ISTANBUL TECHNICAL UNIVERSITY
ELECTRICAL - ELECTRONICS ENGINEERING FACULTY

Hardware/Software Codesign and Implementation
of a Smartcard System

BSc Thesis by

Caner Bulduk

Department: Electronics and Communication Engineering

Programme: Electronics and Communication Engineering

Thesis Advisor: Assoc. Prof. Dr. Siddika Berna Ors Yalcin

JUNE 2017

ISTANBUL TECHNICAL UNIVERSITY

ELECTRICAL - ELECTRONICS ENGINEERING FACULTY

Hardware/Software Codesign and Implementation
of a Smartcard System

BSc Thesis by

Caner Bulduk
040120186

Department: Electronics and Communication Engineering
Programme: Electronics and Communication Engineering

Thesis Advisor: Assoc. Prof. Dr. Siddika Berna Ors Yalcin

JUNE 2017

FOREWORD

First of all, I would like to thank my supervisor, Assoc. Prof. Dr. Siddika Berna Ors
Yalcin for guiding me through his advises and knowledge as well as sharing lots of her
experiences with me.

Also, I would like to thank all my friends for their support. Their company has always
kept me entertained and motivated in times of struggle.

Finally, I want to express my endless gratitude and appreciation to my family, who
have supported my decisions and guided me with their experience.

June 2017 Caner Bulduk

v

TABLE OF CONTENTS

Page
FOREWORD . . S \
TABLE OF CONTENTS we V
ABBREVIATIONS w. Vil
SYMBOLS .. Viii
LIST OF TABLES . IX
LIST OF FIGURES w X
SUMMARY . . Xi
OZET e Xii
1. INTRODUCTION wo 1
1.1 PUrp0Se Of TRESIS .cuveiiiiiiiiiieiiieeitceeee ettt 1

2. SMART CARDS w 3
2.1 Introduction to Smart Cardsc.covueeriiieniiiiiieiieeeeeee e 3
2.2 Physical Properties of Smart Cardsc.ccoeovevieniieiienienieeeereeneeeeeeeeens 4
2.3 SMArt Card TYPES ..ouveeeuiieeiieeiieeeite et ettt et et e et et eeareesabee e 5
2.4 Smart Card MicroCOntrollersc.c.eeeviiiriiiiniiiiieieieeeeeeeeeee e 6
2.5 Smart Card COMMUNICALIONScevuviiiririeriieeniieeiteeeiteereee et e e e e 8

3. IMPLEMENTATION . . . 12
3.1 Used EQUIPIMENL ...couuviiiiiiiiiiiiiieeeiteeeeee ettt et 12
3.1.1 Field Programmable Gate AITaycccceevovievriieeniieiiiienieeeieeeiee e 12
3.1.1.1 Spartan 3E Starter Boardcooovuiiiiiiiiiiiniiiieiiicceeee e 13

3.1.2 Serial-to-USB Communication Cable..........cc.ccccoviiiiiiiniiiiniiinieeen, 13
3.1.3 ACOSO6 Smart Cardc...cocueeviiemieniiiieeiecneeeee et 14

3.2 Xilinx Software ENvironment.............cooeeriiriiiniiniiiiienienieeieeeenee e 14
3.2.1 Xilinx Integrated Synthesis Environment............cccceeveeviiiieeneenncnnenne 14
3.2.2 Microblaze ProCesSOrcouiiriiinieriieiteieeneee ettt 15
3.2.3 Xilinx Embedded Development Kitcccoevveeriiiieniieniieeieeeeeeee, 16
3.2.4 Xilinx Software Development Kit..........ccocevviiiiiiiininiiiicieneee 16

3.3 Implementation of the Smart Card Controller.............cceovueevviienieeeiieenieennne 16
3.3.1 Block Diagram of the Designed Systemccccceeveevvienciieenieeeieeenen. 17
3.3.2 State MaChINeoovuiiiiiiiiiiii e 20
3.3.3 Simulation of Smart Card Controllerc.cccoceevienieniinieeneenicnene 20
3.3.4 Test Of SMArt Card........coocueeiiiiiiiiiiiiiiiiceeeeeeee e 22

3.4 Microblaze Implementation............coceereeriieiiienienieeieeeereeeee e 24
3.4.1 Hardware Implementationccccueeeuieeriienniieeniee e 24
3.4.2 Software Implementationccccccueeereiiiieeeniiiee e 27

3.5 Sending a Sequence to Smart Cardc.ccoeeeeviiniiiiiienieneeee e 29

4. CONCLUSIONS .31

4.1 FULUIE WOTIK ...ttt ettt e e e e e e aeaees 31
REFERENCES.... . 32
CURRICULUM VITAE . 34

vi

ABBREVIATIONS

FPGA : Field Programmable Logic Array

ICC : Integrated Circuit Card

ISO : International Standard Organization
RF : Radio Frequency

CPU : Central Processing Unit

RAM : Random Access Memory

ROM : Read Only Memory

EEPROM : Electronically Erasable Programmable Read-Only Memory
LUT : Look Up Table

APDU : Application Protocol Data Units

ATR : Answer to Reset

PPS : Protocol Parameter Selection

VHDL : Very-high-speed-integrated-circuit Hardware Description Language
ASIC : Application Specific Integrated Circuit
RS : Recommended Standard

DCE : Data Circuit-terminating Equipment
DTE : Data Terminal Equipment

ACS : Advanced Card Systems

MAP : Multi-application & Purse

ISE : Integrated Synthesis Environment
RFU : Reserved for Future Use

EDK : Embedded Development Kit

SDK : Software Development Kit

ISIM : ISE Simulator

RTL : Register-Transfer Level

RISC : Reduced Instruction Set Computing
XPS : Xilinx Platform Studio

SIPO : Serial In Parallel Out

UCF : User Consist File

PLB : Processor Local Bus

AXI : Advanced eXtensible Interface

P : Intellectual Property

MPD : Microprocessor Peripheral Definition
UART : Universal Asynchronous Receiver-Transmitter
CAD : Computer Aided Design

ICC : Integrated Circuit Card

ICC : Integrated Circuit Card

vii

: Voltage

: Current

: Clock rate conversion integer
: Baud rate adjustment integer
: Elementary time unit

: Frequency

: Class byte

: Instruction byte

viii

LIST OF TABLES

Page
Table 2.1 : Contact points Of SMArt Card..........ccceveevverierienienenienerereeereeee 5
Table 2.2 : Types of SMart Cardscoocueeviiiieiiiiniieeieeeee e 5
Table 2.3 : Smart Card Memory TYPESccccvereriieeiiiieiiieeie ettt esvee e ens 8
Table 2.4 : Classes Of OPEration............ccocueevieerierieriiernieenieneeere et 10
Table 2.5 : Default Configuration of ATRcccccoviiiiiiiiiiiiieeeee e, 10
Table 3.1 : Default configuration and historical bytes of the ATR........................ 23

iX

LIST OF FIGURES

Page
Figure 1.1 : Brief summary of the Smart Card Readercccccoverieniiinnnnene 2
Figure 2.1 : Typical smart card application areas, and the required memory

capacity and arithmetic processing capacity [1]......cccccceevcvirniiennnnnns 3
Figure 2.2 : Location of the contacts [2]........ccccoeviieriiieiiieiiie e 4
Figure 2.3 : Typical architecture of a memory card with security logic and a

contactless INtErface [1]. cueeeeeeeeiiiiiiiiieiieeieeeeeeeeeeeeeeeeeee e 6
Figure 2.4 : Typical architecture of a contact memory card with security logic

LT et ettt et 7
Figure 2.5 : The usual functional units of a smart card microcontroller. 7
Figure 2.6 : Command and Response APDU structures.cccceeeevveenveeeneeennen. 8
Figure 2.7 : Character frame [3]......cccccieeiiiiiiieeieecite e 9
Figure 3.1 : Generic FPGA architecture [4]......ccccoovuvieiiiiiiieiiiee e 12
Figure 3.2 : Spartan 3E Starter Board.cccooviieiiiiiiiiiieceee e, 13
Figure 3.3 : RS-232 Serial POItSccccueiiiieiiiiieiieeeeee e 14
Figure 3.4 : Flow chart of design development [S].......cccccevviiiiiiiniiiiniiienieeen, 15
Figure 3.5 : MicroBlaze Core Block Diagram [6]cccceevviiieiiieiiieeniieeeeeen. 16
Figure 3.6 : RTL Schematic of Smart Card Controllerccocceevienierieenennnen. 17
Figure 3.7 : General block diagram............cccccueeiiiiieniiiiiiieniieeeeee e 18
Figure 3.8 : Smart Card Controller Block Diagram.........cccccceceeiiiniinicnicenennnen. 19
Figure 3.9 : Device Utilization Summary of Smart Card Controller 19
Figure 3.10: Smart card controller state machineccceecveeerieeriiieenieenieeenen. 20
Figure 3.11: Smart card controller Simulationc.cceecveereieeenieenieeeriee e 21
Figure 3.12: Smart card FPGA cONNection............ccovvieriiiiiniiiniieeniieeieeeiee e 22
Figure 3.13: UCEF file of smart card controller.............ccocveeviieiiiiiniiienieeeiee e, 23
Figure 3.14: Programming FPGA via ISE Impact.........cccceevvveriieniiieiieeee e, 23
Figure 3.15: First byte(3B) and Bytecounter(19) after ATR reading..................... 24
Figure 3.16: Modified user_logic File.........cccccceeviiiiniiiiiiieiieeeeeeeeee e, 24
Figure 3.17: EDK Environment with Custom sc_controller_ipcccccuuenn.... 25
Figure 3.18: MPD File of Smart Card Controller IPccoooeiviiiininniienen. 26
Figure 3.19: Schematic view of sc_controller_ipcccocovevvvinveienceeeineannen. 26
Figure 3.20: UCEF File of Smart Card Controller IPcccccoevvvieniiieniieeieeen. 26
Figure 3.21: Export Project & Launch SDKc.cccooiiiiiniiiceeeee, 27
Figure 3.22: New Application Projectcccvevviieriieeiiieniieeiee e 27
Figure 3.23: New Application Projectccccoviiiiiiiiiinieniieceeeeeeeeeee e 28
Figure 3.24: New Application Projectccccovverieeiiinienieniieeenieeieeeceeee 28
Figure 3.25: Read ATR Sequence of Smart Cardccceeveiiieiiieniieeniieeieeeen, 29
Figure 3.26: Flowchart of Writing Processccccceeeveeneriieniniicnenceneeicneeene 29

Hardware/Software Codesign and Implementation
of a Smartcard System

SUMMARY

Nowadays smart cards have reached a very wide range of usage and become a part of
our everyday life. The secure structure of smart cards is the biggest influence on their
widespread use. Smart cards are devices that can communicate serially. In this project,
an existing smart card reader was developed and implemented on an FPGA along with
a processor. Implementation of the smart card reader on the FPGA will facilitate the
integration of smart cards into the system in future projects.

The Spartan 3E FPGA development kit, produced by Xilinx, was used to implement
the project. As a processor, Microblaze was implemented on the FPGA. As a
smart card ACOS6 smart card, which is developed by Advanced Card Systems for
multiple applications, was used. The smart card reader module is coded in VHDL
and implemented on the FPGA. The smart card is connected to the processor via the
implemented reader module. The applications for reading data from the smart card
and sending data to the smart card have been implemented in the Xilinx Software
Development Kit program using the C programming language.

The need to work is explained in the first part of the project. In the second part,
general information about smart cards and FPGA design is given. In the third part,
it is explained how smart card reader is implemented on FPGA using hardware and
software development tools. Finally, the obtained results from this study has been
discussed in the fourth section.

xi

Bir Akill Kart Sisteminin
Donanim/Yazilim Tasarim ve Gerceklenmesi

OZET

Giintimiizde akilli kartlar olduk¢a genis bir kullanim alanina ulagsmis ve giinliikk
hayatimizin bir pargasi olmuslardir. Akilli kartlarin giivenli yapisi, yaygin olarak
kullanilmasindaki en biiylik etkendir. ~Akilli kartlar seri olarak haberlesilebilen
aygitalrdir. Bu projede, var olan bir akilli kart okuyucusu gelistirilmis ve bir islemci
ile beraber FPGA iizerinde gerceklenmistir. Akilli kart okuyucusunun FPGA iizerinde
gerceklenmesi ileriye doniik projelerde akilli kartlarin sisteme entegre edilmesini
kolaylagtiracaktir.

Projenin gerceklenmesinde Xilinx firmasmin iiretmis oldugu Spartan 3E FPGA
gelistirme kiti kullanilmagtir. Islemci olarak, FPGA’in iizerinde Microblaze
gerceklenmigtir. Akilli kart olarak ise, Advanced Card Systems firmasinin ¢oklu
uygulamalar icin gelistirmis oldugu ACOS6 akilli kart kullanilmistir. Akalli kart
okuyucu modiilii yiiksek hizl tiimlesik devreler i¢in donanim tanimlama dili(VHDL)
kullanilarak FPGA iizerinde gerceklenmistir. ~ Akilli kart gerceklenen okuyucu
modiilii {izerinden islemciye baglanmistir. Akilli karttan veri okuma ve akilh
karta veri gonderme uygulamalar1 C programlama dili kullanilarak Xilinx Software
Development Kit programinda ger¢eklestirilmisgtir.

Projenin ilk béliimiinde calismanin gerekliligi ve amaci anlatilmistir. Ikinci kisiminda
akilli kartlar ve FPGA tasarimi hakkinda genel bilgi verilmistir. Uciincii kisimda ise
akillr kart okuyucusu donanimsal ve yazilimsal araclar kullanilarak FPGA {izerinde
nasil gergeklendigi izah edilmistir. Son olarak dordiincii boliimde calismadan elde
edilen sonuclara deginilmistir.

xii

1. INTRODUCTION

In today’s world, smart cards have reached an extremely wide range of usage. It is
widely used from banks to healthcare institutions and even military areas. Smart cards
are used in fields such as personal authentication, authentication, data storage, and
application processing [7]. The secure structure of smart cards has made it so popular

in our daily life.

Compared to conventional data transmission devices such as magnetic-stripe cards,
smart cards offer enhanced security, convenience and economic benefits. In addition,
smart card based systems are highly configurable to suit individual needs. [8] It can
be used to store money and information electronically and can help to transfer it in a
secure but portable medium. It acts like a mini-computer. Since smart cards are in use
globally, the International Standard Organization has laid some standards so that they
are universally compatible. ISO/IEC 7816 is a series of standards specifying integrated

circuit cards and the use of such cards for interchange. [9]

Also smart card can be used at hardware circuit designs. That wide range of use of
smart cards, give an opportunity to create secure embedded system designs. For these
applications a stable and universal smart card controller is essential. A smart card

controller can easily be added to the systems which will be designed.

1.1 Purpose of Thesis

A smart card controller should perform two task. These task are reading data which
is received from smart card and write data to smart card. In this thesis, main goal
is reading received data from smart card and writing these serial data as an 8-bit
hexadecimal number. To archive this goal, a smart card controller will be designed
on FPGA and designed controlled will be connected to microblaze which will be

implemented on FPGA too.

Supply Operating

Frequenct of Smart Print Answer
Card

Assert Reset Signal Read Answer
Read

Answer-to-Reset Write Command

' 1

Set Controller
Configurations

- »! Ask Command

Figure 1.1 : Brief summary of the Smart Card Reader

User interface for smart card controller will be designed after microblaze
implementation which is also consist a user interface of smart card reader. The

complete flowchart of the project is shown at Figure 1.1.

2. SMART CARDS

2.1 Introduction to Smart Cards

Smart card is a credit card-sized plastic card with an embedded integrated circuits
[2]. Smart cards are also known as integrated circuit card (ICC). Smart cards are
widely used for various applications such as access control, authentication, security
and medical. For different applications, different feature smart card is produced. Most
common application areas with their memory and processing capacities are shown in

Figure 2.1 [1].

storage
capacity

1 Gbyte

4

>

= patient data
(medical)

100 Mbyte —

10 Mbyte |

1 Mbyte —

« mobile telecommunication (GSM, UMTS)
100 Kbyte * health care cards
* payment cards

« personal 1D
10 Kbyte * purse cards
) + data encryption
* debit & credit cards
= digital signature

1 Kbyte * time registration (flextime)
« health insurance cards

100 byte —

» public cardphones

[
L

processing capacity

Figure 2.1 : Typical smart card application areas, and the required memory capacity
and arithmetic processing capacity [1].

2.2 Physical Properties of Smart Cards

Physical properties of smart card are defined at ISO 7816-2. According to ISO, length
and width of smart card should be 85,6 x 53,98 mm. Also the position of conductive
pads and dimensions of the conductive pads are defined at that ISO. Minimum
dimensions of the contacts should be 1.7 x 2 mm. The positions of conductive pads are

shown in Figure 2.2

Dimensions in milimetres
f"'r._-‘-‘"'\
- ™
o g
o O
==
o
see detail A
L9 r
4 b
Detail A

1
2347
= 2431
2685

Iy > 2855

b= 20093
=

Is
L <

116l

[%]
=z

is]iais]is
[z i
L L 21923 —f
[— I,
— |,
-—— [, 2601 ——

ly = 17,87

[}

1o > 1987

Figure 2.2 : Location of the contacts [2].

Smart cards are divided into contact and contactless according to the way they
communicate with the outside world [1]. Contactless cards use an electromagnetic
interface without physical contact; Contact cards provide direct physical contact
with the card reader. Contacted cards are in 1 cm diameter, gold-plated, with a
contact surface that accommodates eight contacts, while only 6 are actually used to

communicate with the outside world. Explanation of these contact points are given at

Table 2.1

Table 2.1 : Contact points of smart card.

Position | PIN Name | Description

C1 VCC Supply Voltage(3.3V for Class B, 5V for Class A)
Cc2 RST Reset signal

C3 CLK Clock Signal

C4 RFU Reserved for Future Applications

G5 GND Ground Voltage

C6 VPP Programming Voltage

C7 /0 Serial Communication Port

C8 RFU Reserved for Future Applications

2.3 Smart Card Types

Smart cards are exist in various form and specification. However, contact points of
smart cards are generally similar. From aspect of dimension, smart cards formats:
ID-1, ID-2, ID-3 and ID-000 [?]. These dimensions are stated at ISO 7810. Details of
these cards are specified at Table 2.2.

Table 2.2 : Types of Smart Cards

Format | Dimension(mm) | Usage
ID-1 85.60 x 53.98 Most banking cars and ID cards

ID-2 105 x 74 French and other ID cars; Visas
ID-3 125 x 88 Passports
ID-000 | 25x 15 SIM cards

Contactless and magnetic stripe smart cards are the other type of smart card. Smart
cards with magnetic stripe is generally used for simple applications which only need a
few memories. On the other hand, operational logic of contactless smart card is similar
with contact smart card. At that type of smart card, operating voltage is supplied
with a RF antenna and also the communication is provide with same antenna. The

architecture of contactless smart cards is given at Figure 2.3

The ISO 7816-1 family of smart card standards is based the ID-1 card format, which is
used for various applications. Because of wide area of usage smart cards have different
capabilities and different features. Smart cards can be divided into 3 groups according

to their processing ability:

e Memory chip

modulator, demodulator,
anticollision mechanism
access logic application data

antenna J? clock generator 6 6
- Jese}— 0 —|»{ie> address
and
—— clock —»[] security ¢ EEPROM
control] logic
A
—— Vee —4]
——» ROM
—— GND —4»f]
voltage regulation and identification data
reset generation
\ 7\ 7
h 4 h'4
RF interface memory chip

Figure 2.3 : Typical architecture of a memory card with security logic and a
contactless interface [1].

e Microprocessor chip

e Cryptography chip

Smart cards with memory chips are the simplest type of smart cards. These type
of smart cards are only keep the on chip. This type of card is not secured by any
transaction specific to the card, but by the fact that the data to be stored on the card is

encrypted.

In processor-based smart cards, access to the memory of the smart card is made entirely
through the microprocessor. Processor type smart cards are divided into with and
without security logic [1]. With security logic stored data can be protected against
unauthorized access and manipulation by using personal identification number (PIN).

General scheme of these type of smart cards is shown at Figure 2.4

Cryptography cards are the most advanced type of smart cards. These type of smart
cards have an advanced microprocessor for cryptography applications where hardware

precautions are needed to perform complex cryptographic functions at desired rates.

2.4 Smart Card Microcontrollers

An embedded microcontroller is the key component of the smart cards. That
microcontroller is placed under the contacts of the smart card. Different types

of microcontrollers are designed for various applications. Some components are

6

access logic application data

v v

address
and [J&4— vecc
/0 44> 4> i < » EEPROM Jed— anD
logic
I [J«4— clock
ROM [}« control line

?

identification data

Figure 2.4 : Typical architecture of a contact memory card with security logic [1].

common for all smart cards while other components varied for applications. The
major functional components of a typical smart card microcontroller are the Central
Processing Unit (CPU), the address and data buses, and the various types of memory
(Random Access Memory (RAM), Read Only Memory (ROM), and Electronically
Erasable Programmable Read-Only Memory (EEPROM) or flash) [1].

Smart Card Terminal
— UART 10
flash
CLK
CPU Vee
ROM] Ground
/ rst RST
RAM EEPROM

Figure 2.5 : The usual functional units of a smart card microcontroller.

Central Processing Unit(CPU) is the main part which is makes smart card "smart".
Operating method of smart card CPU is same with typical CPUs. Size of the smart
card CPU is the main difference. When first smart card issued in 1950, Smart card
CPUs were 8-bit processors but now they are generally 16-bit or 32-bit [1]. Smart card
CPU communicates with other peripherals and also CPU is the window to the world.
In general, the serial interface is only an address that is connected to the I / O port and

that can be accessed by the CPU.

Table 2.3 : Smart Card Memory Types

Component | Memory Type | Area on Chip
RAM Volatile 20 %
ROM 10 %
EEPROM non-Volatile 45 %
flash 15 %

After CPU, most important components are memories in different types. Smart cards
are generally complete computers in small size. Memories are categorized as volatile
memory and nonvolatile memory. ROM, EEPROM and flash are the nonvolatile types
of memory. ROM is programmed during manufacturing process for operating system,
Look Up Tables (LUT) and card Identifier (ID). EEPROM is take most of the space of
smart cards. The physical size of the EEPROM can be as large as half of the total area
of smart card chip [10]. RAM is the working storage of the CPU.

2.5 Smart Card Communications

Communication with the smart card is provided over a single 1-bit serial port [1].
Application Protocol Data Units (APDU) are used to communicate with smart cards.
That protocol is defined at ISO/IEC 7816-4. For that communications 2 types of
APDUs exist: command APDUs and response APDUs. A command APDU is sent
by the reader to the card which contains a mandatory 4-byte header (CLA, INS, P1,
P2) and from 0O to 65 535 bytes of data. A response APDU is sent by the card to the
reader which contains from 0 to 65 536 bytes of data, and 2 mandatory status bytes

(SWI, SW2).

CLA | INS| P1 (P2 |Lc Field | data field | Le field

. A —
h'd N

command header command body

data field SW1 SW2

. AN v
h'd h'd

response body response trailer
Figure 2.6 : Command and Response APDU structures.

According to ISO/IEC 7816-3 Electrical interface and transmission protocols, smart

card reader should perform following functions:

Turn on/off operating voltage of smart card

Control the reset signal to reset smart card

Supply the operating clock signal to smart card

Read data from smart card

Send data to smart card

The character transmission of a smart card communication starts according to ISO/IEC
7816-3 as given as Figure 2.7. The transmission of a single character requires an

overhead of several bits as follows,

e Start bit

e 8-bit data

e Parity bit

e Guard time between two byte

H Start; —— Bylte — e iParity Start

1 z | 3| 4| s| s 7| s8] 3| Pause

L Delay between consecutive characters -

Figure 2.7 : Character frame [3]

As a first step, smart card reader should turn on the supply voltage (V) and clock
signal. Smart cards have three different operating class [11]. This class specifies the
required supply voltage and maximum current drawn from V¢ for the smart card.
Smart card reader should supply required supply voltage and current. These class are
shown at Table 2.4 After that, handshake should start between smart card and reader.
To start handshake reset should driven be low to high. Thus, state machine of smart
card reset itself and go back to initial state. As an initial task, smart card is sent Answer

to Reset (ATR) which is contains operating conditions.

Table 2.4 : Classes of Operation

Conditions | Maximum V¢ | Minimum V¢ | Maximum /¢
Class A 450V 350V 60mA
Class B 270V 330V 50mA
Class C 1.62V 198V 30mA

ATR is the principal command which is sent by smart card. ATR contains different
numbers of bytes. Maximum length of ATR can be 33 bytes which contains various
parameters. It is always sent with a divisor value (clock rate conversion factor) of 372
in compliance with the ISO/IEC 7816-3 standard [1]. The details of ATR shown at
Table 2.5.

Table 2.5 : Default Configuration of ATR

Name Defines Encodes
TS The Initial Character(mandatory) mandatory
TO The Format Character mandatory
TA;,TB;,TC;, TD; | The Interface Characters optional
TI1... TK The Historical Characters (max. 15 character) optional
TCK Allow detection of accidental transmission error | conditional

TS defines the convention type of smart card. It can be either 0x3B which mean direct
convention or 0x3F which mean inverse convention. Most of the smart cards work on
direct convention mode. TO specifies the communication method. Most significant 4
bit of TO defines existence of interface characters, least significant 4 bit defines number

of historical bits. The maximum number of historical bits can be 15.

To read data from smart card and send data to smart card, TA| byte of ATR is critical.
The nominal duration of one moment on the electrical circuit I/O is named “elementary
time unit” and denoted etu and the value is derived from TA;. Where F; is the clock
rate conversion integer and D; the baud rate adjustment integer. To calculate value of

the eru equation 2.1 is used [3].

F 1
letu = — x — 2.1
etu Dxf (2.1)

For communicate with smart card ISO/IEC T = 0 or T = 1 protocols can be used.
The information of communication type is provided at ATR. Transmission protocol
is defined at TD;. According to 7D also T= 2 15 is available but reserved.

T = 0 provides asynchronous half duplex character transmission while T = 1 for

10

asynchronous half duplex block transmission. Most of the smart cards operating under

T = 0 protocol.

After reading ATR smart card starts to communicate with specifications which is stated
at ATR. Also if the smart card reader wants to modify one or more of these parameters,
it must perform a Protocol Parameter Selection (PPS) process in accordance with
ISO/IEC 7816-3 before the transmission protocol is actually used. The PPS request

must be sent immediately after the ATR.

11

3. IMPLEMENTATION

3.1 Used Equipment

3.1.1 Field Programmable Gate Array

Field Programmable Gate Array (FPGA) is an integrated logic device that can
realize digital circuits via hardware description languages such as Verilog and
Very-high-speed-integrated-circuit Hardware Description Language (VHDL). Besides,
Computer Aided Design (CAD) software can be used for schematic FPGA design.
Basic FPGA block consists of three basic capabilities: input/output (I/O) interfaces,
basic building blocks, and interconnections. The logical structure of an FPGA device
is shown in figure 3.1. FPGAs are high-speed devices because the system is located
in a small area, which reduces the delay caused by the interconnections. Also, parallel

processing capability speeds up the FPGAs.

1/O Interfaces

H

Combinatorial Combinatorial
Logic Logic

. o o Vo E
.B.a.s.lf:..B.L’lllql.n.g..B.l.q(EB§ -f | J_‘ |‘ : Interconnections

teeccecesdencacas | Combinatorial Combinatorial | 4 eeeesssfescccsssssnns
Logic Logic v

o

e EEEEEE
Figure 3.1 : Generic FPGA architecture [4].

Application Specific Integrated Circuit (ASIC) is an integrated circuit (IC) customized
for a particular use which cause long design cycle and high design cost [12]. Low
unit costs and full custom capability is the main benefits of ASIC design. Compared
to ASIC, FPGA gives engineers the opportunity to redesign the digital circuit that is

implemented on the device. This is rather significant advantage, because it decreases

12

Aacron

— : ~
i|||||Illl - LYY Platiosm Flagh ;
. g ey 2y ' 4
= . 1
h T i
TEXAR ’
INSTRUMENTS

o o
|

“SPARTAN-3E | .

- |

e SLXILINX

e A

am
rEELLLNE

Figure 3.2 : Spartan 3E Starter Board.

the digital design costs remarkably. FPGA give an opportunity to test a circuit without

manually creating a circuit. On the other hand, soft microprocessor systems can be

implemented on FPGA device as well.

3.1.1.1 Spartan 3E Starter Board

The project aims to implement a smart card controller on an FPGA. Spartan 3E is a
type of FPGA and Spartan 3E starter kit which is manufactured by Xilinx company

has been used in this project [13]. A Spartan 3E starter board is shown at Figure 3.2.
Xilinx Spartan 3E board has three main packages;

e Spartan-3E FPGA (XC3S500E-4FG320C)

e CoolRunner™-II CPLD (XC2C64A-5VQ44C)

e Platform Flash (XCF04S-VO20C)

3.1.2 Serial-to-USB Communication Cable

In serial communication, as a recommended standard (RS) RS-232 is used for

transmission of data. As shown in Figure 3.3, the Spartan-3E Starter Kit board has two

13

RS-232 serial ports: a female Data Circuit-terminating Equipment (DCE) connector
and a male Data Terminal Equipment (DTE) connector. DCE-style port is not available
at most of the computers in today’s technology. To communicate with FPGA board
connection is provided via RS232 Serial to USB cable. To make conversion USB to

serial chip HL-340 is used.

rs-232 to USB Standard .
cable 9-pin serial cable ||

Figure 3.3 : RS-232 Serial Ports
3.1.3 ACOS6 Smart Card

The ACOS6 Multi-application & Purse Card (MAP Card) is a type of smart card which
is manufactured by Advanced Card Systems (ACS). ACOS6 smart card is compatible
with ISO 7816 parts 1, 2, 3, 4. ACOS6 smart card has a 64K EEPROM memory for
smart card applications and storage. In ACOS6, two of the contact pads are not exist
but It is not creating any issue for smart card reader implementation project. ACOS6

smart card works on T=0 mode at 9600 baud rate as a default.

3.2 Xilinx Software Environment

Xilinx is a company whom not only manufacture FPGAs also supports several software
products which can be used to program FPGA [14]. Xilinx tools also can be used to
configure and control its own unique microcontroller Microblaze that takes part inside
FPGA. The interface software that are used in the thesis project are; Xilinx Integrated
Synthesis Environment (ISE), Xilinx Embedded Development Kit (EDK) and Xilinx
Software Development Kit (SDK)

3.2.1 Xilinx Integrated Synthesis Environment

Integrated Synthesis Environment (ISE) is a software program which is developed for
synthesis and analysis of HDL designs [15]. Synthesize makes developer enable to

perform timing analysis, view RTL schematics, simulate a design’s and configure the

14

target device. Implementation steps of a generic digital circuit can be seen in the figure

34.
/constraints/ / HDL code / # testbench #

¥ ¥

Synthesize RTL simulation
3 ¥ r v
Implement Functional
Design simulation
¥ F F ¥
Generate Static timing Timing
Programming File analysis simulation

Figure 3.4 : Flow chart of design development [5]

Behavioral testing may be performed with ISIM which is a logic simulator. Test
programs must also be written in Verilog or VHDL [5]. ISE Simulator (ISIM) uses
behavioral verification, to verify logical and timing issues. Simulation which is

performed at ISIM is just a test of HDL code.

3.2.2 Microblaze Processor

Microblaze is a reduced instruction set computing (RISC) based soft-core
microprocessor which is designed by Xilinx for Xilinx FPGAs [6]. Soft-core
processors can completely be implemented using logic synthesis. The functional
block diagram of the Microblaze core is shown at Figure 3.5. Microblaze is 32-bit,
configurable microprocessor from many aspects. Cache size, pipeline depth (3-stage
or 5-stage), embedded peripherals, memory management unit, and bus-interfaces can

be customized.

15

Instruction-side Data-side
bus interface bus interface

Memory Management Unit (MMU)
<: me uTLB e $
- S Nt
_ ol
IXCL_M < o) — 0 2 |[Z > oxeLm
> s 8
IXCL_S @ Program A - z /::l DXCL_S
Counter pSpeciaI o i
urpose -
Registers |- Barrel Shift
FE o {}] Multiplier L DPLE >
Divider
[ToPE’ N o K boPs>
Bus . md Bus
i [instruction | e
I:ILMB] Buffer | {} {} <@
Instruction
Decode | |~ MFSLO.15
L ~.| Register File [~ -~ DWFSL 0.15
nd 32X 32b
— SFSL0.15 or
] DRFSL 0..15

Optional MicroBlaze feature

Figure 3.5 : MicroBlaze Core Block Diagram [6]

3.2.3 Xilinx Embedded Development Kit

The Embedded Development Kit (EDK) is an integrated development environment for
designing embedded processing systems [16]. Designers use XPS (Xilinx Platform
Studio) to configure and build the hardware specification of their embedded system.
EDK lets the user select from various optional features, which is useful by means of

creating microprocessor based designs without unnecessary parts.

3.2.4 Xilinx Software Development Kit

The Xilinx Software Development Kit (SDK) is a complete embedded software
development environment for Xilinx Microblaze processors [17]. SDK is built on
Eclipse which is an integrated development environment (IDE) used in computer

programming.

3.3 Implementation of the Smart Card Controller

A smart card controller is retrieved from Xilinx CoolRunner-II Smart Card Reader
application but the controller is designed for a single smart card and single operation
[18]. Most of the units are changed except state control unit and data shift register.
These two part is also improved. Entity view of smart card controller is given in Figure

3.6.

16

smartcard controller

data_in(7:0}

card_enable data out(7:0)

L button

smartcard controller

Figure 3.6 : RTL Schematic of Smart Card Controller

As it is seen from Figure 3.6, the module has a card enable and a reset signal as
input. Card enable signal is connected to hardware switch which is detect existence of
smart card. If a smart card is inserted to smart card slot, card enable switch is set on,
otherwise set off. Also the reset signal is connected to microblaze and it is controlled

by software.

3.3.1 Block Diagram of the Designed System

Smart card controller project aimed to communicate with a smart card through a
Microblaze processor. In Figure 3.7 the general block diagram of the smart card,
smart card controller and microblaze is given. Smart card controller supply clock
signal, reset signal and communicate with smart card through inout port. Smart card
controller receive data from serial communication port and store input data up to 8-bit.
When the data valid, smart card controller convey the data to microblaze. Also smart
card controller receives 8-bit data from microblaze and transmit the data to smart card

bit by bit.

The retrieved smart card controller is developed for universal usage. The retrieved
controller was operating asynchronous. Therefore, smart card controller was edited

entirely. First communication between smart card and smart card controller start after

17

P card_io > data_out[7:0]
’ card_rst data_ready
l Smart Card reset_button
card_clk Controller Command_read
Smartcard <F {——"r Microblaze
data_in[7:0
card_enable ata_inl7:0]
— .
»
A Idk
Vee
Ground
FPGA Board

Figure 3.7 : General block diagram

reset signal which should be driven low to high. Baud rate counter is started to count
with first change on inout port. Block diagram and device utilization of controller
given Figure 3.8 and 3.9. Also, implemented modules of smart card controlled are

explained below:

Baud Rate Counter: As a standard during the ATR, baud rate counter count to 372
for each data bit. After ATR transmission baud rate starts to count the value stated
in ATR. The ISO 7816-3 standard aligns with the use of two widely used external
clock frequencies, 3.579545 MHz and 4.91522 MHz in order to produce a 9600 bit per
second (not exact but within tolerance) serial communication speed. When 372 clock

cycles have been counted, its value is reset. [9].

Clock Divider: Clock available from FPGA board is S0MHz. Clock divider divides
this frequency by 14 to obtain frequency of 3.57 MHz

Bit Counter: In each cycle of baud rate counter, bit counter increases. The purpose of
bit counter is to count all the 12 bits in one-character frame. When 12 bits have been

received, bit counter is reset and wait for next byte.

Bytecounter: Since a character frame consists of 12 etu, byte counter counts number

of characters (or bytes) received.

Shift Register: It is a Serial In Parallel Out (SIPO) shift register. It receives serial
data from card via card I/O pin (C7) and saves it parallel in a data buffer. Data is

sampled when baud rate counter were at the middle of the counting. When 12 etu are

18

completed, i.e., when bit counter counts 11, bit2 to bit9 of the received character frame

is the byte which gets saved in data_out register.

Communication Mode Selection: The first implementation was conversion selector.
After first byte of ATR read conversion of communication selected refer to this byte.
Also the baud rate of communication and T=0 or T=1 mode selection made, refer to
the TA; byte of ATR. Also, if an unexpected ATR occurs, an error signal asserted to

output.

data_in % bit
F

& bit data_out
: ; _
convention v -

card_io data_ready

Shift Register Byte Encoder

card_enable

card_clk

State Machine Control

card_rst

Bound Rate
Counter

Bit Counter Byte Counter

Figure 3.8 : Smart Card Controller Block Diagram

Device Utilization Summary 1

Logic Utilization Used Available Utilization Hote(s)
Mumber of Slice Flip Flops 81 9,312 1%
Mumber of 4 input LUTs a1 9,312 1%
Mumber of occupied Slices 77 4,656 1%

Mumber of Slices containing only related logic 77 77 100%

Mumber of Slices containing unrelated logic] 77 0%
Total Mumber of 4input LUTs 139 9,312 1%

Mumber used as logic a1

Mumber used as a route-thru 43
Mumber of bonded I0Bs 34 232 14%
Mumber of BUFGMUXs 1 24 4%
Average Fanout of Non-Clock Nets 2.97

Figure 3.9 : Device Utilization Summary of Smart Card Controller

19

3.3.2 State Machine

State machine of smart card controller consist five states. These states are shown
in Figure 3.10. IDLE state is the initial state of the state machine and this state is
controlled by reset signal. Second state is WaitForData state. In that state smart card
controller wait for a data from smart card or write command from microblaze. If smart
card starts to control serial port, smart card controller jump to ReadData state. Or, if
the write command is ready, it goes to the WriteCommand state. After read or write
state, smart controller process read or written data at ProcessData state and jump back

to WaitForData state when ProcessData state complete.

WriteCommand ReadData Prccess Data

Figure 3.10 : Smart card controller state machine

3.3.3 Simulation of Smart Card Controller

Behavioral testing of the smart card controller was performed with ISim which is a
simulation software of Xilinx. At the test-bench, a smart card model is implemented
and external clock signal generated. In the Figure 3.11, a small part of ATR command

is obtained.

As its seen from Figure 3.11, when each byte read from smart card a one-byte data_out
byte signal obtained as an output signal. Also when data_out signal valid, data_ready
signal occurs and both of them stay for 1 efu. In this simulation, duration of the
data_ready signal is same as data_out signal. This is critical because reading from

smart card module is going to happen when data_ready signal is valid.

20

UOTJR[NWIS JO[[OIIUO0D PIed JeWS : [1°€ IS

o paey B
“orpaes B

ol piey &

ypuney 9 r . . T | : £ W r

dpH nofe] mopufy uonenwis wmaly wpi AT &

X O - [.Bpmynesaq] - (£101£102) 12014 [

3.3.4 Test of Smart card

Simulation of the smart card module was a software test. Testing smart card controller
on FPGA was the next testing step. For this test smart card is inserted a smart card
slot and that slot connected to FPGA board. Smart card slot and its FPGA connection
shown at Figure 3.12. The aim of the test setup is observing the ATR which is sent by

smart card.

-.."\

Fror Ee o S TR

Figure 3.12 : Smart card FPGA connection

Before create programming file, User Consist File (UCF) is created on ISE which
is given in Figure 3.13. Reset and card enable signals are connected to switches on
FPGA board. Then, the signal to smart card is connected to I/O ports of FPGA. Lastly,
data_out signal is connected to LEDs to observe ATR in binary format. To make

changes on LEDs visible, clock frequency of smart card is decreased.

After UCF created, design is implemented virtually on FPGA and refer to this
implementation bit-stream file FPGA programming is created on Xilinx ISE. To

program FPGA ISE Impact software is used which is shown in Figure 3.14. Card

22

HNET card clk LOC = "C5" | IOSTANDARD = LVITL | S5LEW = SLOW | DRIVE = & ;
Het card ioc LOC = "R4" | IOSTANDARD = LVITL | SLEW = SLOW | DRIVE = & ;
Het card rst LOC = "E4" | ICSTRANDARRD = LVITL | SLEW = SLOW | DRIVE = & ;
HWET clk LOC = C3 | ICSTAMNDARD = LVCMOS533 ;

NET "card enable" LOC = L13;

HNET "reset button” LOC = D18;

$##5partan 3E Starter Kit Leds

HET out [71" LOC = F9 | IOSTANDARD = LVCHOS33:;
HET out[6]"™ LOC = E9 | IOSTRANDARD = LVCHOS33:
HET "L out[5]" LOC = D11 | IOSTANDARD = LVCHMOS33;
HET "byte out[4]" LOC = C11 | IOSTRNDARD = LVCMOS33;
HET "byte out[3]" LOC = F11 | IOSTRWNDARD = LVCMOS533;
HET "byte out[2]" LOC = E11 | IOSTANDARD = LVCMOS33:
HET "byte out[l]" LOC = E12 | IOSTANDARD = LVCMOS33:
HET "bvwte cut[0]"™ LOC = F12 | IOSTANDARD = LVCMOS33;

Figure 3.13 : UCF file of smart card controller

Table 3.1 : Default configuration and historical bytes of the ATR
Parameter | TS | TO | TA1 | TB1 | TD1 | T1 | T2 |T3 | T4 | TS
ATR 3B | BE | 95 00 |00 41 |03 |00 |00 |00

Parameter | T6 | T7 | T8 | T9 | T10 | T11 | T12 | T13 | T14
ATR 00 | 00 | 00 00 00 00 (02 |90 |00

enable switch pulled high and reset switch pulled low and FPGA was programmed

with success.

) - 8 %

DFEH #$DEXEmWEMX: 2B 50 AN
iMPACT Flows «+08&F X ~
‘&3 Boundary Scan EFLIEED
[=] SystermACE [

|=] Create PROM File (PROM File Formatter) | : i
=] WebTalk Data ol 4 Enumx 4 sxuoe

xc3s500e xcflds wc2ohda

MPACT Processes 08 x smartcard_caner.bit bypass bypass
TOO

il

Available Operations are: A
=% Program

mp Get Device ID

=) Get Device Signature/Usercode

=P Read Device Status Y] Cf% Boundary Scan |

Figure 3.14 : Programming FPGA via ISE Impact

As a last step, reset switch pulled low to high and LEDs observed. ATR sequence of
ACOS6 smart card tried to be observed according as manual of ACOS6 which is given
in Table 3.1 [19]. As a result, because of the 12 of zero bytes only 7 non-zero byte
of ATR sequence was observed on LEDs. Also one more experiment was executed to
crosscheck. In the second implementation, bytecounter signal is assigned to LEDs and
the right length of ATR, nineteen, was observed. First observed byte of ATR, which is

3B, and bytecounter signal is given in Figure 3.15.

23

)7 pBa= dr145
[43°)]

D7

< |
SW3NLZ) SLIZCHIBYS L1 CL14) SLPLL 3 y SL3(NIZ) SL2ZCHIBISI1¢L14) SWHAL1E)

Figure 3.15 : First byte(3B) and Bytecounter(19) after ATR reading.

3.4 Microblaze Implementation

Microblaze is used to control smart card controller. Programming Microblaze is made
on Xilinx SDK. As a first step, a new XPS project is created. While creating XPS
project for Spartan 3E FPGAs Processor Local Bus (PLB) is selected. For newer
FPGAs Advanced eXtensible Interface (AXI) should be selected. In FPGA selection
step, Spartan 3E Starter board is selected. Then, except RS-232 peripheral other

peripheral is removed. After selection of cache memory microblaze project is created.

ff —-TUSER logic implementation added here
smartcard caner sc |

.reset_button(slv_reg9d[C]), i 1 bit
.card enable(card enable), 'y 1 bit
.clk(Bus2IF Clk), I clk

.card_clk(card_clk), Sifport olarak eklendi - 1 bit
.card rst(card rst), S /poxrt olarak eklendi - 1 bit
.card io I {card io I}, S/poxrt olarak eklendi - 1 bit
.card_io T (card_io_T), Sifport olarak eklendi - 1 bit
.card io © (card ic 0}, S /poxrt olarak eklendi - 1 bit
.data_out{data_out}, /fslv_reg[D:8]'e eklendi - 8 bit
.data_in(slv_regd[Z:2]), i 8 bit
.Command ready(slv_regf9[1l]1), 'y 1 bit
.data_ ready({data ready), S/wire olarak birakildi 1 bit
-byte_out (bycecounter) f/case select 8 bit

)i
Figure 3.16 : Modified user_logic File

3.4.1 Hardware Implementation

To create custom Intellectual Property (IP) on EDK environment some step should

perform. This steps are:

1. At the hardware tab, new peripheral is created. While creating new peripheral,

number of register is chosen. Also, user logic file is created in Verilog and template

24

driver files is created to implement software interface. As a peripheral name

sc_controller is chosen.

Smart card module is instantiated at created user_logic file. Also, all ports of smart
card controller are assigned. Microblaze ports are connected to data buses and smart

card ports assigned as external port.

Some changes at sc_controller.vhd file also should perform because of the external

ports. In .vhd file all external ports are assigned and mapped.

. After changes at user logic files, smart card controlled is imported to design. The

changed files and smart card controller vhid file is added to created peripheral.

Smart card controller IP core is added to the system from the IP Catalog.
Then, In the "Bus Interfaces" tab peripheral is connected to PLB. In Figure 3.17
sc_controller is IP core and connected to PLB as shown. Also, in the ports tab all

ports of smart card controller were made external.

@ File Edit View Project Hardware Device Configuration Debug Simulation Window Help

G isaw PO R aw BE £

T 3¢ [P Catalog § ©0&X| 0 Busnterfaces Ports Addresses & e |[E |
EENEIEE Name Connected Port Directiol *
o _ I ” o
Design Flow Descriptien IP Version sc_controlier 0 card_rst pin sc_controller D:card_rst Fo
. & & EDKInstall dimb
& Analog itmb

Bus and Bridge mb_plb
Clock, Reset and Interrupt microblaze 0
ommunication High-Speed Imb_bram

Run DRCs

ommunication Low-Speed dlmb_entir
VA and Tmer it ot
Debug mdm_0
o
Ba General Purpose O [sc_controlier 0
Cenerate Netist 0 Modules i card_clk External Portsizsc_controller 0_card_clk_pin £o
- Interprocessor Communication card_rst External Portsissc_controller_0_card_rst_pin Zo
Memory and Memory Controller card_enable External Ports:sc_controller_0_card_enable_pin /1
D Pl card o External Ports:sc_controller_0_card_jo 710
1w Peripheral Contraller £ RS232.DCE
Generate BitStream Processor Interrupt fo
Utility (I0_IF) uart_0 Connected to External Ports ~
- Project Local PCores clock_generator_ 0
= USER proc_sys_reset_0 v
Export Design & sc_controller 1.00.a < >
< >| Legend T
MiMaster @Slave diMaster/Slave B Target {Initiator @Connected OUncannected M Manitor
Search IP Catalog: Clear Fproduction Dllicense (paid) (Dlicense (eval) SiLocal ZiPre Production WyBeta E4Development
t Superseded Discontinued
£ @ Froject @ 1P cataog z Design Summary & Graphical Design View @ System Assembly View 8]
|

Figure 3.17 : EDK Environment with Custom sc_controller_ip

6. Microprocessor Peripheral Definition (MPD) file contains all of the available ports
and hardware parameters for a peripheral [20]. Due to external inout port, MPD file
should be changed. In MPD file, card_io_I, card_io_O and card_io_T ports are
commented. Instead of this, bidirectional signal card_io is inserted. In Figure 3.18
changed MPD file is shown. Also top view of implemented sc_controller_ip show

at Figure 3.19

25

BEGIN sc_controller

EBCORT
EBCORT

card clk = "", DIR =
DIR =

card rst = "",

=]

card ic O, TRI_T = card ig T, DIR = IC, TRI_I = card_io_I, THREE STATE =

PORT card ic = "", TRI O = = TRUE
PORT card enable = "", DIR = I

Figure 3.18 : MPD File of Smart Card Controller IP
8 XP5 Core Config - sc_controller_0 - sc_controller_v1_00_a e

Component Instance Name | sc_controller_0

Al HoL| [(&2

"~
C_BASEADDR. Oxcfel0000
C_HIGHADDR. OxcfelfEEE
C_INCLUDE_DPHASE_TIMER 0 o
C_SPLB_AWIDTH 32
C_SPLB_CLK_PERIOD_PS auTo | 1)
C_SPLB_DWIDTH 32
C_SPLB_MID_WIDTH 1
C_SPLB_MATIVE_DWIDTH 2 |5
C_SPLB_NUM_MASTERS 2
C_SPLB_P2P 0 o

W

Figure 3.19 : Schematic view of sc_controller_ip

UCF file of project was edited for connecting IP pin to the FPGA physical pin.
Port assignments of sc_controller were made for external ports and Universal
Asynchronous Receiver-Transmitter (UART) port RS-232. Also input clock signal
is connected to FPGAs clock pin. UCEF file is show at Figure 3.20.

File Edit View Project Hardware Device Configuration Debug Simulation Window Help -ax
Bad Bréer R a6 B@ £
navigator ¢ | Profect @& e 1
Platform = 2
" = Net fpga_0_R: oC-M14 | IOST, D - LVCHOS33:
Pm’;‘:;g? N N 4 Net fpge 0 clk 1 sys clk pin TNM NET = sys_clk pin:
ile: system.mhs TSRS = o
& UCF File: data\system.ucf 3 : TIMESPEC TS 1k pin = PERIOD 1k pin 50000 kiz;
2 IMPACT Command File: etc/download.cmd 2§ sy et = o sys et =
Run DRCs: \Eq;p\emgn:atmnF?pt;:n’stlwe: etctrfas(,runllme‘opt - ¢ Het fpgs 0 clk 1 sys clk p es | TOSTANDERD - TVCMOS3S;
E\Ing:,;s prions File: etc/bitgen.u — 9 Met fpga_0_rst_l_sys_rst_p g
s © meroblaze 0 A ﬁ Net Ipga_0_rst_l_sys_rst_p =K17 | TIOSTANDARD = LVCMOS33 | PBULLDOWN:
5 Proj y %
0 Pm’;no?t“’}"simy 500 : 12 NET sc_controller_0_card_clk pin L TANDARD = LVITL | SLEW = SLOW | DRIVE = 6 ;
(Sl N:;‘:‘;‘ SL ‘9 A| 13 Net se_controller 0 card io LOG = LVITL | SLEW = SLOW | DRIVE = 6 ;
e \ “5 ":’ :"E XPS (flow) 4| 14 Net sc_contreller 0_card rst_pin LOC = [D = LVITL | SLEW = SLOW | DRIVE = 6 ;
:EJ"L_E\'/':SL“ o o —| 15 Net sc_controller_0_card enable_pin LOG=L13 | PULLDOWN | IOSTANDARD = LVCMOS33;
¥ Sim Modek: BEHAVIORAL e
101 Design Summary o
Generate BitStream
< > < >
EomiaEs @ Project @ P Catalog L Design summary @ Graphical Deson View @ system Assembly view system ucf=

Figure 3.20 : UCF File of Smart Card Controller IP

8. As a last step of implementation, Design Rule Checking (DRC) is run, netlist and

bit-stream is generated and project is exported to SDK environment. To start export

process "Export & Launch SDK" is selected as shown at Figure 3.21.

26

B Export to SOK / Launch SDK ? X

@ This dialog allows you to export hardware
platform information to be used in SDK,

Indude bitstream and BMM file

(¥P5 will regenerate bitstream if necessary,
and it may take some time to finish.)

Directory location for hardware description files

C:\Wsers\caner\Desktop\Bitirme\smart_card_IOBUF\SDK\SDE_Export

Export Only Export & Launch SDK Cancel Help

Figure 3.21 : Export Project & Launch SDK

The hardware design is imported to the SDK environment in order to implement the

software part.

3.4.2 Software Implementation

SDK is used for software applications. These application can be written in C or C++.
However, these programming languages use a lot of space at programming memory.

To create a hardware C project;

6 Mew Project O *
]

Application Project .
Create a managed make application project. &

Project name: | smartcard_test |

Use default location

Ch\Users\caner\Desktop\Bitirme\smart_card_IOBUR\SDK11\s Browse...

default
Target Hardware
Hardware Platform | smart_card_|OBUF_hw_platform w
Processor microblaze_0 w
Target Software
05 Platform standalone ~
Language @®WC DC++

Board Support Package (®) Create New |smartcard_testJ

(O Use existing | smartcard_test_bsp

@:‘ < Back Mext » Cancel
Figure 3.22 : New Application Project

1. As a first step a Template C program is created as show at Figure 3.22.

27

To read ATR from smart card a simple C code is written. Written C code is given
at Figure 3.23 on SDK. According to this C code, microprocessor consistently
reads data_ready, data_out signals and if data_ready signal assert high, data_out
signal is printed to terminal as 8-bit hexadecimal number. Also, smart card

controller’s bytecounter signal is read as byte_out and printed with data_out signal

for verification of system.

[Project Explore 52 = O[5 systemaml [system.mss [€] helloworld.c 52 = Olfout 2\ @®Ma| =0
B&®| ¥ :ntmain() ~ SRR
© e D init_pracomm(); o sdon
£l download.bit int data_ready,byte_out,data_out,i; 4 platformh
[2] system_bd.bmm int ATR 120]: - - U xparametersh
[5] system.bit int ATR ready=i; o SC_CONTROLLERh
(5 systemueml data_ready=0; ++ print(char) : void
v 5 smartcard test SC_CONTROLLER mWriteReg(XPAR_SC_CONTROLLER_O_BASEADDR, SC_CONTROLLER_SLV_REGS_OFFSET, 0x00000000): ©® main():int
¥ Binaries while ((byte_out!=1)} {
i) Includes data_ready = SC_CONTROLLER mReadReg(XPAR_SC_CONTROLLER_0_BASEADDR, SC_CONTROLLER SLV_REG6_OFFSET)
(& Debug data_out = SC_CONTROLLER mReadReg (KPAR_SC_CONTROLLER_0_BASEADDR, SC_CONTROLLER_SLV_REG7_OFFSET):
v s byte_out = SC_CONTROLLER_mReadReq (XPAR_SC_CONTROLLER_0_SASEADDR, S5C_CONTROLLER_SLV_REGZ_OFFSET);

helloworld.c
platform_config.h

[@ platform.c
platform.h
sc_controllerh
) Iscriptld
~ [l smartcard_test_bsp

i BSP Documentation

(& microblaze_ 0

[} libgen.log

[libgen.options

& Makefile

1f((data_ready!=0)){
x1l_printf("Bytecounter is td\n", byte_out);
xil_printf("ATR is ®x\n\r", data out);
ATR[byte_outl=data_out;

if ((byte_out==18}){
if (ATR_ready==1){
for(i = 0: i < 19: i++) {
xil_princf("sx ", ATR[i]):

ATR_ready=0:

i system.mss

return 0;

Figure 3.23 : New Application Project

3. RS-232 UART cable is connected to computer. Under "Run Configurations" made
an adjustment to watch terminal via RS-232 cable. Also terminal settings are

changed.

As a last step, FPGA programmed with generated linker script which shown at
Figure 3.24.

Program FPGA

Program FPGA
Specify the bitstream and the ELF files that reside in BRAM memory

Hardware Configuraticn

Hardware Specification: C:\Users\caner\Desktop'\Bitirme\smart_card_IOBUF\SDKT 1\smart_card_IOBUF_hw_platform'\system.xml

Bitstream: | Isystem.bit | Search...| | Browse.,
BMM File: | system_bd.bmm | Search... | | Browse.,
Software Configuration

Processor ELF File te Initialize in Block RAM

microblaze_0 bootloop v

P

Figure 3.24 : New Application Project

28

After FPGA programmed, smartcard_test application is run on microblaze. Then,
smart card is inserted to smart card slot and on the FPGA board card_enable switch
is asserted high. As a result, 19 byte ATR command observed at terminal as shown at

Figure 3.26. ATR bytes received correctly and also at same the order.

B Console 33 -x%’:lEﬁEﬁ@@lﬁE'Fﬁ'mﬁ
<terminated> smartcard_test Debug [Xilinx C/C++ application (GDB)] C:\Users\caner\Desktop\Bitirme\smart_card_|OBUFR\SDK11\smartcard_test\Debug\smartcard_test.elf [Consele cc
ATR is 0 "
Bytecounter is 15

BETR is 0

Bytecounter is 16

BATR is 2

Bytecounter is 17

ATR i= 20

Bytecounter is 18

ARTR i= 0

338 BE 95 0 0 41 3 0 O 0 0 ©0 O O O O 2 S0 O hd

Figure 3.25 : Read ATR Sequence of Smart Card

3.5 Sending a Sequence to Smart Card

ATR is the first protocol of smart card communication. After reading ATR, smart card
waits for output commands. To write command to smart card controller, command
should be asserted to data_in port and command_ready should be driven high for 1
cycle. When command_ready signal is high, smart card controller reads data from
data_in port and writes data to serial communication card_io bit by bit. General

flowchart of process is given at Figure 3.26

e YVait_For _Data Write Complete

ELiln Bitcounter = 11

Write data to

Read data_in .
= card_io

Figure 3.26 : Flowchart of Writing Process

29

As a first step of writing a command to smart card, ISIM simulation is made. A test
bench is written to send data_in and command_ready signals. The result of simulation
was as it should be. After ISIM simulation a write operation is implemented via
microblaze. Writing operation is made on same SDK environment at 3.4.2. To send
data to smart card controller data_in and command_ready inputs are connected to
slaveregisters. To control these registers a simple C code implemented on SDK. First
data_in signal is sent to smart card controller right after that signal command_ready
asserted high. 6-byte command data are sent as refer to the smart card’s data sheet [19].
ATR should to be change after this command. However, as result of write process any
changes were observed. A working system for sending commands to smart card via

microblaze could not implemented.

Also a hardware design implemented to send a command to smart card. For this
implementation, a simple 6-byte ROM implemented and same 6-byte data was written
to ROM. And this ROM, added to design as a trigger of 6-byte write process. When
this switch asserted high, smart card controller reads data byte by byte from ROM and
instead of data_in signal, uses read ROM data. After ATR read, that switch asserted
high to write command to smart card nevertheless, the result was same with previous

one. A successful write operation could not be performed.

30

4. CONCLUSIONS

Smart cards have a wide range of applications that require security. The demand for
smart cards has led to the production of a variety of smart cards; nevertheless, their
properties are strongly based on international standards. Because of this, smart card

reader must be implemented according to international standards.

In this project, a smart card module is implemented on the FPGA and this module
added to the processor as a custom peripheral. As a microprocessor, Microblaze
soft-core microprocessor is implemented on FPGA board. The smart card is connected
to FPGA via I/O ports and the power supplied to smart card from FPGA. For

microblaze processor a C application is coded and run on microprocessor.

As a result, reading data from the smart card was successful achieved. Also, ATR
reading was performed using different smart cards. However, sending commands and

writing data to the smart card could not be performed successfully.

4.1 Future Work

As a future work, command sending process should be improved. For instance, smart
cards have three different class, a universal smart card reader can be designed in terms

of class selection. Also, a simple user interface can be implemented with C language.

31

REFERENCES

[1] Rankl, W. and Effing, W. (2010). Smart Card Handbook, Wiley, https://
books.google.com.tr/books?id=C55-4kVUQ14C.

[2] ISO, (2007), ISO/IEC 7816-3:2006 Identification cards — Integrated circuit cards
— Part 2: Cards with contacts — Dimensions and location of the contacts,
WWW.1lso.org/standard/45989.html.

[3] ISO, (2006), ISO/IEC 7816-3:2006 Identification cards — Integrated circuit cards
— Part 3: Cards with contacts — Electrical interface and transmission
protocols, www.iso.org/standard/38770.html.

[4] Smith, G. (2010). FPGAs 101: Everything You Need to Know to Get Started,
Newnes, Newton, MA, USA.

[5] Chu, P.P. (2007). FPGA Prototyping by VHDL Examples: Xilinx Spartan-3
Version, Wiley.

[6] Xilinx, (2008), MicroBlaze Processor Reference Guide, www.xilinx.com/
support/documentation/sw_manuals/mb_ref_guide.
pdf.

[7] Hendry, M. (2007). Multi-application Smart Cards: Technology and Applications,
Cambridge University Press, New York, NY, USA, 1st edition.

[8] Bidwai, S.S. and Bidwai, S.S. (2012). Manifestation of a Smart Card Reader using
VLSI Technology, IJCST, 3(1).

[9] Koul, Y. and Pathak, A. (2016). Design and FPGA-based implementation of
Smartcard Reader, International Journal of Science, Engineering and
Technology Research, 5(2).

[10] Selimis, G., Fournaris, A., Kostopoulos, G. and Koufopavlou, O. (2009). Soft-
ware and hardware issues in smart card technology, IEEE Communications
Surveys & Tutorials, 11(3).

[11] EMYV, (2011), Integrated Circuit Card Specifications for Payment Systems - Ap-
plication Independent ICC to Terminal Interface Requirements, https:

//www.emvco.com/specifications.aspx?id=223, citation
date: 24 May 2017.

[12] Kuon, I. and Rose, J. (2007). Measuring the gap between FPGAs and ASICs,
IEEE transactions on computer-aided design of integrated circuits and
systems, 26(2), 203-215.

32

[13] Xilinx, (2011), Spartan-3E FPGA Starter Kit Board User Guide,
www.xilinx.com/support/documentation/boards_and_
kits/ug230.pdf.

[14] Pedroni, V.A. (2010). Circuit Design and Simulation with VHDL, Second Edition,
The MIT Press, 2nd edition.

[15] Xilinx, (2012), ISE In-Depth Tutorial, www.xilinx.com/support/
documentation/sw_manuals/xilinxl4 1/ise_tutorial__
ug695.pdf.

[16] Xilinx, (2013), EDK Concepts, Tools, and Techniques, www.xilinx.com/
support/documentation/sw_manuals/xilinx14_7/edk_
ctt.pdf.

[17] Xilinx, (2015), Xilinx Software Development Kit (SDK) User Guide,
www.xilinx.com/support/documentation/sw_manuals/
x11inx2015_1/SDK_Doc/index.html, citation date: 20 May
2017.

[18] Xilinx, (2003), CoolRunner-II Smart Card Reader, www.xilinx.com/
support/documentation/application_notes/xapp372.
pdf.

[19] Santos, Q., ACOS6 Reference Manual, retrieved at 21 .04.2017 via e-mail.

[20] Xilinx, (2012), Platform Specification Format Reference Manual for Embed-
ded Development Kit (EDK) 14.1, www.xilinx.com/support/
documentation/sw_manuals/xilinx14_4/psf_rm.pdf.

33

CURRICULUM VITAE

Name - Surname: Caner Bulduk
Place and Date of Birth: Karadeniz Eregli, 26/11/1194

Undergraduate: Istanbul Technical University
Electronics and Communications Engineering (2012 - 2017)

34

	Bitirme (9)

