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A SOFTWARE-HARDWARE IMPLEMENTATION OF A SECURED DATA 

COMMUNICATION PROTOCOL USING TEA ALGORITHM 

 

SUMMARY 

 

By using Diffie–Hellman (DH) key exchange protocol a key is created by the sides 

which is about to communicate. In order to realize this method field programmable gate 

arrays (FPGA) are being used. By implementing DH, some mathematical operations like 

multiplication and summation are needed. So FPGAs are used to calculate these 

mathematical operations. Karatsuba multiplier and Ripple carry adder modules are used 

to calculate multiplication and summation to succeed DH key exchange method. 

Two different FPGAs are used to communicate each other. After sending some 

information to each other several times, which is particularly explained in the thesis, 

both sides have a common key which is kept in secret. One of the sides uses this key to 

crypt a message with tiny encryption algorithm (TEA) and send it to the other side. The 

other side receives the message than decrypts the message with the same key. At the 

end, two sides are able to communicate confidentially on an unsecure line.  

Applying this crypto procedure, all the algorithms are calculated with 128 bit numbers. 

Such size of numbers are used in these days because they are highly enough to be used 

in crypto algorithms.  
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GÜVENLİ BİR VERİ HABERLEŞME PROTOKOLÜNÜN TEA ALGORİTMASI 

İLE DONANIM-YAZILIM ORTAK OLARAK GERÇEKLENMESİ 

 

ÖZET 
 

Diffie–Hellman (DH) anahtar değişim protokolünden yararlanarak, haberleşmesi 

istenilen iki taraf arasında bir anahtar oluşturulmuştur. Bu yöntemi gerçeklemek için 

Sahada Programlanabilinir Kapı Dizileri (Field Programmable Gate Array, FPGA) 

kullanılmıştır. DH metodunu uygularken, toplama ve çarpma gibi bir takım 

matematiksel işlemlere ihtiyaç vardır. Bu işlemlerin hesaplanması için FPGA 

kullanılmıştır. Çarpma ve toplama işlemleri için, Karatsuba Çarpa algoritması ve 

Zincirleme Elde Toplayıcısı (Ripple Carry Adder, RCA) modülü kullanılarak DH 

anahtar değişim yöntemi başarı ile gerçekleştirilmiştir. 

Haberleşmek adına iki farklı FPGA kullanılmıştır. Tezde detaylı olarak anlatılan şekilde 

iki taraf birbirlerine bir kaç kere bilgi yollayarak ortak bir anahtar elde ederler. Bir taraf 

bu anahtarı kullanarak yollamak istediği mesajı Küçük Kriptolama Algoritması (Tiny 

Encryption Algorithm, TEA) ile şifreleyerek öteki tarafa gönderir. Daha sonra öteki taraf 

bu mesajı aynı anahtar ve algoritma ile deşifre eder. Sonuç olarak, tehlikeli bir hat 

üzerinde güvenli bir şekilde bilgi aktarımı yapılmış olunur.  

Kriptolama prosedürü uygulanırken, tüm algoritmaların hesaplanmasında 128 bitlik 

sayılar kullanılmıştır. Bu büyüklükteki sayılar, kriptolama algoritmalarının 

gerçeklemesinde yeterli olarak kabul edildiğinden dolayı, günümüzde de böyle 

kullanılmaktadır. 
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1.  INTRODUCTION 

Cryptography is the science of using mathematics to encrypt and decrypt data. 

Cryptography enables you to store sensitive information or transmit it across insecure 

networks (like the Internet) so that it cannot be read by anyone except the intended 

recipient. [16] 

To overcome such problems by using crypto methods. Crypto algorithms allows to crypt 

a data that is to be sent and after it is sent, the receiver decrypts the received data to 

understand it. But first of all, both sides has to know how the data is encrypted. The art 

of protecting information by transforming it (encrypting it) into an unreadable format, 

called cipher text. Only those who possess a secret key can decipher (or decrypt) the 

message into plain text. Encrypted messages can sometimes be broken by cryptanalysis, 

also called code breaking, although modern cryptography techniques are virtually 

unbreakable. 

In Figure 1, for example, we see “kiov” repeated after nine letters, and “nu” after six. 

Since three divides both six and nine, we might guess a keyword of three letters. It 

follows the chipper text letters one, four, seven and so and all enciphered under the same 

key letter; so we can use frequency analysis techniques to guess the most likely values of 

this letter, then repeat the process for the second and third letters of the key [1]. 

 

Figure 1 Example of an encrypted data [1] 

 

In this project encryption is made by TEA (Tiny Encryption Algorithm) and the key is 

produced by Diffie Helman (DH) key exchange method. The key that will be produced 

from DH key exchange method is 128 bit length therefore the TEA algorithm will use a 

key with length of 128 bit and encrypt a message using this key.   
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2. Foreknowledge 

 

2.1. Diffie Helman Key Exchange Protocol 

Diffie–Hellman (D-H) key exchange algorithm is a specific method of exchanging secret 

keys. It is one of the earliest practical examples of key exchange implemented within the 

field of cryptography. The Diffie–Hellman key exchange method allows two parties that 

have no prior knowledge of each other to jointly establish a shared secret key over an 

insecure communications channel. This key can then be used to encrypt subsequent 

communications using a symmetric key cipher. [2] 

DH key exchange protocol is used to share a key secretly from the observer who is 

listening to the communication line. For this key to be produced, some mathematical 

operations are need to be applied. These operations uses some non-secret variables that 

are known by everyone including the observer, and some secret variables that are only 

know by the producer.  

This key exchange method uses constant numbers ‘p’ and ‘g’ where p is a prime number 

and g is a primitive root mod p. These two variables are known preliminary and are non-

secret variables. There are also secret variables that is used. Each sides produce their 

own secret random variable ‘a’ and ‘b’ which are only known by themselves. The 

process begins after both sides to communicate produces their own secret random 

number.  

All the variables are 128 bit long which is enough for a safe in communication. 

Explaining DH key exchange method, is easier by using an example.  

1. Alice and Bob agree to use a prime number p = 23 and base g = 5. 

2. Alice chooses a secret integer a = 6, then sends Bob (g a mod p):  

56 = 15625 ≡ 8 (mod 23). 

3. Bob chooses a secret integer b = 15, then sends Alice (gb mod p):  

515 = 30517578125 ≡ 19 (mod 23). 

4. Alice computes (gb mod p)a mod p:  

196 = 47045881 ≡ 2 (mod 23). 

5. Bob computes (ga mod p)b mod p:  

815 = 35184372088832 ≡ 2 (mod 23). 
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After the Diffie-Hellman key exchange both Alice and Bob have agreed on the key 2. 

[13] 

 

 

Figure 2 Diffie Helman Key Exchange Protocol [12] 

Both A and B have agreed on the same value, because (ga)b and (gb)a mod p are equal. 

The essential point is only a, b, and (gab mod p = gba mod p) are kept as secret whereas 

all the other variables – p, g, ga mod p, and gb mod p – are sent in the clear. Once side A 

and B compute the shared secret they can use it as an encryption key, known only to 

them, for sending messages across the same open communications channel. 

 

2.2. Tiny Encription Algorithm (TEA) 

The TEA (Tiny Encryption Algorithm) is a symmetric (private) key encryption 

algorithm created by David Wheeler and Roger Needham of Cambridge University and 

published in 1994. It was designed for simplicity and performance, while seeking an 

encryption strength on par with more complicated and resource-intensive algorithms 

such as DES (Data Encryption Standard). [14] 

TEA uses two 32-bit unsigned integers and a 128-bit key. Also, it has a simple key 

schedule, mixing all of the key material in exactly the same way for each cycle. After 

the key is obtained from Diffie Helman key exchange protocol, it will be used to encrypt 

and decrypt a message. 

The message entering to TEA encryption module is called as “plaintext”. After plaintext 

is encrypted by the key, module produces an output which is called as “chipertext”. In 

order to regain encrypted plaintext back, chipertext is given as input to TEA decryption 

module.   
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Figure 3 TEA module input output example [9] 

The simple conclusions (and answers to my opening questions) are: yes, TEA/XTEA is 

easy to implement, fast, efficient, and cryptographically strong. When implemented and 

used correctly, TEA can be an excellent choice, particularly for encrypting and 

decrypting small, short-lived data in resource constraint devices. [14]  

 

2.3. Xilinx XPS 

Xilinx is a company whom aids us to use Spartan - FPGAs. Not only FPGAs, this 

company supports us with several softwares which can be used to program FPGA or to 

configure and control its unique microcontroller Microblaze that takes part inside FPGA. 

The interface softwares that are used in the thesis project are; Xilinx Integrated Software 

Environment (ISE), Xilinx Embedded Development Kit (EDK) and Xilinx Software 

Development Kit (SDK) 

 

2.3.1.  Field Programmable Gate Array 

A Field programmable gate array (FPGA) is a logic device that contains a two-

dimensional array of generic logic cells and programmable switches. The conceptual 

structure of an FPGA device is shown in Figure 4. A logic cell can be configured (i.e., 

programmed) to perform a simple function, and a programmable switch can be 

customized to provide interconnections among the logic cells. A custom design can be 

implemented by specifying the function of each logic cell and selectively setting the 

connection of each programmable switch. Once the design and synthesis is completed, 
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we can use a simple adaptor cable to download the desired logic cell and switch 

configuration to the FPGA device and obtain the custom circuit. Since this process can 

be done "in the field" rather than "in a fabrication facility (fab)," the device is known as 

field programmable. [3]  

 

 

Figure 4 Logic celles inside FPGA [4] 

 

In general, a logic block consists of a few logical cells. A typical cell consists of a 4-

input LUT, a Full adder (FA) and a D-type flip-flop, as shown below. The LUTs are in 

this figure split into two 3-input LUTs. In normal mode those are combined into a 4-

input LUT through the left mux. In arithmetic mode, their outputs are fed to the FA. The 

selection of mode is programmed into the middle multiplexer. The output can be either 

synchronous or asynchronous, depending on the programming of the mux to the right, in 

the figure example. In practice, entire or parts of the FA are put as functions into the 

LUTs in order to save space. [4] 

FPGAs are capable with parallel programming, so they can be used to build fast 

systems. Additionally, because microprocessors are logic circuits they can be 

programmed inside FPGAs according to the needs of the user. Therefore in a single 

integrated circuit as a control unit, it is possible to configure the hardware particularly 

for the user and the processor. FPGAs are fast also because all the system is on the same 

place, which reduces the delay caused by the connections. Because of all these features 

FPGA offers, it is decided to be used in this project. 
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2.3.1.1.  Xilinx Spartan-6 LX45 FPGA 

The project aims to send an encrypted message by a FPGA to another FPGA. Xilinx 

FPGA Spartan-6 LX45 is used as a transmitter and also as the receiver. This FPGA 

includes 4, LUTs with 6 inputs and 6,822 slices which has 8 flip-flops inside one of it. 

Also, the clock frequency can speed up to 500 MHz. [5] 

 

2.3.1.2.  Verilog Hardware Description Language 

The modules that are used for the DH key exchange method and TEA algorithm has 

been designed in Xilinx ISE by using Verilog hardware description language. The 

designers of Verilog wanted a language with syntax similar to the C programming 

language, which was already widely used in engineering software development. Like C, 

Verilog is case-sensitive and has a basic preprocessor. Its operator precedence is 

compatible with C. Because of these properties of Verilog, developers mostly do prefer 

to use this language.  

 

2.3.1.3.  Xilinx ISE Environment 

Integrated Software Environment (ISE) is an interface software program that is 

developed by Xilinx Company. This software serves to configure Xilinx FPGAs. ISE 

has couple of properties which provide ease when designing a digital system. Hardware 

description languages can be used to define logic systems whereas can provide 

schematic information which certainly comes in handy. Also ISE gives the opportunity 

to test the designed modules on the test-bench simulation, moreover it is possible to see 

the delay based on the wires from place and root simulation. Last of all ISE is able to 

give information about space consumption and FPGA layout vision. 

However these designed modules are not enough for the process to continue. 

Microblaze, which is a soft processor, is used to assure all the controls between these 

modules. 

  

2.3.2.  Microblaze Processor 

Microblaze processor, is produced by programming the proper blocks on a FPGA. This 

processor is controlled using FPGA by software and it is used in embedded systems. 

Microblaze, gives the opportunity to choose peripheral units, memory and interface 

properties on a single FPGA. This properties yields for the user to build a flexible 

embedded system. 
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The Microblaze soft core processor is highly configurable, allowing you to select a 

specific set of features required by your design.  

The fixed feature set of the processor includes: 

• Thirty-two 32-bit general purpose registers 

• 32-bit instruction word with three operands and two addressing modes 

• 32-bit address bus 

• Single issue pipeline 

In addition to these fixed features, the MicroBlaze processor is parameterized to allow 

selective enabling of additional functionality. Older (deprecated) versions of MicroBlaze 

support a subset of the optional features described in this manual. Only the latest 

(preferred) version of MicroBlaze (v7.10) supports all options. [7] 

 

2.3.2.1. Xilinx EDK Environment 

Microblaze which is explained in the previous topic, is part of the Embedded Processor 

Development Kit (EDK). This platform is used when a microprocessor based digital 

system is aimed to build. This platform has some utilities which provides convenience 

for the user. These utilities are adjusting systems addressing, defining communication 

protocols and setting the hardware connections. Thus the user can be focused on 

designing the hardware and software. 
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Figure 5 Basic Embedded Design Process Flow [8] 

 

EDK includes: 

• The Xilinx Platform Studio (XPS) Interface 

• The Embedded System Tools suite 

• Embedded processing Intellectual Property (IP) cores such as processors (also called 

pcores) and peripherals 

• The Platform Studio SDK (Software Development Kit), based on the Eclipse open 

source framework, which you can use (optionally) to develop your embedded software 

application. [8] 

 

2.3.2.2. Xilinx SDK Environment 

Software Development Kit (SDK) takes part in EDK and is an interface where the 

processor based digital system software design is done. On XPS’s previous versions 

SDK was involved in XPS. However after version ISE 13.0 Xilinx decided to spate SDK 

from XPS, which can be seen from Figure 5. This means XPS is used on purpose of 

designing a systems hardware section whereas SDK is only responsible for the software 
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design section. EDK creates the necessary libraries that belongs to user logic hardware 

and peripheral units. Inside SDK, these created libraries are defined and used in order to 

design the desired system. These libraries are used to control Microblaze processor as it 

is needed. 

 SDK features include: 

 Feature-rich C/C++ code editor and compilation environment 

 Project management 

 Application build configuration and automatic Makefile generation 

 Error navigation 

 Well-integrated environment for seamless debugging and profiling of embedded 

targets 

 Source code version control. [6] 
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3. IMPLEMENTED PROTOCOLS AND ALGORITHMS 

All the following protocols and algorithms are implemented on Xilinx Spartan 6 FPGA. 

All the modules are designed as state machines which means they all have a clock input. 

In order to work together all the modules have a reset and start input also a done flag 

output. By using these input and outputs, all the modules have been able to work 

together. 

 

3.2. Implementation of DH Key Exchange Protocol 

As it is explained above, DH key exchange protocol requires some mathematical 

operations to be done. These operations are simply multiplication and summation. The 

key exchange is fundamentally made by calculating A^B mod C which corresponds to 

the result of the square and multiply algorithm. 

Both FPGAs are set to calculate A^B mod C using their own secret variable and a 

constant 128 bit number. After they make this calculation they send the result to each 

other. Finally both the FPGAs calculates the same operation again using their secret 

variable and the result came from the other FPGA. Since (ga)b and (gb)a  are equal, the 

final result will be equal on both FPGAs and will be used as a key to crypt a message.  If 

it is explained step by step; 

1st step: FPGA 1 calculates X ^ a mod P using square and multiply algorithm. Here a is 

FPGA 1’s secret variable 

2nd step: FPGA 2 calculates X ^ b mod P using square and multiply algorithm. Here b is 

FPGA 2’s secret variable. 

3rd step: FPGA 1 sends the result R1, to FPGA 2 using UART protocol. 

4th step: FPGA 2 sends the result R2, to FPGA 1 using UART protocol. 

5th step: FPGA 1 calculates R1 ^ a mod P and obtains the key, K. 

6th step:  FPGA 2 calculates R2 ^ b mod P and obtains the same key, K. 

The produced key is used to encrypt and decrypt a message by Tiny Encryption 

Algorithm. This message will be encrypted on FPGA 1. After being sent to the other 

side the encrypted message will be decrypted at FPGA 2. 

All the steps above would be controlled by using C code on SDK and will be explained 

in detail on “Microblaze – Hardware Relationship” topic. 
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3.3. Square and Multiply Algorithm 

This module is designed to calculate the operation A^B mod C. In mathematics and 

computer programming, exponentiation by squaring is a general method for fast 

computation of large positive integer powers of a number, or, more generally of an 

element of a ring, like a polynomial or a square matrix. Some variants are commonly 

referred to as square-and-multiply algorithms or binary exponentiation. These can be of 

quite general use, for example in modular arithmetic or powering of matrices. This 

method is also used for exponentiation in groups. For groups for which additive notation 

is commonly used, like elliptic curves used in cryptography, this method is also referred 

to as double-and-add. 

This algorithm for square and multiply written in C language can be seen at the figure 

below: 

 

 

Figure 6 Square and Multiply C code 

 

As it is seen from the algorithm square and multiply uses some fundamental operations. 

These are multiplication and taking mod operation. For these two operations some extra 

modules are designed separately. Karatsuba multiplication algorithm is designed for the 

multiplication operation and it is being called by the top module (square and multiply 

module) when multiplication is needed.  

Taking mod is being computed by making subtraction. A mod B is calculated by 

subtraction B from A, until A is smaller than B. Every single subtraction is made on one 

clock cycle. Therefore obtaining the result from the mod operation depends on the gap 

between A and B. If A is very large than B it may take too long to reach the result. 

However this will not cause a problem on calculation A ^ B mod C because C will be 

chosen as 128 bit length constant number so, the maximum calculation time will be 

made on 128 clock cycles.  

To make the subtraction, mod operation calls a subtraction module which is designed by 

using Ripple Carry Adder (RCA) module. RCA is used for the reason of gain from 

space. This may cause reaching to the result in a longer state but gain from space was 

more important that will be explained on the topic OPTIMIZATION in detail. 
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RTL schematic which is obtained from the implemented square and multiply module is 

given as below: 

 

 

Figure 7 Square and Multiply modüle RTL schematic 

 

As its seen from Figure 7, the module has a start and a reset bit as input and a done bit 

flag as output to work with other modules in harmony.   

On the first state, the initial conditions are set and the module waits for the start bit to 

arrive. The module starts after the start bit is logic 1 and gives both of the inputs for 

multiplication as C, in order to compute C^2. When the calculation is done the 

multiplication will return the done flag which will lead the top module to the next state. 

After all the multiplication calculation are complete the module have to be reset to 

repeat the compute when the inputs are changed. On the next state the mod operation is 

made which the final result will be C^2 mod P. As the program flows the calculation of  

A^B mod P is made by changing the input of the multiplication and resetting it until it 

reaches to the end. The module finishes when the calculation counter becomes 0 as the 

counter initial value is bit size of B (128).   
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Figure 8 Square and Multiplier asm diagram 
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Square and multiply module test-bench simulation is made as below; 

 

Figure 9 Square and Multiply module test-bench simulation image 

 

Module’s calculation speed depends on the number of logic 1’s that the second input 

has. This is because Karatsuba multiplier is called on every B input bit of logic 1 as it 

can be seen from the state diagram. For this simulation the time passed to reach the 

result is 59ms whereas the clock period is 20 ns. Therefore this simulation needs 

59,000,000 / 20 = 2,950,000 clock cycles for the finish bit to rise. 

 

 

 

 

3.4. Karatsuba Algorithm 

This module is designed for the multiplication operation that is used in square and 

multiply module. The input bit length is 128 bit whereas the output bit length is 256 bit. 

Karatsuba multiplication has the advangtage to compute the product of two large 

numbers x and y using three multiplications of smaller numbers, each with about half as 

many digits as x or y, plus some additions and digit shifts. 
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To calculate an input size of 128 bit, Karatsuba is divided in to smaller modules which 

means 64, 32, 16 and 8 bit length Karatsuba modules are also designed to perform the 

calculation properly. 

Psuedo algoritm for Karatsuba can be seen at the figure below: 

 

 

Figure 10 Psuedo code for Karatsuba Multiplier 

 

After designing the module in verilog language on Xilinx ISE, it is implemented and the 

RTL shcmatic of the module can be seen on the following figure: 

 

Figure 11 Karatsuba multiplier module RTL schematic 

 

Simply expressing the Karatsuba verilog module, at the beginning the module waits for 

the start bit to become logic 1. After the start bit comes, the code flows through asm 

diagram which can be found on below; 
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Figure 12 Karatsuba multiplier asm flow chart [15] 

As it appears, after the calculation is over the done flag is set to logic 1. So that it can be 

used synchronously with the other modules. Because of square and multiply module is 

calling Karatsuba module several times, its reset button is used to make the calculation 

all over again. 

Lastly, Karatsuba needs to use summation to compute the output. As it is mentioned on 

square and multiply module, the summation is calculated by using RCA summation 

module. 

 

Karatsuba module test-bench simulation is made as below; 
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Figure 13 Karatsuba Multiplier test-benc simulation image 

 

 

 

3.5. Implementation TEA Cryptography Algorithm 

Following module is an adaptation of the reference encryption and decryption routines 

in C, released into the public domain by David Wheeler and Roger Needham: 
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Figure 14 Tiny Encrytion Algorithm written in C code 

 

As it can be seen from the c algorithm, TEA module has two 32 bit length inputs. One of 

them is for the message to be sent and the other one is the key gathered from DH key 

exchange method. The module is asynchronous so that as soon as the input changes, the 

output is immediately acquired. 

The following notation is necessary for understanding TEA algorithm. 

Shift Operator: The logical shift of x by y bits is denoted by x << y. The logical right 

shift of x by y bits is denoted by x >> y.  

 Rotation Operator: A left rotation of x by y bits is denoted by x <<< y. A right 

rotation of x by y bits is denoted by x >>> y.  

 Exclusive-OR: The operation of addition of n-tuples over the fields denoted by x⊕y. 

Integer Addition: The operation of integer addition modulo is denoted by x y. 

 

The flow chard of TEA using these operators can be seen in the figure below: 
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Figure 15 Encrytion and decryption process of TEA 
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Figure 14 shows how TEA module encrypts and decrypts a plain text briefly. Here ‘K‘ is 

the key which is obtained from DH key exchange protocol. The encryption and 

decryption module RTL schematics can be on Figure 15. 

 

Figure 16 TEA Encryption and Decryption module RTL schematics 
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4. HARDWARE DESING 

4.1. Communication Between Two FPGA 

As it is mentioned on the implementation topic, two different FPGAs are planned to 

communicate. This communication method is chosen to be Universal Asynchronous 

Receiver/Transmitter (UART) protocol. Generally, UART communication is made by 

using RS232 cable. This cable is used at serial communication transmission of data. This 

cable can be connected to a computers Universal Serial Bus (USB) socket.   

Spartan 6 FPGA is does not have any inputs for RS232 therefore the communication is 

made by using Rx and Tx ports to send and receive data. 

 

4.1.1.    UART protocol 

The UART performs serial-to-parallel conversions on data received from a peripheral 

device and parallel-to-serial conversion on data received from the CPU. The CPU can 

read the UART status at any time. The UART includes control capability and a 

processor interrupt system that can be tailored to minimize software management of the 

communications link. [10] 

Sending serial data on a single line accurately needs some control to be applied. 

Therefore UART protocol, except the data bits, has a parity bit which is optional, a stop 

bit and a start bit. When there is no data to send the line is in idle case. Idle case 

terminates when the start bit is seen and sends data until the stop bit is raised. Pairty bit 

is optional that comes before the end bit. Tx line is used to transmit data and Rx is to 

receive data. Every single bit of data is sent according to the Baudrate which is the rate 

of data sent per second. Baudrate is generally set to 9600. 

 

4.1.2.    Configurations Made on FPGA to Communicate 

In the case of communicating two Spartan 6 FPGAs, for the reason RS232 cannot be 

used, UART protocol is made manually. Thus, Rx and Tx ports are defined on both 

FPGAs. Baudrate is set to 9600 and non-parity mode is selected.  

First FPGA’s sending port is set as the second FPGA’s receive port which means, Tx1 is 

connected to Rx2 and Rx1 is connected to Tx2. So, both sides are able to send and 

receive data. The pins “T3” and “R3” are used as Tx and Rx. The adjustments and 

changes on User Constraints File (UCF) for UART communication are made on XPS. 
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Figure 17 Overall system connections 

 

 

4.2. Microblaze – Hardware Relationship 

Microblaze is used to conclude DH key exchange steps that is explained on 

“Implementation of DH Key Exchange Protocol” topic. Programming Microblaze is 

made on Xilinx SDK but before passing to SDK, firs all the verilog modules have to be 

embedded to EDK. In this project the necessary modules are the ones used to compute A 

over B mod C and the TEA algorithm module. After these modules are embedded to 

EDK, libraries are produced for these modules so Microblaze can control them by being 

programmed on SDK.  

Accordingly, to send data using UART protocol on SDK, the codes were written in C 

language. To send data from Tx, outbyte() function is being used whereas to receive data 

from Rx, inbyte() function is used. Also, all the module calculations were made by the 

special functions which were inside of the produced libraries. 

Another thing that Microblaze is responsible about producing random numers for FPGA 

1 and FPGA 2. For this random function generator which belongs to the library “time.h” 

is used. So both FPGA has their own secret number.   

By using the properties of debugging all the steps have been able to be observed. Being 

able to see all the steps makes any mistake to be solve easily.  

 

      

                                                       Tx1       Rx2 

 

                                                                         

                                                                    Rx1         Tx2 

 

 

 

 

Figure 16 explains the interior and exterior overall hardware system connection.  
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5. OPTIMIZATION 

At the very beginning, the modules to realize DH key exchange, were designed in a 

different way. Karatsuba algorithm was asynchronous and square and multiply module 

was completely different.  square and multiply module was different because of the 

calculation of A ^ B mod C. The module named “A_over_B_mod_C” was implemented 

in order to compute the following equation. 

A ^ B % C = (A * A % C) * A % C) * A % C)…* A % C) 

         B times 

This module had changed for the reason of time consumption. Whenever B is produced 

as a big number (since B is 128 bit), the computing time proportionally increases. In the 

case of producing a 128 bit length number, obtaining the result takes 2 ^ 128 clock cycle 

as time. Consequently, calculation of A ^ B mod C is impossible for huge B values. 

Asynchronous Karasuba algorithm possesses problem of space consumption. For this 

module, gain of time ends up loss on space. Because of implementing expansion of 

Karatsuba equations, the module demands enormously many FPGA IO-block amount. 

This module was not able to fit in Spartan-6 FPGA. After several tests, the results 

showed the module was only able to fit in of Xilinx FPGA Virtex-6.  

Only one single Virtex-6 was idly for usage, thus single FPGA is not convenient for this 

project (reason for communication). The module has decreased to Spartan – 6 by the loss 

of time and gain of space. 

A ^ B mod C module was the top module that had to be fit in Spartan – 6 FPGA. After 

implementing the module before optimization, this design summary table was acquired. 

 

 

Figure 18 A over B mod C module design summary before optimization 

 

As it is seen from Figure 17, the module is not able to fit inside Spartan – 6 FPGA 

because of using too much IOBs. After optimization the top module which is the square 
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and multiply module, is successfully reduced to fit in Spartan – 6 FPGA. The design 

summary belongs to this module takes place under the “Results” topic in detail. 
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6. RESULTS 

Space consumption for Karatsuba module can be seen as below; 

 

 

Figure 19 Karatsuba Multiplier design summary after optimization 

 

Space consumption for square and multiply module can be seen as below; 

 

 

Figure 20 Square and Multiply design summary after optimization 

 

Considering Figure 18, Karatsuba multiplier module is not able to fit inside Spartan – 6 

FPGA. However when this module is called by the top module which is square and 

multiply, IOB size decreases so that the module is able to fit in the desired FPGA. Top 

module (square and multiply) is able to fit in Spartan – 6 FPGA as it is seen from Figure 

19. 

Simulation obtaining key, using DH key exchange method on SDK can be seen on 

Figure 20. The information is gathered by using SDK debugging feature. 
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Figure 21 Obtaining the result on debug screen from FPGA1 

 

On Figure 20, the first FPGA has produced its own key using its own secret variable. 

The debug screen shows which result is computed. This result is sent to the other FPGA 

to produce a key in common. The result from square and multiply algorithm is found as 

16187. 
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Figure 22  Obtaining the result on debug screen from FPGA2 

Next, the second FPGA has produced its own key using its own secret variable. The 

debug screen shows which result is computed. This result is sent to the other FPGA to 

produce a key in common. As it can be seen on Figure 21, the result from square and 

multiply algorithm is found as 13598. 
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Figure 23 Producing the key on FPGA1 

 

After first FPGA sends the result (16187) to the second FPGA, this result enters as an 

input to compute the shared key. The key computed key on the first FPGA is 25697 as it 

is seen from Figure 22. 
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Figure 24 Producing the key on FPGA2 

 

As well as the second FPGA does the same procedure with the first one, they both 

compute the same value which can be seen on Figure 22 and Figure 23, the computed 

key is same on both sides. Both FPGA’s were able to share a key in secret, for this 

example the key is calculated as 25697. 

Finally, the produced key is used as encryption and decryption on a message to be sent. 

Therefore, FPGA 1 includes a TEA encryption module while TEA decryption module is 

embedded in FPGA 2.  

FPGA 1 has gathered encrypted value by using the common key (25697) and produced a 

ciphered data of a message which is given as an input to the encryption module. Figure 

24 shows the ciphered message data. 
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Figure 25 TEA encryption module output 

 

The message that is about to be sent to the other FPGA is chosen as “0x1234ABCD”. 

This message is given as input to the encryption module according to the key calculated 

previously which is 25697. Output of this module is the chippered value 

“0xCCD70F6F” which can be seen from Figure 25. 
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Figure 26 TEA decryption module output 

 

After the chippered key is sent to the other FPGA, this value enters to the decryption 

TEA module and decrypts the chippered message according to the common key. So, the 

input for decryption module is “25697” which is the key and the chippered message 

“0xCCD70F6F”. As it can be seen from Figure 26 the output is the original text which 

has entered the encryption module which is “0x1234ABCD”. 
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