

İSTANBUL TECHNICAL UNIVERSITY

ELECTRICAL - ELECTRONICS ENGINEERING FACULTY

Design And Verification Of An 16-Bit Floating Point Alu, Using Universal

Verification Method

BSc Thesis by

Yasin Fırat Kula

040110020

Department: Electronics and Communication Engineering

Programme: Electronics and Communication Engineering

Supervisor: Assoc. Prof. Dr. Sıddıka Berna ÖRS YALÇIN

MAY 2016

ii

PREFACE

First of all, thanks to all of my respectable college teachers who pass on their great

knowledge throughout BSc program ,with a special thanks to my teacher and project

advisor Assoc. Prof. Dr. Sıddıka Berna Örs Yalçın for her invaluable information and

support in the course of the project.

Also, I would like to thank Güler ÇOKTAŞ for her help and guidance during the

process of the thesis.

Lastly, I present my eternal gratitude to my family, who've been always been with

me from the beginning to the present, and bringing me where I am now.

MAY 2016 Yasin Fırat KULA

iii

TABLE OF CONTENTS

LIST OF ABBREVATIONS..v

LIST OF TABLES...vi

LIST OF FIGURES..vii

ÖZET..viii

SUMMARY..ix

1. INTRODUCTION...1

2. BACKGROUND...3

2.1.Floating Point Numbers...3

2.1.1. General Information..3

2.1.2. IEEE-754 Half Precision Floating Point System..................................4

2.2.Floating Point ALU...4

2.3.Verification..5

2.4.Universal Verification Methodology (UVM)..6

3. DESING AND VERIFICATION TOOLS..7

3.1.Xilinx ISE Design Suite..7

3.2.SVEditor..8

3.3.QuestaSim..9

4. HARDWARE DESIGN..11

4.1.Overview..11

4.2.Floating Point Division Module...11

4.2.1. Top Module...11

4.2.2. Unpacker...14

4.2.3. Sign Calculator..14

4.2.4. Exponent Subtractor..15

4.2.5. Mantissa Divider...16

4.2.6. Normalizer..17

4.2.7. Packer..18

4.3.Behavioral Simulation..19

4.3.1. Basic Simulation...19

4.3.2. Pipeline Testing..20

iv

5. FLOATING POINT DIVISION MODULE VERIFICATION.....................22

5.1.General Structure...22

5.2.UVM Top Module...23

5.3.Interface...24

5.4.UVM Components..25

5.4.1. Test Module and Environment..25

5.4.2. Agent...26

5.4.3. Monitor...28

5.4.4. Sequencer and Sequences...29

5.4.5. Driver..30

5.4.6. Subscriber...31

5.4.7. Scoreboard..31

5.4.7.1.SystemVerilog Direct Programming Interface (DPI)...................32

5.4.7.2.MATLAB Predictor Module...32

6. RUNNING THE UVM TESTBENCH WITH QUESTASIM.........................34

7. CONCLUSION...35

REFERENCES..36

APPENDICES...39

RESUME..TB

v

LIST OF ABBREVIATONS

UVM : Universal Verification Methodology

ALU : Arithmetic Logic Unit

IVB : Incisive Verification Builder

IEEE : Institute of Electrical and Electronics Engineers

OVM : Open Verification Methodology

AVM : Advanced Verification Methodology

VMM : Verification Methodology Manual

HDL : Hardware Description Language

FPGA : Field Programmable Gate Array

IDE : Integrate Development Environment

SoC : System on Chip

ASIC : Application Specific Integrated Circuit

RTL : Register Transfer Level

DUT : Design Under Test

TLM : Transaction Level Modeling

DPI : Direct Programming Interface

vi

LIST OF TABLES

Table 2.1 : Available formats of IEEE-754 number system..3

Table 4.1 : List of bit codes for each exception in division module..........................12

Table 5.1 : List of port types in TLM..27

vii

LIST OF FIGURES

Figure 2.1 : Bit arrangement of "binary16" system...4

Figure 3.1 : A screenshot of HDL design environment of ISE7

Figure 3.2 : A simulation screen from ISE integrated ISIM simulator........................8

Figure 3.3 : An RTL schematic in display at ISE..8

Figure 3.4 : SVEditor design environment..9

Figure 3.5 : A screenshot from QuestaSim simulation environment.........................10

Figure 4.1 : Top layer RTL schematic of top module...13

Figure 4.2 : The circuit schematic of division module..13

Figure 4.3 : Top layer RTL schematic of unpacker...14

Figure 4.4 : RTL schematic of sign calculator...15

Figure 4.5 : Top layer RTL schematic of exponent subtractor..................................15

Figure 4.6 : Top layer RTL schematic of normalizer..18

Figure 4.7 : Top layer RTL schematic of packer...19

Figure 4.8 : Waveforms of division module's basic simulation.................................20

Figure 4.9 : Waveforms of division module's pipelining simulation.........................21

Figure 5.1 : A typical UVM top module..22

Figure 5.2 : Interaction of top module elements..23

Figure 5.3 : Interface's connection with other components.......................................24

Figure 5.4 : List of UVM phases...25

Figure 5.5 : A showcase of top layer elements..26

Figure 5.6 : An active agent...27

Figure 5.7 : A picture of TLM analysis ports and exports in analysis layer..............28

Figure 5.8 : Image of the links between sequencer, sequence and sequence item....29

Figure 5.9 : Sequencer-Driver-DUT transaction...30

viii

ON ALTI BİTLİK KAYAN NOKTA SİSTEMLİ ALU TASARIMI VE

DOĞRULANMASI

ÖZET

Sayısal sistem tasarımında devrenin boyutu ve karmaşıklığı arttıkça, orantılı olarak

sistemin doğru çalıştığının test edilmesi de daha zorlayıcı hale gelmektedir. Piyasada

bulunan çeşitli basit benzetim araçlarının olmasına rağmen; yüksek miktarda özel

hal, giriş kombinasyonları ve durumlar bu araçlar ile yapılan benzetimlerin

izlenmesini ve bulunan tasarım hataların giderilmesini oldukça zor kılmaktadır ve bu

da gözden kaçan hatalı durumlar veya istenmeyen davranışlar oluşması riskine sebep

vermektedir. Sistemdeki hatanın, ürün piyasaya sürüldükten sonra ortaya çıkması

durumu da sistemin hatalarını düzelterek yeniden tasarlamak oldukça masraflı

olacağından üretim açısından büyük sorun teşkil etmektedir.

Bu sorunlar nedeniyle sistemlerin doğrulanması için daha gelişmiş yöntemler

geliştirilmesi yoluna gidilmiştir; bu yöntemleri kullanabilecek yeterli bilgi düzeyine

sahip kişilere duyulan ihtiyaç da doğrulama mühendisliğini doğurmuştur. Evrensel

Doğrulama Metodu (UVM), bu geliştirilen doğrulama yöntemlerinden biridir ve

projede bu metot kullanılmıştır.

Bitirme projesi iki aşamadan oluşmaktadır: İlk olarak , bilgisayar ve mikroişlemci

sistemlerindeki yaygınlığı ve önemi nedeniyle, ardışık düzen mimarisine sahip ve

kayan nokta aritmetiği yapabilen bir aritmetik lojik birim (ALU) ortalama

karmaşıklık sunacak bir devre olarak tasarlanmıştır. İkinci aşamada, gerekli UVM

kodları yazılarak ALU tasarımının doğrulanması amaçlanmıştır. Projenin üç bitirme

öğrencisinin ortak çalışması olarak götürülmesi nedeniyle, bu aşamalar ALU'nun

toplama-çıkarma birimi, çarpma birimi ve bölme birimi olarak üçe bölünmüş; her

bölümün tasarım ve doğrulaması ayrı bir öğrenci tarafından yapılmıştır. Bu

çalışmada bölme modülü üzerinde çalışılmıştır.

Bu amaçlar doğrultusunda; tasarımının adımları detaylı bir şekilde anlatılacak ve

yapılan basit benzetiminin sonuçları gösterilecek; ardından kullanılan önemli UVM

birimleri hakkında bilgiler verilecek ve doğrulama işleminin aşamaları

gösterilecektir.

ix

DESIGN AND VERIFICATION OF AN 16-BIT FLOATING POINT ALU,

USING UNIVERSAL VERIFICATION METHOD

SUMMARY

In digital system design; as the size and complexity of the system increases,

verifying its validity becomes proportionally challenging. Even though many basic

simulation tools are produced by various corporations and individuals, the vast array

of special cases, behaviours and input combinations makes the simulation process

quite hard to track and restore design flaws, resulting in overlooked faulty cases in

design that leads to errors and unintended behaviour. When a fault detected on a

product system after its release, it becomes very costly for producers to re-release a

fixed version of the product.

The problems described paved a way for development of more sophisticated system

verification methods; and with the requirement of individuals with ample knowledge

of those verification systems, verification engineering is born. Universal Verification

Methodology (UVM), one of those verification methods that are developed, will be

used as the verification standard during this project.

The graduation project contains two phases: Firstly, a pipelined floating point

arithmetic logic unit (ALU) is designed as a system with moderate complexity, and

for its commonness and importance in many computer systems and microprocessors.

Secondly, required UVM codes are written and the ALU design is aimed to be

verified by using these codes and special design tools. Since the project is a

collaborated work, this phases are divided into three sections as addition-subtraction

module, multiplication module and division module; where each module's design and

verification have done by one of the collaborated graduate students. In this work,

division module's design and verification process was expressed.

For this aspect; steps of the ALU design will be given in detail, a basic simulation

will be applied to test its functionality; then the verification process will be shown

step by step, after the introduction of the important UVM components that is used.

1

1. INTRODUCTION

In electronics engineering, digital system designs steps forward with various aspects

like easier programmability and design process, high speed and lower cost; also,

digital systems offers more reliability and precision compared to analog systems in

many applications, even though analog systems are better and more suitable for

various practices, digital systems are replacing analog systems whenever possible

[1]. As the commonness of digital systems increases, their size and complexity

increases; and this brings system validation problem with it. To cope with this

problem, various verification methods are developed. The Universal Verification

Methodology (UVM) is one of these methodologies and it is used in verifying the

created system in this project[2]. UVM was chosen because of its high reliability,

user-friendly construct and its current position as a highly accepted standard in

verification process[3].

Generally, the process of creating a digital system consists of two steps; which are

designing and verifying. The goal of the project is to see each step of this process in

detail, by creating a digital system with moderate complexity and validating it

afterwards. First, an arithmetic logic unit (ALU) design was created according to its

specified requirements, then it was verified with the selected methodology.

The ALU is designed in Verilog HDL[4], using Xilinx ISE Design Suite[5] and later

simulated in various aspects, at the same designing tool, in order to basically check

its validity. The process of system design is expressed in detail at the fourth chapter

of thesis.

In the following phase, information on UVM was gathered. It is followed by creating

the necessary UVM codes. The code creation part was done by taking the UVM

codes of the previously completed graduation project on verification with UVM as

basis[2]. These codes were originally created by Incisive Verification Builder (IVB)

tool[6], and modified as per the requirements. Similarly in this project, these codes

created in the aforementioned graduation project are modified and appended, with

the goal of further contributing the verification study performed on our university.

Detailed information on verification is given in thesis Chapter 5.

2

Created UVM testbench had been ran on Mentor Graphics QuestaSim[7] tool. Steps

of running the UVM testbench is expressed at Chapter 6.

3

2. BACKGROUND

2.1. Floating Point Numbers

2.1.1. General Information

Floating point is a number representation system that approximates to a real number,

escalated by a balance between range and precision. Numbers are represented

approximate to a fixed-point significand number, then scaled using an exponent with

a fixed base number [8]. By these definitions, a floating point number can be exactly

represented as follows:

𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 𝑥 𝐵𝑎𝑠𝑒𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑁𝑢𝑚𝑏𝑒𝑟 (2.1)

In digital world, different techniques for representing floating point numbers were

defined. Currently, the most widely used floating point representation is the Institute

of Electrical and Electronics Engineers' (IEEE) IEEE-754 floating point format [9].

IEEE-754 format offers binary and decimal based floating point formats in different

precisions, which could be seen from Table 2.1. These representation named after

their number base and their corresponding bit lenght that used to represent the

number. More bit number means larger approximation to the actual real number. In

the ALU design, "binary16" representation was chosen for smaller circuit size.

Table 2.1: Available formats of IEEE-754 number system [10]

4

2.1.2. IEEE-754 Half Precision Floating Point System

An IEEE 754 format floating point number consists of three parts.

 Sign Bit: This is the most significant bit for all representation types in IEEE

754. High value of a sign bit represents negative sign, whereas low value of

the sign bit represents positive sign.

 Exponent Bits: Exponent bits represents the power of the base number.

During the calculation, a bias with the amount of ;

 𝐵𝑎𝑠𝑒𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡 𝑏𝑖𝑡𝑠−1 − 1 (2.2)

BaseNumber of exponent bits- 1 - 1

added to the exponent value.

 Mantissa (Fraction) Bits: Mantissa bits represents the significand, in other

words represents the precision of the number. It is the remaining bits from the

sign and exponent, in all expressions. Mantissa bits assumed to have an extra

leading bit as "1" for calculation purposes.

 Below is the bit arrangement of "binary16" half precision system.

Figure 2.1 : Bit arrangement of "binary16" system[11]

By those definitions, decimal expression of a half precision floating number could be

given as follows:

−1Sign𝑥 2𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡−15𝑥 1. 𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎 = 𝑁𝑢𝑚𝑏𝑒𝑟 (2.3)

Using this formula; it is found that the largest absolute value representable is 65504

= (-1)sign * 2(30-15) * 1.1111111111, and the smallest absolute value representable is

6,103515625e-5 = (-1)sign * 2(0-15) * 1.0000000001. Exponent value of 31 represents

infinity cases.

2.2. Floating Point ALU

The arithmetic logic unit is a digital circuit that can perform arithmetic and logic

operations for a processor system. Floating point ALU, also known as floating-point

5

unit, does these mathematical operations for floating point numbers, which its system

is chosen depending on application. It can either be in a system as an integrated

processor, or as an independent co-processor. Since applications like scientific

calculation and signal processing requires operation capability on floating point

numbers with good precision, a floating-point unit has quickly become a corner-

stone component in current computer systems and digital signal processors.

During the project, a 16-bit floating point ALU using the IEEE 754 half precision

system is designed. The unit kept simple with only containing the four basic

mathematical operations.

Some processors contains an implementation named pipeline, in order to reduce the

time consumed on tasks requiring high computing time (clock cycles)[12]. In

pipeline, instructions are overlapped on the processors, before waiting for an

instruction to be completed. The structure usually contains a handful of stages, each

performing a specific task and are separated from each other with memory units. For

example, an instruction that requires three clock cycles to complete could be

overlapped consequently in a pipelined implementation; after four clock cycles, the

second instruction (overlapped instruction) will produce its result, due to being

computed in parallel lower stages of the design. In this manner, the instruction clock

cycle is not reduced, rather its throughput time of consequent instructions is

decreased.

During the implementation of ALU in this project, it is aimed to implement a

pipelined design.

2.3. Verification

Verification is the process of validating a system's operation, by checking if it is

working as planned. In digital designs, when the first time the verification process is

introduced, designers tend to perform the verification step by checking the

corresponding waveforms of a simulation or checking the outputs manually.

However; as the size and complexity of the systems are increased, new

methodologies are needed, since for the large systems even simply observing the

waveform becomes inextricable [13].

In modern verification; certain languages and methodologies are used to validate the

system, like SystemVerilog [14] and UVM, with support of object oriented

6

programming. The verification steps consist of creating suitable test codes and

running the tests. Usually verification step is performed in parallel with design

process. A verification engineer needs to have a good background knowledge on

design to be tested, he/she needs to create suitable test that will cover specific and

boundary values of the design; while also aiming to cover entire code to minimize

any unexpected behaviour, and allow to designers fix them if any of these behaviour

occurs.

2.4. Universal Verification Methodology (UVM)

The Universal Verification Methodology is a standard founded by Accellera [15]. It

is firmly established on the existing OVM (Open Verification Methodology) [16]

base code In this aspect the methodology is also a hybrid of various known

verification methodologies such as Mentor Graphics' AVM (Advanced Verification

Methodology) [17] and Synopsys' VMM (Verification Methodology Manual)[18]

along with several new technologies[19]. UVM is aimed to be the standard in

verification methodologies.

As stated in Section 2.3., first times of verification process was exercised with

waveform simulations; and later evaluated to languages like Vera [20] and

SystemVerilog, then followed by OVM based methodologies. Following the

tradition, the UVM also offers the SystemVerilog based Base Class Libraries in order

to make the process more systematic for developers. These libraries offer standard

construct for many components that are used in UVM testbenches. For the desire of

automating and reusing the process, these template libraries become quite handy for

users as well. This way, a full testbench created could be used again for a different

application with just a few modifications. The reusable and standardized construct

hence saves a verification engineer from being constrained by the design tool chosen

for the verification process; which was mostly the case before UVM.

7

3. DESIGN AND VERIFICATION TOOLS

3.1. Xilinx ISE Design Suite

ISE (Integrated Synthesis Environment) Design Suite [5] is a tool produced by

Xilinx, for developing, compiling, analysing and synthesising HDL (Hardware

Description Language) designs (supporting Verilog language). It features a wide

scale of options for design implementation like timing analysis and power analysis;

is able to show RTL and technology diagrams of created designs, also letting the

developer to load and configure the HDL design into supported device. It should be

noted that the software behind ISE is strictly coupled to the company's own produts'

architectures and cannot be used with products from different producers.

ISE Design Suite also contains integrated sub-tools; which are used for tasks like

logic simulation and device configuring.

This tool was used as a design environment and simulation tool during the timespan

of the project. Verilog codes for floating point ALU and basic testbenches for its

simulation were created using this tool.

Figure 3.1: A screenshot of HDL design environment of ISE

8

Figure 3.2: A simulation screen from ISE integrated ISIM simulator

Figure 3.3: An RTL schematic in display at ISE

3.2. SVEditor

SVEditor is an Eclipse-based IDE (Integrated Development Environment) [21]

supporting Verilog and SystemVerilog languages. It offers a colorized editor with

syntax-checking, also supporting with source navigator, content and documentation

assistance and SystemVerilog templates. It is also possible to import UVM libraries

as source templates and properly check the code lines containing UVM based class

extensions and methods.

SVEditor was used to develop and check UVM codes written in SystemVerilog.

9

.

Figure 3.4: SVEditor design environment

3.3. QuestaSim

QuestaSim is a functional verification simulator of Mentor Graphics', developed as

an integrated platform under Questa Advanced Simulator software, which is the core

simulation and debugging engine of the Questa Verification Platform [7], and

powered by ModelSim tool, which both are the software products belonging to same

company.

QuestaSim offers higher capacity and supports larger FPGA and SoC (System on

Chip), where ModelSim supports smaller designs. Moreover, an important advantage

of QuestaSim is its compatibility with verification since it has a basis consisting of

Questa Verification IP and Accelerated Coverage Closure technologies [22].

Because of its verification supportive nature, QuestaSim is compatible with a large

array of languages containing Verilog, SystemVerilog and VHDL; and offers support

for SystemVerilog based UVM libraries in hardware description and verification.

QuestaSim was used for running the complete UVM testbench in order to observe

the verification results.

10

Figure 3.5: A screenshot from QuestaSim simulation environment

11

4. HARDWARE DESIGN

4.1. Overview

As the first step of the project, a design to be verified was required. Design to be

tested needed to have enough complexity to be add new aspects to the previous work

done in the same subject by one of the currently graduated students from ITU

Department of Electronics and Communications Engineering, which was mainly

aimed to introduce the UVM and therefore used a simple adder circuit as the design

to be tested [3]. In order to add up to this work, the 16-bit floating point ALU design

has been chosen. This ALU design was based of Aahrty M. and Dave Omkar R.'s

paper titled "ASIC Implementation of 32 and 64 bit Floating Point ALU Using

Pipeline" (Application Specific Integrated Circuit - ASIC) [23].

The floating point unit specifications are as listed as below:

 Based on IEEE-754 half precision number format

 Contains four operations: Addition, subtraction, multiplication and division.

 Contains a pipeline implementation

The hardware design process is separated into three as addition-subtraction module,

multiplication module and division module; where each module have been designed

by one of the contributing graduate students. The division module was designed in

this work, hence the process of the division module design will be denoted in detail.

4.2. Floating Point Division Module

4.2.1. Top Module

The top architecture of the division module contains two 16-bit inputs to represent

operands, named "operand_a" as the dividend and "operand_b" as the divisor; with

three outputs called "division_result", which is an 16-bit output to show computation

result, a one bit output named "valid", which sets itself when the division result has

calculated, and a 3-bit long "status" output to show whether there is an exception

occurred during computation or not. There are also three one-bit control inputs; one

for the clock (positive edge triggering), one for the reset (active high reset) and one

12

as an enable signal. When the enable signal is low, the circuit stays idle during the

rising clock cycles.

In the case of exceptions, which is represented by "status" output; there are five

possible states that can occur after a division:

 Overflow: Occurs when the division result is greater than the highest absolute

value that is representable. In this case, the result is set to the maximum

absolute value representable with its corresponding sign bit.

 Underflow: Contrary of the overflow, it occurs whenever the computed result

is smaller than the minimum absolute value that is representable. In this case,

the result is set to zero.

 Division by Zero: Occurs when the divisor input acquired as zero. This

situation sets all sixteen bits of the result output to high, representing the

infinity, or unavailability.

 Result Zero: This status value is seen when the division result is zero, but

there is no underflow occurred. In other words, it will be seen when the

dividend input is zero.

 Normal Operation: Normal operation flag will be seen at status bits when

none of the special conditions described above are present.

The bit codes for each of the cases described above are as follows:

Table 4.1: List of bit codes for each exception in division module

Status Case Bit Code

Result Zero 000

Overflow 001

Underflow 010

Normal Operation 011

Divided by Zero 100

13

The top module consists of six submodules; unpacker, sign calculator, exponent

subtractor, mantissa divider, normalizer and packer. Design of each module will be

told in detail in their respective sections. All submodules are combinational circuits.

In terms of pipelining, four different layers are presented, each seperated with a set

of register blocks. Therefore, the computation result is given in fourth rising edge of

the clock after the computation starts.

The input and output schematic from RTL top layer is given below.

Figure 4.1: Top layer RTL schematic of top module

A schematic of the top layer circuit is presented below.

Figure 4.2: The circuit schematic of division module

The Verilog code for the top module can be examined from "FP_ALU_DIVIDER.v"

file in the disk.

14

4.2.2. Unpacker

Unpacker module is where the operands are separated into their sign, exponent and

mantissa bits. Moreover, the hidden high bit in front of each mantissa is added here.

Separated bits later sent to their appertaining modules to be processed. The module's

inputs are the two operands, and outputs are their separated sign, exponent and

mantissa bits.

The unpacker alone also forms the first layer of the pipeline.

Figure 4.3 : Top layer RTL schematic of unpacker

The Verilog code for the unpacker is presented at Appendix A.1.

4.2.3. Sign Calculator

The sign calculator determines the output sign by evaluating operand sign bits. Since

the division of two positive operands (sign bit zero) or two negative operands (sign

bit one) are positive and division of operands with different signs results in negative

sign, a simple XOR operation is used to determine the result sign.

This module is one of the three elements in second pipelining layer.

15

Figure 4.4: RTL schematic of sign calculator

The Verilog code for this module can be seen from Appendix A.2.

4.2.4. Exponent Subtractor

At this module, exponents of the two operands are subtracted, the divisor's exponent

is subtracted from dividend's exponent, and then the bias (found as 15 from Equation

2.2) is added. Afterwards, the calculation result is driven to the module output.

After the computation, the resulted exponent must be checked if it is greater than 30

or smaller than 0, which in this cases they won't be represented as they should and an

overflow or underflow will happen. Result of the check is stored in the exception

output, to be later passed into the packer module in order to be evaluated in status

decision.

This module is one of the three modules in that form the second pipelining layer.

Figure 4.5: Top layer RTL schematic of exponent subtractor

16

The Verilog code for this module is given at Appendix A.3.

4.2.5. Mantissa Divider

Mantissa divider is the module where the significand's division is performed. There

are more than one algorithm present for performing binary division in this module.

The restoring division algorithm is used.

Restoring division algorithm performs one division for each bit in mantissa

(including the hidden bit). The process starts from the initial mantissa inputs

delivered from unpacker module. It is checked if the dividend is greater or lesser than

the divisor mantissa (checking if dividend mantissa is completely dividable with

divisor mantissa) and it is processed according to this.

To express better, the algorithm will be expressed in coding jargon;

Let the dividend mantissa called A and the divisor mantissa called B, initially;

,

In this expression, Q is the quotient bit; when it is '1' it means there is one times B in

A, and when it is '0' means there is no B in A. Q is eleven bit long output where each

bit represents the division result for its corresponding cycle, forming a eleven bit

long mantissa division result when there are 11 cycles completed. The Q bits are

filled starting from the most significant bit to the least significant bit. The R

represents the remainder; if there is no B in A, the remainder is set as equal to A, and

if there is one B in A, remainder is set to their subtraction. At the end of the cycle,

the remainder is shifted right one time, then it becomes the new dividend and a new

cycle starts. This operation is performed until all quotient bits are filled. Finally, the

quotient bits form the mantissa division result, which is called D.

17

This loop operation was performed using three different cell blocks in Verilog; one

for the initial iteration and one for the last iteration and one for second to tenth

iterations. It is done so since the first and last iterations have differently connected

input and output schemes than the second to tenth iterations,

It should also be noted that, although there is no need to store each block's dividend,

remainder and quotient; it is still done so in order to be able to easily check them

during simulation process.

There is also an exception output present in the module, to check if dividend or the

divisor is zero, setting the exception bits accordingly.

This module is the last element of the second pipelining layer.

The Verilog code for this module can be examined from Appendix A.4.

4.2.6. Normalizer

Normalizing module is where the division alignment is performed. It takes the

mantissa divider result and exponent subtractor result as inputs. In this module, the

computed mantissa is restored to the form with the hidden bit '1' in the most

significant bit (1.mantissa2). To achieve this, the mantissa is shifted right until there

is a '1' comes to the most significant bit. No shift is required if there is already a '1' in

the most significant bit. If there will be no one's in the mantissa stream, a zero will be

put into the most significant mantissa bit instead. After the shift operations are

performed, the number of shifts performed must be deducted from the exponent.

After the subtraction from the exponent, it is required to check if the exponent

became less than zero. In the case of exponent being less than zero, the exception bits

will be set to underflow values. Exceptions will be set to normal operation values if

exponent is equal or greater than zero.

In the Verilog code, it is preferred to write the exception checking part in the form of

logical expressions.

This module solely forms the third layer of the pipelining implementation.

18

Figure 4.6: Top layer RTL schematic of normalizer

The Verilog code for the normalizer is presented at Appendix A.5.

4.2.7. Packer

Packer module is the location where the computed sign, exponent and mantissa are

combined together to form the actual division result. The hidden bit of the mantissa

is also removed here before repacking.

The module acts as an exception processer as well; all the exception outputs from

previous modules are collected here and the status output of the top module is

determined according to assigned priorities of the collected exceptions. Priority order

is constructed as division by zero, result zero, overflow, underflow and normal

operation; from highest to lowest.

Packer module also sets the special values for the output, like the infinity value in the

case of division by zero and rounding down to the highest absolute value in case of

an overflow.

Packer module is the fourth and the last layer of the pipelining implementation.

19

Figure 4.7: Top layer RTL schematic of packer

The Verilog code for the packer module can be examined from Appendix A.6.

4.3. Behavioural Simulation

Right after the design, before going into the verification step; the created circuit is

put upon two different behavioural simulations; using samples for all special cases

and for divisor and dividend pairs with different degrees, along with several random

stimuli. The values that calculated are checked using a half precision calculator.

It should be noted that there may be small differences between the results like a

difference in the least significant bit. This is a result of the usage of different

structures and algorithms between unit under test and the reference calculator, Since

the differences occur in the bits with less significance, the error should be safely

assumed absolutely minimal.

The simulations are performed with ISE Design Suite's ISim tool.

4.3.1. Basic Simulation

For the first simulation, user defined the stimuli has given to the circuit inputs, each

specially determined to cover boundary values and all five status states that could

occur.

This first simulation does not benefit from the pipeline structure. Rather, the inputs

are given in a controlled manner; five clock cycles at a time.

20

Below is the simulation result of the division module. Since it is not possible to show

the half precision floating point equivalents of the circuit on the simulation

environment, they are denoted in the test code as comments. The test code can be

seen at "UVM_driver_model.v" file in the disk.

Figure 4.8: Waveforms of division module's basic simulation

Each of the results are checked using a half precision calculator.

The control mechanism used in this test was also used later in the verification part as

one of the UVM components (UVM_driver), information on this subject can be seen

at Section 5.4.5.

4.3.2. Pipeline Testing

Second test uses pipelining implementation and random inputs. With each rising

clock edges, a pair of random stimuli applied to the circuit and after four clock cycles

the particular inputs are given, the result is expected to be seen in the outputs

corresponding to that input pair.

The test code was written so as the user can define the number of input pairs to be

driven to the division module in one line.

A simulation waveform is given below, it used ten test input pairs for easier

showcase.

21

Figure 4.9: Waveforms of division module's pipelining simulation

Seeing from the simulation result, it could be observed that the circuit can give the

result for the consecutive inputs with each rising clock edge. This validates that the

pipeline implementation is successful.

The test code for this testbench is present at Appendix A.7.

22

5. FLOATING POINT ALU DIVISION MODULE VERIFICATION

5.1. General Structure

In digital system verification, the main construction is a top module that contains a

design to be tested, with various component to create a systematic stimulus feeding

and result checking module, called tests. Depending on the application and

preference, there might be more than one test modules.

On the main layer of the verification environment, there is an interface component

used to perform communication between the design under test (DUT) and the test

module or modules.

Figure 5.1: A typical UVM top module [24]

Summarily, in a typical UVM testbench; the stimuli are generated in the sequencer

and then fed into the driver. Driver is responsible to give the stimuli into the

communication bus in a controlled manner, the data then gets evaluated in the DUT

and then gets sampled at the monitor, where the input of the DUT is sampled as well.

23

The sampled inputs and outputs later driven into the scoreboard to be evaluated and

compared. Scoreboard generally contains a predictor section to compare DUT

outputs with predicted results.

5.2. UVM Top Module

A top module in UVM is where the main test objects and DUT is mounted. It

contains created samples of these both entities. A top module can contain more than

one testbeches to be used according to application needs.

The DUT and the test top modules are connected with units called interfaces.

Interface furnishes the input/output traffic between these components. Interfaces also

have an internal branch between monitor and driver components of the testbench,

more information will be given on the specified sections of this components. In this

project, the clock and reset signal used to control the system is also generated here.

In the coding of the top module; instances of DUT, testbench and intefrace should be

created; along with a clock and reset to control the environment. Therefore, all the

required declarations such as sub-module files to be included, UVM package

importations and DUT source codes. Moreover, the connections to attach interface

and the other components are needed to be done here. The files to be imported are

referenced from a header file called package. Codes for top module and package are

given in Appendix B.1. and Appendix B.2.respectively.

Below is a basic schematic of a UVM top module.

Figure 5.2: Interaction of top module elements [25]

24

5.3. Interface

It was previously stated that the interface is the communication component between

the DUT and the test top module. It delivers the test stimulus created to the DUT

from the outside of the test module; and delivers it to the monitor and also returns the

DUT outputs to the same or a different monitor component inside the agent module

(see Sections 5.4.2. and 5.4.3.), using virtual interfaces as braches. All these

communication must be done in a controlled manner, so there should be several

controlling protocols, which is generally run by driver module (see Section 5.4.5.). In

this aspect, the interface can be thought as a bundle of intelligent wires that provides

synchronization and connectivity [26].

In the coding of the interface; the connectors declared at the top module must be

appropriately attached. An error handling part also needed because during the data

delivering phase, there should be no X or Z (X is the unknown logic value and Z is

the high impedance symbol in Verilog and SystemVerilog) fetched.

Code for interface is given at Appendix C.

Below is a general view of a testbench-DUT connection via interface.

Figure 5.3: Interface's connection with other components [25]

25

5.4. UVM Components

5.4.1. Test Module and Environment

In UVM test module and environment components are used to implement

verification environments. Environment is a part extended from uvm_env_class. A

test object contains virtual systematic steps to be constructed; including building the

components, connecting the components, running the test and reporting. An

environment elaborates these steps using virtual methods inherited from

uvm_env_classs, and they are specially called UVM phases.

Figure 5.4: List of UVM phases [27]

Build phases are used in occasions where test components are created and

configured. Running phases are used for management during simulation runtime of

the testbench. Cleanup phases are used at the end, tasked to collect test results and

reporting [3].

26

Figure 5.5: A showcase of top layer elements [28]

Test module contains an instance of the environment and specifies the application-

specific test functionality [29]. Environment component makes declarations of

virtual interfaces. These virtual interfaces are branched from the physical interface

located in the top module, and they are pointed to this main interface in code.

Henceforth, test module's section that is not in junction with the environment is

called as variable part, meaning it is a dynamic section that is differing form

application to application; whereas environment is a static structure and called as the

fixed part. Since both are created from main UVM class extensions, this two

components are also called class-based.

The environment used in the project has two partitions. One is the top environment

and the other contains the environment components.

Codes for test and environment components are given at Appendices D.1, D.2 and

D.3 respectively.

5.4.2. Agent

An UVM agent is derived from the uvm_component class. Agent contains the

monitor, sequencer and driver components and connects them together. Since there is

no simulation process present in the agent, it will only have build and connect

phases. When active, agent is connected to all those three components mentioned

above, where just being connected with scoreboard during passive phase. These

connections are made with analysis ports.

27

Figure 5.6: An active agent [30]

Analysis ports are based from transaction level modelling (TLM). TLM ports defines

various functions and methods to allows communication of transaction objects.

In TLM, there are two aspects called consumer and producer which are connected

together. For the verification testbench case, the consumer uses a function that takes

the transactions as argument, where the producer uses that same function in passing

the expected transaction to the consumer [31]. The two type of elements present in

TLM communication is ports and exports. A port can be associated to just one

export, but like in UVM verification; there may be cases when a port that can be

plugged into more than one exports are required. From this need, TLM involves one

more connection type called as analysis ports.

An analysis ports task is same as a normal port, the difference is in the connectivity.

It can be connected to several exports and can be triggered by any of the connected

exports on the same line whenever a function request arrives from them.

Table 5.1: Table of port types in TLM [31]

28

This kind of communication is present in UVM, with agent through monitors among

coverage, scoreboard and metric analyzers if any (metric analyzers not used in this

project).

Figure 5.7: A picture of TLM analysis ports and exports in analysis layer [32]

The code for agent is presented at Appendix E.

5.4.3. Monitor

Monitor is a component within the agent, like the agent it is extended from

uvm_component class. A monitor's task is to sample DUT outputs and driver inputs,

then moving them to the analysis ports within the agent. These samples will be used

at coverage and result checking steps later. Since it doesn't drive any signals into the

DUT it is also a passive component. To avoid faulty execution, a control signal is

required to inform the monitor when to take a DUT output sample. The valid signal

of the division module is used to perform this control (Valid signal gets set high

when the result is calculated). The monitor also needs to return error when

unexpected behaviour occurs in the protocol.

Depending on the design, an environment can have more than one monitor.

Monitor code can be examined at Appendix F.

29

5.4.4. Sequencer and Sequences

The verification design needs to send testing inputs with specific data type to the

DUT in order to perform any kinds of validation testing. The creation and first hand

control of this test data is covered by transaction, sequence and sequencer component

types in the UVM applications.

A transaction is an object which is generally extended from uvm_transaction or

uvm_sequencer_item classes of uvm_components. The transaction is the smallest

core part of what type of stimulus will be used for DUT inputs. It is mainly consisted

of random variables of some data types, optionally specialized by various constraints

or methods to increase accuracy of the tests to be performed.

Sequences are the elements that creates a series of transactions. A sequence is

extended from uvm_sequence of uvm_component class. A sequence collects a

specified amount of transactions and packs them to be sent to the driver when called.

The sequence can further customize the transaction sets to be suitable to whatever

specific aspects of the design should be tested.

There is one more class that's used to take the created sequence to the driver. It is

named as sequencer and is generally used with the default sequencer class of UVM

instead of extending it, since the default class usually be sufficient for applications.

It should be noted that the sequences and sequencer are not aware of the

communication protocol in the verification environment, meaning they have a re-

usability property in verification works when they are correctly programmed.

Interacting these components with the communication protocol is the task of the

driver component, that is described at Section 5.4.5.

Figure 5.8 shows the operation among sequence items, sequence and sequencer.

Figure 5.8: Image of the links between sequencer, sequence and sequence item [33]

30

Corresponding codes for sequence and sequencer are given at Appendices G.1 and

G.2.

5.4.5. Driver

Driver is a component contained in the agent, and is extended from uvm_driver of

uvm_component class. A driver interacts with the DUT by pulling sequence items

from the sequencer and directing them to the DUT inputs with respect to a specified

protocol, so the driver operates with pin level connection. A driver automatically

terminates it's operation when the specified number of sequence items are driven.

The driver's interaction with the sequence family can be seen from Figure 5.9.

Figure 5.9: Sequencer-Driver-DUT transaction [34]

Before coding the driver protocol, it is recommended to implement it as a normal

testbench first, using preferred design tool; for being sure it's operation is suitable to

the needs. On this account; in the coding of the driver, the same protocol that's seen

in the behavioural simulation in Section 4.3.1 and Figure 4.8 is modelled. The driver

drives the input and sets the enable to start DUT's execution, then waits until the

required time to pass for required clock cycles, then clears and the input and drives a

new one. This protocol is essential for being sure an input will not be driven before

the DUT finishes its calculation. Driver code is available at Appendix G.3.

31

5.4.6. Subscriber

Subscriber is a class extended from uvm_component class. It provides export to the

analysis ports that receive transactions. Subscribers mostly used for helping coverage

analysis on analyze ports. The subscriber class contains a "write" method for this

exporting purpose [35]. When the write function gets a call with transactions as

arguments, each subscriber points to the corresponding sequence item. That way it is

possible for sequence items to be processed without mixing into each other.

There are two subscriber types present in the project. One used for code coverage

and the other used for scoreboard ports.

Code coverage determines the percentage of how much of the code lines are covered

by checking if every possible partition of the code have been moved upon. Code

coverage percentage determines the quality of the tests performed.

Subscriber code used for analysis ports of this project can be seen at Appendix H.1.

5.4.7. Scoreboard

Scoreboard components are extended from uvm_scoreboard. Task of a scoreboard is

to create predictions based on input sequences sent into DUT, then comparing these

prediction results with actual DUT results. An error will be asserted when comparing

result is unfavorable. These input and output streams are driven to the scoreboard

ports from the monitor.

Scoreboard of the division module is designed together with its scoreboard

subscriber element, that is it's analysis port subscribers.

Scoreboards contains a predictor section to create values for comparing with DUT

outputs. Predictors does not have to be written in the SystemVerilog language. For

complex designs, support from foreign languages required. It is possible to

communicate with other programming languages. The way to performs this

discussed in the next section.

Code for scoreboard is presented at Appendix H.2.

32

5.4.7.1. SystemVerilog Direct Programming Interface (DPI)

In some verification applications, core SystemVerilog language's offerings may not

be sufficient to perform certain tasks. To cope with it, SystemVerilog offers a

solution named as direct programming interface (DPI). DPI allows SystemVerilog to

interact with foreign programming languages, like C or MATLAB. The user can use

existing foreign language code after importing it with a special syntax, the import

"DPI" declarations, or export the SystemVerilog code to another supported language

[36].

Because it was not possible to perform half precision division in a small code piece

with the current SystemVerilog data types, DPI feature was used to call a created

MATLAB function.

5.4.7.2. MATLAB Predictor Module

UVM testbenches are able to interact with MATLAB [37]; mostly in the forms of

using MATLAB functions as DUT's (because MATLAB functions' ability to be

transformed into RTL (register-transfer level) library blocks.), and scoreboard

checker. MATLAB provides some mechanisms for interacting with UVM. These

mechanisms could be presented as following:

 Running in parallel with HDL simulators for computation.

 Supporting Verilog modules with MATLAB functions

 By using SystemVerilog DPI, MATLAB functions can be compiled into a

shared library to be used in SystemVerilog environment [38].

The predictor function is a quick recreation of the half precision division algorithm

used in the ALU divider. The inputs are sent from the SystemVerilog DPI as signed

integers, so the string based binary conversion functions presented in MATLAB are

used to convert incoming integers to half precision floating point system (MATLAB

does not include a built-in data type for half precision floating point). Evaluated

results then also will be sent to verification environment on DPI as signed integers as

well, hence the processed data needed to be re-converted into signed integers at the

end.

33

It should be noted that the MATLAB file to be used as DPI function must be written

in function declaration format. Files written in script format are not supported in DPI.

Required explanations about methods used in development of the predictor function

are present as comment lines on the code.

MATLAB code for the predictor can be seen at "float16div.m" file presented on the

disk.

The C file to be used as a connector between DPI and MATLAB is at Appendix I.1.

SystemVerilog definitions of the MATLAB functions are included in a.svh file,

which is given in Appendix I.2.

34

6. RUNNING THE UVM TESTBENCH WITH QUESTASIM

The last step of the project was to run the program using the QuestaSim tool and

observe the verification results. However, due to various complications during the

usage of the program, the simulation couldn't be performed and observed. It is aimed

to fix the errors occurred and perform the simulation until the presentation of the

project.

35

7. CONCLUSION

In this graduation project, the main goal was to create a 16-bit floating point ALU

design from scratch and perform a verification process, chosen as UVM, on the

created design; with the collaboration of three different BSc students.

The ALU design has been divided into three parts, and the division part is designed

in this project. The design has been performed in Verilog language with Xilinx ISE

tool. Afterwards, some basic simulations are generated in order to make a general

control on the circuit to see if it seemingly performs the operations as desired. Then,

each three parts are planned to be verified separately. In order to perform this, a

verification environment was built using UVM libraries with SystemVerilog

language. Each component for this verification environment has been created

individually and then all of them have been put on a top module accordingly, with

the design under test and test module on a top module; connected with an interface

component. The test module is set so as it will generate a series of random input

transactions to test the design under test. The results then tracked with their

corresponding input values and compared with the expected values, predicted using

an external programming language code, using the SystemVerilog's DPI feature. A

MATLAB code has been designed as a predictor in this case.

At the end of the project, the created design was moved to the QuestaSim

environment in order to perform the verification. However, the verification has not

been performed due to various errors and lack of configurations.

In conclusion, it seems that the UVM verification is an hard and long process to

learn, but it is though that once it could learnt, it would be easier to design different

verification environments for different digital circuits, due to the reusability and

convertibility of the UVM testbenches. It is also predicted that the importance of the

UVM will keep increasing greatly as the digital design evolves.

36

REFERENCES

[1] Shiva, S.G., 1998. Introduction to Logic Design (2nd Ed.), University of

Alabama in Huntsville Huntsville, Alabama.

[2] Accellera, 2011. Universal Verification Methodology (UVM) 1.1 User’s Guide

[3] Çoktaş G., 2014. Bir Sayısal Sistem Tasarımının Evrensel Doğrulama Metodu ile
Doğrulanması, BSC Thesis, I.T.U. Faculty of Electrical and Electronics
Engineering, İstanbul.

[4] IEEE, 2006, IEEE Standart for Verilog Hardware Description Language,

10016-5997, New York.

[5] Xilinx, ISE Design Suite, http://www.xilinx.com/products/design-tools/ise-

design-suite.html

[6] Cadence Website, Demonstration on Advanced UVM Using Incisive Platform -

Part 2, [Reference Date: 10 March 2016],

http://www.cadence.com/alliances/languages/pages/uvm.aspx

[7] Mentor Graphics, Questa Verification Environment, [Reference Date: 13

March 2016], https://www.mentor.com/products/fv/questa/

[8] Wikipedia, Floating Point, [Reference Date: 10 March 2016],

https://en.wikipedia.org/wiki/Floating_point

[9] Muller et al., Handbook of Floating Point Arithmetic, Birkhauser Boston, Basel,

Berlin.

[10] Wikipedia, IEEE Floating Point, [Reference Date: 10 March 2016],

https://en.wikipedia.org/wiki/IEEE_floating_point

[11] Wikipedia, Half-Precision Floating-Point Format, [Reference Date: 10 March

2016], http://en.wikipedia.org/wiki/Half_precision_floating-point_format

[12] Ball, S.R., 2002. Embedded Microprocessor Systems: Real World Design (3rd

Ed), Elsevier Sceince, USA

[13] Araujo, P., UVM Guide for Beginners, [Reference Date: 13 March 2016],

https://colorlesscube.com/uvm-guide-for-beginners/

[14] IEEE, 2012, SystemVerilog 1800-2012 IEEE Standard for System Verilog -

Unified Hardware Design, Specification, and Verification Language

[15] Accellera, Accellera Solutions Website, http://www.accelerasolutions.com/

[16] Wikipedia, Open Verification Methodology, [Reference Date: 23 May 2016],

https://en.wikipedia.org/wiki/Open_Verification_Methodology

[17] Mentor Graphics, Verification Academy AVM Cookbook,

https://verificationacademy.com/cookbook/avm

[18] Synopsys, VMM Verification Methodology, [Reference Date: 23 May 2016],

https://www.synopsys.com/community/interoperability/pages/vmm.aspx

[19] Mentor Graphics, Verification Academy UVM Cookbook, Introduction,

[Reference Date: 29 March 2014],

https://verificationacademy.com/cookbook/uvm

[20] Synopsys, OpenVera Website, http://www.open-vera.com/

https://www.mentor.com/products/fv/questa/
http://en.wikipedia.org/wiki/Half_precision_floating-point_format
http://standards.ieee.org/getieee/1800/download/1800-2012.pdf
http://standards.ieee.org/getieee/1800/download/1800-2012.pdf

37

[21] Eclipse, Eclipse Website, https://eclipse.org/

[22] Wikipedia, Mentor Graphics, (2013). [Referene Date: 13 March 2016],

http://en.wikipedia.org/wiki/Mentor_Graphics[23] Aarthy M. and

Omkar D.R., 2014, ASIC Implementation of 32 and 64 bit Floating

Point ALU using Pipelining, International Journal of Computer

Applications, 94,0975 – 8887.

[24] Araujo, P., UVM Guide for Beginners - Defining the Verification Environment,

[Reference Date: 5 April 2016] https://colorlesscube.com/uvm-guide-for-

beginners/chapter-2-defining-the-verification-environment/

[25] Mentor Graphics, Verification Academy UVM Cookbook, Connections to

DUT Interfaces, [Reference Date: 2 April 2016],

https://verificationacademy.com/cookbook/uvm

[26] Spear, C., 2008, SystemVerilog for Verification (2nd Ed.), Springer, Marlboro

MA, USA.

[27] Mentor Graphics, Verification Academy UVM Cookbook, Phasing, [Reference

Date: 3 April 2016], https://verificationacademy.com/cookbook/uvm

[28] Singhal, M., Application of Virtual Interface and uvm_config_db, [Reference

Date: 5 April 2016], https://verificationacademy.com/sessions/uvm-

sequences-and-tests

[29] Krishna, G. and Maddipati, N., Easy Labs: UVM - Phase 3: Environment and

Testcase,

http://www.testbench.in/UL_06_PHASE_3_ENVIRONMENT_N

_TESTCASE.html

[30] Mentor Graphics, Verification Academy UVM Cookbook, Agent, [Reference

Date: 8 April 2016], https://verificationacademy.com/cookbook/uvm

[31] Araujo, P., UVM Guide for Beginners - Monitor, [Reference Date: 5 April

2016] https://colorlesscube.com/uvm-guide-for-beginners/chapter-6-

monitor/

[32] Mentor Graphics, Verification Academy UVM Cookbook, Analysis

Components and Techniques, [Reference Date: 11 April 2016]

https://verificationacademy.com/cookbook/uvm

[33] Krishna, G. and Maddipati, N., Easy Labs: UVM - Phase 5: Sequencer and

Sequence,

https://www.testbench.in/UL_08_PHASE_5_SEQUENCER_N_SEQUE

NCE.html

[34] Mentor Graphics, Verification Academy UVM Cookbook, Driver/Sequence

API, [Reference Date: 11 April 2016]

https://verificationacademy.com/cookbook/uvm

[35] Mentor Graphics, UVM Class Reference 1.1c, [Reference Date: 14 April 2016]

https://verificationacademy.com/verification-methodology-

reference/uvm/docs_1.1c/html/files/comps/uvm_subscriber-

svh.html#uvm_subscriber.write

[36] Aynsley, J., Doulos, SystemVerilog DPI Tutorial,

https://www.doulos.com/knowhow/sysverilog/tutorial/dpi/

[37] MathWorks, MATLAB, http://www.mathworks.com/

[38] Mentor Graphics, Verification Academy UVM Cookbook,

MATLAB/Integration, [Reference Date: 4 May 2016]

https://verificationacademy.com/cookbook/uvm

38

APPENDICES

APPENDIX A.1

unpacker.v

APPENDIX A.2

sign_canculator.v

APPENDIX A.3

exponent_subtractor.v

39

APPENDIX A.4

40

APPENDIX A.5

41

APPENDIX A.6

42

APPENDIX A.7

43

44

APPENDIX B.1

45

APPENDIX B.2

46

APPENDIX C

47

APPENDIX D.1

48

49

APPENDIX D.2

50

APPENDIX D.3

51

52

APPENDIX E

53

APPENDIX F

54

55

APPENDIX G.1

56

APPENDIX G.2

57

APPENDIX G.3

58

59

APPENDIX H.1

60

APPENDIX H.2

61

62

APPENDIX I.1

63

APPENDIX I.2

64

RESUME

Name - Surname: Yasin Fırat Kula

Place and Date of Birth: Tekirdağ, 1993

High school: Tekirdağ Science High School 2007-2011

BSC: Istanbul Technical University, Electronics and Communications Engineering

2011-2016

