
i

İSTANBUL TECHNİCAL UNIVERSITY

ELECTRİCAL – ELECTRONICS ENGINEERING FACULTY

WRITING DRIVERS FOR CUSTOM PERIPHERAL RUNNİNG PARALLEL

TO MICROBLAZE PROCESSOR ON FPGA

BSc Thesis by

Engin YÜREK

Department: Electronics and Communication Engineering

Programme: Electronics and Communication Engineering

Supervisor: Assoc. Prof. Dr. Sıddıka Berna ÖRS YALÇIN

MAY 2016

i

Abstract

Although computation power of microprocessors increases within the development

of technology, in recent years, with the increase of the connectivity of all kind of

devices and escalating raw data amount requires computation power more than ever.

To meet the demands of software side, some regulations is needed in hardware side

in favor of microprocessors work by not deluding but performing real multitasking

with the way of employing special purpose peripherals which undertake some set of

instructions from processor unit and work parallel with it. In the light of all the facts

mentioned above a barebone softcore microprocessor and a custom peripheral can be

embedded on a field programmable gate array via using the features of Xilinx

development tools. In this context an example of above idea is realized and explained

step by step through the thesis. Firstly, a MicroBlaze project is created with some

built-in peripherals, then a custom a custom peripheral is added and rearranged to

have extra interrupt ports. After this step an eight-bit serial adder module is

implemented into this peripheral. Thus all eight-bit addition operations can be done

on this peripheral instead of running on microprocessor. Finally, driver functions and

a general purpose interrupt service routine is written with C language via Software

Development Kit provided by Xilinx.

ii

CONTENTS

ABSTRACT III

ABBREVIATIONS IV

LIST OF FIGURES V

SUMMARY VI

1. INTRODUCTION

2. TOOLS USED IN PROJECT

 2.1 Field Programmable Gate Array (FPGA)

 2.2 MicroBlaze Soft Core Processor

 2.3 Xilinx Platform Studio (XPS)

 2.4 Integrated Synthesis Environment (ISE)

 2.5 Software Development Kit (SDK)

3. CREATING MICROBLAZE PROCESSOR ON XPS

 3.1 Creating MicroBlaze Core Project

 3.2 Attaching AXI Timer

 3.3 Attaching AXI Interrupt Controller

4. ADDING CUSTOM IP (INTELLECTUAL PROPERTY)

 4.1 Creating Barebone Custom IP

 4.2 Adding Interrupt Port to Custom IP

 4.3 Adding Custom Feature to IP

 4.3.1 Design the Serial Adder

 4.3.2 Implementation of Serial Adder into IP

 4.3 Connecting Custom IP to Interrupt Controller

iii

5. INTERRUPT HANDLING ON SOFTWARE SIDE (STANDALONE)

 5.1 Creating Project and Writing Interrupt Handler Code

 5.2 Running Project on Digilent Atlys Spartan-6 Board

6.CONCLUSION

iv

ABBREVIATIONS

XMD : Xilinx microprocessor Debugger

AMBA : Advanced Microprocessor Bus Architecture

UART : Universal Asynchronous Receiver Transmitter

ALU : Arithmetic Logic Unit

QuadSPI : Quad Serial Peripheral Interface

GIPO : General Purpose Input Output

IRQ : Interrupt Request

MSR : Machine Status Register

PLB : Processor Local Bus

AXI : Advanced Extensible Interface

RISC : Reduced Instruction Set

LUT : Look-up Table

HDL : Hardware Definition Language

RAM : Random Access Memory

USB : Universal Serial Bus

XPS : Xilinx Platform Studio

IPIF : Intellectual Property Interface

MPD : Microprocessor Peripheral Definition

SVN : Source Version Control

SDK : Software Development Kit

DVI : Digital Visual Interface

HDMI : High Definition Multimedia Interface

EDK : Embedded Development Kit

LUT : Look-up Table

EEPROM : Electrically Erasable Programmable Read Only Memory

FPGA : Field Programmable Gate Array

BRAM : Block Random Access Memory

ISE : Integrated Synthesis Environment

I2C : Inter-Integrated Circuit

RTL : Register Transfer Level

QSPI : Queued Serial Peripheral Interface

FSL : Fast Simplex Link

IP : Intellectual Property

BFM : Bus Functional Model

CPU : Central Processing Unit

MPD : Microprocessor Peripheral Definition

JTAG : Joint Test Action Group

USB : Universal Serial Bus

BSB : Board Support Package

http://cache.nxp.com/files/32bit/doc/app_note/AN4512.pdf?fpsp=1&WT_TYPE=Application%20Notes&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation&fileExt=.pdf

v

LIST OF FIGURES

Figure 1: Internal Structure of Logical Block .. 3

Figure 2: Block Structure of MicroBlaze [6] ... 4

Figure 3: Read- Write Operations of AXI4 and AXI4-Lite [9] 5

Figure 4: Main Interface of ISE ... 7

Figure 5: Project Creation Menu of XPS ... 8

Figure 6:XPS Create Project Window ... 9

Figure 7: Base System Builder Board Configuration .. 10

Figure 8: Microprocessor Configuration .. 11

Figure 9: Main Interface of XPS .. 12

Figure 10: AXI Timer .. 12

Figure 11: Core configuration of axi_timer ... 13

Figure 12: Automatic Wiring Window .. 13

Figure 13: AXI Interrupt Controller ... 14

Figure 14: Assigning Timer Interrupt .. 14

Figure 15:Interrupt Connection Dialog .. 14

Figure 16: Connecting Interrupt Controller to MicroBlaze 15

Figure 17: XPS Graphical View .. 15

Figure 18: Custom IP Creation Menu .. 16

Figure 19: Create and Import Peripheral Wizard ... 17

Figure 20:Create Peripheral Window... 17

Figure 21: Peripheral Name and Version Configuration ... 18

Figure 22: Bus interface Selection ... 19

Figure 23: IP interface configuration ... 20

Figure 24: Software Accessible Register Selection ... 21

Figure 25: IP Interconnect Signals ... 21

Figure 26: Peripheral Implementation Support .. 22

Figure 27: Newly Created IP.. 22

Figure 28: Adding Extra Port to Custom IP .. 23

Figure 29: Defining Extra Port ... 24

Figure 30:Adding Extra Port to eight_bit_adder Top Module 24

Figure 31: Definition of Port in Top Module ... 24

Figure 32: Connection Between the Modules .. 24

Figure 33: RTL SerialAdder module ... 25

Figure 34: Pao file of IP ... 26

Figure 35: Addition of SerialAdder.v .. 26

Figure 36: Net Declarations ... 26

Figure 37: Submodule Decleration .. 27

Figure 38:Assignment of Output .. 27

Figure 39:Commenting Third Register .. 28

Figure 40: Assign Done Signal to Interrupt Port ... 28

Figure 41: Interrupt Port Definition in MPD File .. 28

Figure 42: Rescan User Repositories ... 29

Figure 43: Adding Custom IP to Project .. 29

Figure 44: Assign Number of Register .. 30

file:///C:/Users/Engin/Desktop/bitirme/mikroblaze%20proje%20oluşturmsa2.docx%23_Toc451353237
file:///C:/Users/Engin/Desktop/bitirme/mikroblaze%20proje%20oluşturmsa2.docx%23_Toc451353259
file:///C:/Users/Engin/Desktop/bitirme/mikroblaze%20proje%20oluşturmsa2.docx%23_Toc451353265

vi

Figure 45: Attaching Adder to Interrupt List ... 30

Figure 46: Export Design Into SDK... 31

Figure 47 :Choosing Works Space ... 31

Figure 48: Adding Repositories (a) .. 32

Figure 49: Adding Repositories (b) ... 32

Figure 50: Application Project Creation .. 32

Figure 51: Create Projet Wizard .. 33

Figure 52: Correct Error in Test File ... 34

Figure 53: JTAG Configuration (a).. 34

Figure 54: Jtag Configuration (b) ... 35

Figure 55: Run configuration (a) ... 35

Figure 56: STDIO in Console .. 36

Figure 57: Generate Linker Script (a) .. 36

Figure 58: Generate Linker Script (b) .. 37

Figure 59: Run Project on Board ... 37

file:///C:/Users/Engin/Desktop/bitirme/mikroblaze%20proje%20oluşturmsa2.docx%23_Toc451353278

1

INTRODUCTION

Within the dramatic increase in amount of data causes longer process time

which is a huge problem for time dependent projects especially real time

applications. To overcome this problem burden of main processor should be

distributed in peripherals. Thus discrete operations would not wait each other and

will be able to processed at the same time in different peripherals which is far better

approach than multithreading. A simple example of this scenario is demonstrated

through the thesis in a generic way to make this document like a step by step guide

for future use. Firstly, hardware and software tools that are used during the thesis is

described shortly in different subheadings. Then a general purpose MicroBlaze

processor is created with external AXI timer and interrupt controller peripherals.

Afterwards, a custom peripheral is created via Create and Import Peripheral Wizard

and an extra port is added for interrupt signal. Next, an unsigned eight-bit serial

adder module is created and embedded into custom peripheral then design is

exported to higher level software kit and by this way hardware side of the project is

finished. In software side interrupt structure is established via interrupt controller

framework and an interrupt service routine is written to handle interrupt signals

coming from the adder module. Finally, demonstration of the project is shown on

real FPGA board.

2

2. TOOLS USED IN PROJECT

2.1 Field Programmable Gate Arrays (FPGA)

Field programmable gate array (FPGA) [1]is an integrated circuit which has

no intendent function but has the opportunity to convert FPGA into anything such as

digital signal processor, custom drivers, processors etc. Though with the help of this

flexibility, FPGAs has ability to be programmed in an attempt to behave as any

desired digital circuit. Instead of wiring up logics manually one can design all of

circuit with the HDL (Hardware Definition Language) [2] code than this chip

handles with it and creates desired circuit physically. This is not simulation of the

circuit with the code but its physical logics so it runs faster than a program runs over

a microcontroller. Since FPGAs are super-fast, they are preferred in random access

memory, high definition multimedia interface and universal serial bus projects. In

addition to those FPGAs also can be programmed as softcore microcontroller and the

good thing is unused logical units can be used for time consuming operations like

dividing or multiplication and all this blocks works perfectly parallel to

microcontroller so that controller unit do not have to spend time for this operations

all it needs to get an interrupt from this external blocks.

FPGA logical units are volatile so whenever the power goes of all the

configuration get lost. To prevent this an FPGA consists built in EEPROM

(Electrically Erasable Programmable Read Only Memory) [3] to store the

configuration of logical blocks. Furthermore, it consists logical blocks, connection

blocks and switch blocks. Logical block is the basic unit of FPGA and a logical

block consists LUTs (Lookup-Table), flip-flops, multiplexers and buffers to

accomplish its duty as seen in Figure-1. LUTs are responsible for implementing

function generators into logical block which are able to realize outcomes of any 4

input Boolean statements. Multiplexer exists for selecting right signal and buffers are

for increasing the signals strength.

3

Figure 1: Internal Structure of Logical Block

Logical blocks came together and creates cluster. The connections between

logical blocks in different clusters are slower than the ones in the same cluster due to

routing losses, matrix like interconnects and switching block delays. Since all logical

blocks has possibility to be get connected for implementing desired circuit most of

the FPGA are is covered with very thin layers of metal roads.

Besides the advantages of the FPGAs, compared to other integrated circuits

they are high priced and since they have lots of metal routes they consume huge

amount of energy. They are volatile and they store the configuration info in the

EEPROM. Therefore, they are not instant on and it takes some time to boot up. In

most cases designing from the lowest level is harder and FPGAs has complicated

data sheets and also HDL is not easy as C, C++ languages.

4

2.2 MicroBlaze Soft Core Processor

MicroBlaze is a softcore microprocessor which means it can be designed with

only using logic synthesis. It is adopted by Xilinx to work compatible with Xilinx

tools and boards [4]. Furthermore, it is adjusted for low cost, minimum power

consumption, relative speed and minimum FPGA source consumption.

The main part of the MicroBlaze system includes 32 general purpose registers

with 32 bit long, an ALU, a shift unit, special purpose registers, program counter,

instruction buffer, and instruction decode cores as show in Figure 2. Besides, the

main design can be expanded and customized by other peripherals such as

barel-shifter, divider, multiplier, instruction and data caches, exception handling and

debug logics etc. to perform more advanced actions.

Figure 2: Block Structure of MicroBlaze [5]

While MicroBlaze is built on one side of FPGA other portions can also be

used for another purposes. Thus there will not be waste of resources and user can use

the exact configuration for the target project and could have the ability of putting

more than one softcore microcontroller with different cores. This also reduces the

cost and size of application.

MicroBlaze is a 32-bit RISC processor with a parallel pipeline which has

three steps fetch, decode and execute to process an instruction. Each stage takes 1

clock cycle to perform its duty. Thus each instruction is performed in three cycles.

5

Since it is a parallel pipeline while an instruction is decoded, another instruction is

fetched form Instruction prefect buffer at the same time.

MicroBlaze supports only one external interrupt source. To work with more

than one external interrupt sources an interrupt controller must be used for handling

multiple interrupt requests. The processor executes interrupt vector only if the

interrupt enable bit in machine status register is set to 1. As interrupt controller is

needed in most projects, Xilinx provides an interrupt controller with the embedded

development kit.

MicroBlaze provides PLB (Processor Local Bus) [6] and AXI (Extensible

interface) [7] bus for the communication and management of functional cores. AXI

uses AMBA (Advanced Microprocessor Bus Architecture) [8] standard for the

communication and has three types (AXI4, AXI4-Lite, AXI4-stream) for different

needs of designs.

 AXI4 is preferred for high performance memory mapped requirements.

AXI4-lite is simpler than AXI4 and is preferred for low throughput memory mapped

communication.

AXI4-stream is preferred for high speed data streaming and is not memory mapped.

AXI4 and AXI4-lite uses 5 different channels while data transfer. Thus bidirectional

data transfer can occur at the same time as illustrated in Figure 3.

* Read address channel

* Write address channel

* Read data channel

* Write address channel

* Write address response channel

Figure 3: Read- Write Operations of AXI4 and AXI4-Lite [9]

6

2.3 Xilinx Platform Studio (XPS)

Xilinx platform studio is the graphical user interface that includes set of

intelligent tools and has the ability to abstract system details and lets developers to

design complex structures much more easily and efficiently [10] XPS presents drag-

and-drop aggregation of IP cores from the Xilinx Embedded IP catalog interface,

within custom processor designs. Some of the cores include devices and accelerators

such as AXI bridges, GPIO, PLBV4.6 bridge, BRAM and external memory

controllers, Serial Peripheral and QuadSPI Interfaces, Analog to Digital converters,

Graphics, Clocks and Timers, UARTs, I2C, Interrupt controllers and many others.

With the power of XPS developers boot an embedded system in a few

minutes without facing processor system complexity and performance issues. It also

includes an enhanced IP creation wizard to design hardware peripherals for soft core

processors.

 XPS also provides software platform support. After generating hardware

design, it provides option to move Software Development Kit (SDK) and creates an

automatic board support package which includes libraries for interaction with

peripherals.

2.4 Integrated Synthesis Environment (ISE)

ISE is a Xilinx software program which has ability of synthesize and analysis of

HDL (Hardware Description Language) designs [11] By use of this software,

developers can synthesize the design, perform trimming analysis, produce RTL

(Register Transfer Level) schematics, and configure with the program. ISE controls

all this processes through the project navigator.

7

Figure 4: Main Interface of ISE

 On the left top side of the panel under the Hierarchy part, design files and

their relation can be seen. Under this part, process panel provides design summary

reports, design utilities, user constraints, synthesis, implement design, generate

programming file and configure target device. At the bottom of project navigator,

console, errors, warnings panel that displays messages can be seen. At the right part,

design and summary report viewer provides detailed reports of design which

gathered during the design processes. At right side of design and summary report

viewer, document interface displays many types of documents and also can be used

as editor of these documents. Reports, design schematics simulation waveforms are

also displayed here. ISE main development window can be seen in Figure 4.

2.5 Software Development Kit (SDK)

Eclipse is an open source software development platform equipped lots of

features and extensible plugin interface to develop and debug software in quite a few

programming languages [12]. Some of its features are the following:

 * An interface for writing and compiling C/C++ code with many properties.

 *Project organization

 *Custom configuration for different build needs and automatic Makefile creation

 *Error trace

 *Subversion support

8

Therefore, Xilinx adopted this platform into its EDK. Hence one can design a

project hardware on XPS and then migrate to SDK to write its top level code mostly

in C language. In addition to above features Xilinx SDK provides extra features for

Xilinx embedded processors listed below, [12]

*Xilinx Microprocessor Debugger (XMD). Stands for establishing communication

between SDK and FPGA board

*FPGA programmer to program FPGA with a bit stream

*Flash programmer to burn bit streams and software application images into external

parallel NOR Flash devices.

*Simple bootloader generator to automatically boot loading embedded software

applications from parallel flash

*Linker script generator to quickly map application image across the hardware

memory space.

3. CREATING MICROBLAZE PROCESSOR ON XPS

3.1 Creating MicroBlaze Core Project

To create a MicroBlaze Project, New BSB Project is chosen from the file menu as

illustrated in Figure 5.

Then create project window will pop-up that includes five sections as shown in

Figure 6. These sections are,

9

 Choosing the path where the project will be saved, for this document project path is

chosen as C:\Users\Engin\Desktop\microblaze_project\system.xmp with browse

button near the text filed.

 Selecting interconnect (bus) type, since PLB will not be supported in future versions

of FPGA families, AXI interface is selected.

 Uploading previous .bsb settings, if any other project is created previously, old .bsb

settings file can be uploaded for using same settings.

 Choosing peripheral repositories that FPGA board supports. Since Digilent Atlys

board is used in this project, its support libraries is downloaded from

https://reference.digilentinc.com/_media/atlys/atlys/atlys_bsb_support_v_3_7.zip

and necessary libraries is selected under the AXI part. For this document

E:\Xilinx_EDK\Atlys_BSB_Support_v_3_7\Atlys_AXI_BSB_Support\lib is chosen.

 After filling al sections, press ok button for the next stage.

Figure 6:XPS Create Project Window

In this step a base system will be built for MicroBlaze. Base System Builder window

which includes 3 main parts shown in below Figure 7.

https://reference.digilentinc.com/_media/atlys/atlys/atlys_bsb_support_v_3_7.zip

10

 In first part, necessary board that will be used in project is chosen. For the current

project Digilent is selected as board vendor and the name of the board that will be

used in project is Digilent Spartan-6 Atlys and its revision is C.

 In second part Single MicroBlaze Processor System is selected.

 In last part Optimization Strategy can be selected as area or throughput for different

kind of needs. In this document Area is selected.

 Click next button for further configurations.

Figure 7: Base System Builder Board Configuration

New window includes peripherals about internal configurations and peripherals of

MicroBlaze processor as seen in Figure 8. This window has 3 main parts:

 In the first part processor frequency is chosen as 100MHz for this project.

 Second part consists three subparts

o Local memory size is used for on-chip computations. 8Kb will be enough for

the project

11

o Instruction Cache is used to speed up executable instruction fetch. Frequently

used instructions are stored here. 8Kb will be enough for the project

o Data cache is used to speed up data fetch and store. When processor has to

make a read or write operation it first checks cache lines. If processor finds

corresponding memory in data cache it immediately writes and reads from

that cache line. 8Kb will be enough for the project.

 Last part is the place where peripherals of microblaze are selected. In here one can

add or remove the peripherals that will or will not be used in the project. Peripheral

selection is also can be done at next stages. For this project we exclude dip switches,

ethernet lite, leds, push buttons, QSPI flash and rs232 uart modules.

 Click finish button to let XPS prepare project for you.

Figure 8: Microprocessor Configuration

After creation of project a sophisticated interface with many features will be

seen. This interface capable of adding new peripherals to MicroBlaze or remove

them, connecting necessary signals to corresponding ports, simulating the project and

exporting the project to the Xilinx SDK tool.

12

Figure 9: Main Interface of XPS

3.2 Attaching AXI Timer

Since AXI System is selected in previous steps we must add AXI timer and AXI

interrupt controller to the project. To add AXI timer, in the IP Catalog section extend

the DMA and Timer, marked as 1 in Figure 9 and in Figure 10, then double click AXI

Timer/Counter peripheral and click yes to question in pop-up window that asks as Do

you want to add one axi_timer 1.03.a IP instance to your design?

Figure 10: AXI Timer

Than XPS core configuration window will be opened. Click the Only One Timer is

present box as marked in Figure 11 then click OK.

13

Figure 11: Core configuration of axi_timer

In next pop-up window named “Instantiate and Connect IP- axi_timer_0”, choose

first option to make bus connections and address assignments automatically. If the

other option is chosen, then necessary confıgurations have to be done manually.

Figure 12: Automatic Wiring Window

3.3 Attaching AXI Interrupt Controller

To add AXI interrupt controller extend Clock, Reset and Interrupt in IP Catalog

section, marked as 2 in Figure 9. Than double click AXI Interrupt Controller

peripheral in Figure 13 and click yes to question in pop-up window that asks as Do

you want to add one axi_timer 1.03.a IP instance to your design?

14

Figure 13: AXI Interrupt Controller

In the IP Core confıguration window there is no need to make any change click OK

to jump further steps. Than in the new pop-up window named “Instantiate and

Connect IP- axi_intc_0”, click first option to automate bus connections and address

assignments same as in the Figure 12.

After adding in IPs, timer interrupts must be connected to interrupt controller and

interrupt controller have to be connected to microblaze interrupt port. To do this

click the System Assembly View, marked as 6 in Figure 9, and then click port

section, marked as 4 in Figure 9. In the new window extend the axi_intc_0 peripheral

and click the L to H: No Confection as shown in Figure 14.

Figure 14: Assigning Timer Interrupt

Than Interrupt connection dialog will pop up as shown in Figure 15. In this dialog

click the axi_timer_0 and blue arrow to add interrupt. Then click ok. This operation

will make necessary changes in system.mhs file.

Figure 15:Interrupt Connection Dialog

15

To connect the interrupt controller to the MicroBlaze interrupt port, click Bus

Interfaces section, marked as 3 in Figure 9, and extend microblaze_0 than in the

interrupt section, marked as three in Figure 16, and select axi_intc_0 INTERRUPT.

Figure 16: Connecting Interrupt Controller to MicroBlaze

To check this connection, click Graphical Design View, marked as 7 in Figure 9, and

select only interrupts from standard filters section to have a simple view. If interrupts

are connected correctly, Connections have to look like in figure 17.

Figure 17: XPS Graphical View

16

4. ADDING CUSTOM IP (INTELLECTUAL PROPERTY)

4.1 Creating Barebone Custom IP

In this section, creating a custom hardware will be explained in detail. To create a

brand new custom peripheral, Create or Import Peripheral is selected under the

hardware tab as shown in Figure 18.

Figure 18: Custom IP Creation Menu

Then Create or Import Peripheral Wizard will be opened as in Figure 19. Next button

is clicked to pass information screen. Incoming Create and Import Peripheral Wizard

window consists two parts:

 First part is for choosing either creating a new peripheral or importing an existing

one into the project. Create templates for new peripheral option is selected.

 Second part is for loading and existing .cip setting file which is created in previous

sections and located at

$(project_path)/pcores/$(name_of_perripheral)/devl/create.cip. All settings will be

done by hand in this document. Therefore, this option is leaved empty.

 Next button is clicked for further steps.

17

Figure 19: Create and Import Peripheral Wizard

This step is responsible for selecting project location. If the peripheral that will be

created will be used for other projects too than selecting EDK repository will provide

to access peripheral from other projects automatically. However, if the peripheral is

not suitable for general use, storing peripheral under the project folder is a better

choice. For this project to an XPS project is chosen as shown in Figure 20. Next is

clicked for further steps.

Figure 20:Create Peripheral Window

This step is the place where the name and version of the hardware is specified. Top

module name of the hardware will be same as IP name and it cannot include anything

other than lower case letters decimal digits and underline character. In addition to

18

this, names have to start with a letter and cannot contain underline character at the

end [13]. Version of the hardware also can be selected in this part. Since there was

not and existing version of serial adder, revision is set as default values for this

project and a description can also be added in description box if necessary. Next is

clicked for further steps.

Figure 21: Peripheral Name and Version Configuration

In this step bus interface is chosen. There are 4 different kinds of buses that AXI

system supports. AXI4, AXI4-Lite, AXI4-Stream and Fast Simplex Link (FSL)

AXI4-Lite:

 Is a subset of AXI4 interface, it communicates with peripherals over registers in

peripherals. It is a light-weight, single transaction memory mapped interface and

generally used for simple component interface and requires less effort to design.

AXI4-Lite bus is able to work with 32-bit slave configuration, reads and writes with

32-bit data width and supports multiple address ranges [14].

AXI4:

Has a burst mode capability which allows not to verify all the steps of data transfer

and provides higher data throughput. Both AXI4 and AXI4-Lite has 5 channels for

data transfer: read address channel, write address channel, read data channel, write

data channel and write response channel. AXI4 can make up to 256 data transfer per

transaction while AXI4-Lite can only make 1 data transfer. In addition to this AXI4

19

bus supports 32, 64, 128, 256, 512 and 1024 bit data widths while AXI4-Lite only

supports 32 bit [15].

AXI4-Stream:

AXI-Stream is a subset of AXI bus interface which is optimized for high-speed

streaming data. It has only burst mode with selectable input data width between 8-

256 bits [16]. As its name implies, this bus is generally used for real time data

streaming over DVI, HDMI and parallel video sources.

FSL (Fast Simplex Link):

FSL is a uni-directional point-to-point data transfer interface which provides fast data

transfer between peripherals and MicroBlaze core. It builds a one-way point-to-point

data transfer using FIFO(First In First Out) method with supporting FIFO depth

between 1 and 8K, in addition to this, FSL also able to use both synchronous and

asynchronous FIFO modes [17].Since a basic eight bit serial adder will be used in the

project, AXI4-Lite interface is the best choice for current project. Thus AXI4-Lite is

selected as marked in Figure 22 and next is clicked for further steps.

Figure 22: Bus interface Selection

This step is the phase for selecting IPIF (IP Interface) services. It includes two main

sections:

 First section provides master service and the configuration which is needed for more

complex peripherals. Since the peripheral that will be going to implemented in this

20

project, is only responsible to add two unsigned integers, there is no need to use

master interface.

 Second section provides slave service and configuration which suits the project

needs. It provides three options, software reset, user logic software register and

include data phase timer. This options can be selected for different needs. User logic

software register and include data phase timer is selected for current project as shown

in Figure 23. Next is clicked for further steps.

Figure 23: IP interface configuration

After selecting slave service configuration, if user logic software register is selected

than next step will be the place for selecting number of this registers, otherwise

create peripheral wizard will directly jump to IPIF signal selection step. Although

only two number will be used for adding operation in the custom peripheral, 4

register is needed, 2 for storing input unsigned integers, 1 for start signal and 1 one

for storing the result of summation. Next is clicked for further steps.

21

Figure 24: Software Accessible Register Selection

Next step is the step for the selecting signals between AXI4-Lite and custom

peripheral. These signals are for establishing communication with MicroBlaze over

AXI bus protocol and can be configured according to projects requirements. Default

configuration is used for the current adder project as seen in Figure 25.

Figure 25: IP Interconnect Signals

In next step decision of the BFM simulation is given. Choosing this option will

generate a test bench template, HDL stimulus file for target bus. Generate BFM

simulation platform option is checked for the current project and moved to other

step.

Next phase includes three options which will facilitate the development processes.

22

First option is for selecting the language of “user_logic” file where the actual

peripheral design will be implemented. This option if for the developers that feels

more comfortable while developing with Verilog. Second option generates ISE and

XPS project files to ease development process and the last option is for generating a

basic driver files which will be used wile accessing the hardware from the SDK. All

options are selected as shown in Figure 26 and Next is clicked to pass last step.

Figure 26: Peripheral Implementation Support

Last step summarizes the peripheral features and also shows the place where the

peripheral files are saved. These paths will be used while making adjustments and

adding custom features to IP. Path of the HDL files and ISE project is

C:\Users\Engin\Desktop\microblaze_project\pcores\eight_bit_adder_v1_00_a and

path for the driver files is

C:\Users\Engin\Desktop\microblaze_project\drivers\eight_bit_adder_v1_00_a\src.

Finish is clicked to start the creation of custom peripheral. Newly created IP can be

seen in the IP Catalog under the Project Local PCores as shown in Figure 27.

4.2 Adding Interrupt Port to Custom IP

 The aim of the project was decreasing the CPUs burden and enhance the main

process by executing some time consuming operations not on the CPUs internal

cores and registers but process them on peripherals. Thus the only responsibility of

23

the CPU will be to start the operation on peripheral and get the results when the

process ends. By doing so CPU does not have to know how the process is executed

in peripherals. However, there might be different peripherals for different kind of

operations and all these different operations may need different amount of time

which makes these processes asynchronous. Therefore, two different techniques are

used for informing the CPU, polling and interrupt handling. In a polled system, CPU

periodically saves its current state into process stack and asks to peripherals if they

finished their job. If the answer is yes than CPU gets results from peripheral

otherwise continues its previous process. As it is seen this approach is not very

efficient due to no answers. However, with an interrupt based system both CPU and

peripheral has an extra port for interrupt signal. Thereby whenever one peripheral

finishes its job, it sends a signal to this port and gets attention of the CPU. As soon as

CPU senses an interrupt it saves the current state of the process into stack and take

cares of the peripheral outputs.

Since MicroBlaze support interrupt driven processes and has one interrupt port, to

connect eight bit adder IP to MicroBlaze, an interrupt controller have to be used and

interrupt port have to be added to the adder peripheral. While creation of the

peripheral, corresponding ISE project were also created and can be found under the

project files. For adding an extra output port, necessary changes must be done on

“user_logic.v” file in the ISE project. Path of the “user_logic.v” for current project is

C:\Users\Engin\Desktop\microblaze_project\pcores\eight_bit_adder_v1_00_a\devl\p

rojnav

After opening the ISE project “user_logic.v” file is opened and extra output is added

as shown in Figure 28 and Figure 29. Since this port will be used as interrupt port, its

name is selected consistently.

Figure 28: Adding Extra Port to Custom IP

24

Figure 29: Defining Extra Port

However, user_logic is sub-module hence an extra port has to get created in upper

module and be connected with IP2Bus_Interrupt. To do so “eight_bit_adder.vhd” file

is opened, necessary changes is applied as shown in Figure-30 and Figure-31 and

Figure-32.

 Figure 30:Adding Extra Port to eight_bit_adder Top Module

Figure 31: Definition of Port in Top Module

Figure 32: Connection Between the Modules

After all this additions and assignment operation done, newly created custom IP now

has an extra port. However, this port does not have the interrupt feature and the

addition of this feature will be done on XPS.

4.3 Adding Custom Feature to IP

Up to now a MicroBlaze processor project and a custom IP are created. Then an

output port that will be used as interrupt port is added into custom IP. However,

25

Custom IP still does not have any special feature. This feature can be designed in a

separate Verilog file and added into user_logic file as a submodule. In the current

project an 8 bit serial adder will be designed and implemented into custom IP.

4.3.1 Design the Serial Adder

Serial adder module adds two unsigned eight-bit integers and return the sum in

eight-bit for simplicity overflow conditions does not considered. In attempt to realize

this, five input and two output ports are added into adder. Input ports are first

number(a), second number(b), clock signal(clk), reset(rst) signal and start(start)

signal respectively. Output ports are sum(c) and done(done) signal. When start signal

is triggered adder algorithm will start to run for nine cycles and at the end of 9th

clock cycle sum of two inputs will be assigned to output port and done signal will be

set high for 1 clock cycle. Adding algorithm is based on shifting bits on local

registers, at each cycle least significant bits of inputs are summed with a full adder

and result is written into most significant bit of local sum register. Than all register

contents is shifted to one bit left. This process is repeated for eight clock cycles and

at the ninth clock signal results are assigned to corresponding ports. External view of

the SerialAdder module is shown in Figure 33.

4.3.2 Implementation of Serial Adder into IP

To implement adder functionality into newly created peripheral, pre-established

SerialAdder.v file is copied into Verilog folder. Path of this folder is

C:\Users\Engin\Desktop\microblaze_project\pcores\eight_bit_adder_v1_00_a\hdl\ve

rilog for the current project. Than eight_bit_adder_v2_1_0.pao file is opened and

SerialAdder module is linked up in the file as shown in Figure 34 then .pao" “file is

saved and closed. This step is crucial for introducing serial adder module to XPS, if it

is not done properly than “SerialAdder is black box” error will occur. Path of the

eight_bit_adder_v2_1_0.pao for the current project is

C:\Users\Engin\Desktop\microblaze_project\pcores\eight_bit_adder_v1_00_a\data.

26

Figure 34: .pao file of IP

After introducing adder module to XPS, this module has to be mounted in

user_logic file. To do so ISE project for the corresponding IP is opened under the

projnav folder. Path of this folder in current project is

C:\Users\Engin\Desktop\microblaze_project\pcores\eight_bit_adder_v1_00_a\devl\p

rojnav. Then SerialAdder,v file is imported into ISE project as show in Figure 35.

Figure 35: Addition of SerialAdder.v

Than user_logic.v is opened and two wires is defined as seen in Figure 36, one for

result of summation and one for done signal that indicates the end of summation

operation.

Figure 36: Net Declarations

27

Than an adder instance “SA” is created and necessary input/output variables are

placed in the SA as shown in Figure 37.

 First slave register will hold first number in its first eight bit.

 Second slave register will hold second number in its first eight bit.

 Clock and reset signals of serial adder will be same as IPs clock and reset

signals

 Third slave register will hold start signal in its first bit

 Last slave register will hold the sum of first two inputs after summation

process ends.

 Done signal will be used as interrupt to inform the MicroBlaze

Figure 37: Submodule Decleration

Code for write operation from bus to registers is came by default. As the summation

result will be written into fourth register (slv_reg3), there should not be any write

operation from bus to forth register. For this reason, write operation for slv_reg3 is

commented as shown in Figure 38 and Figure 39. Assignment operation is done just

before the case statement. Hence assignment will be done in every clock cycle.

Figure 38:Assignment of Output

28

Figure 39:Commenting Third Register

As it mentioned while design of serial adder, when summation operation is finished

in SerialAdder module, done signal will be set high for one clock cycle. This signal

is assigned to Interrupt port of custom peripheral to inform the MicroBlaze processor

as shown in Figure 40. The complete HDL code is added to Appendix-A.

Figure 40: Assign Done Signal to Interrupt Port

4.3 Connecting Custom IP to Interrupt Controller

In the main window of XPS, newly created custom IP is right clicked and view MDP

(Microprocessor Peripheral Definition) option is selected. After this selection

“eight_bit_adder_v2_1_0.mpd file is opened. This file describes the interface for the

custom IP and has sections where ports, connections for bus interface and parameter

list were listed [18]. In the file under the port section a new port has to be added with

special keywords and the same name in the “eight_bit_adder.vhd” file. For the

current project marked line in the below Figure 41 is added.

Figure 41: Interrupt Port Definition in MPD File

 Here the route of the signal is assigned with DIR attribute which accept three

different options “I” for input, “O” for output and “IO” for both [19].

The kind of the signal is defined by the SIGIS attribute which can take 3 kind of

options CLK for clock signals INTERRUPT for interrupt signals and RST for reset

signals [19]. The decision of the time when the interrupt signal will be set high is

29

arranged with the SENSİTİVİTY keyword which is able to take for parameters,

EDGE_FALLING, EDGE_RISING, LEVEL_HIGH or LEVEL_LOW [19]. Relative

priority of the interrupt signal can be assigned with the INTERRUPT_ PRIORITY

keyword which can be set as HIGH, MEDIUM and LOW options [19]. Decision of

this relative priority is given by the designer of the custom peripheral with taking the

consideration of byte-rate of IP. Since the current project does not work with

extremely high or extremely low speeds MEDİUM priority will suits the project

needs. After addition of the new port into MPD file, for connecting the interrupt port

of IP to the interrupt controller firstly user repositories is rescanned from Project-

>Rescan User Repositories in main XPS window as shown in Figure 42.

Figure 42: Rescan User Repositories

Then EIGHT_BIT_ADDER peripheral is right clicked from the IP Catalog section

and Add IP option is selected as shown below Figure 43 and yes is clicked as

response to pop-up window.

Figure 43: Adding Custom IP to Project

Then configuration window will pop-up, necessary changes can be done from this

window. Since 4 register is used for the current project, number of the registers

“C_NUM_REG” is increased to 4 as shown in Figure 44. After doing this ok button

is clicked and in further step, automatic binding option is selected as in the previous

steps.

30

Figure 44: Assign Number of Register

Now custom IP is added and connected to the AXI4-Lite bus and it is time to

connect Interrupt port to the axi_intc_0 peripheral. To accomplish this, Port tab is

clicked under the System Assembly View and eight_bit_adder IP is expanded.

Interrupt port of the adder might be seen with a little pen icon near it in this step,

click it to open interrupt connection dialog. If not so, try to rescan user repositories as

explained above and re-add the custom IP after removing the old one from the

project. Custom IP is selected with the corresponding port name and added to

interrupt list by clicking blue arrow in the middle of the Interrupt Connection Dialog

as shown in Figure 45. Interrupt Connection Dialog can be open directly by clicking

INT button pointed by a red arrow in Figure 46.

Figure 45: Attaching Adder to Interrupt List

31

After all done in the XPS, export SDK button is clicked in Navigator as shown in

below Figure. In next window Export & Launch button is clicked to start the process.

This process takes quite long time depending on computers process power.

5. INTERRUPT HANDLING ON SOFTWARE SIDE (STANDALONE)

5.1 Creating Project and Writing Interrupt Handler Code

After generation of the project in XPS, workspace launcher of SDK is opened.

Working folder for SDK is quickly selected and ok button is pressed. Workspace for

current project is shown in below Figure 47.

Figure 47 :Choosing Works Space

32

Before going to create an application project, driver files for the custom IP have to

get introduced. To do this Xilinx Tools->repositories is selected as in Figure 48.

Figure 48: Adding Repositories (a)

Path of the driver files could be added as global or local repository. If they added as

global repository than all projects will be able to access this files without adding

them every time. If they added locally than only the current project will be able to

access driver files. For the current project new button at right side of local

repositories is clicked and path of the XPS project is added as shown in Figure 49.

Project path for current project is C:\Users\Engin\Desktop\microblaze_project

Figure 49: Adding Repositories (b)

After introducing driver files new application project is created from file->New-

>New Application Project at upper left side of main SDK window as shown in below

Figure 50.

Figure 50: Application Project Creation

Then project wizard will be opened. Here there is no need to change anything except

writing the project name. Hardware platform stays in its default value which is

33

already created by XPS in previous steps. MicroBlaze processor also has to stay

same since we used it in previous steps. OS platform can be chosen as standalone,

Xilkernel or Linux. In the current project standalone is selected. Since Board Support

package is not existing, a new one have to be created. Then next is clicked to pass

next step as.

Figure 51: Create Project Wizard

In this step Hello world project is selected as reference. Then the project code will be

implemented instead of hello world file. Then finish button is clicked to start

creation of SDK project. While the project is buit automatically it gives an error

because number of registers is defined different in hearder file and test file. To

correct this both header file and test file is opened with an external text editor. At the

bottom of header file number of register is defined as

#define TEST_AXI_LITE_USER_NUM_REG 4 however it is used with different

name in test file as shown in Figure 52. TEST_AXI_LITE_USER_NUM_REG

constans is replaced with the constant in header file.

34

Figure 52: Correct Error in Test File

Than the name of the helloword file is changed, print statement is deleted and project

is builded again. There is some useful example codes about how to use custom IP

drivers in the source folders of IPs. Path of the interrupt controler examples for the

current project is

E:\Xilinx_EDK\14.7\ISE_DS\EDK\sw\XilinxProcessorIPLib\drivers\intc_v2_06_a\ex

amples. This example is tailored for needs of the serial adder project and editted code

is added into Appendix-B.

5.2 Running Project on Digilent Atlys Spartan-6 Board

For running the cone on real hardware, two micro usb cable is attached PROG and

UART port of the board and charger is plugged the board. Then in SDK Xilinx

Tools->Configure JTAG settings is selected as choesn in Figure 53(a).

Figure 53: JTAG Configuration (a)

 Then from the incoming Configure JTAG window, Digilet USB Cable is selected as

in Figure 54.

35

Figure 54: Jtag Configuration (b)

Then from Xilinx Tool->Program FPGA from the main screen as shown below

figure. Now it is time to run C program on hardware. To see the results on console ,

Run->Run Configurations is selecter from the main menu tool bar. As shown in

Figure 55.

Figure 55: Run configuration (a)

 After this, SerialAdder configuration selected and STDIO connection tab is clicked.

Under this tab connect STDIO to console box is marked, corresponding port is

selected for data transfer from board to console and apply is selected. For the current

project port 4 is selected as shown in Figure 56.

36

Figure 56: STDIO in Console

Then SerialAdder is right clicked from Project Explorer and Generate Linker Script

is selected. As shown in Figure 57(a).

Figure 57: Generate Linker Script (a)

After this in the incoming window under the basic tab, Place Code Sections, place

Data Sections, Place Heap and Stack is assigned to

ddr3_sdram_S_AXI_BASEADDR.

37

Figure 58: Generate Linker Script (b)

In last step project is built and installed to board after selecting Launch on Hardware is in

Figure 59. Results will be seen in console if STDIO configuration is done correctly.

Figure 59: Run Project on Board

38

References

[1] UK Essays. November 2013. Fpga Vs Cpld. [online]. Available from:

http://www.ukessays.co.uk/essays/communications/fpga-vs-cpld.php?cref=1

[Accessed 17 May 2016].

[2]
"Scribd," Scribd, [Online]. Available: https://tr.scribd.com/doc/20477704/Hardware-

Description-Language-HDL-Introduction-to-HDL. [Accessed 15 5 2016].

[3]
M. Rouse, "Whatls," TechTarget, 3 2010. [Online]. Available:

http://whatis.techtarget.com/definition/EEPROM-electrically-erasable-programmable-

read-only-memory. [Accessed 15 5 2016].

[4]
"Xilinx," Xilinx Inc., [Online]. Available: http://www.xilinx.com/products/design-

tools/microblaze.html . [Accessed 13 05 2016].

[5]
"PennState," The Pennsylvania State University, 20 2 2010. [Online]. Available:

http://ecse.bd.psu.edu/cenbd452/lecture/lecture17.html. [Accessed 12 5 2016].

[6]
"Xilinx," Xilinx Inc, [Online]. Available: http://www.xilinx.com/products/intellectual-

property/plb_v46.html. [Accessed 13 5 2015].

[7]
"AXI Interconnect," Xilinx Inc, [Online]. Available:

http://www.xilinx.com/products/intellectual-property/axi_interconnect.html.

[Accessed 2012 5 2016].

[8]
"Electronic Design," Penton Corporate, 5 3 2001. [Online]. Available:

http://electronicdesign.com/microprocessors/advanced-microprocessor-bus-

architecture-amba-bus-system. [Accessed 12 5 2016].

[9]
"AXI Reference Guide," 7 3 2011. [Online]. Available:

http://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_refere

39

nce_guide.pdf. [Accessed 13 5 2016].

[10]
"Xilinx," Xilinx Inc, [Online]. Available: http://www.xilinx.com/products/design-

tools/xps.html. [Accessed 13 5 2016].

[11]
"Xilinx," Xilinx Inc, [Online]. Available: http://www.xilinx.com/products/design-

tools/ise-design-suite.html. [Accessed 13 5 2016].

[12]
"Xilinx Software Development Kit Help Contents," Xilinx Inc, [Online]. Available:

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_3/SDK_Doc/i

ndex.html. [Accessed 14 5 2016].

[13]
"Xilinx," Xilinx Inc, 2008. [Online]. Available:

http://www.xilinx.com/itp/xilinx10/help/platform_studio/ps_r_ipw_peripheral_namin

g_conventions.htm. [Accessed 15 5 2016].

[14]
xilinx, "LogiCORE IP AXI4-Lite IPIF v2.0," 18 12 2008. [Online]. Available:

http://www.xilinx.com/support/documentation/ip_documentation/axi_lite_ipif/v2_0/

pg155-axi-lite-ipif.pdf. [Accessed 14 5 2016].

[15]
Xilinx, "AXI Referance Guide," 18 1 2012. [Online]. Available:

http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13

_4/ug761_axi_reference_guide.pdf. [Accessed 15 5 2016].

[16]
Xilinx, "LogiCORE IP Video In to AXI4-Stream v3.0," 2 4 2014. [Online]. Available:

http://www.xilinx.com/support/documentation/ip_documentation/v_vid_in_axi4s/v3

_0/pg043_v_vid_in_axi4s.pdf. [Accessed 15 5 2016].

[17]
Xilinx Inc, "LogiCore IP Fast Simplex Link v20 Bus," 19 4 2010. [Online]. Available:

http://www.xilinx.com/support/documentation/ip_documentation/fsl_v20.pdf.

[Accessed 15 5 2016].

[18]
Xilinx, Xilinx Inc, 2008. [Online]. Available:

http://www.xilinx.com/itp/xilinx10/help/platform_studio/ps_r_gst_project_files.htm.

[Accessed 16 5 2016].

[19]
Xilinx Inc, "Platform Specification Format," 2008. [Online]. Available:

http://www.xilinx.com/support/documentation/sw_manuals/edk10_psf_rm.pdf.

[Accessed 16 5 2016].

40

Appendix-A

Codes will be added after correction.

SerialAdder.v

user_logic.v

eight_bit_adder.vhd

Appendix-B

Codes will be added after correction.

SerialAdder.c

