ISTANBUL TECHNICAL UNIVERSITY

ELECTRICAL - ELECTRONICS ENGINEERING FACULTY

Design And Verification Of An 16-Bit Floating Point Alu, Using Universal
Verification Method

BSc Thesis by
Yasin Firat Kula

040110020

Department: Electronics and Communication Engineering

Programme: Electronics and Communication Engineering

Supervisor: Assoc. Prof. Dr. Siddika Berna ORS YALCIN

MAY 2016

PREFACE

First of all, thanks to all of my respectable college teachers who pass on their great
knowledge throughout BSc program ,with a special thanks to my teacher and project
advisor Assoc. Prof. Dr. Siddika Berna Ors Yalgin for her invaluable information and
support in the course of the project.

Also, I would like to thank Giiler COKTAS for her help and guidance during the
process of the thesis.

Lastly, I present my eternal gratitude to my family, who've been always been with
me from the beginning to the present, and bringing me where I am now.

MAY 2016 Yasin Firat KULA

TABLE OF CONTENTS

LIST OF ABBREVATIONS ..ottt Y%
LIST OF TABLES.......coooei e Vi
LIST OF FIGURES........ciiieie ettt vii
OZET oo Vil
SUMMARY ..ottt a e teese et e et e b e ste st e s reeteeneenee e s iX
1. INTRODUCTION. ...ttt ittt st sae b sne e 1
2. BACKGROUND. ..ottt sttt st eneas 3
2.1.Floating PoiNt NUMDEFIS........cccoiiiiiee st 3
2.1.1. General INfOrmMation..........cccueueiieiieeie e 3

2.1.2. IEEE-754 Half Precision Floating Point System..........c.cccccccevvevieennenn, 4
2.2.Fl10ating POINT ALU. ... s 4
2.3.VEFITICALION.c.eiiieiieiee e 5
2.4.Universal Verification Methodology (UVM)........ccoceiiiiiinininc 6

3. DESING AND VERIFICATION TOOLS......cccooeitieeeeieeierese e, 7
3.1.XiIlINX ISE DESIGN SUILE......ccviiiiiieiie ettt 7
KB 1 V4 = |1 (o ST 8
T O 10 1-T) r= 1] o OO RURRRURURR 9

4., HARDWARE DESIGN.. ..ottt 11
A.L.OVEIVIBW. ...ttt sttt btttk et be et e s re et e et e s e nre e e enes 11
4.2.Floating Point Division Module.............cccoooiiiiiiiiiiie e 11
4.2.1. TOP MOUUIE.......coiiiiiiie e 11

4.2.2. UNPACKET ..ottt bbb 14

4.2.3. SigN CalCUlator........ccviiiiiiic i 14

4.2.4. EXPONENT SUDIITACION. ...cuiiviiiiiiieiieieie e 15

4.2.5. Mantissa DIVIGEN........ccoiiiiieiiiie e 16

4.2.6. NOIMALIZEN.....coi ettt 17

A.2.7. PACKEL ...t e 18
4.3.Behavioral SIMUIAtioN...........ccooviiiiiiiie e 19
4.3.1. BaSiC SIMUIALION.coiiiiiiieiiee e 19

4.3.2. PiIpeling TeStING......coiieiiriiiieieiee e 20

5. FLOATING POINT DIVISION MODULE VERIFICATION.............c...... 22

B L. GENEIAl STIUCTUTE. ...ttt e e e e e e e e e, 22
5.2UVM TOP MOUIE.......cooiiiiiiiie s 23
ORI 101 (] = TeT YT TR RTRURPRRURRRR 24
5.4.UVM COMPONENTS.....cctiiiiiieiiiiisiieie ettt 25
5.4.1. Test Module and ENVIFONMENT........cooiiieeeeee e 25

5142, AQBNL...eeeiee e e e 26

L T Y/ [0 011 (0) OO TRRRRURRURRRRRTT 28

5.4.4. Sequencer and SEQUENCES.........cccoverererierieniesiesieee e 29

L T B 1§ V] OO RTRRRT 30

BB, SUDSCIIDET ..o e eeeeeens 31

B4 7. SCOMEDOAIM. ...ttt ee e e e e e 31
5.4.7.1.SystemVerilog Direct Programming Interface (DPI)................... 32
5.47.2.MATLAB Predictor MOAUIE..........ooeeeeeee e, 32

6. RUNNING THE UVM TESTBENCH WITH QUESTASIM..........c..ccvene.e. 34
7. CONCLUSION. .ottt e e e 35
REFERENGCES. ...ttt et e e e e e e e e e e e e e 36
APPENDICES. ...ttt e e e e e 39
RESUIME e ettt e e B

LIST OF ABBREVIATONS

UVM
ALU
VB
IEEE
OVM
AVM
VMM
HDL
FPGA
IDE
SoC
ASIC
RTL
DUT
TLM
DPI

: Universal Verification Methodology
- Arithmetic Logic Unit
- Incisive Verification Builder
. Institute of Electrical and Electronics Engineers
: Open Verification Methodology
: Advanced Verification Methodology
: Verification Methodology Manual
: Hardware Description Language
: Field Programmable Gate Array
. Integrate Development Environment
: System on Chip
: Application Specific Integrated Circuit
: Register Transfer Level
: Design Under Test
: Transaction Level Modeling
: Direct Programming Interface

LIST OF TABLES

Table 2.1 : Available formats of IEEE-754 number system
Table 4.1 : List of bit codes for each exception in division
Table 5.1 : List of port types in TLM.......ccccooviviiiiinnnnne

Vi

module........cccoeevveeeeen. 12

LIST OF FIGURES

Figure 2.1 :
Figure 3.1 :
Figure 3.2 :
Figure 3.3 :
Figure 3.4 :
Figure 3.5 :
Figure 4.1 :
Figure 4.2 :
Figure 4.3 :
Figure 4.4 :
Figure 4.5 :
Figure 4.6 :
Figure 4.7 :
Figure 4.8 :
Figure 4.9 :
Figure 5.1 :
Figure 5.2 :
Figure 5.3 :
Figure 5.4 :
Figure 5.5 :
Figure 5.6 :
Figure 5.7 :
Figure 5.8 :
Figure 5.9 :

Bit arrangement of "binary16™ SYSteM.........cccovviiriiiiieienesc e 4
A screenshot of HDL design environment of ISEcccoevevveieenenn 7
A simulation screen from ISE integrated ISIM simulator........................ 8
An RTL schematic indisplay at ISE............ccccovviieviiieiiece e 8
SVEditor design enVIrONMENt...........ccueiirieiieneee e 9
A screenshot from QuestaSim simulation environment.............c........... 10
Top layer RTL schematic of top module............ccoovveiiiininiininin, 13
The circuit schematic of division Mmodule............cccoovveiiiienieniinicienen, 13
Top layer RTL schematic of unpacker............ccoovvvviieieienc e 14
RTL schematic of sign calculator.............cccccveveiiiiieiiie e, 15
Top layer RTL schematic of exponent subtractor..........ccccooecvvvenennns 15
Top layer RTL schematic of normalizer...........cccccoevevveveiciieeiccen, 18
Top layer RTL schematic of packer...........ccccoiiiiiiiiiiiiicee 19
Waveforms of division module's basic simulation................cccccocevenenn. 20
Waveforms of division module's pipelining simulation........................ 21
A typical UVM top MOdUIE..........coveiiieiic e 22
Interaction of top module elements............c.cooovviiiiinine, 23
Interface's connection with other components.............cccoceveiieiiiienen, 24
LiSt Of UVM PREaSES.......ooviiiiiiiiiiiitieee e 25
A showcase of top layer elements............cccccoveveeieiiic i, 26
AN ACTIVE BGENT......eiiiiiiiieee e 27
A picture of TLM analysis ports and exports in analysis layer.............. 28
Image of the links between sequencer, sequence and sequence item....29
Sequencer-Driver-DUT transaction...........ccccccveviveiieevie e 30

vii

ON ALTI BiTLIK KAYAN NOKTA SISTEMLI ALU TASARIMI VE
DOGRULANMASI

OZET

Sayisal sistem tasariminda devrenin boyutu ve karmasiklig arttik¢a, orantili olarak
sistemin dogru ¢alistiginin test edilmesi de daha zorlayici hale gelmektedir. Piyasada
bulunan ¢esitli basit benzetim araglarinin olmasina ragmen; yiiksek miktarda 6zel
hal, giris kombinasyonlar1 ve durumlar bu araglar ile yapilan benzetimlerin
izlenmesini ve bulunan tasarim hatalarin giderilmesini olduk¢a zor kilmaktadir ve bu
da gozden kagan hatali durumlar veya istenmeyen davraniglar olusmasi riskine sebep
vermektedir. Sistemdeki hatanin, iriin piyasaya siiriildiikkten sonra ortaya ¢ikmasi
durumu da sistemin hatalarini diizelterek yeniden tasarlamak olduk¢a masrafli
olacagindan iiretim agisindan biiyiik sorun teskil etmektedir.

Bu sorunlar nedeniyle sistemlerin dogrulanmasi i¢in daha gelismis yOntemler
gelistirilmesi yoluna gidilmistir; bu yontemleri kullanabilecek yeterli bilgi diizeyine
sahip kisilere duyulan ihtiya¢ da dogrulama miihendisligini dogurmustur. Evrensel
Dogrulama Metodu (UVM), bu gelistirilen dogrulama yontemlerinden biridir ve
projede bu metot kullanilmistir.

Bitirme projesi iki asamadan olugmaktadir: ilk olarak , bilgisayar ve mikroislemci
sistemlerindeki yaygmligr ve onemi nedeniyle, ardisik diizen mimarisine sahip ve
kayan nokta aritmetigi yapabilen bir aritmetik lojik birim (ALU) ortalama
karmasiklik sunacak bir devre olarak tasarlanmistir. ikinci asamada, gerekli UVM
kodlar1 yazilarak ALU tasariminin dogrulanmasi amacglanmistir. Projenin ii¢ bitirme
Ogrencisinin ortak caligmasi olarak gotiiriilmesi nedeniyle, bu asamalar ALU'un
toplama-gikarma birimi, ¢arpma birimi ve bolme birimi olarak tice boliinmiis; her
boliimiin tasarim ve dogrulamasi ayri bir Ogrenci tarafindan yapilmistir. Bu
calismada bolme modiilii izerinde ¢alisiimistir.

Bu amaglar dogrultusunda; tasarimimin adimlar1 detayli bir sekilde anlatilacak ve
yapilan basit benzetiminin sonuglar1 gosterilecek; ardindan kullanilan 6nemli UVM
birimleri hakkinda bilgiler verilecek ve dogrulama isleminin asamalar
gosterilecektir.

viii

DESIGN AND VERIFICATION OF AN 16-BIT FLOATING POINT ALU,
USING UNIVERSAL VERIFICATION METHOD

SUMMARY

In digital system design; as the size and complexity of the system increases,
verifying its validity becomes proportionally challenging. Even though many basic
simulation tools are produced by various corporations and individuals, the vast array
of special cases, behaviours and input combinations makes the simulation process
quite hard to track and restore design flaws, resulting in overlooked faulty cases in
design that leads to errors and unintended behaviour. When a fault detected on a
product system after its release, it becomes very costly for producers to re-release a
fixed version of the product.

The problems described paved a way for development of more sophisticated system
verification methods; and with the requirement of individuals with ample knowledge
of those verification systems, verification engineering is born. Universal Verification
Methodology (UVM), one of those verification methods that are developed, will be
used as the verification standard during this project.

The graduation project contains two phases: Firstly, a pipelined floating point
arithmetic logic unit (ALU) is designed as a system with moderate complexity, and
for its commonness and importance in many computer systems and microprocessors.
Secondly, required UVM codes are written and the ALU design is aimed to be
verified by using these codes and special design tools. Since the project is a
collaborated work, this phases are divided into three sections as addition-subtraction
module, multiplication module and division module; where each module’s design and
verification have done by one of the collaborated graduate students. In this work,
division module's design and verification process was expressed.

For this aspect; steps of the ALU design will be given in detail, a basic simulation
will be applied to test its functionality; then the verification process will be shown
step by step, after the introduction of the important UVM components that is used.

1. INTRODUCTION

In electronics engineering, digital system designs steps forward with various aspects
like easier programmability and design process, high speed and lower cost; also,
digital systems offers more reliability and precision compared to analog systems in
many applications, even though analog systems are better and more suitable for
various practices, digital systems are replacing analog systems whenever possible
[1]. As the commonness of digital systems increases, their size and complexity
increases; and this brings system validation problem with it. To cope with this
problem, various verification methods are developed. The Universal Verification
Methodology (UVM) is one of these methodologies and it is used in verifying the
created system in this project[2]. UVM was chosen because of its high reliability,
user-friendly construct and its current position as a highly accepted standard in
verification process[3].

Generally, the process of creating a digital system consists of two steps; which are
designing and verifying. The goal of the project is to see each step of this process in
detail, by creating a digital system with moderate complexity and validating it
afterwards. First, an arithmetic logic unit (ALU) design was created according to its
specified requirements, then it was verified with the selected methodology.

The ALU is designed in Verilog HDL[4], using Xilinx ISE Design Suite[5] and later
simulated in various aspects, at the same designing tool, in order to basically check
its validity. The process of system design is expressed in detail at the fourth chapter
of thesis.

In the following phase, information on UVM was gathered. It is followed by creating
the necessary UVM codes. The code creation part was done by taking the UVM
codes of the previously completed graduation project on verification with UVM as
basis[2]. These codes were originally created by Incisive Verification Builder (IVB)
tool[6], and modified as per the requirements. Similarly in this project, these codes
created in the aforementioned graduation project are modified and appended, with
the goal of further contributing the verification study performed on our university.

Detailed information on verification is given in thesis Chapter 5.

Created UVM testbench had been ran on Mentor Graphics QuestaSim[7] tool. Steps
of running the UVM testbench is expressed at Chapter 6.

2. BACKGROUND

2.1. Floating Point Numbers
2.1.1. General Information

Floating point is a number representation system that approximates to a real number,
escalated by a balance between range and precision. Numbers are represented
approximate to a fixed-point significand number, then scaled using an exponent with
a fixed base number [8]. By these definitions, a floating point number can be exactly

represented as follows:
Significand x Basef*Ponent = Nymber (2.1)

In digital world, different techniques for representing floating point numbers were
defined. Currently, the most widely used floating point representation is the Institute

of Electrical and Electronics Engineers' (IEEE) IEEE-754 floating point format [9].

IEEE-754 format offers binary and decimal based floating point formats in different
precisions, which could be seen from Table 2.1. These representation named after
their number base and their corresponding bit lenght that used to represent the
number. More bit number means larger approximation to the actual real number. In

the ALU design, "binary16" representation was chosen for smaller circuit size.

Table 2.1: Available formats of IEEE-754 number system [10]

Name Common name Base Digits De.ci-rnal Expt.)nent Decimal Ex;-Jonent E min E max Notes
digits bits E max bias
binary16 Half precision 2 1 331 5 451 2%-1=15 -14 +15 | not basic
binary32 Single precision 2 24 7.22 8 38.23 | 27-1=127 -126 +127
binary64 Double precision 2 53 15.95 11| 307.95|2'0-1=1023 -1022 | +1023
binary128 | Quadruple precision 2 113 34.02 15| 4931.77 | 2'%-1=16383 | -16382 +16383
binary256 | Octuple precision 2 237 71.34 19 | 78913.2 | 2'8-1=262143 | 262142 | +262143 | not basic
decimal32 10 7 7 7.58 96 | 101 =95 +96 | not basic
decimale4 10 16 16 9.58 384 | 398 -383 +384
decimal128 10 34 34 13.58 6144 | 6176 -6143 +6144

2.1.2. IEEE-754 Half Precision Floating Point System

An IEEE 754 format floating point number consists of three parts.

Sign Bit: This is the most significant bit for all representation types in IEEE
754. High value of a sign bit represents negative sign, whereas low value of
the sign bit represents positive sign.

Exponent Bits: Exponent bits represents the power of the base number.

During the calculation, a bias with the amount of ;

BaseNumber of Exponent bits—1 __ 1 (2'2)

BaseNumber of exponent bits- 1 _ 1

added to the exponent value.

Mantissa (Fraction) Bits: Mantissa bits represents the significand, in other

words represents the precision of the number. It is the remaining bits from the
sign and exponent, in all expressions. Mantissa bits assumed to have an extra

leading bit as "1" for calculation purposes.

Below is the bit arrangement of "binary16" half precision system.

exponent fraction
sign (5 bit) (10 bit)
|f | |
O O o
15 10 0

Figure 2.1 : Bit arrangement of "binary16" system[11]

By those definitions, decimal expression of a half precision floating number could be

given as follows:

—1518ny pExponent=15y 1 Mantissa = Number (2.3)

Using this formula; it is found that the largest absolute value representable is 65504
= (-1)%9" * 26019 * 1 1111111111, and the smallest absolute value representable is
6,103515625e-5 = (-1)¥9" * 2(-15) * 1 0000000001. Exponent value of 31 represents

infinity cases.

2.2. Floating Point ALU

The arithmetic logic unit is a digital circuit that can perform arithmetic and logic

operations for a processor system. Floating point ALU, also known as floating-point

4

unit, does these mathematical operations for floating point numbers, which its system
Is chosen depending on application. It can either be in a system as an integrated
processor, or as an independent co-processor. Since applications like scientific
calculation and signal processing requires operation capability on floating point
numbers with good precision, a floating-point unit has quickly become a corner-

stone component in current computer systems and digital signal processors.

During the project, a 16-bit floating point ALU using the IEEE 754 half precision
system is designed. The unit kept simple with only containing the four basic

mathematical operations.

Some processors contains an implementation named pipeline, in order to reduce the
time consumed on tasks requiring high computing time (clock cycles)[12]. In
pipeline, instructions are overlapped on the processors, before waiting for an
instruction to be completed. The structure usually contains a handful of stages, each
performing a specific task and are separated from each other with memory units. For
example, an instruction that requires three clock cycles to complete could be
overlapped consequently in a pipelined implementation; after four clock cycles, the
second instruction (overlapped instruction) will produce its result, due to being
computed in parallel lower stages of the design. In this manner, the instruction clock
cycle is not reduced, rather its throughput time of consequent instructions is

decreased.

During the implementation of ALU in this project, it is aimed to implement a
pipelined design.

2.3. Verification

Verification is the process of validating a system's operation, by checking if it is
working as planned. In digital designs, when the first time the verification process is
introduced, designers tend to perform the verification step by checking the
corresponding waveforms of a simulation or checking the outputs manually.
However; as the size and complexity of the systems are increased, new
methodologies are needed, since for the large systems even simply observing the

waveform becomes inextricable [13].

In modern verification; certain languages and methodologies are used to validate the

system, like SystemVerilog [14] and UVM, with support of object oriented

5

programming. The verification steps consist of creating suitable test codes and
running the tests. Usually verification step is performed in parallel with design
process. A verification engineer needs to have a good background knowledge on
design to be tested, he/she needs to create suitable test that will cover specific and
boundary values of the design; while also aiming to cover entire code to minimize
any unexpected behaviour, and allow to designers fix them if any of these behaviour

occurs.
2.4. Universal Verification Methodology (UVM)

The Universal Verification Methodology is a standard founded by Accellera [15]. It
is firmly established on the existing OVM (Open Verification Methodology) [16]
base code In this aspect the methodology is also a hybrid of various known
verification methodologies such as Mentor Graphics' AVM (Advanced Verification
Methodology) [17] and Synopsys' VMM (Verification Methodology Manual)[18]
along with several new technologies[19]. UVM is aimed to be the standard in

verification methodologies.

As stated in Section 2.3., first times of verification process was exercised with
waveform simulations; and later evaluated to languages like Vera [20] and
SystemVerilog, then followed by OVM based methodologies. Following the
tradition, the UVM also offers the SystemVerilog based Base Class Libraries in order
to make the process more systematic for developers. These libraries offer standard
construct for many components that are used in UVM testbenches. For the desire of
automating and reusing the process, these template libraries become quite handy for
users as well. This way, a full testbench created could be used again for a different
application with just a few modifications. The reusable and standardized construct
hence saves a verification engineer from being constrained by the design tool chosen

for the verification process; which was mostly the case before UVM.

3. DESIGN AND VERIFICATION TOOLS

3.1. Xilinx ISE Design Suite

ISE (Integrated Synthesis Environment) Design Suite [5] is a tool produced by
Xilinx, for developing, compiling, analysing and synthesising HDL (Hardware
Description Language) designs (supporting Verilog language). It features a wide
scale of options for design implementation like timing analysis and power analysis;
is able to show RTL and technology diagrams of created designs, also letting the
developer to load and configure the HDL design into supported device. It should be
noted that the software behind ISE is strictly coupled to the company's own produts'

architectures and cannot be used with products from different producers.

ISE Design Suite also contains integrated sub-tools; which are used for tasks like
logic simulation and device configuring.

This tool was used as a design environment and simulation tool during the timespan
of the project. Verilog codes for floating point ALU and basic testbenches for its
simulation were created using this tool.

File Edit View Project Source Process Tools Window Layout Help N =S

oa Lo Ex|vwa| 2R BRI ®ED= AR PCLQ
Design 08X & 7 output reg [2:0] status,
[| View: ® {8 mplementation) [Simulation =
] | Hierarchy =
©®] ALU-16bit_fp_division_v4 =
| B €3 xe3s500e-4fg32
&l 8
Fl %
A
B “
= %
(CAXIlnA\BP_ALUVALU-1 | g
-16bit fo divisior T | —
« v)
P | T NoP Running e
'{, | Praces: - divi
|- = Repart:
c|<
| = &
View RTL Schematic
View Technology Schematic
£) Check Syntax <
£) Generate Post-Synthesis Simulation .. D

& Stert | B3 Design |) Fies |) Lbraries | E Design Summary E] fioating_point_division.v]

Console «08x

) INFO:ProjectMgmt - Parsing design hierarchy completed successfully.
Launching Design Summary/Report Viewer...

Started : "Launching ISE Text Editor to edit floating point_division.v".

© Evors | [console | 1\ Wamnngs | g4 Findin Files Results

Ln20 Col15 Verilog

Figure 3.1: A screenshot of HDL design environment of ISE

%o ISim (P.20131013) - [Defaultwcfg] =
[Z] File Edit View Simulation Window Layout Help
D E|&| X Do o | % A=
Instances and Processes + 08 x|[Obects woax
Simulation Objects for UVM_driver_model 2

CEEREE « 5

(3 re-unch

Instance and Process Name

4F UYM_driver_model | Object Name Value
& ool {| > 3 duision resu.. 101300113221130|)
By status[2:0] 011 ot
15 valid 1 (8] » W operana

25 operand_a15... 1000110110110 1&
R operand_bll... 0010101101101

B dk o =

B st 0 t1

& enable 1

i
(

< i v g 5 I
£ Instanc Memory | i=] 50 m a s vi[E Defaultwely [x]
Console P03

This is & Ful version of I5im.
Time resolution is 1ps
Simulator i doing dircuit intiaiization process,

« @

Finished circuit initialization process.
1Sim>
@ Console |[] Compiationlog | @ Breskpoints | (@ Findin FiesResuits | [g§ SearchResults

Sim Time: 1,000,000 ps

Figure 3.2: A simulation screen from ISE integrated ISIM simulator

[) File Edit View Project Source Process Tools Window Layout Help

o3 | i APBRR
Design 08 %

i |view: © {8} 1mplementation () [&f Simuletion

(5] | Hierarchy -

| € ALU-16bit fp_division v4

& €3 xc3s300e-4fg320
= test (CAXilin\BP_ALUNALU-16bit_fp_division_vdte
=V

& UP - unpacker (C:\Xilim\BP_ALUNALU-16bit =

SC - sign_calculator (C:AXlim4BP_ALLNALU| |
: ES - exponent_substractor (C:\Xilinx\BP_ALL

4 - [¥) MD - Mantissa_divider (C:\Xilird\ BP_ALU\A

] NM - normalize_module (CAXilind BP_ALU
P - packer (C:\Xilinx\BP_ALUNALU-16bit_fp_
[C\Xilinx\BP ALUNALU-16bit fo division vi\Ma ™
i »
i

P | 82 NoProcesses Running

{, | Processes: uut - floating_point division
it Design Summary/Reports
G Design Utilities
B g User Constraints
— | = 221\ Synthesize - XsT
View RTL Schematic
View Technology Schematic

B) Check Syntex
€) Generate Post-Synthesis Simulation Model

& Strt | @2 Design |I[] Fies |[[Y Lbreries b3 Design Summary (Synthesized) B floating_point_division (RTL2) 8
View by Category «0fF X
Design Objects of Top Level Block Properties: (No Selection)
Instances | | pins Signals Name Value
D reg sl & g% floating_point_division & g floating_point_division
D reg_sc2
D reg_sl
D regs2 -
@ Errors | [E] console | 1) warnings | g FindinFlesResults | [view by Category

[3840,60]

Figure 3.3: An RTL schematic in display at ISE
3.2. SVEditor

SVEditor is an Eclipse-based IDE (Integrated Development Environment) [21]
supporting Verilog and SystemVerilog languages. It offers a colorized editor with
syntax-checking, also supporting with source navigator, content and documentation
assistance and SystemVerilog templates. It is also possible to import UVM libraries
as source templates and properly check the code lines containing UVM based class

extensions and methods.

SVEditor was used to develop and check UVM codes written in SystemVerilog.

File Edit Novigate Search Project Run Window Help
R I R A R R R Quick Access | B | [Systemveniog
[Project Explorer 32 e Hierarchy = 8 |[ls] matlab_dpi_pkg.svh 3% =8

=
< /1 + ine MATLA Tions 7
05 Package to define MATLAB DPI function &

4 B2 P/UVM
(5 Project Paths

package matlab_dpi_pkg;

B sic
[v] FP_ALU_DIVIDER di

ng cmd);
[&] FP_ALU_DIVIDES 5

5] FP_ALU_DIVIDEI
[5] FP_ALU_DIVIDEI
5] FP_ALU_DIVIDEI
[5] FP_ALU_DIVIDEI

@ get_matlab_buffer(: strin
© stop_matlab(): void

Indec None — vrapper disabled -- | Writable Insert 10:11

Figure 3.4: SVEditor design environment
3.3. QuestaSim

QuestaSim is a functional verification simulator of Mentor Graphics', developed as
an integrated platform under Questa Advanced Simulator software, which is the core
simulation and debugging engine of the Questa Verification Platform [7], and
powered by ModelSim tool, which both are the software products belonging to same

company.

QuestaSim offers higher capacity and supports larger FPGA and SoC (System on
Chip), where ModelSim supports smaller designs. Moreover, an important advantage
of QuestaSim is its compatibility with verification since it has a basis consisting of
Questa Verification IP and Accelerated Coverage Closure technologies [22].

Because of its verification supportive nature, QuestaSim is compatible with a large
array of languages containing Verilog, SystemVerilog and VHDL; and offers support

for SystemVerilog based UVM libraries in hardware description and verification.

QuestaSim was used for running the complete UVM testbench in order to observe

the verification results.

& Questa Sim-6410.2c =

File Edit View Compile Simulste Add Transcript Tools Layout Bookmarks Window Help

SRS D | 2)) | e ELEE

b Gl e B mo e EEE NS WO

Lavout [simulace = H ColumnLayout [§11Columns m;;m;q].q;” > [qu R J & CRE
ETVIES T T
&) sim - Defauit H & || | g Objects Hefl X| | gm| wave - Default
Vit = —_—l
e test(fast) Module ig GREEN Enum Intern: + festhaht R0 Torrn el fe
o taffcsignal test(fast) VITyped|
ol sv_Greenlight test(fast) Functior|
ol sv_Yelonlight test(fast) Functior|
&l sv_RedLight test{fast) Functior|
Bl sv_VeitForRed test(fast) Task
8l c_CarWaitng test{fast) Task
- st std WPacka
|5 #vsim_capacity# Capadt
«| |
48 Processes (Active) Hd x|
|Name [Type (fitered) [t
I iE Cursor 1
o i o
Srary B ot | Gsm - [4lel 4| | Vave _testsv o]
- Transcript H x|
VSIM 4> run

Tnere's a car waiting on the other side.
Tnitiate change sequence

|
|VSIM 5> j

New: 100 ne Delta: 0 Itestficht

Figure 3.5: A screenshot from QuestaSim simulation environment

10

4. HARDWARE DESIGN

4.1. Overview

As the first step of the project, a design to be verified was required. Design to be
tested needed to have enough complexity to be add new aspects to the previous work
done in the same subject by one of the currently graduated students from ITU
Department of Electronics and Communications Engineering, which was mainly
aimed to introduce the UVM and therefore used a simple adder circuit as the design
to be tested [3]. In order to add up to this work, the 16-bit floating point ALU design
has been chosen. This ALU design was based of Aahrty M. and Dave Omkar R.'s
paper titled "ASIC Implementation of 32 and 64 bit Floating Point ALU Using
Pipeline” (Application Specific Integrated Circuit - ASIC) [23].

The floating point unit specifications are as listed as below:

e Based on IEEE-754 half precision number format
e Contains four operations: Addition, subtraction, multiplication and division.

e Contains a pipeline implementation

The hardware design process is separated into three as addition-subtraction module,
multiplication module and division module; where each module have been designed
by one of the contributing graduate students. The division module was designed in
this work, hence the process of the division module design will be denoted in detail.
4.2. Floating Point Division Module

4.2.1. Top Module

The top architecture of the division module contains two 16-bit inputs to represent
operands, named "operand_a" as the dividend and "operand_b" as the divisor; with
three outputs called "division_result", which is an 16-bit output to show computation
result, a one bit output named "valid", which sets itself when the division result has
calculated, and a 3-bit long "status™ output to show whether there is an exception
occurred during computation or not. There are also three one-bit control inputs; one

for the clock (positive edge triggering), one for the reset (active high reset) and one

11

as an enable signal. When the enable signal is low, the circuit stays idle during the
rising clock cycles.

In the case of exceptions, which is represented by "status™ output; there are five

possible states that can occur after a division:

e Overflow: Occurs when the division result is greater than the highest absolute
value that is representable. In this case, the result is set to the maximum
absolute value representable with its corresponding sign bit.

e Underflow: Contrary of the overflow, it occurs whenever the computed result
is smaller than the minimum absolute value that is representable. In this case,
the result is set to zero.

e Division by Zero: Occurs when the divisor input acquired as zero. This
situation sets all sixteen bits of the result output to high, representing the
infinity, or unavailability.

e Result Zero: This status value is seen when the division result is zero, but
there is no underflow occurred. In other words, it will be seen when the
dividend input is zero.

e Normal Operation: Normal operation flag will be seen at status bits when
none of the special conditions described above are present.

The bit codes for each of the cases described above are as follows:

Table 4.1: List of bit codes for each exception in division module

Status Case Bit Code
Result Zero 000
Overflow 001
Underflow 010
Normal Operation 011
Divided by Zero 100

12

The top module consists of six submodules; unpacker, sign calculator, exponent
subtractor, mantissa divider, normalizer and packer. Design of each module will be

told in detail in their respective sections. All submodules are combinational circuits.

In terms of pipelining, four different layers are presented, each seperated with a set
of register blocks. Therefore, the computation result is given in fourth rising edge of
the clock after the computation starts.

The input and output schematic from RTL top layer is given below.
floating_point_division
division_result{15:0)

status(2:0)

enable

floating_point_division

Figure 4.1: Top layer RTL schematic of top module

A schematic of the top layer circuit is presented below.

sl /;‘ reg_sl
SIEN sc ,;\ reg_scl F reg_scl
) CALCULATOR [l —J
2 reg_s2
= FF
[l I reg_ex ES
a3
el ’;‘ reg_el ex ES
UNPACKER [EXPONENT [] reee " {FF 8_en
SUBTRACTOR " F 1 PACKER
&2 ’—|reg_e_] -
FF
(NORMALIZER [— 0 f pp | o810
ml - ex_MD " u
reg_ml .
= Jree MANTISSA L1 reg ex 3D ex NM reg_ex_NM
DIVIDER
w [Q] reQ
reg_m2 Il

Figure 4.2: The circuit schematic of division module

The Verilog code for the top module can be examined from "FP_ALU_DIVIDER.v"
file in the disk.

13

4.2.2. Unpacker

Unpacker module is where the operands are separated into their sign, exponent and
mantissa bits. Moreover, the hidden high bit in front of each mantissa is added here.
Separated bits later sent to their appertaining modules to be processed. The module's
inputs are the two operands, and outputs are their separated sign, exponent and
mantissa bits.

The unpacker alone also forms the first layer of the pipeline.

unpacker

operand_a(12:0]

mif100)

m2i10.0)

operand_hi{15:0]

unpacker

Figure 4.3 : Top layer RTL schematic of unpacker
The Verilog code for the unpacker is presented at Appendix A.1.

4.2.3. Sign Calculator

The sign calculator determines the output sign by evaluating operand sign bits. Since
the division of two positive operands (sign bit zero) or two negative operands (sign
bit one) are positive and division of operands with different signs results in negative
sign, a simple XOR operation is used to determine the result sign.

This module is one of the three elements in second pipelining layer.

14

sign_calculator:1

LPM_XOR2_1

Diatal0;

Datai1;

Mxor_sc

sign_calculator

Figure 4.4: RTL schematic of sign calculator
The Verilog code for this module can be seen from Appendix A.2.

4.2.4. Exponent Subtractor

At this module, exponents of the two operands are subtracted, the divisor's exponent
is subtracted from dividend's exponent, and then the bias (found as 15 from Equation
2.2) is added. Afterwards, the calculation result is driven to the module output.

After the computation, the resulted exponent must be checked if it is greater than 30
or smaller than 0, which in this cases they won't be represented as they should and an
overflow or underflow will happen. Result of the check is stored in the exception
output, to be later passed into the packer module in order to be evaluated in status
decision.

This module is one of the three modules in that form the second pipelining layer.

exponent_substractor

exception{2:0)

exponent_substractor

Figure 4.5: Top layer RTL schematic of exponent subtractor

15

The Verilog code for this module is given at Appendix A.3.

4.2.5. Mantissa Divider

Mantissa divider is the module where the significand's division is performed. There
are more than one algorithm present for performing binary division in this module.
The restoring division algorithm is used.

Restoring division algorithm performs one division for each bit in mantissa
(including the hidden bit). The process starts from the initial mantissa inputs
delivered from unpacker module. It is checked if the dividend is greater or lesser than
the divisor mantissa (checking if dividend mantissa is completely dividable with
divisor mantissa) and it is processed according to this.

To express better, the algorithm will be expressed in coding jargon;

Let the dividend mantissa called A and the divisor mantissa called B, initially;

for (i=10, i<=0 , i--)
{
if (A >= EB)
{
Qri] = "1
E=5A-B
el=se
{
Qri] = 'o°
E =4
L = 2*%R
D= Q:

In this expression, Q is the quotient bit; when it is 1" it means there is one times B in
A, and when it is '0' means there is no B in A. Q is eleven bit long output where each
bit represents the division result for its corresponding cycle, forming a eleven bit
long mantissa division result when there are 11 cycles completed. The Q bits are
filled starting from the most significant bit to the least significant bit. The R
represents the remainder; if there is no B in A, the remainder is set as equal to A, and
if there is one B in A, remainder is set to their subtraction. At the end of the cycle,
the remainder is shifted right one time, then it becomes the new dividend and a new
cycle starts. This operation is performed until all quotient bits are filled. Finally, the

quotient bits form the mantissa division result, which is called D.

16

This loop operation was performed using three different cell blocks in Verilog; one
for the initial iteration and one for the last iteration and one for second to tenth
iterations. It is done so since the first and last iterations have differently connected
input and output schemes than the second to tenth iterations,

It should also be noted that, although there is no need to store each block's dividend,
remainder and quotient; it is still done so in order to be able to easily check them
during simulation process.

There is also an exception output present in the module, to check if dividend or the
divisor is zero, setting the exception bits accordingly.

This module is the last element of the second pipelining layer.

The Verilog code for this module can be examined from Appendix A.4.

4.2.6. Normalizer

Normalizing module is where the division alignment is performed. It takes the
mantissa divider result and exponent subtractor result as inputs. In this module, the
computed mantissa is restored to the form with the hidden bit '1' in the most
significant bit (1.mantissaz). To achieve this, the mantissa is shifted right until there
Is a '1' comes to the most significant bit. No shift is required if there is already a '1' in
the most significant bit. If there will be no one's in the mantissa stream, a zero will be
put into the most significant mantissa bit instead. After the shift operations are
performed, the number of shifts performed must be deducted from the exponent.
After the subtraction from the exponent, it is required to check if the exponent
became less than zero. In the case of exponent being less than zero, the exception bits
will be set to underflow values. Exceptions will be set to normal operation values if
exponent is equal or greater than zero.

In the Verilog code, it is preferred to write the exception checking part in the form of
logical expressions.

This module solely forms the third layer of the pipelining implementation.

17

normalize_module

exception(2:0)

normalize_module

Figure 4.6: Top layer RTL schematic of normalizer
The Verilog code for the normalizer is presented at Appendix A.5.

4.2.7. Packer

Packer module is the location where the computed sign, exponent and mantissa are
combined together to form the actual division result. The hidden bit of the mantissa
is also removed here before repacking.

The module acts as an exception processer as well; all the exception outputs from
previous modules are collected here and the status output of the top module is
determined according to assigned priorities of the collected exceptions. Priority order
is constructed as division by zero, result zero, overflow, underflow and normal
operation; from highest to lowest.

Packer module also sets the special values for the output, like the infinity value in the
case of division by zero and rounding down to the highest absolute value in case of
an overflow.

Packer module is the fourth and the last layer of the pipelining implementation.

18

gxception{2 0]

med{ 1004

outi 150y

Figure 4.7: Top layer RTL schematic of packer
The Verilog code for the packer module can be examined from Appendix A.6.
4.3. Behavioural Simulation

Right after the design, before going into the verification step; the created circuit is
put upon two different behavioural simulations; using samples for all special cases
and for divisor and dividend pairs with different degrees, along with several random

stimuli. The values that calculated are checked using a half precision calculator.

It should be noted that there may be small differences between the results like a
difference in the least significant bit. This is a result of the usage of different
structures and algorithms between unit under test and the reference calculator, Since
the differences occur in the bits with less significance, the error should be safely

assumed absolutely minimal.

The simulations are performed with ISE Design Suite's 1Sim tool.

4.3.1. Basic Simulation

For the first simulation, user defined the stimuli has given to the circuit inputs, each
specially determined to cover boundary values and all five status states that could

occur.

This first simulation does not benefit from the pipeline structure. Rather, the inputs

are given in a controlled manner; five clock cycles at a time.

19

Below is the simulation result of the division module. Since it is not possible to show
the half precision floating point equivalents of the circuit on the simulation
environment, they are denoted in the test code as comments. The test code can be

seen at "UVM_driver_model.v" file in the disk.

» B division_result[15: A
;
1 valia
» Mg operand_a[15:0]
» M operand_b[15:0]
g ax
g rst
1 enable

» B division_result[15:0]

[94 statusiz:0]
1 valia
» B operand_a[15:0]
» M@ operand_b[15:0]
1 dk
T rst
1 enable

Figure 4.8: Waveforms of division module's basic simulation
Each of the results are checked using a half precision calculator.

The control mechanism used in this test was also used later in the verification part as
one of the UVM components (UVM_driver), information on this subject can be seen
at Section 5.4.5.

4.3.2. Pipeline Testing

Second test uses pipelining implementation and random inputs. With each rising
clock edges, a pair of random stimuli applied to the circuit and after four clock cycles
the particular inputs are given, the result is expected to be seen in the outputs

corresponding to that input pair.

The test code was written so as the user can define the number of input pairs to be

driven to the division module in one line.

A simulation waveform is given below, it used ten test input pairs for easier

showcase.

20

» DI

1 valid
» B operand_a[15:0
» B operand_b[15:0]

1 ck

-|_E enable
» B tx_op_a[15:0]
» B txop b[L5:0]

Figure 4.9: Waveforms of division module's pipelining simulation

Seeing from the simulation result, it could be observed that the circuit can give the
result for the consecutive inputs with each rising clock edge. This validates that the

pipeline implementation is successful.

The test code for this testbench is present at Appendix A.7.

21

5. FLOATING POINT ALU DIVISION MODULE VERIFICATION

5.1. General Structure

In digital system verification, the main construction is a top module that contains a
design to be tested, with various component to create a systematic stimulus feeding
and result checking module, called tests. Depending on the application and

preference, there might be more than one test modules.

On the main layer of the verification environment, there is an interface component
used to perform communication between the design under test (DUT) and the test

module or modules.

Top
Test
Env
Scoreboard
/)
Agent
——
Monitor Sequencer
! W
DUT Interface >| Driver
I

Figure 5.1: A typical UVM top module [24]

Summarily, in a typical UVM testbench; the stimuli are generated in the sequencer
and then fed into the driver. Driver is responsible to give the stimuli into the
communication bus in a controlled manner, the data then gets evaluated in the DUT
and then gets sampled at the monitor, where the input of the DUT is sampled as well.

22

The sampled inputs and outputs later driven into the scoreboard to be evaluated and
compared. Scoreboard generally contains a predictor section to compare DUT

outputs with predicted results.
5.2. UVM Top Module

A top module in UVM is where the main test objects and DUT is mounted. It
contains created samples of these both entities. A top module can contain more than

one testbeches to be used according to application needs.

The DUT and the test top modules are connected with units called interfaces.
Interface furnishes the input/output traffic between these components. Interfaces also
have an internal branch between monitor and driver components of the testbench,
more information will be given on the specified sections of this components. In this

project, the clock and reset signal used to control the system is also generated here.

In the coding of the top module; instances of DUT, testbench and intefrace should be
created; along with a clock and reset to control the environment. Therefore, all the
required declarations such as sub-module files to be included, UVM package
importations and DUT source codes. Moreover, the connections to attach interface
and the other components are needed to be done here. The files to be imported are
referenced from a header file called package. Codes for top module and package are

given in Appendix B.1. and Appendix B.2.respectively.

Below is a basic schematic of a UVM top module.

Testbench

virtual
interface

R PP PP |nterface

DUT

Figure 5.2: Interaction of top module elements [25]

23

5.3. Interface

It was previously stated that the interface is the communication component between
the DUT and the test top module. It delivers the test stimulus created to the DUT
from the outside of the test module; and delivers it to the monitor and also returns the
DUT outputs to the same or a different monitor component inside the agent module
(see Sections 5.4.2. and 5.4.3.), using virtual interfaces as braches. All these
communication must be done in a controlled manner, so there should be several
controlling protocols, which is generally run by driver module (see Section 5.4.5.). In
this aspect, the interface can be thought as a bundle of intelligent wires that provides
synchronization and connectivity [26].

In the coding of the interface; the connectors declared at the top module must be
appropriately attached. An error handling part also needed because during the data
delivering phase, there should be no X or Z (X is the unknown logic value and Z is
the high impedance symbol in Verilog and SystemVerilog) fetched.

Code for interface is given at Appendix C.

Below is a general view of a testbench-DUT connection via interface.

Information from DUT
to Testbench

<]

config_db APl or
test_params_pkg

Test
j— ==t

virtual

interface ~| Interface

DUT

Information o
down the .o
testhench virtual Configuration .
hierarchical interface object 3 o’
structure o’
L
v s
Agent u®®
- L
virtual
interface

Figure 5.3: Interface's connection with other components [25]

24

5.4. UVM Components

5.4.1. Test Module and Environment

In UVM test module and environment components are used to implement
verification environments. Environment is a part extended from uvm_env_class. A
test object contains virtual systematic steps to be constructed; including building the
components, connecting the components, running the test and reporting. An

environment elaborates these steps wusing virtual

uvm_env_classs, and they are specially called UVM phases.

Build phases are used in occasions where test components are created and
configured. Running phases are used for management during simulation runtime of

the testbench. Cleanup phases are used at the end, tasked to collect test results and

reporting [3].

C build)
Build
Bhascs connect)
(‘end_of_elaboration)
(start_of_simulation
(Ay
Run
Phases fun
s J
(extract
Cleanup (check)
Phases k: report)
& final S

methods

§ pre_reset

(reset

(post_reset

(pre_configure

(configure

(post_configure

(pre_main

C main

(post_main

(pre_shutdown

(shutdown

(post_shutdown

ANZICININ IR NI IR

)‘___./

Figure 5.4: List of UVM phases [27]

25

inherited from

Top-level

test
L Variable part

uvm_env

Class-based « s A
ixed pa

Structural

Figure 5.5: A showcase of top layer elements [28]

Test module contains an instance of the environment and specifies the application-
specific test functionality [29]. Environment component makes declarations of
virtual interfaces. These virtual interfaces are branched from the physical interface
located in the top module, and they are pointed to this main interface in code.
Henceforth, test module's section that is not in junction with the environment is
called as variable part, meaning it is a dynamic section that is differing form
application to application; whereas environment is a static structure and called as the
fixed part. Since both are created from main UVM class extensions, this two

components are also called class-based.

The environment used in the project has two partitions. One is the top environment

and the other contains the environment components.

Codes for test and environment components are given at Appendices D.1, D.2 and

D.3 respectively.
5.4.2. Agent

An UVM agent is derived from the uvm_component class. Agent contains the
monitor, sequencer and driver components and connects them together. Since there is
no simulation process present in the agent, it will only have build and connect
phases. When active, agent is connected to all those three components mentioned
above, where just being connected with scoreboard during passive phase. These

connections are made with analysis ports.

26

<> Analysis Port

agent
config
ot Pin level Interface
na YSiS A (virtual interface)
O=d=={ > monitor
component

SeqUENCEr |w=gp-(driver

Agent configured to be active

Figure 5.6: An active agent [30]

Analysis ports are based from transaction level modelling (TLM). TLM ports defines

various functions and methods to allows communication of transaction objects.

In TLM, there are two aspects called consumer and producer which are connected
together. For the verification testbench case, the consumer uses a function that takes
the transactions as argument, where the producer uses that same function in passing
the expected transaction to the consumer [31]. The two type of elements present in
TLM communication is ports and exports. A port can be associated to just one
export, but like in UVM verification; there may be cases when a port that can be
plugged into more than one exports are required. From this need, TLM involves one

more connection type called as analysis ports.

An analysis ports task is same as a normal port, the difference is in the connectivity.
It can be connected to several exports and can be triggered by any of the connected

exports on the same line whenever a function request arrives from them.

Table 5.1: Table of port types in TLM [31]

Symbaol | Type | Port declaration
L] Port uvin_blocking_put_port #(transaction) port_name
O Fxport uvm_blocking_put_imp #/(transaction, classname) export_name
<& Analysis Port uvin_analysis_port #(transaction) analysis_port_name

27

This kind of communication is present in UVM, with agent through monitors among

coverage, scoreboard and metric analyzers if any (metric analyzers not used in this

project).
Analysis Layer
A
' 28 -
Metri e _
A:allyczer
Analysis

Components
Coverage
collector

Scoreboard

Coverage
coliector

Analysis ports~~

Figure 5.7: A picture of TLM analysis ports and exports in analysis layer [32]
The code for agent is presented at Appendix E.

5.4.3. Monitor

Monitor is a component within the agent, like the agent it is extended from
uvm_component class. A monitor's task is to sample DUT outputs and driver inputs,
then moving them to the analysis ports within the agent. These samples will be used
at coverage and result checking steps later. Since it doesn't drive any signals into the
DUT it is also a passive component. To avoid faulty execution, a control signal is
required to inform the monitor when to take a DUT output sample. The valid signal
of the division module is used to perform this control (Valid signal gets set high
when the result is calculated). The monitor also needs to return error when

unexpected behaviour occurs in the protocol.
Depending on the design, an environment can have more than one monitor.

Monitor code can be examined at Appendix F.

28

5.4.4. Sequencer and Sequences

The verification design needs to send testing inputs with specific data type to the
DUT in order to perform any kinds of validation testing. The creation and first hand
control of this test data is covered by transaction, sequence and sequencer component

types in the UVM applications.

A transaction is an object which is generally extended from uvm_transaction or
uvm_sequencer_item classes of uvm_components. The transaction is the smallest
core part of what type of stimulus will be used for DUT inputs. It is mainly consisted
of random variables of some data types, optionally specialized by various constraints
or methods to increase accuracy of the tests to be performed.

Sequences are the elements that creates a series of transactions. A sequence is
extended from uvm_sequence of uvm_component class. A sequence collects a
specified amount of transactions and packs them to be sent to the driver when called.
The sequence can further customize the transaction sets to be suitable to whatever

specific aspects of the design should be tested.

There is one more class that's used to take the created sequence to the driver. It is
named as sequencer and is generally used with the default sequencer class of UVM
instead of extending it, since the default class usually be sufficient for applications.

It should be noted that the sequences and sequencer are not aware of the
communication protocol in the verification environment, meaning they have a re-
usability property in verification works when they are correctly programmed.
Interacting these components with the communication protocol is the task of the

driver component, that is described at Section 5.4.5.

Figure 5.8 shows the operation among sequence items, sequence and sequencer.

[
Sequence K
[Sequenc n n

Seq_item_export

Figure 5.8: Image of the links between sequencer, sequence and sequence item [33]

29

Corresponding codes for sequence and sequencer are given at Appendices G.1 and
G.2.

5.4.5. Driver

Driver is a component contained in the agent, and is extended from uvm_driver of
uvm_component class. A driver interacts with the DUT by pulling sequence items
from the sequencer and directing them to the DUT inputs with respect to a specified
protocol, so the driver operates with pin level connection. A driver automatically
terminates it's operation when the specified number of sequence items are driven.

The driver's interaction with the sequence family can be seen from Figure 5.9.

Sequence Sequencer Driver Interface/
start_item() —» , DuUT
N Arbitration - get_ne:ft_ﬂem{]
v
finish_item() —— | :
I 7 [h L
——

Ea

Fin level
transaction
activity

7

item_done() -=-—

'y

Figure 5.9: Sequencer-Driver-DUT transaction [34]

Before coding the driver protocol, it is recommended to implement it as a normal
testbench first, using preferred design tool; for being sure it's operation is suitable to
the needs. On this account; in the coding of the driver, the same protocol that's seen
in the behavioural simulation in Section 4.3.1 and Figure 4.8 is modelled. The driver
drives the input and sets the enable to start DUT's execution, then waits until the
required time to pass for required clock cycles, then clears and the input and drives a
new one. This protocol is essential for being sure an input will not be driven before

the DUT finishes its calculation. Driver code is available at Appendix G.3.

30

5.4.6. Subscriber

Subscriber is a class extended from uvm_component class. It provides export to the
analysis ports that receive transactions. Subscribers mostly used for helping coverage
analysis on analyze ports. The subscriber class contains a "write” method for this
exporting purpose [35]. When the write function gets a call with transactions as
arguments, each subscriber points to the corresponding sequence item. That way it is

possible for sequence items to be processed without mixing into each other.

There are two subscriber types present in the project. One used for code coverage

and the other used for scoreboard ports.

Code coverage determines the percentage of how much of the code lines are covered
by checking if every possible partition of the code have been moved upon. Code
coverage percentage determines the quality of the tests performed.

Subscriber code used for analysis ports of this project can be seen at Appendix H.1.
5.4.7. Scoreboard

Scoreboard components are extended from uvm_scoreboard. Task of a scoreboard is
to create predictions based on input sequences sent into DUT, then comparing these
prediction results with actual DUT results. An error will be asserted when comparing
result is unfavorable. These input and output streams are driven to the scoreboard

ports from the monitor.

Scoreboard of the division module is designed together with its scoreboard

subscriber element, that is it's analysis port subscribers.

Scoreboards contains a predictor section to create values for comparing with DUT
outputs. Predictors does not have to be written in the SystemVerilog language. For
complex designs, support from foreign languages required. It is possible to
communicate with other programming languages. The way to performs this

discussed in the next section.

Code for scoreboard is presented at Appendix H.2.

31

5.4.7.1. SystemVerilog Direct Programming Interface (DPI)

In some verification applications, core SystemVerilog language's offerings may not
be sufficient to perform certain tasks. To cope with it, SystemVerilog offers a
solution named as direct programming interface (DPI). DPI allows SystemVerilog to
interact with foreign programming languages, like C or MATLAB. The user can use
existing foreign language code after importing it with a special syntax, the import
"DPI" declarations, or export the SystemVerilog code to another supported language
[36].

Because it was not possible to perform half precision division in a small code piece
with the current SystemVerilog data types, DPI feature was used to call a created
MATLAB function.

5.4.7.2. MATLAB Predictor Module

UVM testbenches are able to interact with MATLAB [37]; mostly in the forms of
using MATLAB functions as DUT's (because MATLAB functions' ability to be
transformed into RTL (register-transfer level) library blocks.), and scoreboard
checker. MATLAB provides some mechanisms for interacting with UVM. These
mechanisms could be presented as following:

e Running in parallel with HDL simulators for computation.

e Supporting Verilog modules with MATLAB functions

e By using SystemVerilog DPl, MATLAB functions can be compiled into a
shared library to be used in SystemVerilog environment [38].

The predictor function is a quick recreation of the half precision division algorithm
used in the ALU divider. The inputs are sent from the SystemVerilog DPI as signed
integers, so the string based binary conversion functions presented in MATLAB are
used to convert incoming integers to half precision floating point system (MATLAB
does not include a built-in data type for half precision floating point). Evaluated
results then also will be sent to verification environment on DPI as signed integers as
well, hence the processed data needed to be re-converted into signed integers at the

end.

32

It should be noted that the MATLAB file to be used as DPI function must be written
in function declaration format. Files written in script format are not supported in DPI.

Required explanations about methods used in development of the predictor function

are present as comment lines on the code.

MATLAB code for the predictor can be seen at "float16div.m" file presented on the
disk.

The C file to be used as a connector between DPI and MATLAB is at Appendix 1.1.

SystemVerilog definitions of the MATLAB functions are included in a.svh file,

which is given in Appendix 1.2.

33

6. RUNNING THE UVM TESTBENCH WITH QUESTASIM

The last step of the project was to run the program using the QuestaSim tool and
observe the verification results. However, due to various complications during the
usage of the program, the simulation couldn't be performed and observed. It is aimed
to fix the errors occurred and perform the simulation until the presentation of the

project.

34

7. CONCLUSION

In this graduation project, the main goal was to create a 16-bit floating point ALU
design from scratch and perform a verification process, chosen as UVM, on the

created design; with the collaboration of three different BSc students.

The ALU design has been divided into three parts, and the division part is designed
in this project. The design has been performed in Verilog language with Xilinx ISE
tool. Afterwards, some basic simulations are generated in order to make a general
control on the circuit to see if it seemingly performs the operations as desired. Then,
each three parts are planned to be verified separately. In order to perform this, a
verification environment was built using UVM libraries with SystemVerilog
language. Each component for this verification environment has been created
individually and then all of them have been put on a top module accordingly, with
the design under test and test module on a top module; connected with an interface
component. The test module is set so as it will generate a series of random input
transactions to test the design under test. The results then tracked with their
corresponding input values and compared with the expected values, predicted using
an external programming language code, using the SystemVerilog's DPI feature. A

MATLAB code has been designed as a predictor in this case.

At the end of the project, the created design was moved to the QuestaSim
environment in order to perform the verification. However, the verification has not

been performed due to various errors and lack of configurations.

In conclusion, it seems that the UVM verification is an hard and long process to
learn, but it is though that once it could learnt, it would be easier to design different
verification environments for different digital circuits, due to the reusability and
convertibility of the UVM testbenches. It is also predicted that the importance of the
UVM will keep increasing greatly as the digital design evolves.

35

REFERENCES

[1] Shiva, S.G., 1998. Introduction to Logic Design (2nd Ed.), University of
Alabama in Huntsville Huntsville, Alabama.

[2] Accellera, 2011. Universal Verification Methodology (UVM) 1.1 User’s Guide

[3] Coktas G., 2014. Bir Sayisal Sistem Tasariminin Evrensel Dogrulama Metodu ile
Dogrulanmasi, BSC Thesis, |.T.U. Faculty of Electrical and Electronics
Engineering, istanbul.

[4] IEEE, 2006, IEEE Standart for Verilog Hardware Description Language,
10016-5997, New York.

[5] Xilinx, ISE Design Suite, http://www.xilinx.com/products/design-tools/ise-
design-suite.html

[6] Cadence Website, Demonstration on Advanced UVM Using Incisive Platform -
Part 2, [Reference Date: 10 March 2016],
http://www.cadence.com/alliances/languages/pages/uvm.aspx

[7] Mentor Graphics, Questa Verification Environment, [Reference Date: 13
March 2016], https://www.mentor.com/products/fv/questa/

[8] Wikipedia, Floating Point, [Reference Date: 10 March 2016],
https://en.wikipedia.org/wiki/Floating_point

[9] Muller et al., Handbook of Floating Point Arithmetic, Birkhauser Boston, Basel,
Berlin.

[10]Wikipedia, IEEE Floating Point, [Reference Date: 10 March 2016],
https://en.wikipedia.org/wiki/IEEE_floating_point

[11]Wikipedia, Half-Precision Floating-Point Format, [Reference Date: 10 March
2016], http://en.wikipedia.org/wiki/Half precision_floating-point_format

[12]Ball, S.R., 2002. Embedded Microprocessor Systems: Real World Design (3rd
Ed), Elsevier Sceince, USA

[13]Araujo, P., UVM Guide for Beginners, [Reference Date: 13 March 2016],
https://colorlesscube.com/uvm-guide-for-beginners/

[14]1IEEE, 2012, SystemVerilog 1800-2012 IEEE Standard for System Verilog -
Unified Hardware Design, Specification, and Verification Language

[15] Accellera, Accellera Solutions Website, http://www.accelerasolutions.com/

[16]Wikipedia, Open Verification Methodology, [Reference Date: 23 May 2016],
https://en.wikipedia.org/wiki/Open_Verification_Methodology

[17] Mentor Graphics, Verification Academy AVM Cookbook,
https://verificationacademy.com/cookbook/avm

[18] Synopsys, VMM Verification Methodology, [Reference Date: 23 May 2016],
https://www.synopsys.com/community/interoperability/pages/vmm.aspx

[19] Mentor Graphics, Verification Academy UVM Cookbook, Introduction,
[Reference Date: 29 March 2014],
https://verificationacademy.com/cookbook/uvm

[20] Synopsys, OpenVera Website, http://www.open-vera.com/

36

https://www.mentor.com/products/fv/questa/
http://en.wikipedia.org/wiki/Half_precision_floating-point_format
http://standards.ieee.org/getieee/1800/download/1800-2012.pdf
http://standards.ieee.org/getieee/1800/download/1800-2012.pdf

[21] Eclipse, Eclipse Website, https://eclipse.org/

[22] Wikipedia, Mentor Graphics, (2013). [Referene Date: 13 March 2016],
http://en.wikipedia.org/wiki/Mentor_Graphics[23] Aarthy M. and
Omkar D.R., 2014, ASIC Implementation of 32 and 64 bit Floating
Point ALU using Pipelining, International Journal of Computer
Applications, 94,0975 — 8887.

[24] Araujo, P., UVM Guide for Beginners - Defining the Verification Environment,
[Reference Date: 5 April 2016] https://colorlesscube.com/uvm-guide-for-
beginners/chapter-2-defining-the-verification-environment/

[25] Mentor Graphics, Verification Academy UVM Cookbook, Connections to
DUT Interfaces, [Reference Date: 2 April 2016],
https://verificationacademy.com/cookbook/uvm

[26] Spear, C., 2008, SystemVerilog for Verification (2nd Ed.), Springer, Marlboro
MA, USA.

[27]Mentor Graphics, Verification Academy UVM Cookbook, Phasing, [Reference
Date: 3 April 2016], https://verificationacademy.com/cookbook/uvm

[28] Singhal, M., Application of Virtual Interface and uvm_config_db, [Reference
Date: 5 April 2016], https://verificationacademy.com/sessions/uvm-
sequences-and-tests

[29] Krishna, G. and Maddipati, N., Easy Labs: UVM - Phase 3: Environment and
Testcase,
http://www.testbench.in/lUL_06_PHASE 3 ENVIRONMENT_N
_TESTCASE.html

[30] Mentor Graphics, Verification Academy UVM Cookbook, Agent, [Reference
Date: 8 April 2016], https://verificationacademy.com/cookbook/uvm

[31]Araujo, P., UVM Guide for Beginners - Monitor, [Reference Date: 5 April
2016] https://colorlesscube.com/uvm-guide-for-beginners/chapter-6-
monitor/

[32] Mentor Graphics, Verification Academy UVM Cookbook, Analysis
Components and Techniques, [Reference Date: 11 April 2016]
https://verificationacademy.com/cookbook/uvm

[33] Krishna, G. and Maddipati, N., Easy Labs: UVM - Phase 5: Sequencer and
Sequence,
https://www.testbench.inf/UL_08 PHASE_5 SEQUENCER_N_SEQUE
NCE.html

[34] Mentor Graphics, Verification Academy UVM Cookbook, Driver/Sequence
API, [Reference Date: 11 April 2016]
https://verificationacademy.com/cookbook/uvm

[35] Mentor Graphics, UVM Class Reference 1.1c, [Reference Date: 14 April 2016]
https://verificationacademy.com/verification-methodology-
reference/uvm/docs_1.1c/html/files/comps/uvm_subscriber-
svh.html#uvm_subscriber.write

[36] Aynsley, J., Doulos, SystemVerilog DPI Tutorial,
https://www.doulos.com/knowhow/sysverilog/tutorial/dpi/

[37] MathWorks, MATLAB, http://www.mathworks.com/

[38] Mentor Graphics, Verification Academy UvM Cookbook,
MATLAB/Integration, [Reference Date: 4 May 2016]
https://verificationacademy.com/cookbook/uvm

37

APPENDICES

APPENDIX A1

unpacker.v

APPENDIX A.2

sign_canculator.v

APPENDIX A.3

exponent_subtractor.v

38

APPENDIX A4

Name : divider_module.w
Description: Performs mantissa division

“timescale 1ns / 1ps

- module Mantissa_diwvider(
input [1@:@] Ma,
input [1@:@] MB,
input [4:8]expl,
input [4:8]exp2,
output [le:e]Q,
output [2:8]exception

El

wire [18:8]R[18:1];
wire [18:0]A[10:1];
wire [18:8]temp_Q;

// Division
Mantissa_divider celll® MDC1@({MA,ME,temp Q[1@],R[18],A[18]);

genwvar 1i;
generate
for(i=9;1i>8 ; 1i=1i-1)
begin: division
Mantissa_divider_cell MDCi(A[i+1],MB,R[i+1][1@:@],temp_Q[i],R[1i],A[1i]);
end
endgenerate

Mantissa_divider_cell® MDC@(A[1][1@],MB,R[1][18:8],temp_Q[8]);

!/ (expl==8 and MA==8) represents operand_a == @, thus the division result will be set to @
assign Q = (expl==8 && MA[9:0]==@) ? @ : temp Q;

// Determining status
assign exception = (exp2==0 && MB[D:8]==08) ? 4 :
(expl==8 &R MA[9:8]==8) ? B8 : 3 ;

endmodule

39

APPENDIX A.5

Mame : normalize module.v
Description: Normalizes the mantissa back to the form of 1.[mantiss]

“timescale 1ns / 1ps

—module normalize module(
input [4:8] e3d,
input [1@:@] mSd,
output [4:8] en,
output [18:8] mn,
output [2:8]exception

)i
/* if the M5B of the result mantissa is 1, no normalization required */
assign mn = (m5d[18]==1)? m5d

(m5d[9]==1) ? 2*m5d :
(m5d[8]==1) ? 4*m5d :

(m5d[7]==1) ? 8*m5d :
(msd[6]==1) ? 16¥%m5d :
(m5d[5]==1) ? 32*m5d :
(mSd[4]==1) ? 64*m5d :
(m5d[3]==1) ? 128*m5d :
(msd[2]==1) ? 256*m5d :
(m5d[1]==1) ? 512*m5d :
(mSd[@]==1) ? 1824*m5d : 11'bPeEO88GEEEE;
assign en = (m5d==@) ?e :
(m5d[18]==1)? e3d
(m5d[9]==1) ? e3d-1
(m5d[8]==1) ? e3d-2 :
(m5d[7]==1) ? e3d-3 :
(m5d[6]==1) ? e3d-4 :
(m5d[5]==1) ? e3d-5 :
(mSd[4]==1) ? e3d-6 :
(mSd[3]==1) ? e3d-7 :
(m5d[2]==1) ? e3d-8
(m5d[1]==1) ? e3d-9
(m5d[@]==1) ? e3d- 18 : e3d-11;
assign exception = (m5d[1@]==1) ? 3 :
d[9]==1) ? (((~e3d[4] & ~e3d[3] & ~e3d[2] & ~e3d[1] & ~e3d[@])==1) ? 2 : 3)
(m5d[8]==1) 2 (((~e3d[4] & ~e3d[3] & ~e3d[2] & ~e3d[1])==1) ? 2 : 3) :
(m5d[7]==1) ? (((~e3d[4] & ~e3d[3] & ~e3d[2] & (~e3d[1] | ~e3d[@]))==1) ? 2 : 3)
(msd[6]==1) ? (((~e3d[4] & ~e3d[3] & ~e3d[2])==1) ? 2 : 3) :
(m5d[5]==1) ? (((~e3d[4] & ~e3d[3] & { ~e3d[2] | (~e3d[1] & ~e3d[@])))==1) ? 2
(m5d[4]==1) ? (((~e3d[4] & ~e3d[3] & (~e3d[2] | ~e3d[1))==1) 2 2 : 3)
(m5d[3]==1) ? (((~e3d[4] & ~e3d[3] & (~e3d[2] | ~e3d[1] | ~e3d[@]))==1) ? 2 : 3}
(m5d[2]==1) ? (((~e3d[4] & ~e3d[3])==1) ? 2 : 3) :
(m5d[1]==1) ? (((~e3d[4] & (~e3d[3] | (~e3d[2] & ~e3d[1] & ~e3d[®])))== 1) ? 20
(mS5d[@]==1) ? (((~e3d[4] & (~e3d[3] | (~e3d[2] & ~e3d[1])))==1) ? 2 : 3) :

endmodule

40

APPENDIX A.6

Name : packer.v
Description: Combines the calculated sign, exponent and mantissa

“timescale 1ns / lps

—module packer(
input sed,
input [4:@]ecd,
input [18:8]mcd,
input [2:8]exception_exponent_sub,
input [2:@]exception_mantissa_divider,
input [2:8]excepticon_normalizer,
output [15:8]out,
output [2:8]exception

H

/* Combine the calculated sign,mantissa and exponent to form the result. Drop the implied bit from the
mantissa. */

assign out = (exception_mantissa_divider==4) ? {1'b1,5'b11111,16'b1111111111} : // Division by zero will result in NaN
(exception_exponent_sub==1) ? {sed,5'b1111@,18'b1111111111}: // Overflow will bound the result at 85584
(exception_exponent_sub==2) ? {sed,5'beeeea,1e’beassseeees}: // Underflow will round down the result to zero
(ecd==5"b11111) ? {sed,5'beoene,10' HeREEEREEER}: {sed,ecd,mcd[9:8]}; // Underflow will

// round down the result to zero
// Assign the computed result if none of the exceptions gcurr.

assign exception = (exception_mantissa_divider==4) ? 4 :
(exception_mantissa_divider==8) ? @ :
(exception_exponent_sub==

(ecd==5"b11111)
(exception_exponent_sub==2)
(exception_normalizer==2) ?

endmodule

41

APPENDIX A.7

Name : pipeline_test.v
Description: A testhench with a series of random stimulus, designed
to test pipeline structure.

“timescale 1ns / lps
- module pipeline_test;

/4 Inputs

reg [15:8] operand_a;
reg [15:@] operand_b;
reg clk;

reg rst;

reg enable;

// Outputs

wire [15:8] division_result;
wire [2:8] status;

wire wvalid;

/1 Integers

integer counter_finish;

reg [15:@]tx_op_a;
reg [15:8]tx_op b;

// Instantiate the Unit Under Test (UUT)

floating point division uut (

.operand_a(operand_a),
.operand_b(ocperand_b),
.division_result(division_result),
.status(status),

wvalid(valid),

«clk(clk),

rst(rst),

.enable({enable)

)i

parameter no_of_stim = 18; // Number of test stimulus

// Initial values
initial begin
clk = 1'b@;
rst = 1'b@;
enable = 1'b@;

counter_finish = @;

tx_op_a <= $random;
tx_op_b <= %random;
#5;
enable = 1'b1;
end

//Generates clock
initial begin

forever #28 clk = ~clk;
end

42

// Specified amount of test results will be generated in this time period, by means of the pipeline structure.

always{(posedge clk)
begin
counter_finish = counter_finish + 1;

if(counter_finish < no_of_stim + 2)
begin

operand_a <= tx_op_a;

operand_b <= tx_op_b;

tx_op_a <= %random;

tx_op_b <= %random;

end

else

begin

operand_a <= 16"hz;
operand_b <= 16"hz;
end

/7 Wait four more positive clock edges to allow DUT perform it's last operation
if(counter_finish == no_of_stim + 5) %finish;

end

endmodule

43

APPENDIX B.1

JF o
Mame : FP_ALU DIVIDER_tb top.sv
Description : Top testbench module - Contains DUT,interface and test components
__ *y
*include "FP_ALU DIVIDER.sv" // Import DUT

“include "FP_ALU_DIVIDER_if.sv" // Impert Interface
“include "FP_ALU_DIVIDER_package.svh” // Import all other components which are

J// required as submodules

= module FP_ALU DIVIDER tb top;

/f Import UVM Package
import uvm_pkg::¥;

/{ Import the FP_ALU_DIVIDER UVC Package
import FP_ALU DIVIDER package::*;

/7 Include the test library
“include “FP_ALU DIVIDER_test_lib.sv"

// DUT L/0 regs

reg [15:@] operand_a;

reg [15:@] operand_b;

reg [15:8] division_result;
reg [2:8] status;

reg valid;

reg clk;

reg rst;

reg enable;

// Interface instance to be connected with DUT
FP_ALU DIVIDER if dut_if();

f# Create the DUT, connect it with the intertace
FP_ALU_DIVIDER dut(
.operand_a(dut_if.operand_a),
.operand_b(dut_if.operand b},
.division_result{dut if.division_result),
.status(dut_if.status),
walid{dut_if.valid),
clk(dut_if.sig clock),
rst(dut_if.sig reset),
.enable(dut_if.enable)

/B

initial begin
uvm_config_db #({virtwal FP_ALU DIVIDER_if)::set(null, "uwwm_test teop", "wif", dut_if);
run_test();

end

initial begin
dut_if.sig reset <= 1'b1;
dut_if.sig_clock <= 1'b1;
#21 dut_if.sig_reset <= 1'b@;
end

// Clock Generator
always
#28 dut_if.sig_clock = ~dut_if.sig cleck;
initial
begin
$recordfile ("./test.trn");

$recordvars (“depth=8", FP_ALU_DIVIDER_tb_top);
end

endmodule

44

APPENDIX B.2

Name : FP_ALU DIVIDER_package.svh
Description: Package is where all the files that used in UWC (Universal Werificatin Component)
are imported

// Import UVM macros

“include "uvm_macros.svh”

//Import Matlab DPI
“include "matlab_dpi pkg.svh™

// Package Definition
- package FP_ALU_DIVIDER package;

[/ WM class library compiled in a package
import uwvm_pkg::*;

“include “"FP_ALU_DIVIDER_defines.sw"
“include "FP_ALU DIVIDER seq_item.sv”
“include "FP_ALU DIVIDER moniter.sw”
“include "FP_ALU_DIVIDER_driver.sv"
“include "FP_ALU DIVIDER agent.sv”
“include "FP_ALU DIVIDER fc_subscriber.sv”
“include "FP_ALU_DIVIDER_sb_subscriber.sv”

“include "FP_ALU DIVIDER seq_lib.sv”
“include "FP_ALU_DIVIDER_wc_env.sv"

endpackage : FP_ALU_DIVIDER package
// Description : This part declares the UVC seq_item.

typedef enum bit {FP_ALU DIVIDER EVEN, FP_ALU DIVIDER ODD } FP_ALU DIVIDER data type e;

45

APPENDIX C

A F .
Mame : FP_AU DIVIDER_if.sv
Description : Establishes connection between test environment and DUT

/f Define interface
“interface FP_ALU _DIVIDER_if ();

£ Import UVM macros and package
import uvm_pkg::¥;
“include “uvm_macros.svh"

/o Interface I/0 - DUT signals will be connected to these
logic sig_clock;
logic sig_reset;
logic enable;
logic valid;
logic [15:8]operand_a;
logic [15:@]operand_b;
logic [15:@]division_result;
logic [2:@]status;

/f Control flags
bit has_checks = 1;
bit has_coverage = 1;

/i SWA default clocking

wire uvm_assert_clk = sig clock && has_checks;
default clocking master_clk @(negedge uvm_assert_clk);
endclocking

S/ SVA Default reset
default disable iff (sig_reset);

J// Data must not be X or Z during Data Phase (when valid is raised)
assertValidAndData: assert property (

(%rose(valid) |=» !$isunknown(division_result))}

else
“uvm_error("ERR_DATA XZ", "Data went to X or Z during Data Phase")

endinterface : FP_ALU DIVIDER if

46

APPENDIX D.1

ll,n'* ___ £
Mame : FP_ALU DIVIDER_test_lib.sw
Description : This file implements two kinds of test in the testhench.
A test file verifies one or more cases in the test plan.
__ *)
“include "FP_ALU _DIVIDER_top_enwv.sv"
s class FP_ALU_DIVIDER_base_test extends uwvm_test;
“uvm_component_utils(FP_ALU DIVIDER base_test)
FP_ALU DIVIDER_top_env top_env@;
uvm_table_printer printer;
= function new(string name = "FP_ALU DIVIDER_base_test", uvm_component parent);

super.new(name,parent);
printer = new();
endfunction : new

£fUWM build() phase --------mm e
= wirtwal function woid build phase(uwm_phase phase);
super.build_phase(phase);
/! Enable transaction recording for everything
set_config_int("*", “"recording_detail"”, UWM_FULL);
f/f Create the testhench
top_env® = FP_ALU DIVIDER top_env::type_id::create("top_enve", this);
endfunction

/WM start_of_simulation() phase
= wirtwal function void start of simulation phase(uvm phase phase);
© super.sTart_oT_sS1mMUlaTlon_phnase|pnase);
printer.knobs.depth = 5;
this.print(printer);
endfunction

endclass : FP_ALU _DIVIDER_base_ test

‘class FP_ALU DIVIDER first_test extends FP_ALU DIVIDER_base test;
“wuvm_component wtils(FP_ALU DIVIDER first test)

function new(string name = "FP_ALU DIVIDER first test™, uwvm_component parent);
super.new(name,parent) ;
endfunction

J/ WM build() phase
virtual function void build _phase(uwvm_phase phase);
int wnsigned itr;

super.build phase(phase);
endfunction
extern virtual task run_phase(uvm phase phase);
endclass

47

“task FP_ALU_DIVIDER_first_test::run_phase(uwvm_phase phase);

FP_ALU DIVIDER_illegal transmit_seq seq;

“wwvm_info(get_type_name(),"In build() function of FP_ALU_DIVIDER_first_test class"™, UVM_MEDIUM)
seq = FP_ALU DIVIDER illegal_ transmit_seq::type_id::create("seq”);

Iy

égsert(seq.randomize());

phase.raise_objection(this, "Starting the sequence.™);
I

seq.start (top_env@.FP_ALU DIVIDER.agent_inst.sequencer);

id

pﬁase.drop_objection(this* "Finishing the sequence.”);

endtask : run_phase

48

APPENDIX D.2

JF e e e e
Mame : FP_ALU DIVIDER_top_enwv.sv
Description : Models the top layer of the environment component

// Derive top environment from umv_env class
- class FP_ALU_DIVIDER_top_env extends uwm_env;

/{ Provide implementations of virtual methods such as get_type_name and create
“uvm_component_wtils(FP_ALU DIVIDER top_env)

/{ FP_ALU DIVIDER environment
FP_ALU DIVIDER vc_env FP_ALU DIVIDER;

/{ Constructor - required syntax for UVM automation and utilities
= function new (string name, uvm_component parent);
super.new(name, parent);
endfunction

/f Additicnal class methods
/UM build() phase
= function void build phase(uvm_phase phase);
super.build_phase(phase);

// set vif property for child elements
uvm_config_db#(virtual FP_ALU_DIVIDER_if)::set(this,”*","vif",FP_ALU_DIVIDER_tb_top.dut_if);
FP_ALU_DIVIDER = FP_ALU_DIVIDER wc_env::type_id::create("FP_ALU_DIVIDER", this);

endfunction

// UM start_of_simulation() phase
= function wvoid start_of_simulation_phase(uwm_phase phase);
super.start of simulation phase(phase);

uvm_test_done.set_drain_time(this, 1eea);
endfunction
endclass

49

APPENDIX D.3

FF o
Name : FP_ALU DIVIDER_wc_enw.sw
Description : Models the werification component layer of the environment

[/ Derive WC environment from umv_env class
-~ class FP_ALU DIVIDER_vc_env extends uvm_env;

// virtual Interface wariable
protected virtual interface FP_ALU DIVIDER_if wif;

// The following two bits are used to control whether checks and coverage are
// done both in the bus monitor class and the interface.

bit checks_enable = 1;

bit coverage_enable = 1;

// Components of the environment

FP_ALU DIVIDER_agent agent_inst;
FP_ALU DIVIDER fc_subscriber fc_sub;
FP_ALU DIVIDER scoreboard scoreboard;

/* Call macros to provide attributes for environment. uwm_component_utils_begin
macre should be updated to get required utilities. */
“wvm_component_utils_begin(FP_ALU DIVIDER wc_env)
“wvm_field int({checks_enable, UWVM_DEFAULT)
“uvm_field int(coverage_enable, UVM_DEFAULT)
“uvm_component_utils end

// Constructor - required syntax for UVM automation and utilities
= function new(string name, uvm_component parent);
super.new(name, parent);
endfunction : new

// Additional class methods

extern virtual function void build_phase(uvm_phase phase);
extern virtual function wvoid connect_phase(uvm_phase phase);
extern protected task update_vif _enables();

extern virtual task run_phase(uwvm_phase phase};

endclass : FP_ALU DIVIDER_wc_env

/70w build() phase
function void FP_ALU_DIVIDER_vc_env::build phase(uvm_phase phase);
super.build();
agent_inst = FP_ALU_DIVIDER_ agent::type_id::create("agent_inst", this);
fc_sub = FP_ALU DIVIDER_fc_subscriber::type_id::create(.name("fc_sub™), .parent(this));
scoreboard = FP_ALU_DIVIDER_scoreboard::type_id::create(.name("scoreboard™), .parent(this));

if(luwvm_config db#(virtual FP_ALU_DIVIDER if)::get(this,”","vif",vif))
Tuwvm_error("NOVIF","virtual if not configured”);
endfunction

/f UMM connect() phase
function wvoid FP_ALU_DIVIDER_wc_env::connect_phase(uvm_phase phase);
super.connect();
agent_inst.FP_ALU_DIVIDER_ap.connect(fc_sub.analysis_export);
agent_inst.FP_ALU_DIVIDER_ap.connect(scoreboard.FP_ALU_DIVIDER_analysis_export);
endfunction

e e
// TASK -» update_vif_enables() -»> Function to assign the checks and coverage bits

f) mm e e oo e
task FP_ALU DIVIDER wc_enwv::update_vif_enables();

50

// Make assignments at time zero based upon fi
vif.has_checks <= checks_enable;
vif.has_coverage <= coverage_enable;
forever begin
/{ Make assignments whenever enables change after time zero
@{checks_enable || coverage_enable);
vif.has_checks <= checks_enable;
vif.has_coverage <= coverage_enable;
end
endtask : update_wif_enables

/4 WM run() phase
task FP_ALU DIVIDER wc_env::run_phase(uwvm_phase phase);
super.run_phase(phase);
fork
update_vif enables();
join_none
endtask

51

APPENDIX E

Name : FP_ALU DIVIDER agent.swv
Description: Agent contains monitor,sequencer and driver components and implements

connections between aformentioned modules

// Derive an agent from uwm_agent class
- class FP_ALU DIVIDER_agent extends uvm_agent;

FP_ALU DIVIDER monitor monitor;

FP_ALU_DIVIDER_driver driver;

/* Derive and define a sequencer from uvm_sequencer class that uses seq_item,
called FP_ALU DIVIDER_sequencer, then create an instance */

typedef uwvm_sequencer #({FP_ALU DIVIDER_seq_item) FP_ALU_DIVIDER_ sequencer;

FP_ALU DIVIDER_sequencer sequencer;

// Creating analysis port
uvm_analysis_port #(FP_ALU DIVIDER_seq_item) FP_ALU DIVIDER_ ap;

/* Call macros to provide attributes for agent. uwvm_component_utils begin macro
should be updated to get required utilities. */
“uvm_component_utils_begin(FP_ALU DIVIDER_agent)
“uvm_field enum(uwvm_active passive enum, is_active, UWVM _DEFAULT)
“uvm_component_utils_end

// Constructor - required syntax for UVM automation and utilities
= function new (string name, uvm_component parent);
super.new(name, parent);
FP_ALU DIVIDER ap = new("FP_ALU DIVIDER_ ap”,this);
endfunction : new

J/ UMM build() phase
function void build_phase(uvm_phase phase);
super.build_phase(phase);
monitor = FP_ALU_DIVIDER monitor::type_id::create("monitor”, this);
if{is_active == UMM_ACTIVE) begin
sequencer = FP_ALU_DIVIDER_sequencer::type_id::create("sequencer”, this);
driver = FP_ALU_DIVIDER_driver::type_id::create("driver”, this);
end
endfunction

J// UMM connect() phase
function void connect_phase(uwvm_phase phase);
super.connect_phase(phase);
monitor.item collected_port.connect(FP_ALU DIVIDER_ap); //connect monitor to agent via analysis port
if{is_active == UMM_ACTIVE) begin
// Binds the driver to the sequencer using consumer-producer interface
driver.seq_item_port.connect(sequencer.seq_item_export);
end
endfunction

endclass : FP_ALU_DIVIDER_agent

52

APPENDIX F

.I'J* ___ *
Mame : FP_ALU_DIVIDER monitor.swv
Description : This file implements the monitor. Monitors

the activity of its interface bus.

// Derive monitor from uvm_monitor
-~ class FP_ALU DIVIDER monitor extends uwvm _monitor;

// virtual Interface for monitoring DUT signals
protected virtual interface FP_ALU DIVIDER_if wif;

int num_col; // To hold collected seq_item count

// The following two bits are used to control whether checks and coverage are
// done in the monitor

bit checks enable = 1;

bit coverage_enable = 1;

/4 This TLM port is used to connect the monitor to the scoreboard
uvm_analysis_port #(FP_ALU DIVIDER seq_item) item_collected port;

// Currently monitored seq_item
protected FP_ALU DIVIDER seq_item seq_item;

// Covergroup for seq_item

covergroup seq_item_cg;
option.per_instance = 1;

endgroup : seq_item cg

// Provide UVM automation and utility methods
“uvm_component_utils _begin(FP_ALU_DIVIDER monitor)
“uvm_field int{checks_enable, UVM_DEFAULT)
“uvm_field int{coverage_enable, UVM_DEFAULT)
“uvm_component_utils_end

/! Constructor - required syntax for UMM automation and utilities
function new (string name, uvm_component parent);
super.new(name, parent);
// Create the covergroup only if coverage is enabled
void' (get_config_int("coverage_enable”, coverage_enable));
if (coverage_enable) begin
seq_item_cg = new();
seq_item_cg.set_inst_name("seq_item_cg");
end
// Create the TLM port
item_collected _port = new("item_ccllected port", this);
endfunction : new

// Additicnal class methods

extern virtual task run();

extern virtual protected task collect_seq_item();

extern virtual protected function woid perform_checks();
extern virtual protected function wvoid perform_coverage();
extern virtual function void report_phase{uwvm_phase phase);

A/ WM build() phase

virtual function wvoid build_phase{uwm_phase phase);
super.build_phase(phase);

53

if{!uvm_config_db#(virtual FP_ALU _DIVIDER_if)::get(this,"","vif" ,vif})
“uwvm_error(get_type_name(),"virtual if not configured™);

endfunction
endclass : FP_ALU_DIVIDER monitor

£ WM run() phase
task FP_ALU DIVIDER monitor::run();
fork
collect_seq_item();
join_none
endtask : run

task FP_ALU _DIVIDER monitor::collect _seq_item();
seq_item = FP_ALU_DIVIDER_seq_item::type_id::create("seq_item", this);
forever begin
@(posedge vif.sig_clock iff vif.walid === 1);
/f Begin transaction recording
void' (begin_tr(seq_item, "FP_ALU_DIVIDER Monitor™));

seq_item.cperand_a = vif.operand_a;
seq_item.operand_b = vif.operand_b;
seq_item.division result = vif.division result;
seq_item.status = vif.status;

@(posedge vif.sig clock iff vif.valid === 8);
// End transaction recording
end tr(seq_item);
Tuvm_info(get_type_name(),
$sformatf("seq_item collected :\n¥s",
seq_item.sprint()), UWM_HIGH)
if (checks_enable)
perform_checks();
if (coverage_enable)
perform_coverage();
// Send seq_item to scoreboard via TLM write()
item_collected port.write(seq_item);
num_col++;
end
endtask : collect_seq_item

// perform_seq_adder_seq_item_checks

function void FP_ALU DIVIDER moniteor::perform checks();
// Add checks here

endfunction : perform_checks

// Triggers coverage events

function void FP_ALU_DIVIDER_monitor::perform_coverage();
seq_item cg.sample();

endfunction : perform_coverage

[/ WM report() phase
function void FP_ALU DIVIDER_monitor::report_phase(uvm_phase phase);
“wvm_info(get type name(),
$sformatf("\nReport: FP_ALU DIVIDER monitor collected ¥@d seq_items™, num_col),
UVM_LOW)
endfunction

54

APPENDIX G.1

FF
Mame: FP_ALU_DIVIDER_ seq_item.swv
Description i Specifies the sequence item. Declare censtraints
depending the verification strategy
___ *
-~ class FP_ALU DIVIDER_seq_item extends uvm_sequence_item;
rand bit [15:8] operand_a;
rand bit [15:8] operand_b;
bit [15:@] division_result;
bit [2:8] status;
bit [1:8] output timing; // @@ --> LEGAL OUTPUT TIMING, @1 --> MISSING OUTPUT, 18 -->

f// EARLY_OUTPUT_TIMING, 11 --»> LATE_OUTPUT_TIMING

“uwvm_object_utils_begin(FP_ALU_DIVIDER_seq_item)
“wvm_field int(operand_a, UVM_DEFAULT)
“uwvm_field_int(operand_b, UVM_DEFAULT)
“wwm_field int(division_result, UVM_DEFAULT)
“uwvm_field_int(status, UVM_DEFAULT)

“uvm_object_utils end

// Constraints

/*

constraint const_a {a >= @; a < 18;}

constraint const_b {b >= 3; b < 135}

*/

// Constructor - required syntax for UVM automation and utilities
= function new (string name = "FP_ALU_DIVIDER_ seq_item");

super.new(name);

endfunction : new

endclass : FP_ALU DIVIDER seq_item

55

APPENDIX G.2

FF .
Name: FP_ALU_DIVIDER_seq_lib.swv
Descriptien : This file implements several sequence kinds

JrEFEEEER LR RL R R E% Jaga] transmit sequence FHEFFEEEERELSREEEESREsELELELEL)

/{ Extend sequence from uvm_sequence class - using seq_item
- class FP_ALU DIVIDER legal transmit_seq extends uwvm_sequence #(FP_ALU DIVIDER seq_item);

Tuvm_object_utils(FP_ALU_DIVIDER_legal_transmit_seq)

// Constructor
= function new(string name="FP_ALU DIVIDER_legal transmit_seq ")};
super.new(name);
endfunction

// Sequence body definiticn
= wirtwal task body();
begin
“uvm_info(get type_name(), "Executing...”, UVM_MEDIUM)
Twvm_do_with(req, { a <= 5; b »= 4;})
end
endtask

endclass

f********************** illegal transmit SEqL.IEI"ICE ******************************‘H

- class FP_ALU DIVIDER_ illegal transmit_seq extends uvm_sequence #(FP_ALU DIVIDER seq_item);
Tuwm_object_utils(FP_ALU_DIVIDER_illegal transmit_seq)

// sequence that will be called in this sequence
FP_ALU_DIVIDER_legal transmit_seq FP_ALU DIVIDER_seq;

// Parameter for this sequence

// Constructor

function new(string name="FP_ALU_DIVIDER_illegal_transmit_seq");
super.new(name);

endfunction

// sequence body definition
virtual task body();
uwm_component parent = get_sequencer();
begin
for(int i = @; i ¢ 58; i++) begin
“wwm_do(FP_ALU_DIVIDER_seq)
end
end
endtask

endclass

56

APPENDIX G.3

A
Wame: FP_ALU_DIVIDER driver.sv
Description : This files implements the driver functionality.

- class FP_ALU DIVIDER_driver extends uvm_driver #{FP_ALU_DIVIDER_seq_item);

JEFEERERRRRRIERRRRRRRIRRE IR KRR KRR IR R R R R R IR IR IR LRI LR AR LR RT TS

IVB-NOTE : REQUIRED : DRIVER functionality : DRIVER

Modify the following methods te match your protocol:
o drive_seq_item() - Handshake and seq_item driving process
o reset_signals() - signal reset values
Note that if you change/add signals to the physical interface, you must

alse change these metheds.
e e Rt L e e L]

f/ The virtual interface used to drive and view HDL signals.
protected virtual interface FP_ALU_DIVIDER if vif;

FP_ALU_DIVIDER_ seq_item seq_item;

// Count seq_items sent
int num_sent;

// Provide implmentations of virtual methods such as get type_name and create
“uvm_component_wutils(FP_ALU_DIVIDER driwver)

// Constructor - required syntax for UVM automation and utilities
= function new (string name, uvm_component parent);
super.new(name, parent);

endfunction : new

// Additicnal class methods

extern virtual task run_phase{uvm_phase phase);

extern virtual protected task get_and_drive();

extern virtual protected task reset signals();

extern virtual protected task drive_seq_item();

extern virtual function void report_phase(uvm_phase phase);

/f WM build() phase
virtual function void build_phase({uwvm_phase phase);
super.build _phase(phase);

if(!uvm_config db#(virtwal FP_ALU DIVIDER if)::get(this,™","wvif",vif))
Tuvm_error(get_type_name(),"virtual if not configured™);

endfunction
endclass : FP_ALU DIVIDER driver

/f WM run() phase
task FP_ALU_DIVIDER driver::run_phase(uwvm_phase phase);
super.run_phase(phase);

fork
get_and_drive();
reset_signals();

join

endtask

57

e A A l—_—-e-a—-—-e ek i i i

J{ TASK ->» get_and_drive() -»Gets seq_items from the sequencer and passes them to the driwver.

task FP_ALU_DIVIDER_driver::get_and_drive();

“uvm_info(get_type_name(), "Reset not rised”, UVM_MEDIUM)
@(negedge vif.sig reset);
“uvm_info(get_type_name(), "Reset riseed”, UVM_MEDIUM)
forever begin
@(posedge vif.sig cleck iff vif.enable === @);
“uvm_info(get type name(), "FP_ALU DIVIDER_driver inside get and_drive task 1", UVM_MEDIUM)
// Get new item from the sequencer
seq_item_pert.get_next_item(seq_item);
“uvm_info(get type name(), "FP_ALU DIVIDER_driver inside get and_drive task 2", UVM_MEDIUM)
// Drive the item
drive_seq_item();
“wvm_info(get_type_name(), "FP_ALU DIVIDER_ driver inside get and_drive task 3", UVM_MEDIUM)
// Communicate item done to the sequencer
seq_item_port.item_done();
“uvm_info(get type_name(), “"FP_ALU DIVIDER driver inside get and_drive task 4", UVM_MEDIUM)

end
endtask : get_and_drive
F bttt bl bbb
/f TASK -» reset_signals() -»Reset all signals.
G sl U LBPL e

task FP_ALU DIVIDER_ driver::reset_signals();
forever begin
@(posedge vif.sig reset);
“uvm_info(get_type_name(), "Reset cbserved”, UVM _MEDIUM)

vif.operand_a <= "hz;
vif.operand_b <= 'hz;
vif.enable <= "h@;

end

endtask : reset_signals

o
/f TASK -» drive_seq_item() -»Gets a seq_item and drive it into the DUT
F mmmm e
task FP_ALU_DIVIDER_driver::drive_seq_item();
“uvm_info(get_type_name(), "Inside drive_seq_iteml™, UWM_MEDIUM)
vif.enable <= 1'bl;
vif.operand_a <= seq_item.ocperand_a;
vif.operand_b <= seq_item.cperand_b;
@(posedge vif.sig clock iff vif.enable === 1);
“uvm_info(get_type_name(), "Inside drive_seq_item2", UVM_MEDIUM)
#16@ vif.enable <= 1'b@;
vif.operand_a<= "hz;
vif.operand_b<= "hz;
@(posedge vif.sig clock);

num_sent++;
“wm_info(get_type_name(), $sformatf("Item %Bd Sent
UVM_HIGH)

endtask : drive_seq_item

» hum_sent),

J/ WM report() phase
function wvoid FP_ALU DIVIDER driver::report_phase(uvm_phase phase);
“wvm_info(get_type_name(},
$sformatf({"\nReport: FP_ALU DIVIDER driver sent %Bd seq_items",
num_sent), UWVM_LOW)
stop_matlab();
endfunction

58

APPENDIX H.1

.
Name : FP_ALU_DIVIDER_fc_subscriber.sv
Description : functional coverage subscriber

// Derive from uvm_subscriber class

class FP_ALU_DIVIDER_ fc_subscriber extends uvm_subscriber #(FP_ALU DIVIDER seq_item);

/f Include utility macros
“uvm_component_wutils(FP_ALU DIVIDER_ fc_subscriber)

FP_ALU DIVIDER_seq_item pkt;
int pkt_cnt;

covergroup covlj

operand_a_cov: coverpoint pkt.operand_a {bins operand_a[&]

= {[@:15]};} //coverage register

operand_b_cov: coverpoint pkt.operand_b {bins operand_b[8] = {[®:15]};} //coverage register

cross operand_a_cov, operand_b_cov;
endgroup : covl

function new(string name , uvm_component parent);
super.new(name , parent);

covl = new();

endfunction

function void write(FP_ALU DIVIDER_seq_item t);
real current_FP_ALU DIVIDER fc_subscriber;

pkt = t;
pkt_cnt++;
covl.sample();

// cause sampling of covergroup
current_FP_ALU DIVIDER fc_subscriber = $get coverage();

uvm_report_info("FP_ALU_DIVIDER_FC_SUBSCRIBER",%psprintf("¥8d FP_ALU DIVIDER seq_items sampled,
FP_ALU_DIVIDER fc_subscriber = ¥f¥%¥ ", pkt_cnt,current_FP_ALU DIVIDER_fc_subscriber));

endfunction
endclass:FP_ALU_DIVIDER_fc_subscriber

59

APPENDIX H.2

F ¥ .
Mame : FP_ALU DIVIDER sb_subscriber.sv
Description : Compares predicted results with actual DUT results

typedef class FP_ALU DIVIDER_scoreboard;

~ class FP_ALU DIVIDER_sb_subscriber extends uwm_subscriber #{FP_ALU DIVIDER seq_item);
“uvm_component_wtils(FP_ALU_DIVIDER_sb_subscriber)

= function new(string name , uwvm_component parent);
super.new(name , parent);
endfunction:new

= function wvoid write(FP_ALU_DIVIDER_seq_item t);

FP_ALU_DIVIDER_scereboard FP_ALU_DIVIDER_sb;
‘,-'*********************************‘H

FP_ALU_DIVIDER_ seq_item m_out_item;
string msg, cmd, cmd_rspl,cmd_rsp2;

m_out_item = FP_ALU DIVIDER seq_item::type_id::create("m_out_item");

/it is the input sequence item (transaction). Process t and then
// write the new processed output to the m_output_ap.
m_out_item.do_copy(t);

$sformat(msg, "INPUT: A = ¥s, B = ¥s",t.operand_a.convert2string(), t.operand_b.convert2string());
“wvm_info(get_name(),msg, UVM_HIGH);

$sformat(cmd, “"result = floatlediv_r(%ed,%ed);", t.operand_a, t.operand_b);
“uvm info(get name(), cmd, UWVM HIGH);

// Call our MATLAB function with our transaction inputs
vold' (send_matlab_cmd(cmd));

// Readback the MATLAB buffer with our output
cmd_rspl = get_matlab_buffer();

“uvm_info(get_name(), $sformatf("MATLAE Buffer is %s", cmd_rspl), UVM_HIGH);
if (!%sscanf({cmd_rspl, "> %d", m_out_item.division_result)) begin
“uvm_warning(get_name(), "Errcr parsing MATLAB response™);

end

$sformat{cmd, "flg = fleatlédiv_s(%ed,¥ed);", t.operand_a, t.operand_b);
“uvm_info(get name(), cmd, UVM _HIGH);

// Call our MATLAB function with our transaction inputs
vold' (send_matlab_cmd({cmd));

// Readback the MATLAB buffer with our output
cmd_rsp2 = get matlab buffer();

“uvm_info(get_name(), $sformatf("MATLAE Buffer is %s", cmd_rsp2), UVM_HIGH);
if (!%sscanf{cmd_rsp2, ">> ¥d", m_out_item.status)) begin
“uvm_warning(get_name(), "Errcr parsing MATLAB response™);

end

m_output_ap.write(m_out_item);
.I'll***********************************Jf

60

$cast{ FP_ALU DIVIDER sb, m_parent);
FP_ALU DIVIDER sb.check FP_ALU DIVIDER checker(t);
endfunction: write

endclass:FP_ALU DIVIDER sb subscriber

~ class FP_ALU_DIVIDER scoreboard extends uwvm_scoreboard;
“uvm_component_utils(FP_ALU_DIVIDER_scoreboard)

uvm_analysis export#(FP_ALU DIVIDER seq_item) FP_ALU DIVIDER analysis export;
local FP_ALU DIVIDER sb subscriber FP_ALU DIVIDER sb sub;

= function nmew(string name, uwm_component parent);
super.new(name, parent);
endfunction: new

= function woid build_phase(uwm_phase phase);
super.build_phase(phase);

if (!start_matlab("matlab -nocsplash™)) begin
“uvm_fatal{get_name(), "Unable to start MATLAB");
end

void'({send matlab_cmd("addpath ./MATLAB;"));
m_output_ap = new("m_output_ap”, this);

FP_ALU_DIVIDER analysis_export = new(.name("FP_ALU_DIVIDER analysis_export"), .parent(this));
FP_ALU_DIVIDER_sh_sub = FP_ALU_DIVIDER_sb_subscriber::type_id::create(.name("FP_ALU_DIVIDER_sh_sub"), .parent(this));
endfunction: build_phase

function wvoid connect_phase(uvm_phase phase);

super.connect_phase(phase);

FP_ALU_DIVIDER analysis_export.connect(FP_ALU_DIVIDER_sb_sub.analysis_export);
endfunction: cennect_phase

J/TASK =» check_itugp_seq_adder_checker()
S o o e

virtual function void check_FP_ALU_DIVIDER_checker(FP_ALU_DIVIDER_seq_item FP_ALU DIVIDER_tx);
uvm_table_printer p = new;

shortint division_result_expected; //expected value of output
shortint division_result_actual; f/actual value of output
int status_expected; //expected value of output status
int status_actual; Jfactual value of output status

division_result_expected = m_out_item.division_result;
division_result_actual = FP_ALU_DIVIDER_tx.division_result;

status_expected = m_out_item.status;
status actual = FP_ALU DIVIDER tx.status;

//Comparator
if ((division_result_expected == division_result actual) &% (status_expected == status_actual)) begin
“wm_info("division_result_scoreboard”,
1 "s=atb.\n", FP_ALU_DIVIDER tx.sprint(p) }, UVM_LOW);
end
else begin
“uvm_error("division_result_scoreboard”,
{ "s/=a+b!\n", FP_ALU DIVIDER_tx.sprint(p) });
end

endfunction: check FP_ALU DIVIDER checker
endclass: FP_ALU_DIVIDER_scoreboard

61

APPENDIX 1.1

[y]

$include <stdlib.h>
$include <stdio.h>

$include <string.h>
$include "engine.h"

#$define BUFSIZE 256
Engine *ep:
mxArray *T = NUOLL, *result = NULL;

char buffer[BEUFSIZE+1]:

int start matlab (char *cmd)

{
if ('ep && !{ep = engOpenicmd))) {
fprintf (stderr, "“nCan't =start MATLAE engine'n"):
retarn 0;
}
engCutputBuffer (ep, buffer, BUFSIZE):;
retarn 1;
}

int send matlab cmd (char *cmd)

{
retorn engEvalString(ep, cmd):

char *get matlak buffer()

retorn buffer;

void stop matlab ()

engClose (ep) ;

62

[

APPENDIX 1.2

// Name : matlab_dpi_pkg.svh
//{ Package to define MATLAB DPI functions

“package matlab_

import "DPI-C"
import “"DPI-C"
import "DPI-C"
import "DPI-C"

endpackage

dpi_pkg;

function
function
function
function

int start matlab(string cmd);
int send matlab_cmd(string cmd};
string get matlab buffer();

void stop_matlab();

63

RESUME

Name - Surname: Yasin Firat Kula
Place and Date of Birth: Tekirdag, 1993
High school: Tekirdag Science High School 2007-2011

BSC: Istanbul Technical University, Electronics and Communications Engineering
2011-2016

64

