ISTANBUL TECHNICAL UNIVERSITY

ELECTRICAL —ELECTRONICS ENGINEERING FACULTY

DESIGN AND IMPLEMENTATION OF A SECURE BLUETOOTH LOW
ENERGY COMMUNICATION

BSc Thesis by

Bahadir GUN

Department: Electronics and Communication Engineering

Programme: Electronics Engineering

Supervisor: Assoc. Prof. Dr. Siddika Berna ORS YALCIN

MAY 2015

ACKNOWLEDGEMENT

First, 1 would like to sincerely thank my supervisor, Assoc. Prof. Dr. Siddika Berna
Ors Yalgin, for her guidance and patience throughout this project. Her unselfish

efforts have helped me significantly and | am deeply grateful.

Also, I would like to thank all my friends for their support. Their company has

always kept me entertained and motivated in times of struggle.

Finally, I want to express my endless gratitude and appreciation to my family, who
have supported my decisions and guided me with their experience. Without their

support, I would not be in this point of my life.

Bahadir GUN

MAY 2015

OZET

Basit ve kiiglik boyuttaki elektronik cihazlarin etkinlik alanlar1 hizla artmaktadir.
Ozellikle Nesnelerin Interneti (Internet of Things - 10T), akilli binalar veya giyilebilir
elektronik cihazlar gibi kavramlarla beraber bulundugu ortamdan veya kullanicidan
verilerin toplanip, islenmek tizere akilli telefon veya bilgisayar gibi daha yetenekli
cihazlara gonderilmesi yayginlagsmaktadir. Veri toplayan cihazlarda iletisim
protokolii olarak diisiik gii¢ tiikketimi sebebiyle Diisiik Enerjili Bluetooth (Bluetooth
Low Energy - BLE) protokolii yayginca kullanilmaktadir fakat BLE protokoliinde iki
cihazin eslesme siirecinde bir giivenlik a¢1g1 bulunmaktadir. letisim kanalini
dinleyebilen pasif bir dinleyici paylasilan anahtar1 elde edip yapilan sifreli veri

transferini ¢ozebilmektedir.

Kisisel bilgiler tagiyabilecegi igin toplanan verilerin giivenli bir sekilde iletilmeleri
yiiksek 6neme sahiptir ve BLE protokoliindeki giivenlik zaafini gidermek igin Eliptik
Egrili Diffie-Hellman (Elliptic Curve Diffie-Hellman - ECDH) anahtar paylasim
protokolii iki BLE uyumlu cihaz tistiinde ger¢eklenmistir. Merkezi cihaz bilgisayar
araciligiyla ¢aligtirilip, kodlar1 C# dilinde yazilirken, ¢evresel cihaz Arduino
araciligiyla calistirilip, kodlar1 C dilinde yazilmistir.

Giivenli bir sekilde anahtar paylagimi yapildiktan sonra veri transferi, giiniimiize
kadar islevsel bir saldir1 yapilamamus Ustiin Sifieleme Standard: (Advanced

Encryption Standard - AES) algoritmasi ile sifrelenmistir.

SUMMARY

Usage areas of small, simple electronic devices are rapidly increasing with concepts
such as Internet of Things (1oT), smart buildings and wearable electronics. These
devices collect data from their environment or their user and generally send the data
to more capable devices, such as smartphones or computers, to be processed. Due to
its low power consumption, one of the most popular communication protocols for
these devices is Bluetooth Low Energy (BLE). However, it contains a security
vulnerability in its pairing process. A passive eavesdropper may obtain the shared

key and use it to decrypt the communication.

Securely transmitting these types of data is of high importance, since it may contain
personal, confidential information. In order to overcome this security vulnerability,
Elliptic Curve Diffie-Hellman (ECDH) key exchange protocol is implemented on
two BLE devices. The master device is run through the computer and its program is
written in C#, whereas the slave device is run through Arduino and its program is

written in C.

After securely sharing a key, the data transfer is encrypted with Advanced Encryption
Standard (AES) algorithm, which until today, has no known practical attacks against

it.

INDEX

ACKNOWLEDGEMENT ..ottt I
OZET ... ettt i
0 1Y o SR v
L INTRODUCTION.....cciiii ettt e e e s e e aaeeanee e 1
1.1, IMOTIVALION <.ttt bbbt 2
1.1.1. Building as @ Service (BaaS)cccccvevveiiiiieeii e 3
2. PRELIMINARY INFORMATIONccoiiiiiititrt e 3
2.1. Elliptic Curve Diffie-Hellman (ECDH)cccoooviiiiicececee e 4
2.2. Advanced Encryption Standard (AES).........ccociiiiiiiiniiieeeee e 5
2.3. Bluetooth Low Energy (BLE)cocuviiiiiiiiieieeeee e 5
2.4. C# and C/C++ Interoperability........cccooeiiiiiiiiiieeee e 7
2.4.1. Changes 0N the C COUR.........coiiiiiieiee e 8
2.4.2. Changes 0N the CH COB.........c.ciiieiiiie e 9
2.4.2.1. Code Marshaling..........ccccveiuiiiieieeie e 10
3. IMPLEMENTATION. ..ottt 12
3.1, USEd EQUIPIMENT ...ttt st sre s 12
3.1.1. Application Controller Interface (ACI)ccooveveieeiiieiecce e, 13
31,2, SEIVICE PIPES ..ottt bbbt 14
3.2. SOftWAre ENVIFONMENT......cuiiieiieieeiesieesie et eeaneenneas 16
3.2.1. NOrdic NRFGO SUAIOeeiveeieeiesieeie et 16
3.2.2. Nordic Master Control Panel (MCP)ccooviiiiiiiiiencne e 17
3.2.3. Arduino Integrated Development Environment (IDE)c.cccceeevennen. 19
3.2.4. Microsoft Visual Studio (VS)ccoveiiiiieiieiececeee e 19
3.3. Testing the Functionality of NRF8001............ccccceiiiiieie e 19
3.4. Communication Between Arduino and Master Control Panel........................ 21
3.5. Communication Between Arduino and Master Emulator Application
Programmable INTErface ..o 23
3.6. Secure Communication Between Arduino and Master Emulator Application
Programmable INTEITACEcooiiiiiiiicee s 24
4. FUTURE WORK ...ttt ettt e e e 30
4.1. Multiple Slave Device CONNECTIVILYcceveiiiinieicieieie e, 30
4.2. Support for Different Application Controllersccoeiiiiiiiiniiiiicieen, 30
4.3. CUStOmM MEeSSage DESIGNcciveeiieiiie ittt 30
4.4, SESSION ENCIYPLION ...eoiviieiie ettt 31

5. CONCLUSION......ooiiiiii
REFERENCES ... s

RESUME

Vi

1. INTRODUCTION

With the increasing popularity of concepts such as Internet of Things (loT),
electronic devices are starting to play bigger roles in our lives. In many areas, small
and simple sensors are collecting data and this data is usually sent to another, more
capable electronic device, such as a smart phone or a computer. The collected data
carries information about either an environment or about a person. It is important to
secure this kind of confidential information while continuing to use these electronic

devices to our benefit.

The main way to provide security is to use encryption in the sensors’
communication. To encrypt a communication, the parties need to establish a key and
an encryption method. Since the communication is not encrypted until after a key has
been negotiated, the key cannot be shared directly and a secure key sharing protocol
should be used. After a key has successfully been negotiated the parties should use a

reliable encryption method to secure the communication between.

The security protocol of the communication should be chosen with respect to the
communication method’s properties. Most of the aforementioned simple sensors are
designed with the goal of minimizing their area and their power consumption. Thus,
the preferred communication method should also support these design goals. The
Bluetooth Low Energy (BLE, also known as Bluetooth Smart) is a protocol which is
developed specifically to be used in such scenarios. It is the inspected
communication method in this thesis, as it consumes less power compared to the
similar communication protocols both during transmission [1] and throughout a

cyclic sleep scenario [2].

1.1. Motivation

BLE protocol is extensively used in low power communication in various devices
and scenarios; however, it has one drawback regarding its security. During the
pairing process, first a 128-bit Temporary Key (TK), known to both parties, is used
to generate a 128-bit Short Term Key (STK). Then an encrypted connection is started
using STK. Then through this encrypted connection a 128-bit Long Term Key (LTK)
is established. Both parties store LTK and use it to generate session key. Once the
devices are paired, the session key changes for every connection but it is generated
by the previously established LTK [3].

BLE offers three pairing methods which are only different until STK generation: Just
Works, Passkey Entry and Out of Band (OOB). In Just Works, TK is always zero.
This method is meant for devices with limited input/output capabilities. In Passkey
Entry, a 6-digit Personal Identification Number (PIN) padded with zero to 128-bit is
used as TK. To use this method, the devices must at least have display on one side
and a keyboard on the other. A 6-digit PIN is always generated randomly and shown
on a display, which should be entered via keyboard to the other device. In OOB,
devices distribute a key using a different communication method instead of BLE,
such as Near Field Communication (NFC).

It is stated in the Bluetooth Specification Version 4.0 that "None of the pairing
methods provide protection against a passive eavesdropper during the pairing
process as predictable or easily established values for TK are used.”. This
vulnerability is explained in detail by Ryan (2013) that it is even possible to force
paired devices to negotiate a key once more and obtain the security information [4].
He also states that despite the vulnerability of the pairing process, the session
encryption of BLE is adequately strong, if a key can be securely established. He
concludes by offering a secure key exchange protocol such as Elliptic Curve Diffie-
Hellman (ECDH) to be added to the BLE protocol.

After the starting date of this project, September 2014, Bluetooth SIG has published
Bluetooth Specification Version 4.2 in December 2014, which now has a secure

pairing mode with ECDH [5]. Despite this progress, there are billions of BLE

devices which has been manufactured without a secure pairing option and this
project can still be used with these devices.

We have searched for a way to implement pairing security for the devices with the
outdated specifications. Exchanging a key with ECDH and using it as a OOB key,
since only in OOB a full 128-bit TK can be used, could solve the problem; however,
most of the devices are designed with a minimalistic approach and do not have OOB
support. Thus, we implemented our ECDH scheme on both parties and used the
generated key with 128-bit Advanced Encryption Standard (AES) to establish

communication security.
1.1.1. Building as a Service (BaaS)

Though our project can be used in almost any context where BLE is the preferred
method of communication, it was originally intended to be used in the European
Union funded Building as a Service (BaaS) project. BaaS is simply explained in its
website as “Software platform for configuration, operation and maintenance of
intelligent building infrastructures” [6]. Secure BLE communication is currently to
be used just in the evacuation system, though BaaS covers many aspects of
intelligent commercial buildings. Each person in the building is planned to have a
device with an active Radio Frequency Identification (RFID) tag and a BLE chip in
slave role. An indoor localization algorithm runs on the device and calculates its
position with the help of passive RFID tags placed inside the building. Then, the
location information is transferred to a central processing unit (CPU) via BLE. Since
the location information of a person is confidential, the communication should be

secure. The security protocol is implemented in both the slave device and the CPU.

2. PRELIMINARY INFORMATION

In this section, protocols, standards and techniques which are used in our project are

explained. The explanations contain information related to the project. For example;

a working implementation of AES algorithm is used but it is unrelated to our project

how it was implemented; thus this information is not given.

2.1. Elliptic Curve Diffie-Hellman (ECDH)

Elliptic curve Diffie-Hellman is a key establishment protocol which enables two
parties to securely negotiate a shared secret key over an insecure channel. This
protocol differs from the Diffie-Hellman protocol by using addition on elliptic curves
instead of using multiplication and modulo operation. The parties should agree on
domain parameters (q, FR, a, b{, SEED}, G, n, h) beforehand, which enables them to
generate keys that are members of an elliptic curve. These parameters must satisfy
the specifications provided by the National Institute of Standards and Technology
(NIST) [7]. With these parameters, addition can be done on elliptic curves but not
subtraction, which prevents an eavesdropper to calculate the original data from a

sum.

To start the negotiation, the parties, A and B, first generate a private key d which is a
random integer in the range [1, n-1]. Then a public key Q = (Xo, Yq) = dG, by
multiplying the parameter G, a special point on the elliptic curve, with the private
key d. The multiplication is done by using addition on the elliptic curve d times. The
public key Q is also a point on the elliptic curve. At the end of these phase, A has its
public-private key pair of da, Qa=daG and B has dg, Qe=dsG. Due to the properties
of the elliptic curve, an eavesdropper cannot expose the private key from the public

key even with the knowledge of the multiplicand G and the result.

After key pair generation, the parties send each other their public key. Upon
receiving the other side’s public key, each party confirms that it is a point on the
elliptic curve and then multiplies it with their own private key to calculate the shared
secret key. At the end of this phase, A has daQg and B has dgQa. It can be seen that
daQs = dadsG = dedaG = dgQa and both parties have calculated the same value,
without exposing their private keys over the insecure channel. The calculated value is
also a point on the elliptic curve and its x-coordinate value is used as the shared

secret key.

2.2. Advanced Encryption Standard (AES)

A working implementation of AES is used directly in our project. The underlying
operation of the algorithm is not in the context of our project; however, information
about its operation can be found in detail in Federal Information Processing
Standards Publication 197 (FIPS-197) published by NIST [8].

However, we are interested in the security of AES. Since the Rijndael algorithm is
accepted as AES, there have been numerous attempts to “break” it. As of today, a
practical attack against AES has not been discovered. One of the last published
attacks could retrieve a 128-bit AES key in 2% tries instead of 2'?tries (as in a

brute-force attack) but the attack is still impractical [9].

2.3. Bluetooth Low Energy (BLE)

This communication protocol is first defined by the Bluetooth Special Interest Group
(SIG) in the Bluetooth Specification Version 4.0 [3]. It uses the unlicensed 2.4 GHz
band for radio communication. The available band is also divided into 40, 2 MHz
apart, physical channels. Three of these channels are for advertising while the rest is
used for data transfer. During communication, two devices change (hop) the channels
they use regarding the connection parameters, such as hopping interval and hopping
increment, they previously agreed on.

BLE protocol stack consists of many layers and a schematic can be seen in Figure
2.1. Though it is not in the figure, a physical layer (PHY) encapsulates the shown
layers. PHY layer includes the specifications such as the operating band, the
modulation technique, the bit rate etc. PHY layer interacts with the Generic Access
Profile (GAP) layer, which specifies the connectivity parameters of a device. These
parameters include antenna gain, the device’s name and appearance, the content and
the sending interval of advertising messages etc. Slave devices can advertise in three
different types. A connection without pairing (bonding) or a paired connection may
be requested. Also information carrying messages may be broadcasted that does not
allow connection. After the connectivity is established with the GAP layer,

interaction at application level can be initiated.

GAP Generic Attribute Profile
Security (GATT)
M
SDP ?gsﬁer Attribute Protocol (ATT)

Logical Link Control and Adaptation Protocol (L2CAP)

Link Manager Protocol (LMP) Link Layer (LL)

Figure 2.1 : Relationship of GAP with lower layers

GAP interacts with the Generic Attribute Profile (GATT) layer next. This layer
contains attributes, which are discrete values with these three properties: an attribute
type, an attribute handle and a set of permissions.

An attribute type is a 128-bit Universally Unique Identifier (UUID), which specifies
the properties of the attribute. Bluetooth SIG has defined some attribute types, such
as a heart rate monitor, but it is also possible for the user to define custom types. This
helps interoperability between BLE devices.

An attribute handle is a 16-bit value, which can be used to reference a specific
attribute. An application may have several heart rate monitors connected to it, which
all have the same attribute type, and the user can reference a specific attribute by its
handle.

The set of permissions specifies the access rights to an attribute. An attribute may be
read only, write only or can only be read with a notification etc. For example the
BLE device of a patient’s heart rate monitor may have write only permission to an
attribute and the BLE device of a doctor/nurse may have read only permission to the

same attribute.

Applications can only send or receive data by modifying these attributes. An
application may write a data into an attribute, then another device’s application can
read this attribute and complete a successful data transfer. A simple interaction
schematic of layers can be seen in Figure 2.2.

(a

eneric Access Profile

Generic Attribute Profile

Example Application

Profile

A 4

Figure 2.2 : Layer dependencies/interactions

2.4. C# and C/C++ Interoperability

In the final stages of our project, we used the Application Programmable Interface
(API), given by our product’s manufacturer, for the master role operation. This API
is written in C# and manages the functionality of the master operation. However, all
of our previously collected functions for ECDH scheme and AES encryption was
written in C. These languages have some fundamental differences and some

adjustments should be made to achieve interoperability.

In C, header files are used to call a function from a library; however in C#, header
files are not used and libraries must be included as Dynamic Link Library (DLL)
files.

Also, C# language is defined by Microsoft as a managed code, which its compiler
manages its own memory deallocation (garbage collection) and does not allow the

use of pointers. This way, the program will not have memory leaks or access

violations [10]. On the other hand, C uses pointers extensively and most of the

functionality is achieved through pointer usage.

2.4.1. Changes on the C code

A C library can be converted easily to an unmanaged DLL file by using Microsoft
Visual Studio (VS) with some small changes. Within VS, a new Visual C++ Win32
Console Application is created and the C codes are added to this project, both the
header file and the C file. At the start of the header file stdexcept file is included.
Then, every function prototype in the header file is wrapped with extern “C”
keyword and before their return type declaration, __declspec(dllexport) keyword is
added. The code should look like below [11].

#include <stdexcept>
using namespace std;

namespace MathFuncs

{
extern "C" { declspec(dllexport) double Add(double a, double

b); 1}
extern "C" { declspec(dllexport) double Subtract(double a,

double b); }

extern "C" { _ declspec(dllexport) double Multiply(double a,
double b); }

extern "C" { declspec(dllexport) double Divide(double a, double
b); 1}

}

Finally, the project is built with the /LD option. With this option, if a DIIMain
function is not present in the project, the linker automatically inserts a DIIMain
function which returns TRUE [12]. Without a DIIMain function, a DLL can be
created without an error; however, when another program tries to call a function

from this DLL, it cannot find an entry point (main function) and program crashes.

After the DLL is created, its exported functions can be checked by entering dumpbin
/exports “DLL_Name.dll” command into the VS command prompt. The output of

the DLL used in our project is given in Figure 2.3.

=N Developer Command Prompt for V52013 = 8 “

0 50 - (PE I 0 A A1 . H -~

=
L
T
L
T
I L
=
TxII

x

I L
T

JISIL
T
I L

7

I L J

T

g
=T
L
=T
J &L
Y B |

i B i)
A]
A]

Figure 2.3 : Sample output of dumpbin /exports command

2.4.2. Changes on the C# code

If the exported C functions’ arguments and return types do not have an unmanaged
type such as a pointer or a struct, then by adding the command
[D11Import (, CallingConvention = CallingConvention.Cdecl)]

and the extern static keywords before the function prototype. For example, the code

below works perfectly fine.

using System; // Console
using System.Runtime.InteropServices; // DllImport

class App

{
[D11lImport (, CallingConvention =

CallingConvention.Cdecl)]
extern static int next(int n);

static void Main ()

{

Console.WriteLine (next (0));

}

However, if the function requires interaction with an unmanaged type, then some

additional work needs to be done.

2.4.2.1. Code Marshaling

Marshaling is the bridging operation between unmanaged types and managed types.
NET framework has a Marshal class, which contains useful functions (methods) to

use in this process.

Some of the data types are common to managed code and unmanaged code. These
types are called blittable types and are the following: signed and unsigned 8-bit, 16-
bit, 32-bit, 64-bit integers; signed and unsigned pointers [13]. With these types, code
marshaling is automatically done. For example a C function with the return type
uint8_t can be used in C# with the return type byte. As for the pointer usage, the type
IntPtr in C#, creates a pointer suitable to the operating system (OS). With the IntPtr
usage, the memory increments should be carefully adjusted, since an increment on an

uint8_t pointer in C is not equal to an increment on an IntPtr in a 64-bit OS.

Usage of IntPtr in C# is similar to the pointer usage in C. A block of memory can be
allocated for IntPtr with the method Marshal.AllocHGIlobal and after its usage this
memory should be deallocated with the method Marshal.FreeHGlobal, since this

type is not managed by the garbage collector of C# compiler [14].

However, if the pointers are used for passing arrays or blocks of data, C# arrays can
be used instead of IntPtr. For example, our ECDH and AES functions work with
128-bit data blocks but they are written for 8-bit processors, so they use 8-bit data.
These functions take uint8_t pointers as arguments but they only use them to store
128-bit data blocks. So if we have a byte array with 16 elements in C#, we can pass
its address as an argument to these functions. The array sizes must be arranged
properly, otherwise access violations may occur. Prototypes of a sample function in

C and C# are given below.

extern "C" declspec(dllexport) void AES128 ECB encrypt(uint8 t¥*
input, uint8 t* key, uint8 t *output);

Function Prototype in C, with the added modifications

[D11Import (Dl11Address, CallingConvention = CallingConvention.Cdecl)]
public static extern void AES128 ECB encrypt(byte[] input, byte[]
key, bytel[] output);

Its usage in C#

10

Unlike these blittable types, usage of structs needs some marshaling operations. C
structs can be used as structs or classes in C#. We are only interested in C structs,
which may contain several data types but no functions. Class-like structs containing

functions can be used in C# with different techniques.

In C, the variables in a struct are laid out sequentially in the memory; however in C#,
memory locations of different variables in a struct may be sequential or explicitly
defined. For simplicity, we have used structs with sequential memory layouts. The
compiler must be informed, that variables in the struct or class we create in C# are
laid out in the memory sequentially, by adding a declarations before the struct. The
compiler also needs to know how much memory the variables occupy and this must
be declared to compiler before the variable declaration. A sample usage is shown
below [15] [16].

typedef struct

{
char datal[l5];
int prob[15];
} LPRData;

Struct declaration in C

[StructlLayout (LayoutKind.Sequential, CharSet = CharSet.Ansi, Pack =

)]
public struct LPRData

{
// char[15]
[MarshalAsAttribute (UnmanagedType.ByValTStr, SizeConst =)]
public string data;

// int[15]
[MarshalAsAttribute (UnmanagedType.ByValArray, SizeConst =)1
public int[] prob;

Its usage in C#

Structs are generally passed by reference, since they usually contain a large
collection of data. Thus, a combination of the information should be applied to
achieve this functionality. First, instead of using the C# struct’s address, an IntPtr is
used as an argument. To use an IntPtr as a pointer to a structure some functions of
the Marshal class can be used. Since pointer usage is not allowed in C#, IntPtr does

not point to the structure, a different memory block is allocated for it. What we do is,

11

copy the contents of the structure to the memory block of IntPtr before passing it to a
function and then, copy the changed values of the memory block back to the
structure after the function is returned. Marshal.StructureToPtr and
Marshal.PtrToStructer methods are used for these operations. The copy operation is
done with respect to the declarations we have made regarding the memory layout and
the variables’ memory occupation. Since IntPtr has a single block of memory
allocated to itself, the struct’s memory usage should be known to avoid mixing the

variables’ data.

3. IMPLEMENTATION

3.1. Used Equipment

Nordic Semiconductor’s nRF8001 Development Kit (DK) is the chosen product for
this project [17]. It contains several different modules and software to help the
functionality of the nRF8001 chip. The chip itself is specifically designed for low-
power peripheral (slave) role. Its features are summarized in Figure 3.1 [18].

Key Features Applications

+ Bluetooth low energy peripheral device
Stack features:
* Low energy PHY layer
» Low energy link layer slave
» Low energy host for devices in the peripheral
role
* Proprietary Application Controller Interface
(ACD)
Hardware features:
* 16 MHz crystal oscillator
» Low power 32 kHz + 250 ppm RC oscillator
» 32.768 kHz crystal oscillator
« DC/DC converter
+ Temperature sensor
» Battery monitor
+ Direct Test Mode interface
+ Ultra-low power consumption
Single 1.9 - 3.6 V power supply
+ Temperature range -40 to 85°C
+ Compact 5x5 mm QFN32 package
+ RoHS compliant

Sport and fitness sensors

Health care sensors

Proximity

Watches

Personal User Interface Devices (PUID)
Remaote controls

Figure 3.1 : nRF8001 summary of features

12

2.1 Hardware components

nRF8001 Welcome card 5 pcs. 8001 samples
» I'-i'.l NI 108
Nordic Semiconduct
Ptease see the instructions on the back of this card for
downloading software and documentation
nRF2740 - SCC module (PCB antenna) PCA64105 - Arduino shield adapter

p, J

N HoRDIC
PCA10000-
nRF51822 Development Dongle

Figure 3.2 : nRF8001 DK Hardware components

The PCA10000 dongle (Master Emulator) can be used in the master role connected
to a computer. It contains an nRF51822 chip, different from the other components
since the nRF8001 chip only allows operation as a slave, which means the chip can
only send advertisement packets and cannot connect to any advertising device. The
Master Emulator can be used via the Master Control Panel program, with a Graphical
User Interface (GUI) but limited functionality or via Master Emulator Application
Programming Interface (API) codes of Nordic, written in C#.

3.1.1. Application Controller Interface (ACI)

nRF8001 chip requires an external microcontroller, referred as application controller
by Nordic, to function. The interface between the application controller and nRF8001
is called Application Controller Interface (ACI) and its operation is briefly shown in
Figure 3.3. The SDK for Arduino includes all of the supported ACI commands for
nRF8001.

13

Biuetooth Low Energy Implementation

Application nRFE001

processor
System command Application data transfer overa
\ Bluetooth low energy wireless link
System event _/

_ System event 2. ‘

(=]
g
2
g
-
1
L]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 3.3 : ACI operating principle

A message sent through the ACI is called a packet. Every packet contains a two byte
header, followed by a packet payload. The length of the packet payload may change
for different ACI packets. The first byte of the header specifies the total packet
length in bytes, excluding the length byte itself and the second byte specifies the
unique opcode of the command/event. The messages sent to nRF8001 is called

commands whereas the messages sent to the application controller is called events.

Unigue OP code

Packet length (bytes) Packet payload (0 to 30 bytes)
/ LSB MSB
I Length ‘ OP code | PDU (length depends on Command/Event type) I

>
Packet header

Figure 3.4 : ACI packet structure

3.1.2. Service Pipes

Services of the nRF8001 device are a collection of GATT attributes (characteristics)
which are used together to achieve a functionality. Applications may contain many

services and may also contain multiple instances of a service. Applications interface

14

with other devices through these characteristics. Nordic has defined the service pipes
concept to use characteristics.

As it is explained before, a characteristic has a type, a handle and a set of
permissions. For example, an application may have several characteristics of blood
rate monitor type and through the usage of handle values, these characteristics are
addressed. A characteristic may also have different permissions for different devices,
for example a doctor may only read a heart rate monitor characteristic through his
device and a patient’s device may only write to the same heart rate monitor

characteristic.

Service pipes are “channels” to these characteristics and they contain the
characteristic’s properties. A characteristic may have multiple service pipes. In the
example above, the heart rate monitor characteristic has 2 pipes. One of the pipes is
between the characteristic and the doctor’s device and this pipe has read permission
and the direction of data transfer is from the server to the doctor’s device. The other
pipe is between the characteristic and the patient’s device and this pipe has write

permission and the direction of data transfer is from the patient’s device to the server.

Service
(Service pipe #1

==
>
(Service pipe #2 - () /

(Receive, w. ACK)

Service pipe #3 > -
((Transmit, no ACK) ()

Figure 3.5 : Service pipes

Service pipes may have several properties (set of permissions). Some of these

properties are given below:

Direction of data transfer: Data can either be received or transmitted within a
service pipe. If bidirectional transfer is desired, two service pipes must be used. An

example can be seen in Figure 3.7.

15

Server location: The value of the characteristic may be stored in either of the
devices.

Acknowledgement: A device may request an acknowledgement after it transmits

data or may send an acknowledgement after it receives data.

3.2. Software Environment

Since the devices operating in master and slave roles are different, programming

environments for these devices also differ.

3.2.1. Nordic nRFGo Studio

This program allows the user to modify both nRF8001 and nRF51822. User can only
modify the bootloader, the firmware or the program of the master emulator chip
nRF51822. However, even the core Bluetooth functionality of the nRF8001 such as
GATT services and GAP settings can be modified via nRFGo Studio. Main BLE
functionality of an application is supplied by the GATT services.

File View nRFBD0TSetup Help

Device: |nRF8001DX/D ~ SetpID: 0

GATT Services GAPSettings | Security | Hardware Settings Current Consumption

Air Remate (GATT Client) Service templates Add new template

Drag and drop services from this lst to the
pane on the le

Battery
Current Time
Device Information

Health Thermometer

nRF8002 — Write Without Response HID over GATT Service

[¢
[{
¢
(Immediate Alert
(9) Transmit " Notify — mmediate Ale
(10) Recwe Ack Auto KB DFU Contrl Poin: ~ Wiite Link Loss Alert
Bl UART over BTLE Network Availability
(1) Receive & usrTRX — Wit Witheut Respense Next DST Change .
(12) Transmi it & varT T Notify — Nordic Device Firmware Update Service
(Notify — Nordic UART over BTLE
(
s

I8 UART Control Point — Wite Without Response Reference Time Update
15) Set @ UART Link Timing Current TX Power

Device Manager x
Motherboards
5 mmir

nRF51 Bootloader
nRF24LU1+ Bootloaders

Figure 3.6 : nRFGo Studio GATT Services window

While GAP settings are mostly about connectivity, some functionality can be
achieved by the adjustment of GAP settings. The contents of the three types of
advertising messages can be seen within the GAP settings window in Figure 3.8. For

example, a device may broadcast the temperature without connecting to a device.

16

B UART over BTLE

(11) Receive [varTRX — Write Without Response
{12) Transmit & uarTTX Motify —
(13) Transmit . Motify —
(14) Receive I8 UART Control Point — Write Without Response

{15) Set I8 UART Link Timing Current

Figure 3.7 : Multiple service pipes of a characteristic

Also, a connecting device may or may not be informed of the services of the
nRF8001. For example, NnRF8001 may only inform the devices of its heart rate

service if the devices pair (bond) for security measures.

File View nRFE001 Setwp Help
x
Device: nRF8001DXD ~ Setup ID: 0
GATT Services GAP Settings | Security | Hardware Settings Current Consumption

Selected fields to advertise
s ACIConnect | ACIBond | ACIBroadcast
4 Bluetooth

Advertising Scan response:
E‘RFSDDW Configuration i length (bytes): |4 = Use complete + | [Do not advertise -

Bytes in shortened name: O O

Appearance (16-bit ULID in HEX): 0080 O O

External antenna gain: odm [+ O g

[m}]

Delay for ACI Change Timing Request: | Ssec |3 O 0

Custom Advertisement types O [m]

Ad type (Hex) Value (Hex) O O

Custom 1: |19 3000
Device M x Custom 2: |18 Resulting advertising packet

ACIConnect | ACIBond | ACIBroadcast

Timing parameters (Peripheral Preferred Connection Parameters Characteristic
ning ka PPCP)

Advertisement packet Scan response packet ~
n ootl Maximum connection interval: s0,00ms [[Mo speafic maximum B G
nRF24LUT~ 2 ADtype = Flags
on interval: 20,00ms 5[] No specific minimum 3 Broadcast Mode
o 4 Length:4
Connection supervision timeout: 200ms [3] [Nospedfic value 5 ADtype = Complete...
6 55
7 %2
v g s
Service Solictation and Local Services 9 7
v

Advanced GATT Settings

Figure 3.8 : GAP settings window

After the settings are adjusted, a header file and an optional C file may be generated
by nRFGo Studio. The header file can be included in the application controller’s
program to modify the nRF8001°s settings. These settings cannot be changed during

run-time.

3.2.2. Nordic Master Control Panel (MCP)

This program is used to run the Master Emulator and monitor it during its operation.
A firmware can be flashed to the Master Emulator with MCP also. Though the user
may add GATT services, services are implemented on the nRF8001 in our project.

After connecting to a device, characteristics implemented on the device can be seen

17

within MCP. User can also access the permitted service pipes, may write into them

or read their contents.

File Help
Master emulator

| COM4 - 480114508 v| 480114508 connected

Scan for devices

Stop discovery

Discovered devices
URT (CAFD7BS7406C) (-46dBm)

- RS5I: -46dBm

- Address: C4FD7BS7405C

- Address Type: Random

- Advertising Type: Connectable

- Bonded: False

- Advertising Data
Flags: GeneralDiscoverable, BrEdrMot Supported
- ServicesMore Avaisble Uuid 128: (5E400001B5A3F393E0ASESDE24DCCASE
Complete LocalName: URT

+- Scan Responsze Data

Delete bond info

Log

[02:35:13.6] Loading...

[02:35:25.1] Ready

[02:35:34 3] Device discovery started

Figure 3.9 : MCP discovery window

Although MCP has an easy to use Graphical User Interface (GUI), it provides limited
functionality. The user can only send data by manually entering and the received data
cannot be processed. Due to these reasons, it is mainly used for connectivity

confirmation in the early stages of the project.

18

3.2.3. Arduino Integrated Development Environment (IDE)

An Arduino Uno board is used as the application controller for the nRF8001 in our
project. Nordic’s SDK for Arduino contains many templates for different purposes
and instead of writing a program from the start, we modified and used these
templates in our project. The programs are compiled and uploaded to the board
through the Arduino IDE.

The operation of nRF8001 can be monitored through the Arduino Serial Monitor
(SM). By enabling the debug messages, the ACI command and event exchange
between the application controller and the nRF8001 can also be seen. The contents of
the ACI packets are displayed byte by byte in the SM. The debug messages are

enabled by passing a true argument to the ACI initialization function.

lib aci init(&aci state, true);

Examples of the debug messages in SM and monitoring the interaction will be given

in further sections.

3.2.4. Microsoft Visual Studio (VS)

Visual Studio is used in our project to run the Nordic’s Master Emulator API, written
in C#. We have explained previously, how we integrated our C codes for ECDH
scheme and AES encryption into the API. The implementation of our ECDH scheme
and AES encryption are done in VS. Similar to the SDK for Arduino, template
projects are given for the Master Emulator and we have added desired functionalities
to these templates, instead of writing them from the start. Unlike the code
interoperability part, the implementation can be done in any C# IDE, since exclusive
features of VS are not used in this part of our project.

Detailed explanation of the master role operation will be given in further sections.

3.3. Testing the Functionality of nRF8001

Before starting to implement our security protocol, the correct operation of NnRF8001
should be ensured. First, some changes need to be made on all of the examples in the

Nordic’s SDK for Arduino. If the Arduino shield in the Development Kit is used to

19

connect nRF8001 with Arduino, pin numbers need to be adjusted. The correct pin

numbers are given below.

aci state.aci pins.regn pin = 3S; //SS for Nordic board, 9 for
REDBEARLAB_SHIELD V1 1
aci state.aci pins.rdyn pin = 3; //3 for Nordic board, 8 for

REDBEARLAB SHIELD V1 1

Although, the following commands are not in all of the examples, they also need to
be changed.

Find: static hal aci data t setup msgs[NB_SETUP MESSAGES] PROGMEM =
SETUP_MESSAGES CONTENT;

Replace: static const hal aci data t setup msgs[NB_SETUP MESSAGES]
PROGMEM = SETUP_ MESSAGES CONTENT;

Fmd:aci_state.aci_setup_info.setup_msgs = setup msgs;

Replace: aci state.aci setup info.setup msgs =
(hal aci data t*)setup msgs;

After these changes, the operation between nRF8001 and application controller is
checked. To control data transfer between nRF8001 and the application controller,
ble_aci_transport_layer_verification example is run. After nRF8001 setup, “Echo

OK” message should be received from the Arduino SM periodically.

20

Arduinc setup
nBFE001 Reset done
Evt Device Started: Setup
Evt Dewvice Started: Test
Started infinite Echo tesat
Bepeat the test with all bytes in echo _data inverted.
Waiting 4 seconds bkefore the test starts....
Echo OK
Echo OK
Echo OK
Echo OK
Echo OK
Echo OK
Echo OK
Echo OK
Echo OK
Echo OK
Echo OK
OK

Eak P

Autoscroll Mewline w | |115200 baud

W

Figure 3.10 : Transport layer verification

3.4. Communication Between Arduino and Master Control Panel

After the operation of NRF8001 is confirmed, simple communication between two
BLE devices are tested. Since the data will not be processed on the master side, MCP

is used instead of Master Emulator API.

The master emulator dongle is plugged into the computer and MCP is run. Then,
with the changes mentioned above, ble_uart_project_template example is run. User
inputs entered into the textboxes in MCP or the Arduino SM are successfully sent to
the other side. However, this template converts the received and transmitted data of
the SM into an ASCII text. We want to transfer data without a conversion, so that
part of the template should be adjusted. Since we have access to the received data
before it is converted, that part will be modified when implementing our security
protocol.

With the adjustments, it is made possible to send 8-bit data with hexadecimal
notation. In Figure 3.10, the MCP and SM windows are shown. The blue frames

21

show the fields related with data transfer from MCP to SM and the red frames show
the fields related with data transfer from SM to MCP. In a blue frame within the
MCP, there is a characteristic called UART RX. As it was mentioned before, the
current window of the MCP shows the services of the connected device and is called
Service Discovery window. Values entered into the textbox of the MCP is sent to SM
via the UART RX characteristic of the nRF8001.

— —_— —_— -

COM4 (Arduino Uno) E Master Control Panel | = | =l 23 ﬂ
File Help

= Master emulator

E3 :3, 84, 13, 0, [D:JM;} » | COM3 connected Reset

E7 :7, 83, 10, 0, 0,

Evt link connection in|| Deviceinfo

ceos2. D, F, 10, 0. 0 Device address: C4FD7BS7405C Bonded: Falze

E3 :3, 84, D, 0, Actions
E4 :4, BC, B, 41, 31, [Disconnect] [Bond '] [Update '] [Discoversem’ces] [Disable SEIVICES] [DFU]
Pipe Number: 11 Service Di
Data(Hex! : B 1 ervice Discovery _
#1 =I- CharacteristicDeclaration, Value: 04-1F-00-9E-CA-DC-24-0E-E5-AS-E0-33-F3-ABS-02-00) ~
22 i IART RX, Value: 41-31
. - CharactensticDeclaration, Value:
Concatenation: A2 . UART TX Value: AZ-E3
EL‘ i ClientCharactensticConfiguration, Value: 01-00, CharactersticConfiguration Bits: Motificz
‘? B CharacteristicDeclaration, Value: 14-24-00-5E-CA-DC-24-0E-E5-AS-E(-93-F3-A3-B5-04-00-
42 JUID: 6E400004-B5A3-F353-EDAS-ESDE24DCCASE, (No values read) = |
33 ‘... ClientCharactensticConfiguration, Value: 01-00, CharactensticCorfiguration Bits: Matfficzl
Concatenation: B3 (=) Characteristic Declaration, Value: 02-27-00-3E-CA-DC-24-0E-E5-A3-E0-93-F3-A3-B5-05-00- ~
E 4| mn | F
Sending: =* Attribute value
c4 :4, 15, C, B2, B3,
TR UUID (: 0002 Handle (B: 001F [Display as UTF8 Readlong | [Read |
Value: @ hex) tet 41-31 Write long Write
4|
Autoscrol Back
N, r Log
cen i FlmrwimeT

Figure 3.11 : Arduino and MCP communication

Debug messages of the nRF8001 are also enabled and the lines starting with C, show
the ACI command packets where the lines starting with E show ACI event packets. It
can be seen in the blue frame of the SM, that an ACI event packet is sent from the
nRF8001 to the application controller after receiving the data. The event packet is 4-
byte long (excluding the length byte at the beginning), has the opcode 8C (the code
for DataReceivedEvent), followed by the byte B (hexadecimal notation of 11), which
shows the service pipe number where this data is received. The remaining bytes
represent the text sent from the MCP. It can be seen that the received message 41-31
is converted to ASCII and displayed as A 1.

22

As for the red frame of the SM, the input A2, B3 is entered into the textbox of SM.
The program processes the input character by character and the first two values in the
red frame is the ASCII codes of A and 2, respectively. These values are concatenated
to A2. Then, values 2C and 20 is seen in the frame, these values correspond to
comma (,) and space(), respectively and they are ignored by our program. The
following values 42 and 33 correspond to B and 3, respectively and they are also
concatenated to B3. Finally, the value A, which corresponds to newline, is seen and
after receiving the newline character, the program proceeds to send the concatenated
values. Since the data is first transferred from the application controller to the
nRF8001, an ACI command packet with 4-byte length (excluding the header byte),
with the opcode 15 (the code for SendData), followed by the byte C (hexadecimal
notation of 12), which shows the service pipe number where this data is going to be
transmitted. It can be seen in the red frame of the MCP that the data A2-B3 is
received from the UART TX characteristic. Without any adjustments to the template,
if A2, B3 is entered into SM, the program sends 41-32-2C-20-42-33 to the MCP

(newline character triggers the transmission).

3.5. Communication Between Arduino and Master Emulator Application
Programmable Interface

After communication between two BLE devices are successfully established, we

wanted to achieve the same success using the Master Emulator API instead of MCP.

Sample project template nRFUart is run in Visual Studio, while our modified
ble_uart_project_template is still running in Arduino IDE. It was seen that nRFUart
project also converts the data into ASCII before transmitting. At this phase, we have
not made any adjustments. Only the communication functionality is checked.

In Figure 3.12, the windows of the API and the window of Arduino SM is shown.
The red frames show data transfer from SM to APl where the blue frames show data
transfer from API to SM. It can be seen that data transfer occurs without a problem.
After we have confirmed the operation on both platforms we wanted to use for the

final phase, we started to implement our security protocol on both sides.

23

[~] nRF UART = B
File Help

I Disconnect |

:3, 84, 13, 0,
E7 :7, 89, 10, 0, 0, 0, 14, 0, | Console [v] Debug
Evt link connection interval chq [1,5.78.79 8667] Connected to C4F7897409C
53:?'3,%4,&3%0;3,0' Byz:fle e Oy [09:28:20.8823] Discover pipes

[@8:28:21.6480@] Discovered pipe 1 (characteristic 9x6E490802B5A3F393
4 :4, 15, C, Al, B2, [@8:28:21.6792] Discovered pipe 2 (characteristic 9x6E4908@3B5A3F393
E2 :2, 83, 1, [@8:28:21.8511] Discovered pipe 2 CCCD (descriptor ©x2902, service 8
Sending: Cb [@8:28:21.9448] Opening pipe 2
C4 :4, 15, C, 43, 62, [08:28:22.8230] Ready to send
E2 :2, 83, 1, [@B:28:25.4686] Connection Parameter Update Response sent
E6 :6, 8C, B, 45, 33, 43, 34, [00:28:25.6325] ection parameter update comnleted
Pipe Number: 11 [@B:28:35.1955]fData received on pipe number 2: @xAl @xB2
Data(Hex) : E 3 C 4 [08:28:35.1955]RX: @€
[@8:28:53.9912]Data received on pipe number 2: 9x43 @x62
< [08:28:53.9912]fRX: Cb
[v] Autoscroll [008:29:12.8166] Data sent on pipe number 1: ©x45 8x33 0x43 8x34
[08:29:12.8166]§ TX: E3C4

E3C4
v @ X Call Stack | Send 100kB data | Stop data transfer
I Send file l

Figure 3.12 : Arduino and Master Emulator APl communication

3.6. Secure Communication Between Arduino and Master Emulator

Application Programmable Interface

First, we have designed an ECDH scheme for both sides. Since our AES functions
run with 128-bit data blocks, we restricted the communication to 128-bit data blocks
only. Larger data blocks are truncated while the smaller data blocks are padded. Our
ECDH scheme is given in Figure 3.13 and Figure 3.14. The scheme starts

automatically after connecting to an unpaired device.

We have defined three custom 16-byte messages. A correct message (confirmation)
has the value 0x01 in all of its bytes, an incorrect message has the value 0x00 in all
of its bytes and a reset message has the value OxFF in all of its bytes. After the
devices are paired, the keys are saved and further connections with that device will

not start the ECDH scheme. Keys are stored until the devices reset.

24

——————— > Messages sent to the other device

~———p : State transitions within a device

SLAVE MASTER
(Device A) {Device B)
NOT_CONNECTED NOT_CONNECTED

After connection, either start
ECDH or use the negotisted key
for enaryption

After connection, either start
[ECDH or use the negotisted key
for encryption

PAIRED PAIRED
Use the negotiated key for Yes s paired? Use the negotisted key for
enayption enayption

l No
NOT_PAIRED Public_AX NOT_PAIRED
4 D S A A |
Generate a key pair, send X Receive
—» o CE L= IR IE T
coordinste of the publickey X coordinate of the publickey,
o send response
7 |
Response " |
v e |
SENT_PUBLIC X RECEIVED_PUBLIC X | |
Receive response, send Y |, Public AY Receive
| coorcinate ofthe publickey [o.....rsvvrrsversieriisinstvcis e censepf ¥ coONdinate of the publickey

L o o |

| |

SENT_PUBLIC_Y RECEIVED_PUBLIC_Y
le Response |——ee=VEDTUBLE Y
Wait for response, then send a Chedk if key is valid, then send ‘
confirmation regardless | a confirmation or eror message
% . Confirm i
SENT_KEY_IS_INVALID By RECEIVED_KEY_IS_INVALID
No
f confirmation is received, enter|
NOT_PAIRED state
E— Yes
d ¥
SENT_KEY_IS_VALID RECEIVED_KEY_IS_VALID
Receive Heeeeeeee fublic DX I .
; If confirmation is received,
x of the publ 3
S sespori generate 2 key pair, send X
coordinste of the public key

Response

RECEIVED_PUBLIC_X i . SENT PUBLIC X

Figure 3.13 : ECDH scheme, part 1

Two user made classes are created in API. One is a static class called UART _control
and includes the adjustment for sending hexadecimal data instead of an ASCII text. It
also includes the 128-bit AES implementation in C [19]. The other class is called
ECDH_control and contains the functions of ECDH implementation [20] as well as

the supporting functions and variables for our ECDH scheme.

In the Arduino, the same ECDH implementation is used but an Assembly based 128-
bit AES implementation is chosen to reduce memory usage and improve execution
speed [21].

25

RECEIVED_FUBLIC X e . SENT _PUBLIC X
Receive "4 Receive response, send Y
¥ coordinate of the publickey | Public BY i .| coordinste of the publickey
SENT_PUBLIC_Y.
| RECEIVED PUBLIC Y | Response
Checkifkeyisvalid, thensend | T Wait for response
a confirmation or error message
|
|
RECEIVED_KEY_IS_INVALID = a N e
Yes
RECEIVED_KEY_IS_VALID | SENT_KEY_IS_VALID
Calculste shared secret, send |, _ Calculste shared secret
enaypted confirmation 3
Enaypted
confirmation
NOT_PAIRED l “ l NOT_PAIRED
CONFIRM_PAIR_INFO CONFIRM_PAIR_INFO
Tl
Decrypt the incoming messsge, Response Decrypt the incoming messsge,
chedk if it is 8 CONfIrMBLION de.omwvereeeemeeeeeeosseneooeeeeeeneeo check if it is a confirmation
MISMATCHED_SECRET
1% ___MISMATCHED_SECRET
Go into NOT_PAIRED stste [Send unenaypted confirmation,
go into NOT_PAIRED state
PAIRED PAIRED
Use the negotiated key for Use the negotiated key for
enayption enayption

Figure 3.14 : ECDH scheme, part 2

In Figure 3.15 and Figure 3.16, communication after the pairing process is shown. It
can be seen that the messages are always 16-byte long. Shorter messages are padded

and longer messages are truncated.

The red frames show data transfer from SM to API where the blue frames show data
transfer from API to SM. Each side sends a short and a long message and operation

occurs without a problem.

26

CJ nRF UART - o
File Help
| Disconnect |
Console [] Debug
[22:41:31.6943] Ready to send
[22:41:32.3551] RX: ©xF1 @x9D @x90 Ox5F @x94 ©x3D OxC2 @xBF OxE2 @x42 @x57 @xD5 OxA8 @xCF oxEe oxe7
[22:41:32.3611] TX: ©x01 2x01 9x21 ©x01 2x91 @x21 Ox21 ©2x01 @x21 Ox21 ©2x91 ©x21 0x01 @2x01l @x91 oxol
[22:41:32.4412] ECDH Status: RECEIVED_PUBLIC_X
[22:41:32.4712] RX: ©xF3 @x10 ©xE1l ©@x23 @x2E OxF@ Ox24 @x86 Ox85 @x(D ©@xB5 Ox8F @xD4 @xE6 ©xDC @xFD
[22:41:32.4742] TX: ©Ox21 2x01 @x21 Ox21 @x01 Ox21 Ox21 @2x01 2x@1 Ox21 @x01 2x21 Ox21 @x01 ox91 oxol
[22:41:32.4982] ECDH Status: RECEIVED_KEY_IS_VALID
[22:41:32.5154] RX: ©Ox21 2x01 @x21 Ox21 @x01 2x@1 Ox01 2x01 °x91 Ox21 @x01 2x21 9x21 @x01 °x91 @xol
[22:41:32.5264] TX: ©x54 @x95 OxA8 Ox(7 @x67 @x54 OxDE @xE9 OxCF Ox6F @x22 @x97 ox8D @xFF @x18 @xE2
[22:41:32.5464] ECDH Status: SENT_PUBLIC_X
[22:41:32.5829] RX: ©x@1 2x01 0x91 ©x21 @x91 2x21 Ox91 ©2x01 2x21 Ox21 @x01 Ox21 Ox01 @x01l @xd1 Oxol
[22:41:32.5959] TX: ©xF7 ©@x18 @x23 x84 Ox35 OxBC Ox95 @x56 ©x03 OxA4 ©Ox2B Ox1A Ox@1 @xF9 ©x8D @OxBé6
[22:41:32.6009] ECDH Status: SENT_PUBLIC_Y
[22:41:34.3193] RX: ©x@1 0x01 9x01 0x01 0x91 @x91 Ox21 @x01 9x21 0x01 @x91 Ox01 0x01 @x91l ox21 oxol
[22:41:34.3413] ECDH Status: CONFIRM_PAIR_INFO
[22:41:34.3443] RX: ©OxE5 OxF6 Ox9E OxAl OxF8 OxA2 0x98 @x52 @x78 ©Ox26 OxF5 @xEA @Ox89 @x2E @x(2 0x82
[22:41:34.3563] TX: ©Ox@1 @x01 @x21 Ox21 9x01 Ox21 Ox21 ©2x01 2x@1 Ox21 @x01 2x21 Oxe1l @xd1 °x@1 oxol
[22:41:34.3623] After encryption: OxE5 OxF6 Ox9E OxAl OxF8 OxA2 0x98 9x52 Ox78 9x26 OxF5 OXEA Ox89 @x2E @x(2 @x8:
[22:41:34.3653] ECDH Status: PAIRED
[22:41:41.8987]) TX:
[22:41:41.90087
[22:41:48.0527
[22:41:48.9557) After decryption: @xC5 9xD4 Ox00 0x00 Ox00 Ox02 Ox00 Ox00 Ox00 OxB0 Ox00 OxB2 Ox00 Ox02 Ox20 Oxd
[22:42:23.7046]| Max packet size is 16 characters, text is truncated.
[22:42:23.7417] TX: ©x00 @x11 @x22 ©x33 Ox44 Ox55 Ox66 ©x77 Ox83 ©@x99 ©@xAA ©xBB ©xCC @xDD OxEE ©xFF
[22:42:23.7427] After encryption: OxEB OxE6 @9xB6 0x57 0x43 9x6D 9x24 8x75 9x2B 9xB1 9xD5 OxF3 Ox6F @x58 x5 @xC
[22:42:30.0725] RX: ©OxE8 OxE6 @xB6 ©x57 @x43 Ox6D 0@x24 ©x75 Ox28 ©xB1l OxD5 @xF3 Ox6F @x5B @x@5 @xCC
[22:42:30.0745) After decryption: ©x80 @x11 9x22 9x33 @x44 @x55 Ox66 Ox77 Ox88 Ox99 OxAA OxBB OxCC OxDD OXEE OxF

00112233445566778899AABBCCDDEEFFO0

Send text|

Send 100kB data

I

Send file

Figure 3.15 : Communication after pairing, APl window

In Figure 3.17, it is shown that both sides can encrypt and decrypt messages in a new

connection, if they are paired beforehand.

If a reset message is being sent from either side, it waits for confirmation to reset

after sending it and upon receiving the reset request, other side sends a confirmation

and goes into reset process. If the initiating side does not receive a confirmation

message, it sends reset request for several times (the number of tries are left to user)

and then resets. Reset operation erases the negotiated keys. A sample window after

reset operation is shown in Figure 3.18.

27

00112233445566778899AABBCCDDEEFFO0

ECDH status: SENT_PUBLIC X
fd dc e6 d4 8f bS5 cd 85 86 24 £0 2e 23 el 10 £3
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01

ECDH status: SENT_PUBLIC Y
Sending: 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
Received data: e2 18 £f 8d 97 22 6f cf €9 de 54 67 c7 a0 95 54

ECDH status: SENT_KEY IS VALID

public key of API.x: e2 18 £f 8d 97 22 6f cf e9 de 54 &7 c7 a0 95 54
Sending: 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01

Received data: bé 8d £9 01 la 2b a4 03 56 95 bc 35 84 23 18 £7

ECDH status: RECEIVED PUBLIC X
public key of API.y: bé 8d £9 01 1a 2b a4 03 56 95 bc 35 84 23 18 £7

ECDH status: RECEIVED PUBLIC Y
Sending: 01 01 01 01 01 01 01 01

ECDH status: RECEIVED KEY IS VALID
Sending: 82 c2 2e €9 ea £5
Received data: 82 c2 2e 89 ea £5

ECDH status: CONFIRM_ PAIR INFO

ECDH status: PAIRED
Evt link connection interval changed
52 82 £9 0f 89 £4
00 00 00

Serial input truncated
Sending: it 66 55 44
After encryption: cc 24 6d 43

v

Autoscrol Newline v | 115200 baud v

Figure 3.16 : Communication after pairing, SM window

28

-] nRF UART =
File Help

[Disconnect | Waravize sevap

Console [IDebug flfset line ending to newline to send data from the serial monitor
Evt Device Started: Setup

Eve Device Started: Standby

[€1:38:14.9558] Loading. ..

[61:38:24.6550] Ready to connect Ateartiving started
[01:38:26.2801] Scanning... Eve Connected
[©1:38:26.5926] Connecting... Evt Pipe Status
[01:38:26.6239) Connecting to C4707B97409C, Device name: URT Eve Pipe Status

[e1:3s:
[e1:38:
[e1:38:

8895] Connected to C4F27897409C Evt link connection interval changed

-9365] Ready to send Received data: 43 £1 dd 3d £2 07 67 1a 6d c3 1€ 4f el 92 0d a3
1748] TX: ©x12 @xDS @x00 0x00 €x20 @x00 ©x00 ©x00 0x00 Ox00 0x00 Ox00 ©x00 0x00 Ox00 0x00 After decryption: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 b2 02
[01:38:46.1754] After encryption: Ox6C 0x90 OXFC 0x05 0xAD OXOE OXFS 0x92 GxDB OXE7 OxAB 8x70 0x07 OXCB OXC6 OX3F Sending: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 c4 03
[01:38:56.8228] RX: @x59 0xA9 @x6C OxC4 @xES @x25 @x08 @xeD OxBC 0x90 Ox33 Ox7A @xA4 OxF6 0xBO €x14 After encryprion: ce 47 21 18 40 43 4f de 65 Sd 70 Oe £5 40 41 00
[©1:38:56.8228] After decryption: ©x23 OxE6 0x00 0x00 0x00 0x00 0x00 0x00 x00 0x08 Ox00 6x00 0x00 0x00 0x00 9x00 Evt Disconnected/Advertising timed out

Advertising started

Eve Connected

Evt Pipe Status

Eve Pipe Status

Evt link connection interval changed

Received data: 3£ c6 c8 07 70 ab e7 d8 92 £8 Oe 0d 05 fc 90 6c
After decryption: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 d5 12
Sending: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 e6 23

After encryption: 14 b0 £6 aé 7a 33 90 bc 0d 02 25 e8 c4 6c a3 59

[1205 [send tex]

[Send 100k8 data | Stop data transfer

[Send fle] l[g]mma Newing v [115200b2ud v |

Figure 3.17 : Resuming secure operation after connection

[>] nRF UART =

File Help

| Disconnect |
Console [] Debug
[03:35:52. ECDH Status: CONFIRM_PAIR_INFO A
[@3:35:54. RX: ©x@4 @x5D @xAB OxEC Ox3F Ox@D Ox52 ©x52 ©x29 @x90 Ox97 Ox70 @xED @x02 @x21 OxFF
[@3:35:54. ECDH Status: PAIRED

[©3:35:54.
[03:35:54.

TX: ©x01 ox21 0x01 2xd1 2x21 ox01 0xd1 @xd1 ox21 Ox1 @xd1 2x21 ox01 9x@1 exd1 oxol
After encryption: ©x84 @x5D @xAB OxEC 9x3F 9x@D 9x52 9x52 9x29 9x9@ 0x97 0x70 OxED @x02 ©x21 OxFF

[03:36:27. TX: ©xFF @xFF @xFF @xFF @xFF @xFF @xFF @xFF @xFF @xFF OxFF OxFF OxFF @xFF @xFF @xFF
[03:36:27. After encryption: @x33 @x@D @x17 Ox7E @x9F 0x57 @xC5 @x45 Ox1D OxBl 9xC7 Ox1A @XES Ox42 @x57 @xB4
[03:36:27. ECDH Status: RESETTING

[03:36:29. RX: ©x04 @x5D @xAB OxEC ©Ox3F @xeD @x52 ©0x52 @x29 @x98 ©x97 0x7@ exED ©xe2 ©x21 @xFF
[03:36:29. ECDH Status: NOT_PAIRED
[©3:36:56. ©x35 OxEF @x4C ©x9D ©x5@ @xB5 @x5D @xFA OxE9 @x25 @x37 ©x4D ©0x53 exEC exFl @x73

ECDH Status: RECEIVED_PUBLIC X

TX: ©x21 oxo1 9x01 0x21 @xol ©x01 0xd1 2x21 @xo1 9x01 0xd1 exel ©xol 0xdl ex21 exel
RX: ©x51 @x65 0x8D OxBA @x7C Ox7F ©@x@8 @xA9 ©x43 @x9C ©xDC ©xE7 OxE5 ©0xdD Ox6D x4t
ECDH Status: RECEIVED_KEY_IS_VALID

TX: ©x01 @x21 @xo1 @x01 ©x01 ©x91 Ox91 ©x91 Ox@1 0x21 9xd1 0x91 0x91 0x91 exol exol
RX: ©x01 0x21 0x21 0x@1 ©Ox01 @x21 2x01 2x01 @x01 ©x01 ©x01 ©x91l Ox01 0x21 9x21 0xdl
ECDH Status: SENT_PUBLIC_X

TX: ©x19 @x1F Ox(C9 @xA3 @x8F ©x6B @x1B @x8C @x7E @x32 @xD@ @x76 OxBA 0x06 @xd4 OxAE
RX: ©0x01 @x21 2x21 9x01 0xd1 ex21 ox21 0x01 @x@1 @x21 9x01 0xdl ex21 oxol 0xdl exdl

[©3:36:56.
[©3:36:56.
[©3:36:56.
[©3:36:56.
[©3:36:56.
[©3:36:56.
[©3:36:56.
[03:36:56.
[03:36:56.

[@3:36:56. ECDH Status: SENT_PUBLIC_Y
[@3:36:56. TX: ©x1e exF4 @xAD @x71 @x39 ex(e OxE6 ©x1A ©OxB8 0x44 OxCC OxB6 @x2D OxF6 @x22 @xA7
[@3:36:56. RX: ©x21 0x21 0x21 0x21 0x21 @x21 @x21 @x01 @x21 2x01 2x01 2x01 0x21 0xd1 9x21 0xal

[@3:36:56. ECDH Status: CONFIRM_PAIR_INFO

[@3:36: : @x37 OxC3 ©x92 @x44 Ox62 Ox61 OxF@ @xBE @x78 2x4D @xC1l @xB9 @Oxo4

[©3:36:58. Status: PAIRED

[@3:36:58. 5 2x21 2xo1

[@3:36: = - 6 ‘

< >
| FF | [send text]
| Send 100kB data] ‘ _Stop data transfer |
[Send file |

Figure 3.18 : Reset after pairing

29

4. FUTURE WORK

In this current state, our project has the adequate functionality for basic secure
communication. However, there is still room for improvements and the some of them

are discussed in this section.

4.1. Multiple Slave Device Connectivity

Our project currently supports a single slave device connection to the Master
Emulator. Allowing multiple slave devices to pair is a very important aspect in most
of the usage scenarios. This functionality can be implemented without much

difficulty and is going to be added as soon as possible.

4.2. Support for Different Application Controllers

The slave side operation is currently supported only in Arduino boards. Since these
boards are mainly for prototyping, additional support for microcontrollers suitable

for real-world usage is also a needed aspect.

There are also plans to use a Field Programmable Gate Array (FPGA) in BaaS
project’s localization part as the computing unit of the active device. Since one of our
target usage areas is to build a secure communication between this active device and
a central processing unit, running our security protocol with an FPGA as the

application controller is another future goal.

As an intermediate step towards FPGA usage, an FPGA prototyping board with
similar functionality of Arduino can be used. An example for such a board is
designed by Gadget Factory and called Papilio [22]. The similarity to Arduino may
make the porting of the Nordic’s BLE SDK easier.

4.3. Custom Message Design

In our ECDH scheme, we have defined three custom messages and the confirmation
message is used extensively throughout the scheme. It may cause a security

vulnerability and some information about the encryption key may be leaked by

30

tracking these confirmation messages. The custom messages and confirmation

process could be designed to minimize the security vulnerability.

4.4. Session Encryption

Currently our protocol uses the same 128-bit key after it is negotiated. Using the
same key over an extended period of time, especially with the usage of static
messages such as confirmation, may also cause a security vulnerability. Thus, a
different session encryption key may be generated by using the negotiated key as a

base, similar to BLE’s Long Term Key usage.

5. CONCLUSION

As the number of simple electronic devices and sensors increase in our lives, it is
important to maintain the security of our personal information. BLE communication
is used extensively with these devices as it consumes less power compared to similar
protocols; however, it contains a security vulnerability in its pairing process. We
have implemented a security protocol to negate that security vulnerability of the BLE
protocol and with our updated security protocol, low power consumption of BLE

communication can be used without hesitation to transfer confidential information.

31

REFERENCES

[1] Siekkinen, M. ; Hiienkari, M. ; Nurminen, J.K. ; Nieminen, J. (2012). How
low energy is bluetooth low energy? Comparative measurements with
ZigBee/802.15.4, Wireless Communications and Networking Conference Workshops
(WCNCW), 2012 IEEE, p.236

[2] Dementyev, A. ; Hodges, S. ; Taylor, S. ; Smith, J. (2013). Power consumption
analysis of Bluetooth Low Energy, ZigBee and ANT sensor nodes in a cyclic sleep

scenario, Wireless Symposium (IWS), 2013 IEEE International

[3] Bluetooth SIG (2010). Bluetooth Specification Version 4.0

[4] Ryan, A. (2013). Bluetooth: With Low Energy comes Low Security, USENIX
Workshop on Offensive Technologies 2013

[5] Bluetooth SIG (2014). Bluetooth Specification Version 4.2

[6] Building as a Service (n.d.) Retrieved May 8, 2015, from http://baas-
itea2.eu/cms/

[7] Barker, E.; Chen, L.; Roginsky, A.; Smid, M. (2013). Recommendation for
Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography,
NIST Special Publication 800-56A, Revision 2

[8] National Institute of Standards and Technology. (2001). Advanced Encryption

Standard, Federal Information Processing Standards Publication 197

[9] AES Encryption isn't Cracked. (2011). Retrieved May 8, 2015, from
https://blog.agilebits.com/2011/08/18/aes-encryption-isnt-cracked/

[10] Interoperability (C# Programming Guide). (n.d.). Retrieved May 8, 2015,

from https://msdn.microsoft.com/en-us/library/ms173184.aspx

32

https://blog.agilebits.com/2011/08/18/aes-encryption-isnt-cracked/
https://msdn.microsoft.com/en-us/library/ms173184.aspx

[11] Use C codes in a C# project -- unmanaged C solution. (2013). Retrieved May
8, 2015, from https://drthitirat.wordpress.com/2013/05/30/combine-qui-of-c-with-c-

codes/

[12] /MD, /IMT, /LD (Use Run-Time Library). (n.d.). Retrieved May 8, 2015, from

https://msdn.microsoft.com/en-us/library/2kztlwy3.aspx

[13] Blittable and Non-Blittable Types. (n.d.). Retrieved May 9, 2015, from

https://msdn.microsoft.com/en-us/library/75dwhxf7(v=vs.110).aspx

[14] Marshal Class. (n.d.). Retrieved May 9, 2015, from

https://msdn.microsoft.com/en-

us/library/system.runtime.interopservices.marshal(v=vs.100).aspx

[15] Marshal C struct array into C#. (n.d.). Retrieved May 9, 2015, from

http://stackoverflow.com/questions/188299/marshal-c-struct-array-into-c-sharp

[16] Elsheimy, M. (n.d.). Marshaling with C# — Chapter 1: Introducing Marshaling.
Retrieved May 9, 2015, from
http://www.codeproject.com/Articles/66245/Marshaling-with-Csharp-Chapter-1-

Introducing-Marsh.aspx

[17] Nordic Semiconductor (2014). nRF8001 Development Kit User Guide v2.0
[18] Nordic Semiconductor (2013). nRF8001 Product Specification 1.2

[19] Kokke/tiny-AES128-C. (n.d.). Retrieved May 10, 2015, from
https://github.com/kokke/tiny-AES128-C

[20] Ryan, M. (n.d.). ISECPartners/nano-ecc. Retrieved May 10, 2015, from
https://github.com/iSECPartners/nano-ecc

[21] DavyLandman/AESL.ib. (n.d.). Retrieved May 10, 2015, from
https://github.com/DavyLandman/AESLib

[22] Papilio FPGA Platform. (n.d.). Retrieved May 10, 2015, from http://papilio.cc/

33

https://drthitirat.wordpress.com/2013/05/30/combine-gui-of-c-with-c-codes/
https://drthitirat.wordpress.com/2013/05/30/combine-gui-of-c-with-c-codes/
https://msdn.microsoft.com/en-us/library/2kzt1wy3.aspx
https://msdn.microsoft.com/en-us/library/75dwhxf7(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.interopservices.marshal(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.interopservices.marshal(v=vs.100).aspx
http://stackoverflow.com/questions/188299/marshal-c-struct-array-into-c-sharp
http://www.codeproject.com/Articles/66245/Marshaling-with-Csharp-Chapter-1-Introducing-Marsh.aspx
http://www.codeproject.com/Articles/66245/Marshaling-with-Csharp-Chapter-1-Introducing-Marsh.aspx
https://github.com/kokke/tiny-AES128-C
https://github.com/iSECPartners/nano-ecc
https://github.com/DavyLandman/AESLib
http://papilio.cc/

RESUME

Name and Surname: Bahadir GUN
Birth Place and Date: Eskisehir, 1993
High School: Eskisehir Anadolu Lisesi, 2007-2011

BSc: Istanbul Technical University, Electronics and Communication Engineering,
2011-2015

34

