraction operations. This module consists of a total of 17 bits
including 1 sign bit and 16 magnitude bits, and a custom IP is created to communicate
with MicroBlaze again. SDK environment, and the Diffie-Hellman key exchange
protocol was implemented. The results were read in the SDK environment from the
UART output on the FPGA and it was observed that the key exchange protocol worked
properly on the program output.

Xiv

Xv

1. INTRODUCTION

This section includes a detailed description of the use of MicroBlaze, why it is

needed, what programs are used to implement and simulate it.

In this digital epoch truly there is no any condition where the security is not crucial
because of universal electronic connectivity, of viruses and hackers, of electronic
fraud [1]. At this point software and hardware security measures are at the
forefront. One of these security measures is to create a cryptographic system. The
first step of a cryptographic system is sharing a common key between two system
which cannot be detected by 3rd party system. Common key do not take place in
the communication channel in this way the security is provided. One of the
particular methods for exchanging cryptographic keys between two system over a
public channel is the Diffie-Hellman key exchange method. The Diffie-Hellman

algorithm depends on the complexity of calculating discrete logarithms [1].

The difficulty of resolving a password increases with its length. Considering the
key size used in this project, although today's computer processors have large
processing capacities, there is also a need for hardware for the purpose. The FPGA
hardware description language is a hardware block ready to program, and it
satisfies this need. The necessary hardware used in this project for the algorithm to
implement the Diffie-Hellman protocol is the adder-subtractor module which is the
basis of the algorithm. Processors that can be used on FPGAs, such as MicroBlaze,
allow us to transfer and manipulate the module that performs the operations that
require rapid implementation of the key exchange protocol to the software
environment. First, this module will be communicated with MicroBlaze to an
AND gate without being programmed onto the FPGA. The aim here is to check
whether the MicroBlaze and the AND gate communicate in a healthy manner via
simulation. Once this communication has been observed, the collector-extractor

module can now be designed.

The adder-subtractor module was written with Verilog, one of the hardware
description languages. Using Xilinx ISE it was tested that these modules can be
added and subtracted properly by sending appropriate values to their inputs. At this
point, the communication of the MicroBlaze and adder-subtractor modules had to
be carried out. A custom IP was created using the Xilinx Platform Studio and the
design was transferred to the Xilinx Software Development Kit program. The
purpose here is to provide the ability to write the algorithm of the Diffie-Hellman
protocol in C language. In the C project, we have realized the algorithm by means
of the adder-extractor module and it is observed that the protocol is run properly

from the terminal on the SDK by FPGA programming.

2. CRYPTOGRAPHY
2.1 Overview

Cryptography is where security engineering meets mathematics[3]. So the existence
purpose of cryptography is secure communication that fundamentally originates in two
parts. The first one is secured key establishment. It is obvious that secured key
establishment essentially amounts to Alice and Bob sending messages to one another
such that at the end of this protocol, there's a shared key that they both decided, shared
key X, and beyond just a shared key, simply Alice would know that she's talking to Bob
and Bob would know that he's talking to Alice. But the attacker who listens the
communication channel has no idea what the X is. And also an attacker cannot even rake
this traffic up without being detected. After they have a shared key, Bob and Alice want

to exchange their messages trustfully using this key.

The significant point about the cryptography for this project is length of the key. In this
project 16-bit key is used. Longer the key means more the safety. Therefore FPGA’s are
the one of the solution for seeing the results quickly. There is no doubt any circuit design
can be implemented into FPGA. Togetherness of this embedded system and security
algorithms like Diffie-Hellman key exchange allows to digital world progress rapidly in

terms of security measure.
2.2 Symmetric-key Cryptography

Symmetric-key cryptography is one type of cryptography where the same cryptographic
keys for both encryption of plaintext and decryption of ciphertext are used[4]. There is
five main things in a cryptosystem. These things are: plaint text, encryption algorithm,
secret key, ciphertext and the decryption algorithm. Plain text is the pure data which is
input of encryption algorithm. Encryption algorithm is the machine that performs

complex mathematical operations onto plaintext. Secret key is the main part of this

3

cryptosystem which is applied both encryption and decryption algorithm. If the key
changes the output of encryption algorithm also differs because of the particular
mathematical operation. Ciphertext is the encryption algorithm’s output information
that sent in communication channel. The last one is decryption algorithm. It refers the
reversal process of the encryption algorithm. As said before the main point of this
symmetric-key cryptosystem is secret key. Attacker shouldn’t discover the key so it never
sent in transmission channel. The following figure shows the model of symmetric-key

cryptography system.

. Plaintext | Ciphertext | Plaintext
1 > FU—F

Sender Encrypt Decrypt Recipient

Same key is used to encrypt
and decrypt message

AP ¢
{
Sharad Secrat Key

Figure 2.1: Model of shared secret key encryption[1]

3. DIFFIE-HELLMAN KEY EXCHANGE
3.1 The Diffie-Hellman Key Exchange Algorithm

The Diffie-Hellman key exchange method makes way for two systems that have no
initial knowledge of each other to specify commonly a shared secret key over an
unsecured transmission channel[3]. This key exchange method was evolved in 1976
and released in “New Directions in Cryptography”. The Diffie-Hellman key exchange

leads to solution of following problem. System X and system Y are both symmetric-

key cryptographic systems. System X and system Y are intentioned to share their
secret key for the secure communication with each other. Both systems X and Y must
have a common shared secret key so the hacker must not have any idea what the secret
key is.

The mechanism of Diffie-Hellman key exchange will be explained basically. First
pick a large prime “N”, in fact “N” is usually used to represent primes, and an integer
“a”, that take place in the range of [1,..., N]. Both “N” and “a” are parameters of
Diffie-Hellman protocol that are chosen once and are constant forever. System X and
Y select a random number “a” and “b” respectively, in the range of [1,...,N — 1].
Then system X is going to compute Result X = o mod p. So system X computes the
exponentiation and reduces the result to the modulo of p, and the result is sent to the
system Y. System Y also calculates the Result Y = o mod p and sends to the system
X. So system X sends Result X to system Y and system Y sends Result Y to system X,
and now a shared secret key can be generated. So there is a question properly which
one is the shared key? It is named as Sap and it is defined as a2’ mod p. This
spectacular investigation that Diffie-Hellman had 41 years ago is that indeed both
sides can calculate the value of S = . System X can compute this value since, it can
take the value Result Y, that it had received from system Y, and raise to the power of
“a” . Also the system Y compute the value in same style as system X, and as a result
both systems X and Y, have computed the S and resulted in the same secret key. This
protocol opened a road to new era in cryptography.

SYSTEM X SYSTEM Y

Result X = a” mod N
Compute ’
-> a”mod N
_>S=qab _>S=aba

> Sab=RY*mod N ‘ > Sab= RX" mod N

Result Y = a® mod N

Compute

= ab mod N

Figure 3.1: Schematic of Diffie-Hellman key exchange method[1]

3.2 Security

It is obvious that both systems X and Y end up with the same shared key. The
attractive point of this protocol is the reason of trustworthy[1]. In other saying, what is
the reason behind the attacker can not solve the same shared key that both systems X
and Y have calculated themselves? The hacker or earwitness figures out o and N
which are constant and known by everybody what they are. He or she also gets the
value that system X sends to system Y named as Result X and he sees the value that

system Y sends to system X named as Result Y. The point is whether attacker can

6

compute o just given these four values. The explanation of this problem is that the
hacker has to solve the Discrete Logarithm Problem (DLP) and then he can figure out
random generated numbers “a” and “b” after which is very simple for hacker to

calculate o?® [10].

The DLP is the problem of solving “d” if ¢ = o (mod N), with ¢, o and p are known.
Two solutions are exist but there is no any algorithm that can succeed this in a decent
time. First solution is Brute Force, which is not an impressive solution, since it needs

“N” steps to calculate the solution and in every try needs a really long time of work.
3.3 Diffie-Hellman Key Exchange Implementation

In this thesis the Diffie-Hellman key exchange algorithm is designed with C Language
in Xilinx SDK and is both implemented and tested in a Spartan-6 FPGA. The diffie-
hellman key exchange is designed for 16-bit key. Fundamentally, in SDK the exported
adder-subtractor design is used because of the mathematical operations like
multiplication and exponentiation. There is no way to accomplish any mathematical

expression without perfoming addition or subtraction process.

Firstly the modulo algorithm should be designed. If the subtraction repeats while the
subtrahend is less than or equal to minuend this process results in successful modulo

operation. The following figure shows how it is written in C language.

int mod(int A, int N){
int kalan;
while (A>=N) {

ADDERSUB mWriteReg (XPAR ADDERSUB_
ADDERSUB mWriteReg (XPAR ADDERSUB
ADDERSUB mWriteReg (XPAR ADDERSUB

O_BASEADDR, ADDERSUB_SLV_REGO_OFFSET, A);
0 _BASEADDR, ADDERSUB_SLV _REG1 OFFSET, N):;
0 BASE

A ADDERSUB_SLV_REG2 OFFSET, 0x00000001);

e

=
=}
sl

A = ADDERSUB_mReadReg (XPAR ADDERSUB_O BASEADDR, ADDERSUB SLV REG3_OFFSET);

kalan = A;
return kalan;

Figure 3.2: Register function codes in SDK

Addition operation has the same structure with AND gate implementation which is
explained later in this thesis. Secondly the algorithm should calculate A+B (mod N) so
the addition function is called before the modulo function in addition-modulo
function. The remaining functions are the multiplication-modulo function and the
exponentiation-modulo function. These are different from the addition-modulo
function and requires some conditional operations. For the multiplication-modulo
function the addition-modulo is called for the 16 times which is length of the key and
if the i-th bit of B is 1 the addition-modulo is called again. Multiplication-modulo
function returns C variable which is defined firstly 0. This operation is repeated for
the exponentiation-modulo function and the differences are pre-defined C is 1 for this
time and multiplication function is called instead of addition-modulo function. This
algorithm allows the calculation of fast modular exponentiation. The following code

figure shows how it is completed.

int mult(int A,int B,int N){ int expo(int A,int B, int N){
int i; int i;
int C=0; int C=1;
for (i=15;i>=0;i=i-1){ for (i=15;i>=0;i=i-1){
C=modadd (C,C,N) : C=mulct (C,C,N);
if (B& (1<<i)) if(B&(1<<i))
C=modadd (C,2,N) ; C=mulct (C,A,N);

return C; return C;

Figure 3.3: Fast exponentiation algorithm codes in C language

In the main the Diffie-Hellman function is called for the calculation of Result X and
Result Y. After that Diffie-Hellman function is called again for this time parameter A

is changed with Result X and Result Y for the calculation of keys respectively System

Y and System X. From the terminal of FPGA’s serial port it is easy to see this

algorithm works very well. In simulation part it will be mentioned.

4. ADDER-SUBTRACTOR MODULE DESIGN
4.1 Verilog Hardware Description Language

Verilog Hardware Description Language (Verilog HDL) is a formal demonstration
designed by Xilinx for use in all phases of an electronic system setup. As both
machine and human readable, it supports the development, validation, synthesis and
testing of equipment [10]. Verilog HDL serves as a tool that is a major force in digital
system design because a designer offers the designer the advantage of the design
simulation he or she receives to make critical decisions about the designer's design.
The designer can also analyze how the design will behave if it is designed to be
synchronous or asynchronous with the addition of its own command. As mentioned
above, the readability of Verilog HDL makes it very attractive and useful for
engineers. All of these synthesis, simulation, verification, etc. operations were

compiled in a tool designed by Xilinx and known as Xilinx ISE.
4.2 Xilinx Integrated Software Environment

Xilinx ISE is a software tool produced by Xilinx for synthesizing and analyzing HDL
designs, allowing developers to synthesize their designs, perform timed analysis,
display RTL diagrams, simulate an adaptation as a different stimulus response, and
configure the target device with the programmer. Simulation for system level testing
can be done with ISIM logic simulator. Test programs should also be written in HDL
languages. In this project, ISIM is used for logical verification to ensure that the 17-bit
add-subtract module produces the expected result.

4.3 Full Adder

In digital systems adder is an inevitable logic unit for the implementation of any
mathematical operation[10]. Each operation is related to sum operation logically.
There is two type of adder, the first one is half adder and the second one is full adder.
Half adder, adds two 1-bit operands X and Y, producing a 2-bit sum. The sum can
range from 0 to 2, which requires two bits to express. The low-order bit of the sum
may be named HS (half sum), and the high-order bit may be named Cout (carry out).

It can be seen from the following equations for HS and Cout:
HS=X.Y' +X'.Y (4.1)
Cout =X.Y (4.2)

For this project full adders are used instead of half adders because the chain structure
should be implemented to compound 17-bit together. Full adder has Cin(carry in)
input except the addend-bit inputs X and Y. The sum of the three inputs can range
from 0 to 3 that means two output bit still enough. Following equations show how it is
different from the half adder equations and the following figure shows gate-level

circuit diagram for full adder.

S(sum) = X.Y'.Cin’+ X.Y.Cin’ + X.Y'.Cin+ X.Y.Cin (4.3)
Cout = X.Y+X.Cin+Y.Cin (4.4)
X — 4
Y / s
CIN

Sl
?

10

Figure 4.1: Gate-level diagram for full adder[10]

In verilog language it is really simple to create this structure. Following figure
indicates the full adder with parameters x,y,cin,sum and cout. This module is the

keystone of Diffie-Hellman key exchange algorithm, in other words this is the

undermost module in this project.

module full adder(x,v,cin,sum,cout):;
input x:;

input vy

input cin;

output sum, cout:;

assign sum = x* (y*cin):;

assign cout = (x&&vy) || (cin&&(x*y)):
endmodule

Figure 4.2: Verilog code for full adder with parameters

4.4 Ripple Carry Adder

Creation of a logical circuit using full adders to add N-bit numbers is possible[10].
Each full adder inputs a Cin, which is the Cout of the previous adder. This kind of
chain adder is called a ripple-carry adder, since each carry bit "ripples” to the next full
adder. In this project 17-bit adder-subtractor module is designed. Therefore 17 full

adder are connected to each other. The following figure is an example for 4-bit ripple

carry adder.

11

X3 Y3
fd
X ¥

¢y = COUT CIN

C3

X2

¢

Y2

:

Figure 4.3: Ripple carry adder diagram for 4 full adder[10]

T

S3

X

Y

COUT CIN

S

€2

X4

:

Yq

$

'

o

X

Y.

COUT CIN

S

¢q

i

Sq

Xp Yo

‘|

X ¥
COUT CIN

<—C0

S0

Calling 17 times the full adder module with the carry wire parameter in Verilog allows

to us unite them. The important point is the first Cin(C0O) should be the option bit for

the making decision about which operation is going to be executed addition or

subtraction? In this project it is named as “option” input. The following verilog code

shows the ripple carry adder connections.

12

module Ripple Carry Adder(a,b,option,s):

input option;

input [16:0] a,b;
output [1&:C] s
wire [17:1] carry:

full adder fad(a[C],b[C],option,s[C],carxy[]):

full adder fal(a[],b[],carry[],s[],carxy([Z]):

full adder faz2(a[z],b[2],carry[Z],s[2],carry([3]):

full adder fa3(a[Z],b[Z],carry[3],s[3],carry([<]):

full adder fa4(a[<].,b[<],carry[<],s[<],carry([5]):

full adder fas5(a[Z],b[5],carry[Z],s[5],carry([c]);

full adder faé(a[<],bl[€],carry[€],s[€],carry([7]):

full adder fa7(al[7],bl[7],carxry[7],s[7],carry([Z]):

full adder fag8(a[Z],bl[Z],carry[Z],s[Z],carry([®]):

full adder faS(a[®],b[%],carry([®],s[?],carxry[iC0]):

full adder falO(a[1C],b[10],carxry[i0],s[10],carry[i1]):
full adder fall(a[1],b[11],carxy[ii],s[1],carxry[i2]):
full adder fal2(a[2],b[12],carxy[i2],s[2],carxry[i3]):
full adder fal3(a[i3],b[13],carxry[i3],s[3] ,carry[i4]):
full adder fal4(a[14],b[14¢],carxry[i4],s[1<],carxry[i5])¢
full adder falS(a[5],b[15],carxry[i35],s[5] ,carxry[i€]):
full adder fal6é(a[i¢],b[1¢],carry[i€],s[1€],carry[i7]):

endmodule

Figure 4.4: Verilog code for RCA with option parameter

45 17-bit Adder-Subtractor

Here in this project Adder-Subtractor module is going to be 17-bit because of there
should be 1 sign bit and 16 magnitude bit for realization of subtraction operation[10].
Combining 17 full adder is not enough to make subtraction operation. Two’s
complement should be applied to complete our design. Two’s complement number
representation is used for signed numbers. While the signed-magnitude system negates

a number by changing only its sign, a complement number system negates a number

13

by taking its complement as defined by the system[desktop]. The following figure

exactly shows how two’s complement work.

17;p = 000100012
U
11101110

+1

111011112

119, = 01110111
U

10001000

+1

100010012

01p= 000000002
U
11111111

+1

1 000000002

complement bits

= —17y

complement bits

= —11910

complement bits

= 0y

-999

~12749

—19835

011000112

011111112

100000002

100111012
U
01100010
+1

10000001
U
01111110

+1

100000002
U
01111111

+1

complement bits

= 990

complement bits

=]2710

complement bits

Figure 4.5: Example operations for two’s complement

14

For subtraction operation the subtrahend’s two’s complement form is calculated and
then the addition can be applied. If the minuend, subtrahend’s two’s complement form
and 1 are summed and the subtraction operation has successfully done. As mentioned
before all mathematical operations are related to addition operation. At this point it is
obvious that if the option 0 is zero the circuit is going to produce addition operation. If
itis 1 the circuit is going to produce subtraction operation. The reason for this the
option bit and i-th bit of the subtrahend are the inputs of XOR gate. If we XOR the bit
A with 1 the result is always be the inverse of the A. If we XOR the bit A with 0 the
result is always be the same of the A. The following code figure simply shows us how

the adder-subtractor module is implemented.

module Subtractorx{(m,n,opt,o0):

localparam L

input [16:0] m;
input [16:C0] n;
input opt; // if opt is

wire [16:C] p;
output [16:C]

0

genvar 1i;
|generate

|for(i=0; i<L+1 ; i=i+l) begin:x
assign pl[i] = opt?(n[i]):

end

endgenerate

Ripple Carry Adder RCAO(m,p,o0pt,0):

endmodule

Figure 4.6: Verilog code of adder-subtractor top module

15

5. MICROBLAZE
5.1 Overview

Designed modules are used as a peripheral part of a microprocessor and the
microprocessor takes over the controller role by controlling these peripherals and
applying a secure data communication protocol. The soft-core microprocessor that can
be used with Xilinx Field Programmable Gate Arrays (FPGAS) through the Xilinx
Embedded Development Kit (EDK) software known as MicroBlaze [2].

Instruction-side Data-side
bus interface bus interface
N ALU
IXCL_M < E |, Program | 1 I = | > DXCL_M
s |N—| Counter Special [\ Shift O
IXCL_S | & Purpose . o K DXCL S
] Registers || Barrel Shift =N
7S 7S | | mutipier | [V
Divider
I10PB —\ FPU K DOPB »
Bus . — Bus
IE ::> Instruction |-\ IF
VB) Buffer 5/ S (' DLVB >
Instruction
Decode e
L \| Register File] :> MFSL 0.7
v sexs® N <,:I SFSLO0.7
Optional MicroBlaze feature /]

Figure 5.1: MicroBlaze Core Block Diagram[6]

16

The MicroBlaze, a virtual microprocessor, which is constructed by integration of
blocks of code named as core placed in the internal of a Xilinx FPGA[2].The main
point of MicroBlaze is the architecture (RISC) for Universal Asynchronous
Receiver/Transmitter, Flash, General Purpose Input / Output and similar Xerox®
Xilinx FPGAs for the Harvard Reduction Instruction Set Computer. Separate 32-bit
data and command buses run at high speed to perform programs and provide data at

the same time to provide both chipset and external memory[2].
5.2 Xilinx Embedded Development Kit (EDK)

The Xilinx Development Kit (EDK) provides an environment in which the designer
can create a processor system embedded in all the features that can be implemented in
a Xilinx FPGA device. EDK is an integral part of the Xilinx programmable logic
components, as defined by the Integrated Software Environment (ISE®) Design Suite
Embedded System Edition [5], developed by Xilinx. The EDK components are:

1- The Xilinx Platform Studio
2- The Software Development Kit (SDK)
3- Intellectual Property (IP) cores

The design flow in the EDK, in other words the features of the designer to start with
an ISE project, then to add an embedded processor source in the ISE project. When the
ISE components are complete, EDK starts synthesizing the design in the
microprocessor hardware, matches the FPGA and generates the bitstream as the final
step.

An embedded hardware platform consists of one or more processors, peripherals and
inter- connections via a memory block and processor path [10]. As a tool, EDK has
been left to focus on the designer as it provides a great convenience to the designer as
a link between designers, peripherals, and FPGA hardware designs, address mapping
of the system being designed, communication protocols and other interconnection
tools. Hardware and software designs. The following figure shows the design flow

diagram of a system designed using microcontroller in the FPGA. The steps shown in

17

the picture are created by EDK and presented to the designer through a user interface,

making it easier and faster to implement complex designs.

| CormpiLib |

Processor Hardware {
Plasiorm (MHE)

1€ Modeis
IP Library or User Reposiory
Flatiom Eimuiation
-
| Generaior

Benavion

Processor Softwans
Platiorm (W22

06
i

.r
=]
]

2ystem and
‘Wirapper HDL

1B8E Tools

Applcation Source
i

e ErES T
Constraint Fle
=]

Simuiation

Generaior

=)
(e T
HDL. Model

NCD

NGD

Smuiaton | .

BRzream inftsizer |~—

| (mmoaser)
Simiation
Debuager
Doan. G0S)] e

JTAG Cabie

FPOA
Devies

Figure 5.2: Embedded Development Kit (EDK) tools architecture[5]

It was stated that MicroBlaze could be configured in the previous section. This case is
applied in the EDK tool. The EDK base system comes with the Base System
Generator (BSB). BSB, hardware based on micro-blaze Intellectual Property (IP)

cores, the connections of these systems are made from EDK.
5.2.1 Xilinx Platform Studio

5.2.1.1 Overview

One of the components of the EDK is Xilinx Platform Studio (XPS), which provides
an environment for building embedded processor systems based on MicroBlaze and
PowerPC processors [5]. In XPS, the address mapping phase of peripherals connected
to MicroBlaze is completed. Later, synthesis and application phases of the design

project were realized.

5.2.1.2 Custom IP Implementation

For the simple implementation in this project a two-input AND gate is selected.
Firstly, base system builder is used for the creating new project. PLB interconnect
system is selected. In the peripheral configuration section only the “dlmb_cntlr” and
“ilmb_cntlr” are used as MicroBlaze peripherals because there is no need external
hardwares for this implementation. Two necessary operation creating and importing
peripheral are applied in Xilinx Platform Studio. There are some important points
when the creating new peripheral, the peripheral name should be the same with top
verilog module which is implemented later. In the slave service and configuration

section only the user logic software register is selected.

Processor Local Bus {(version 4.6)

g

PLB v4.6
Slave

-
[
@
g
2
2

Read LocalLink
Write LocalLink

Reg Mem User Logic Master Cntr

Figure 5.3: PLB interconnect scheme[7]

19

3 registers are enough for AND gate implementation because there is two input and
one output. BFM simulation platform must be generated for the observation main
communication signals between the MicroBlaze and the peripheral which is created by

user.

PLBv46 Device (master) «—— 3|

{]
| | PLBv46 Device (slave) +———» o
syuch - ‘
PLBv46 Montor +—*
oy ey
myip_thb
my &
e [P 2
e KOs ﬁ
l_imr
=ynch

~ BFM SynchBus

Figure 5.4: BFM simulation system architecture diagram|[8]

There is another remarkable language option about the “user logic” module which
allows to user making new connections and some arrangements between soft core
processer and the peripheral. Although the periheral template file is always written in
VHDL language, the stub user_logic template file can be in Verilog for a mixed
language design. All modules in this project are written in Verilog language so the

“user_logic” template should be generated in Verilog language for the easiness.
1 ftimescale ns [/
[Flmodule andXapi(input a,
input b,
S -output o) ;

6 assign o = a & b;
endmodule

Figure 5.5: Verilog code of AND gate

20

User_logic module should be edited for the making required connections accurately.

Firstly the output should be defined as a wire. In this project o_wire element is driven
by the AND gate’s output o. The last bit of registers is used because 1-bit operation is
enough for the observation bus signals. The third register(slv_reg2) is the combination

of 31-bit zeros and the least significant bit is o_wire.

// Nets for user logic slave model s/w accessible register example

reg [C_SLV_DWIDTH-1] slv_regl;

reg [C_SLV_DWIDTH-1] slv_regl;

reg [© : C_SLV DWIDTH-1] slv_reg2;

wire (B =2 slv_reg write sel;
wire [2] slv_reg read sel;

reg [C_SLV _DWIDTH-1] slv_ipZbus_data;

wire slv_read ack:;

wire slv_write_ ack;

wire O _wire:;

integer byte index, bit_ index;

// —-USER logic implementation added here

andXapi isim (.a(slv_regO[Z1]),
.b(slv _regl[31]),
.0{o_wire)):

// inmplement slave model register read mux
always @(slv_reg read sel or slv_reg0 or slv_regl or slv_reg2)
begin: SLAVE REG REARD PRCC

case (slv_reg_read sel)
3 slv_ip2bus data <= slv_reg0;
slv_ip2bus data <= slv_regl;

3'E slv_ip2bus data <= {31'd0,o0_wire}:;
default : slv_ip2bus data <= O;
endcase
end // SLAVE REG RERD PROC

Figure 5.6: User Logic implementation

After the all connections are made, the peripheral is imported by the implementation
of following steps. Firstly the peripheral analysis order file is selected and the order
must be respectively AND gate verilog module, user_logic verilog module and AND
gate VHDL module. In this project there is no need to indicate the attribute of the

interrupt signal. After these steps are accomplished the local peripheral core carried

21

into bus interfaces section because of making connection between custom IP and the
MicroBlaze. Custom IP and the soft core processor are connected over PLB bus by the
selection of bus mb_plb. For the addition of new peripheral address into MicroBlaze’s
address map the generation of address option is used. This design is exported to SDK

after all the phases are done.

5.2.2 Xilinx Software Development Kit
5.2.2.1 Overview

Another component of EDK is Xilinx Software Development Kit (SDK), which
provides to the designer a development environment based on the Eclipse open-source
standard for software application projects [6]. As a tool includes some feature that it
includes[5]:

1- Feature-rich C/C++ code editor and compilation environment
2- Project management

3- Supports environment for group working

4- Imports the hardware platform definitions generated by XPS
5.2.2.2 C Project

SDK allows to user creating a project in C language and sending information to the
registers by using the header files of xparameters, platform and the custom IP which is
automatically produced by XPS after the SDK exportation. This software’s most
significant feature is making developer’s job easier by providing C language to control
hardware system. For AND gate implementation we need two write register to define
which two data will be written to input and one read register to save of output result.

In the following code figure these registers can be seen easily.

22

ey

SEADDR, ANDGATE SLV_REGO OFFSET, 0x00000001):;
AS

ANDGATE mWriteReg (XPAR ANDGATE 0
_BASEADDR, ANDGATE SLV_REG1 OFFSET, 0x00000000):

BASE
ANDGATE mWriteReg (XPAR ANDGATE O BASE

cikis = ANDGATE mReadReg (XPAR ANDGATE O BASEADDR, ANDGATE SLV REG2 OFFSET) ;|

For programming FPGA over SDK three type files are needed. These are Bitstream,
BMM file and the ELF file. ELF file is used for the initialization Block RAM and it is

a common standard file format for executable files, object code and shared libraries.

After coding part is done firstly linker script is generated to provide protection and
organization of all related files before the elf file update. In this project elf file is going

to be used for simulation in XPS and programming FPGA.
6. HARDWARE DESIGN

6.1 Communication between FPGA and the computer

One FPGA board is planned to communicate with the computer. The communication
method is selected as Universal Asynchronous Reciever/Transmitter (UART)
protocol. Usually, RS232 cable is used for the UART communication. This cable

enables the transmission of data by serial communication.

Spartan-6 FPGA which is used in this project does not have the RS232 socket so the

information sharing is made by using Rx and Tx ports to send and receive data.

6.1.1. UART protocol

The UART performs serial-to-parallel conversions on data received from a peripheral
device and parallel-to-serial conversion on data received from the CPU. The CPU can

read the UART status at any time. The UART includes control capability and a

23

processor interrupt system that can be tailored to minimize software management of

the communications link[9].

Sending serial data on a single line accurately needs some control to be applied.
Therefore UART protocol, except the data bits, has a parity bit which is optional, a
stop bit and a start bit. When there is no data to send the line is in idle case. Idle case
terminates when the start bit is seen and sends data until the stop bit is raised. Parity
bit is optional that comes before the end bit. Tx line is used to transmit data and Rx is
to receive data. Every single bit of data is sent according to the Baudrate which is the

rate of data sent per second. Baudrate is generally set to 9600.

6.1.2. SDK Terminal Configurations

After the FPGA programmed the results should have seen from the terminal. Firstly
the vcp driver kit must be installed for the UART communication over usb. When the
board is connected to computer, driver allows the computer to see UART output as a
virtual com port. From the terminal settings connection type selected as serial,
Baudrate set to 9600 and port selected as COM3 with encoding 1SO-8859-1. When all

the changes are done the result is seen from the SDK’s terminal window.
6. RESULTS
6.1 AND Gate Implementation Simulation Results

After the Bus2IP (master-to-slave) becomes logically 1 the values which are sent from
SDK is carried to the AND gate’s input. Here a, b and o represents AND gate’s inputs
and the output. The following figures show exactly what is happening between IP and

MicroBlaze in terms of communication.

24

5.7250000 us

Bus2IP_Reset
Bus2IP_Datal0:31.] 0000000000000000000001§ 00000C
Bus2IP_BE[0:3] 1111
Bus2IP_RdCE[0:2]} 000
Bus2IP_WrCE[0:2]} 010
IP2Bus_Data[0:31} 0000000000000000000001
IP2Bus_RdAck
IP2Bus_WrAck
IP2Bus_Error
B& siv_reg_write_sell
? slv_reg_read_sel[(
—IJ; slv_read_ack

[siv_write_ack

10 :
g o_wire

B! siv_reg0[0:31] 000000000000000000000/§0

Mg siv_reg1[0:31] 000000000000000000000!
B! siv_reg2[0:31] 000000000000000000000)
Mg siv_ip2bus_datal(] 000000000000000000000! 0000000H00000000000§0000K

X1: 5.7250000 us

Figure 6.1: Simulation results just before the information come to the AND gate

25

L Bus2IP_Clk

Bus2IP_Reset
Bus2IP_Datal0:31;
Bus2IP_BE[0:3]
Bus2IP_RdCE[0:2]
Bus2IP_WrCE[0:2]
IP2Bus_Data[0:31.
IP2Bus_RdAck
IP2Bus_WrAck
IP2Bus_Error

® slv_reg_write_sell

2 slv_reg_read_sell(

iy slv_read_ack
=
Ligs
T1n

Ug

"
"
"
"
la
n
C
0]

slv_write_ack
o_wire
siv_reg0[0:31]
slv_reg1[0:31]
siv_reg2[0:31]
slv_ip2bus_datal(
3

b

o]

5.7400000 us

000000000000000000000¢
0000

000

000
000000000000000000000¢

0000000000000000000001

000000000000000000000: 00000000000000P0O0000000...
000000000000000000000!

000000000000000000000¢

X1: 5.7400000 us

Figure 6.2: Simulation results when the information is carried to the AND gate

26

In EDK the base and high addresses are generated for the custom IP. The base address

must be lower than the high address it can be seen from following figure.

| BusInterfaces I Ports [Addresses

Instance Base Name BaseAddress High Address Size Bus Interface(s) Bus Name Lock
= microblaze_0's Address Map
- dimb_cntlr C_BASEADDR 0x00000000 O0x00001FFF 8K [v] SLMB dimb O
ilmb_cntlr C_BASEADDR 0x00000000 Ox00001FFF 8K [v]SLmB ilmb O
- mdm_0 C_BASEADDR 0x84400000 OxB8440FFFF 64K [v]sPLB mb_plb O
- onur2 0 C_BASEADDR 0xC6E00000 OXCEEOFFFF 64K [v]sPLB mb_plb O
Figure 6.3: Base and High addresses values
Slice Logic Utilization Used Available Utilization
Number of Slice Registers 1,434 18,224 7%
Number used as Flip Flops 1,427
Number used as Latches 0
Number used as Latch-thrus 0
Number used as AND/OR logics 7
Number of Slice LUTs 1,783 9,112 19%
Number used as logic 1,616 9,112 17%
Number using O6 output only 1,318
Number using OS5 output only 42
Number using O5 and 06 256
Number used as ROM 0
Number used as Memory 130 2,176 5%

Figure 6.4: Design summary of AND gate module

27

6.2 Diffie-Hellman Key Exchange Protocol Implementation Results

The alice function calculates the A*B mod N and A*X mod N and they are assigned
to sonuc_a and sonuc_b respectively. These parameters are called again instead of
integer A in alice function as the protocol required and they are assigned to
result_alice and result_bob. Xil_printf is used because it takes really small space in
the memory by comparison with printf. By the following it can be seen final results

are equal to each other and the key exchange protocol successfully implemented.

int A=64234;
int B=63788;
int X=62356;
int N=4397;

int sonuc_a;
int sonuc b;

g ot SRS

int result bob:;
=~ int main()

init_platform():;

sonuc_a=alice (A,B,N)
sonuc_b=alice (4,X,N);

result alice = alice(sonuc b,B,N):’
result _bob = alice(sonuc_z,X,N);

xil printf("result alice = %d \r\n",result alice):
xil printf("result bob = %d \r\n",result bob):

cleanup platform();

return 0;

<

[L Problems ¥ Tasks _ &l Console ‘ vfl Properties ;’ Terminal 1 23

‘Serial: (COMS, 9600, 8, 1, None, None - CONNECTED) - Enceding: (ISO-8859-1)
result alice = 25
result bob = 25

28

Figure 6.5: Protocol results screen from the SDK

For the memory optimization dimb_cntlr and ilmb_cntlr sizes are increased to 16

kilobyte from 8 kilobyte. Basically longer code means bigger memory size need. Uart

addresses are also generated for this time it can be seen from the figure below.

Instance Base Name Base Address High Address Size Bus Interface(s) Bus Name Lock
[=}- microblaze_0's Address Map
- dimb_cntlr C_BASEADDR 0x00000000 0x00003FFF 16K v SLMB dimb O
ilmb_cntlr C_BASEADDR (0x00000000 0x00003FFF 16K [] SLMB ilmb O
- RS232 Uart_1 C_BASEADDR 0x84000000 0x8400FFFF 64K []SPLB mb_plb O
mdm_0 C_BASEADDR (0x84400000 0x8440FFFF 64K [] SPLB mb_plb O
" addersub_0 C_BASEADDR OxCE200000 OxCE20FFFF 64K [v] SPLB mb_plb O
Figure 6.6: Base and High addresses and sizes of instances
Device Utilization Summary (actual values)
Slice Logic Utilization Used Available Utilization
Number of Slice Registers 1,634 18,224 8%
Number used as Flip Flops 1,627
Number used as Latches 0
Number used as Latch-thrus 0
Number used as AND/OR logics 7
Number of Slice LUTs 2,025 9,112 22%
Number used as logic 1,856 9,112 20%
Number using O6 output only 1,528
Number using OS5 output only 42
Number using OS5 and 06 286
Number used as ROM 0
Number used as Memory 141 2,176 6%

Figure 6.7: Design summary of adder-subtractor module

29

According to the results, the numbers A, B and X were chosen as appropriate for 16
bits. However, when this length is increased, it will become very difficult for a third
person to find the key. In the future, as more security solutions require longer ciphers,

this 16-bit limited design is likely to be an example for future larger designs.

30

REFERENCES

[1] Stallings,W. (2011). Cryptography and network security principles and practice

(5th ed.). United States of America: Pearson Education Inc., pp. xv

[2] Jesman, R. Vallina, Fernando M. Saniie, J. (nd). MicroBlaze Tutorial Creating a
Simple Embedded System and Adding Custom Peripherals Using Xilinx EDK
Software Tools. Illinois Institute of Technology, pp. 4-5

[3] Boneh, D. (2014). Cryptography I. Retrieved from Stanford University,
https://class.coursera.org/crypto-009

[4] Ayushi. (2010). A Symmetric Key Cryptographic Algorithm, International Journal
of Computer Applications (0975 - 8887), pp. 2

[5] Xilinx. (2010). Embedded System Tools Reference Manual, pp: 19-24
[6] Xilinx. (2008). MicroBlaze Processor Reference Guide, pp: 10

[7] Xilinx Custom IP (n.d.). Retrieved May 22, 2017, from <
https://www.xilinx.com/support/documentation/ip documentation/plb v34.pdf>

[8] Xilinx BFM Simulation (n.d.). Retrieved May 21, 2017, from <

https://www.xilinx.com/support/documentation/sw manuals/xilinx11/bfm simulation.

pdf>

[9] Wakerly, John F. (1999). Digital Design Principles and Practices(4th ed.). United
States of America: Pearson Education Inc., pp. 33-34, 391-393

[10] Srouji, J. & Fitzpatrick, T. & Korpusik, N. & Sutherlan, S. (2005). IEEE
Standard for Verilog Hardware Description Language. United States of America, pp: 1

31

https://www.xilinx.com/support/documentation/ip_documentation/plb_v34.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/bfm_simulation.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/bfm_simulation.pdf

