
i

ISTANBUL TECHNICAL UNIVERSTY

ELECTRICAL – ELECTRONICS ENGINEERING FACULTY

A SOFTWARE-HARDWARE IMPLEMENTATION OF A SECURED DATA

COMMUNICATION PROTOCOL USING TEA ALGORITHM

BSc Thesis by

Arif GENCOSMANOGLU

Department: Electronics and Communication Engineering

Programme: Electronics Engineering

Supervisor: Assoc. Prof. Dr. Siddika Berna Ors Yalcin

MAY 2014

ii

ACKNOWLAGEMENT

First of all, I really want to give my endless thanks to my supervisor, Assoc. Prof. Dr.

Siddika Berna Ors Yalcin for sparing her precious time, giving advice and sharing her

knowledge with me. It was really necessary to finish my thesis.

Also I would like to thank to Research Assis. Emre GÖNCÜ and my friend Ahmet

JORGANXHI for giving their help when I mostly needed.

Last of all, I really appreciate all the support came from my family that they always

stood behind my decisions.

MAY 2014 Arif GENCOSMANOGLU

iii

INDEX

ABBREVIATIONS .. iv

FIGURE LIST ... v

SUMMARY .. vi

ÖZET ... vii

1. INTRODUCTION .. 1

2. Foreknowledge ... 2

2.1. Diffie Helman Key Exchange Protocol ... 2

2.2. Tiny Encription Algorithm (TEA) .. 3

2.3. Xilinx XPS... 4

2.3.1. Field Programmable Gate Array .. 4

2.3.1.1. Xilinx Spartan-6 LX45 FPGA ... 6

2.3.1.2. Verilog Hardware Description Language .. 6

2.3.1.3. Xilinx ISE Environment .. 6

2.3.2. Microblaze Processor ... 6

2.3.2.1. Xilinx EDK Environment .. 7

2.3.2.2. Xilinx SDK Environment .. 8

3. IMPLEMENTED PROTOCOLS AND ALGORITHMS .. 10

3.2. Implementation of DH Key Exchange Protocol .. 10

3.3. Square and Multiply Algorithm ... 11

3.4. Karatsuba Algorithm ... 14

3.5. Implementation TEA Cryptography Algorithm ... 17

4. HARDWARE DESING ... 21

4.1. Communication Between Two FPGA .. 21

4.1.1. UART protocol ... 21

4.1.2. Configurations Made on FPGA to Communicate ... 21

4.2. Microblaze – Hardware Relationship .. 22

5. OPTIMIZATION ... 23

6. RESULTS ... 25

REFERENCES ... 32

RESUME .. 33

iv

ABBREVIATIONS

DH : Diffie Helman

EDK : Embedded Development Kit

FPGA : Field Programmable Gate Array

ISE : Integrated Software Environment

LUT : Look Up Table

RCA : Ripple Carry Adder

RTL : Register Transfer Level

SDK : Software Development Kit

TEA : Tiny Encryption Algorithm

UART : Universal Asynchronous Receiver/Transmitter

UCF : User Constraints File

USB : Universal Serial Bus

XPS : Xilinx Platform Studio

v

FIGURE LIST

Figure 1 Example of an encrypted data [1] .. 1

Figure 2 Diffie Helman Key Exchange Protocol [12] .. 3

Figure 3 TEA module input output example [9] ... 4

Figure 4 Logic celles inside FPGA [4] .. 5

Figure 5 Basic Embedded Design Process Flow [8] .. 8

Figure 6 Square and Multiply C code ... 11

Figure 7 Square and Multiply modüle RTL schematic .. 12

Figure 8 Square and Multiplier asm diagram ... 13

Figure 9 Square and Multiply module test-bench simulation image ... 14

Figure 10 Psuedo code for Karatsuba Multiplier ... 15

Figure 11 Karatsuba multiplier module RTL schematic ... 15

Figure 12 Karatsuba multiplier asm flow chart [15] .. 16

Figure 13 Karatsuba Multiplier test-benc simulation image ... 17

Figure 14 Tiny Encrytion Algorithm written in C code ... 18

Figure 15 Encrytion and decryption process of TEA .. 19

Figure 16 TEA Encryption and Decryption module RTL schematics .. 20

Figure 17 Overall system connections ... 22

Figure 18 A over B mod C module design summary before optimization 23

Figure 19 Karatsuba Multiplier design summary after optimization ... 25

Figure 20 Square and Multiply design summary after optimization ... 25

Figure 21 Obtaining the result on debug screen from FPGA1 ... 26

Figure 22 Obtaining the result on debug screen from FPGA2 .. 27

Figure 23 Producing the key on FPGA1 .. 28

Figure 24 Producing the key on FPGA2 .. 29

Figure 25 TEA encryption module output .. 30

file:///C:/Users/0014/Downloads/Arif%20Gencosmanoglu%20Graduation%20Thesis.docx%23_Toc388405289

vi

A SOFTWARE-HARDWARE IMPLEMENTATION OF A SECURED DATA

COMMUNICATION PROTOCOL USING TEA ALGORITHM

SUMMARY

By using Diffie–Hellman (DH) key exchange protocol a key is created by the sides

which is about to communicate. In order to realize this method field programmable gate

arrays (FPGA) are being used. By implementing DH, some mathematical operations like

multiplication and summation are needed. So FPGAs are used to calculate these

mathematical operations. Karatsuba multiplier and Ripple carry adder modules are used

to calculate multiplication and summation to succeed DH key exchange method.

Two different FPGAs are used to communicate each other. After sending some

information to each other several times, which is particularly explained in the thesis,

both sides have a common key which is kept in secret. One of the sides uses this key to

crypt a message with tiny encryption algorithm (TEA) and send it to the other side. The

other side receives the message than decrypts the message with the same key. At the

end, two sides are able to communicate confidentially on an unsecure line.

Applying this crypto procedure, all the algorithms are calculated with 128 bit numbers.

Such size of numbers are used in these days because they are highly enough to be used

in crypto algorithms.

vii

GÜVENLİ BİR VERİ HABERLEŞME PROTOKOLÜNÜN TEA ALGORİTMASI

İLE DONANIM-YAZILIM ORTAK OLARAK GERÇEKLENMESİ

ÖZET

Diffie–Hellman (DH) anahtar değişim protokolünden yararlanarak, haberleşmesi

istenilen iki taraf arasında bir anahtar oluşturulmuştur. Bu yöntemi gerçeklemek için

Sahada Programlanabilinir Kapı Dizileri (Field Programmable Gate Array, FPGA)

kullanılmıştır. DH metodunu uygularken, toplama ve çarpma gibi bir takım

matematiksel işlemlere ihtiyaç vardır. Bu işlemlerin hesaplanması için FPGA

kullanılmıştır. Çarpma ve toplama işlemleri için, Karatsuba Çarpa algoritması ve

Zincirleme Elde Toplayıcısı (Ripple Carry Adder, RCA) modülü kullanılarak DH

anahtar değişim yöntemi başarı ile gerçekleştirilmiştir.

Haberleşmek adına iki farklı FPGA kullanılmıştır. Tezde detaylı olarak anlatılan şekilde

iki taraf birbirlerine bir kaç kere bilgi yollayarak ortak bir anahtar elde ederler. Bir taraf

bu anahtarı kullanarak yollamak istediği mesajı Küçük Kriptolama Algoritması (Tiny

Encryption Algorithm, TEA) ile şifreleyerek öteki tarafa gönderir. Daha sonra öteki taraf

bu mesajı aynı anahtar ve algoritma ile deşifre eder. Sonuç olarak, tehlikeli bir hat

üzerinde güvenli bir şekilde bilgi aktarımı yapılmış olunur.

Kriptolama prosedürü uygulanırken, tüm algoritmaların hesaplanmasında 128 bitlik

sayılar kullanılmıştır. Bu büyüklükteki sayılar, kriptolama algoritmalarının

gerçeklemesinde yeterli olarak kabul edildiğinden dolayı, günümüzde de böyle

kullanılmaktadır.

1

1. INTRODUCTION

Cryptography is the science of using mathematics to encrypt and decrypt data.

Cryptography enables you to store sensitive information or transmit it across insecure

networks (like the Internet) so that it cannot be read by anyone except the intended

recipient. [16]

To overcome such problems by using crypto methods. Crypto algorithms allows to crypt

a data that is to be sent and after it is sent, the receiver decrypts the received data to

understand it. But first of all, both sides has to know how the data is encrypted. The art

of protecting information by transforming it (encrypting it) into an unreadable format,

called cipher text. Only those who possess a secret key can decipher (or decrypt) the

message into plain text. Encrypted messages can sometimes be broken by cryptanalysis,

also called code breaking, although modern cryptography techniques are virtually

unbreakable.

In Figure 1, for example, we see “kiov” repeated after nine letters, and “nu” after six.

Since three divides both six and nine, we might guess a keyword of three letters. It

follows the chipper text letters one, four, seven and so and all enciphered under the same

key letter; so we can use frequency analysis techniques to guess the most likely values of

this letter, then repeat the process for the second and third letters of the key [1].

Figure 1 Example of an encrypted data [1]

In this project encryption is made by TEA (Tiny Encryption Algorithm) and the key is

produced by Diffie Helman (DH) key exchange method. The key that will be produced

from DH key exchange method is 128 bit length therefore the TEA algorithm will use a

key with length of 128 bit and encrypt a message using this key.

2

2. Foreknowledge

2.1. Diffie Helman Key Exchange Protocol

Diffie–Hellman (D-H) key exchange algorithm is a specific method of exchanging secret

keys. It is one of the earliest practical examples of key exchange implemented within the

field of cryptography. The Diffie–Hellman key exchange method allows two parties that

have no prior knowledge of each other to jointly establish a shared secret key over an

insecure communications channel. This key can then be used to encrypt subsequent

communications using a symmetric key cipher. [2]

DH key exchange protocol is used to share a key secretly from the observer who is

listening to the communication line. For this key to be produced, some mathematical

operations are need to be applied. These operations uses some non-secret variables that

are known by everyone including the observer, and some secret variables that are only

know by the producer.

This key exchange method uses constant numbers ‘p’ and ‘g’ where p is a prime number

and g is a primitive root mod p. These two variables are known preliminary and are non-

secret variables. There are also secret variables that is used. Each sides produce their

own secret random variable ‘a’ and ‘b’ which are only known by themselves. The

process begins after both sides to communicate produces their own secret random

number.

All the variables are 128 bit long which is enough for a safe in communication.

Explaining DH key exchange method, is easier by using an example.

1. Alice and Bob agree to use a prime number p = 23 and base g = 5.

2. Alice chooses a secret integer a = 6, then sends Bob (g a mod p):

56 = 15625 ≡ 8 (mod 23).

3. Bob chooses a secret integer b = 15, then sends Alice (gb mod p):

515 = 30517578125 ≡ 19 (mod 23).

4. Alice computes (gb mod p)a mod p:

196 = 47045881 ≡ 2 (mod 23).

5. Bob computes (ga mod p)b mod p:

815 = 35184372088832 ≡ 2 (mod 23).

3

After the Diffie-Hellman key exchange both Alice and Bob have agreed on the key 2.

[13]

Figure 2 Diffie Helman Key Exchange Protocol [12]

Both A and B have agreed on the same value, because (ga)b and (gb)a mod p are equal.

The essential point is only a, b, and (gab mod p = gba mod p) are kept as secret whereas

all the other variables – p, g, ga mod p, and gb mod p – are sent in the clear. Once side A

and B compute the shared secret they can use it as an encryption key, known only to

them, for sending messages across the same open communications channel.

2.2. Tiny Encription Algorithm (TEA)

The TEA (Tiny Encryption Algorithm) is a symmetric (private) key encryption

algorithm created by David Wheeler and Roger Needham of Cambridge University and

published in 1994. It was designed for simplicity and performance, while seeking an

encryption strength on par with more complicated and resource-intensive algorithms

such as DES (Data Encryption Standard). [14]

TEA uses two 32-bit unsigned integers and a 128-bit key. Also, it has a simple key

schedule, mixing all of the key material in exactly the same way for each cycle. After

the key is obtained from Diffie Helman key exchange protocol, it will be used to encrypt

and decrypt a message.

The message entering to TEA encryption module is called as “plaintext”. After plaintext

is encrypted by the key, module produces an output which is called as “chipertext”. In

order to regain encrypted plaintext back, chipertext is given as input to TEA decryption

module.

4

Figure 3 TEA module input output example [9]

The simple conclusions (and answers to my opening questions) are: yes, TEA/XTEA is

easy to implement, fast, efficient, and cryptographically strong. When implemented and

used correctly, TEA can be an excellent choice, particularly for encrypting and

decrypting small, short-lived data in resource constraint devices. [14]

2.3. Xilinx XPS

Xilinx is a company whom aids us to use Spartan - FPGAs. Not only FPGAs, this

company supports us with several softwares which can be used to program FPGA or to

configure and control its unique microcontroller Microblaze that takes part inside FPGA.

The interface softwares that are used in the thesis project are; Xilinx Integrated Software

Environment (ISE), Xilinx Embedded Development Kit (EDK) and Xilinx Software

Development Kit (SDK)

2.3.1. Field Programmable Gate Array

A Field programmable gate array (FPGA) is a logic device that contains a two-

dimensional array of generic logic cells and programmable switches. The conceptual

structure of an FPGA device is shown in Figure 4. A logic cell can be configured (i.e.,

programmed) to perform a simple function, and a programmable switch can be

customized to provide interconnections among the logic cells. A custom design can be

implemented by specifying the function of each logic cell and selectively setting the

connection of each programmable switch. Once the design and synthesis is completed,

5

we can use a simple adaptor cable to download the desired logic cell and switch

configuration to the FPGA device and obtain the custom circuit. Since this process can

be done "in the field" rather than "in a fabrication facility (fab)," the device is known as

field programmable. [3]

Figure 4 Logic celles inside FPGA [4]

In general, a logic block consists of a few logical cells. A typical cell consists of a 4-

input LUT, a Full adder (FA) and a D-type flip-flop, as shown below. The LUTs are in

this figure split into two 3-input LUTs. In normal mode those are combined into a 4-

input LUT through the left mux. In arithmetic mode, their outputs are fed to the FA. The

selection of mode is programmed into the middle multiplexer. The output can be either

synchronous or asynchronous, depending on the programming of the mux to the right, in

the figure example. In practice, entire or parts of the FA are put as functions into the

LUTs in order to save space. [4]

FPGAs are capable with parallel programming, so they can be used to build fast

systems. Additionally, because microprocessors are logic circuits they can be

programmed inside FPGAs according to the needs of the user. Therefore in a single

integrated circuit as a control unit, it is possible to configure the hardware particularly

for the user and the processor. FPGAs are fast also because all the system is on the same

place, which reduces the delay caused by the connections. Because of all these features

FPGA offers, it is decided to be used in this project.

6

2.3.1.1. Xilinx Spartan-6 LX45 FPGA

The project aims to send an encrypted message by a FPGA to another FPGA. Xilinx

FPGA Spartan-6 LX45 is used as a transmitter and also as the receiver. This FPGA

includes 4, LUTs with 6 inputs and 6,822 slices which has 8 flip-flops inside one of it.

Also, the clock frequency can speed up to 500 MHz. [5]

2.3.1.2. Verilog Hardware Description Language

The modules that are used for the DH key exchange method and TEA algorithm has

been designed in Xilinx ISE by using Verilog hardware description language. The

designers of Verilog wanted a language with syntax similar to the C programming

language, which was already widely used in engineering software development. Like C,

Verilog is case-sensitive and has a basic preprocessor. Its operator precedence is

compatible with C. Because of these properties of Verilog, developers mostly do prefer

to use this language.

2.3.1.3. Xilinx ISE Environment

Integrated Software Environment (ISE) is an interface software program that is

developed by Xilinx Company. This software serves to configure Xilinx FPGAs. ISE

has couple of properties which provide ease when designing a digital system. Hardware

description languages can be used to define logic systems whereas can provide

schematic information which certainly comes in handy. Also ISE gives the opportunity

to test the designed modules on the test-bench simulation, moreover it is possible to see

the delay based on the wires from place and root simulation. Last of all ISE is able to

give information about space consumption and FPGA layout vision.

However these designed modules are not enough for the process to continue.

Microblaze, which is a soft processor, is used to assure all the controls between these

modules.

2.3.2. Microblaze Processor

Microblaze processor, is produced by programming the proper blocks on a FPGA. This

processor is controlled using FPGA by software and it is used in embedded systems.

Microblaze, gives the opportunity to choose peripheral units, memory and interface

properties on a single FPGA. This properties yields for the user to build a flexible

embedded system.

7

The Microblaze soft core processor is highly configurable, allowing you to select a

specific set of features required by your design.

The fixed feature set of the processor includes:

• Thirty-two 32-bit general purpose registers

• 32-bit instruction word with three operands and two addressing modes

• 32-bit address bus

• Single issue pipeline

In addition to these fixed features, the MicroBlaze processor is parameterized to allow

selective enabling of additional functionality. Older (deprecated) versions of MicroBlaze

support a subset of the optional features described in this manual. Only the latest

(preferred) version of MicroBlaze (v7.10) supports all options. [7]

2.3.2.1. Xilinx EDK Environment

Microblaze which is explained in the previous topic, is part of the Embedded Processor

Development Kit (EDK). This platform is used when a microprocessor based digital

system is aimed to build. This platform has some utilities which provides convenience

for the user. These utilities are adjusting systems addressing, defining communication

protocols and setting the hardware connections. Thus the user can be focused on

designing the hardware and software.

8

Figure 5 Basic Embedded Design Process Flow [8]

EDK includes:

• The Xilinx Platform Studio (XPS) Interface

• The Embedded System Tools suite

• Embedded processing Intellectual Property (IP) cores such as processors (also called

pcores) and peripherals

• The Platform Studio SDK (Software Development Kit), based on the Eclipse open

source framework, which you can use (optionally) to develop your embedded software

application. [8]

2.3.2.2. Xilinx SDK Environment

Software Development Kit (SDK) takes part in EDK and is an interface where the

processor based digital system software design is done. On XPS’s previous versions

SDK was involved in XPS. However after version ISE 13.0 Xilinx decided to spate SDK

from XPS, which can be seen from Figure 5. This means XPS is used on purpose of

designing a systems hardware section whereas SDK is only responsible for the software

9

design section. EDK creates the necessary libraries that belongs to user logic hardware

and peripheral units. Inside SDK, these created libraries are defined and used in order to

design the desired system. These libraries are used to control Microblaze processor as it

is needed.

 SDK features include:

 Feature-rich C/C++ code editor and compilation environment

 Project management

 Application build configuration and automatic Makefile generation

 Error navigation

 Well-integrated environment for seamless debugging and profiling of embedded

targets

 Source code version control. [6]

10

3. IMPLEMENTED PROTOCOLS AND ALGORITHMS

All the following protocols and algorithms are implemented on Xilinx Spartan 6 FPGA.

All the modules are designed as state machines which means they all have a clock input.

In order to work together all the modules have a reset and start input also a done flag

output. By using these input and outputs, all the modules have been able to work

together.

3.2. Implementation of DH Key Exchange Protocol

As it is explained above, DH key exchange protocol requires some mathematical

operations to be done. These operations are simply multiplication and summation. The

key exchange is fundamentally made by calculating A^B mod C which corresponds to

the result of the square and multiply algorithm.

Both FPGAs are set to calculate A^B mod C using their own secret variable and a

constant 128 bit number. After they make this calculation they send the result to each

other. Finally both the FPGAs calculates the same operation again using their secret

variable and the result came from the other FPGA. Since (ga)b and (gb)a are equal, the

final result will be equal on both FPGAs and will be used as a key to crypt a message. If

it is explained step by step;

1st step: FPGA 1 calculates X ^ a mod P using square and multiply algorithm. Here a is

FPGA 1’s secret variable

2nd step: FPGA 2 calculates X ^ b mod P using square and multiply algorithm. Here b is

FPGA 2’s secret variable.

3rd step: FPGA 1 sends the result R1, to FPGA 2 using UART protocol.

4th step: FPGA 2 sends the result R2, to FPGA 1 using UART protocol.

5th step: FPGA 1 calculates R1 ^ a mod P and obtains the key, K.

6th step: FPGA 2 calculates R2 ^ b mod P and obtains the same key, K.

The produced key is used to encrypt and decrypt a message by Tiny Encryption

Algorithm. This message will be encrypted on FPGA 1. After being sent to the other

side the encrypted message will be decrypted at FPGA 2.

All the steps above would be controlled by using C code on SDK and will be explained

in detail on “Microblaze – Hardware Relationship” topic.

11

3.3. Square and Multiply Algorithm

This module is designed to calculate the operation A^B mod C. In mathematics and

computer programming, exponentiation by squaring is a general method for fast

computation of large positive integer powers of a number, or, more generally of an

element of a ring, like a polynomial or a square matrix. Some variants are commonly

referred to as square-and-multiply algorithms or binary exponentiation. These can be of

quite general use, for example in modular arithmetic or powering of matrices. This

method is also used for exponentiation in groups. For groups for which additive notation

is commonly used, like elliptic curves used in cryptography, this method is also referred

to as double-and-add.

This algorithm for square and multiply written in C language can be seen at the figure

below:

Figure 6 Square and Multiply C code

As it is seen from the algorithm square and multiply uses some fundamental operations.

These are multiplication and taking mod operation. For these two operations some extra

modules are designed separately. Karatsuba multiplication algorithm is designed for the

multiplication operation and it is being called by the top module (square and multiply

module) when multiplication is needed.

Taking mod is being computed by making subtraction. A mod B is calculated by

subtraction B from A, until A is smaller than B. Every single subtraction is made on one

clock cycle. Therefore obtaining the result from the mod operation depends on the gap

between A and B. If A is very large than B it may take too long to reach the result.

However this will not cause a problem on calculation A ^ B mod C because C will be

chosen as 128 bit length constant number so, the maximum calculation time will be

made on 128 clock cycles.

To make the subtraction, mod operation calls a subtraction module which is designed by

using Ripple Carry Adder (RCA) module. RCA is used for the reason of gain from

space. This may cause reaching to the result in a longer state but gain from space was

more important that will be explained on the topic OPTIMIZATION in detail.

12

RTL schematic which is obtained from the implemented square and multiply module is

given as below:

Figure 7 Square and Multiply modüle RTL schematic

As its seen from Figure 7, the module has a start and a reset bit as input and a done bit

flag as output to work with other modules in harmony.

On the first state, the initial conditions are set and the module waits for the start bit to

arrive. The module starts after the start bit is logic 1 and gives both of the inputs for

multiplication as C, in order to compute C^2. When the calculation is done the

multiplication will return the done flag which will lead the top module to the next state.

After all the multiplication calculation are complete the module have to be reset to

repeat the compute when the inputs are changed. On the next state the mod operation is

made which the final result will be C^2 mod P. As the program flows the calculation of

A^B mod P is made by changing the input of the multiplication and resetting it until it

reaches to the end. The module finishes when the calculation counter becomes 0 as the

counter initial value is bit size of B (128).

13

Figure 8 Square and Multiplier asm diagram

14

Square and multiply module test-bench simulation is made as below;

Figure 9 Square and Multiply module test-bench simulation image

Module’s calculation speed depends on the number of logic 1’s that the second input

has. This is because Karatsuba multiplier is called on every B input bit of logic 1 as it

can be seen from the state diagram. For this simulation the time passed to reach the

result is 59ms whereas the clock period is 20 ns. Therefore this simulation needs

59,000,000 / 20 = 2,950,000 clock cycles for the finish bit to rise.

3.4. Karatsuba Algorithm

This module is designed for the multiplication operation that is used in square and

multiply module. The input bit length is 128 bit whereas the output bit length is 256 bit.

Karatsuba multiplication has the advangtage to compute the product of two large

numbers x and y using three multiplications of smaller numbers, each with about half as

many digits as x or y, plus some additions and digit shifts.

15

To calculate an input size of 128 bit, Karatsuba is divided in to smaller modules which

means 64, 32, 16 and 8 bit length Karatsuba modules are also designed to perform the

calculation properly.

Psuedo algoritm for Karatsuba can be seen at the figure below:

Figure 10 Psuedo code for Karatsuba Multiplier

After designing the module in verilog language on Xilinx ISE, it is implemented and the

RTL shcmatic of the module can be seen on the following figure:

Figure 11 Karatsuba multiplier module RTL schematic

Simply expressing the Karatsuba verilog module, at the beginning the module waits for

the start bit to become logic 1. After the start bit comes, the code flows through asm

diagram which can be found on below;

16

Figure 12 Karatsuba multiplier asm flow chart [15]

As it appears, after the calculation is over the done flag is set to logic 1. So that it can be

used synchronously with the other modules. Because of square and multiply module is

calling Karatsuba module several times, its reset button is used to make the calculation

all over again.

Lastly, Karatsuba needs to use summation to compute the output. As it is mentioned on

square and multiply module, the summation is calculated by using RCA summation

module.

Karatsuba module test-bench simulation is made as below;

17

Figure 13 Karatsuba Multiplier test-benc simulation image

3.5. Implementation TEA Cryptography Algorithm

Following module is an adaptation of the reference encryption and decryption routines

in C, released into the public domain by David Wheeler and Roger Needham:

18

Figure 14 Tiny Encrytion Algorithm written in C code

As it can be seen from the c algorithm, TEA module has two 32 bit length inputs. One of

them is for the message to be sent and the other one is the key gathered from DH key

exchange method. The module is asynchronous so that as soon as the input changes, the

output is immediately acquired.

The following notation is necessary for understanding TEA algorithm.

Shift Operator: The logical shift of x by y bits is denoted by x << y. The logical right

shift of x by y bits is denoted by x >> y.

 Rotation Operator: A left rotation of x by y bits is denoted by x <<< y. A right

rotation of x by y bits is denoted by x >>> y.

 Exclusive-OR: The operation of addition of n-tuples over the fields denoted by x⊕y.

Integer Addition: The operation of integer addition modulo is denoted by x y.

The flow chard of TEA using these operators can be seen in the figure below:

19

Figure 15 Encrytion and decryption process of TEA

20

Figure 14 shows how TEA module encrypts and decrypts a plain text briefly. Here ‘K‘ is

the key which is obtained from DH key exchange protocol. The encryption and

decryption module RTL schematics can be on Figure 15.

Figure 16 TEA Encryption and Decryption module RTL schematics

21

4. HARDWARE DESING

4.1. Communication Between Two FPGA

As it is mentioned on the implementation topic, two different FPGAs are planned to

communicate. This communication method is chosen to be Universal Asynchronous

Receiver/Transmitter (UART) protocol. Generally, UART communication is made by

using RS232 cable. This cable is used at serial communication transmission of data. This

cable can be connected to a computers Universal Serial Bus (USB) socket.

Spartan 6 FPGA is does not have any inputs for RS232 therefore the communication is

made by using Rx and Tx ports to send and receive data.

4.1.1. UART protocol

The UART performs serial-to-parallel conversions on data received from a peripheral

device and parallel-to-serial conversion on data received from the CPU. The CPU can

read the UART status at any time. The UART includes control capability and a

processor interrupt system that can be tailored to minimize software management of the

communications link. [10]

Sending serial data on a single line accurately needs some control to be applied.

Therefore UART protocol, except the data bits, has a parity bit which is optional, a stop

bit and a start bit. When there is no data to send the line is in idle case. Idle case

terminates when the start bit is seen and sends data until the stop bit is raised. Pairty bit

is optional that comes before the end bit. Tx line is used to transmit data and Rx is to

receive data. Every single bit of data is sent according to the Baudrate which is the rate

of data sent per second. Baudrate is generally set to 9600.

4.1.2. Configurations Made on FPGA to Communicate

In the case of communicating two Spartan 6 FPGAs, for the reason RS232 cannot be

used, UART protocol is made manually. Thus, Rx and Tx ports are defined on both

FPGAs. Baudrate is set to 9600 and non-parity mode is selected.

First FPGA’s sending port is set as the second FPGA’s receive port which means, Tx1 is

connected to Rx2 and Rx1 is connected to Tx2. So, both sides are able to send and

receive data. The pins “T3” and “R3” are used as Tx and Rx. The adjustments and

changes on User Constraints File (UCF) for UART communication are made on XPS.

22

Figure 17 Overall system connections

4.2. Microblaze – Hardware Relationship

Microblaze is used to conclude DH key exchange steps that is explained on

“Implementation of DH Key Exchange Protocol” topic. Programming Microblaze is

made on Xilinx SDK but before passing to SDK, firs all the verilog modules have to be

embedded to EDK. In this project the necessary modules are the ones used to compute A

over B mod C and the TEA algorithm module. After these modules are embedded to

EDK, libraries are produced for these modules so Microblaze can control them by being

programmed on SDK.

Accordingly, to send data using UART protocol on SDK, the codes were written in C

language. To send data from Tx, outbyte() function is being used whereas to receive data

from Rx, inbyte() function is used. Also, all the module calculations were made by the

special functions which were inside of the produced libraries.

Another thing that Microblaze is responsible about producing random numers for FPGA

1 and FPGA 2. For this random function generator which belongs to the library “time.h”

is used. So both FPGA has their own secret number.

By using the properties of debugging all the steps have been able to be observed. Being

able to see all the steps makes any mistake to be solve easily.

 Tx1 Rx2

 Rx1 Tx2

Figure 16 explains the interior and exterior overall hardware system connection.

23

5. OPTIMIZATION

At the very beginning, the modules to realize DH key exchange, were designed in a

different way. Karatsuba algorithm was asynchronous and square and multiply module

was completely different. square and multiply module was different because of the

calculation of A ^ B mod C. The module named “A_over_B_mod_C” was implemented

in order to compute the following equation.

A ^ B % C = (A * A % C) * A % C) * A % C)…* A % C)

 B times

This module had changed for the reason of time consumption. Whenever B is produced

as a big number (since B is 128 bit), the computing time proportionally increases. In the

case of producing a 128 bit length number, obtaining the result takes 2 ^ 128 clock cycle

as time. Consequently, calculation of A ^ B mod C is impossible for huge B values.

Asynchronous Karasuba algorithm possesses problem of space consumption. For this

module, gain of time ends up loss on space. Because of implementing expansion of

Karatsuba equations, the module demands enormously many FPGA IO-block amount.

This module was not able to fit in Spartan-6 FPGA. After several tests, the results

showed the module was only able to fit in of Xilinx FPGA Virtex-6.

Only one single Virtex-6 was idly for usage, thus single FPGA is not convenient for this

project (reason for communication). The module has decreased to Spartan – 6 by the loss

of time and gain of space.

A ^ B mod C module was the top module that had to be fit in Spartan – 6 FPGA. After

implementing the module before optimization, this design summary table was acquired.

Figure 18 A over B mod C module design summary before optimization

As it is seen from Figure 17, the module is not able to fit inside Spartan – 6 FPGA

because of using too much IOBs. After optimization the top module which is the square

24

and multiply module, is successfully reduced to fit in Spartan – 6 FPGA. The design

summary belongs to this module takes place under the “Results” topic in detail.

25

6. RESULTS

Space consumption for Karatsuba module can be seen as below;

Figure 19 Karatsuba Multiplier design summary after optimization

Space consumption for square and multiply module can be seen as below;

Figure 20 Square and Multiply design summary after optimization

Considering Figure 18, Karatsuba multiplier module is not able to fit inside Spartan – 6

FPGA. However when this module is called by the top module which is square and

multiply, IOB size decreases so that the module is able to fit in the desired FPGA. Top

module (square and multiply) is able to fit in Spartan – 6 FPGA as it is seen from Figure

19.

Simulation obtaining key, using DH key exchange method on SDK can be seen on

Figure 20. The information is gathered by using SDK debugging feature.

26

Figure 21 Obtaining the result on debug screen from FPGA1

On Figure 20, the first FPGA has produced its own key using its own secret variable.

The debug screen shows which result is computed. This result is sent to the other FPGA

to produce a key in common. The result from square and multiply algorithm is found as

16187.

27

Figure 22 Obtaining the result on debug screen from FPGA2

Next, the second FPGA has produced its own key using its own secret variable. The

debug screen shows which result is computed. This result is sent to the other FPGA to

produce a key in common. As it can be seen on Figure 21, the result from square and

multiply algorithm is found as 13598.

28

Figure 23 Producing the key on FPGA1

After first FPGA sends the result (16187) to the second FPGA, this result enters as an

input to compute the shared key. The key computed key on the first FPGA is 25697 as it

is seen from Figure 22.

29

Figure 24 Producing the key on FPGA2

As well as the second FPGA does the same procedure with the first one, they both

compute the same value which can be seen on Figure 22 and Figure 23, the computed

key is same on both sides. Both FPGA’s were able to share a key in secret, for this

example the key is calculated as 25697.

Finally, the produced key is used as encryption and decryption on a message to be sent.

Therefore, FPGA 1 includes a TEA encryption module while TEA decryption module is

embedded in FPGA 2.

FPGA 1 has gathered encrypted value by using the common key (25697) and produced a

ciphered data of a message which is given as an input to the encryption module. Figure

24 shows the ciphered message data.

30

Figure 25 TEA encryption module output

The message that is about to be sent to the other FPGA is chosen as “0x1234ABCD”.

This message is given as input to the encryption module according to the key calculated

previously which is 25697. Output of this module is the chippered value

“0xCCD70F6F” which can be seen from Figure 25.

31

Figure 26 TEA decryption module output

After the chippered key is sent to the other FPGA, this value enters to the decryption

TEA module and decrypts the chippered message according to the common key. So, the

input for decryption module is “25697” which is the key and the chippered message

“0xCCD70F6F”. As it can be seen from Figure 26 the output is the original text which

has entered the encryption module which is “0x1234ABCD”.

32

REFERENCES

[1] Anderson, R., 2001. Security Engineering: A Guide to Building Dependable

Distributed

Systems, pp.75.

[2] Ibrahim, Mahmood K., 2012. “Modification of Diffie–Hellman Key Exchange

 Algorithm for Zero Knowledge Proof “, Eng.&Tech. Journal, VoL,30. No.3,

2012

pp. 444.

[3] Chu, Pong P., 2008. FPGA Prototyping by VHDL Examples. Wiley-

Interscience, New Jersay, pp. 12.

[4] Xilinx, 2008. Virtex-4 FPGA User Guide.

[5] Xilinx, 2011. Spartan-6 Family Overview.

[6] Xilinx, Xilinx Software Development Kit Help Contents, [Citation Date: 10 May

2014],

http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_2/SDK_Do

c/index.html.

[7]Xilinx, 2008. MicroBlaze Processor Reference Guide, pp.10.

[8] Xilinx, 2002 – 2008. Embedded System Tools Reference Manual, pp. 19-20.

[9] Grabowski, J.; Keurian, J., 2010. “Tiny Encryption Algorithm“, Team Garrett

– Cryptography Submission, pp. 3.

[10] Andem, Vikram R., 2003, “CRYPTANALYSIS OF THE TINY

ENCRYPTION ALGORITHM”, Master Thesis, pp. 6-8-10.

[11] Texas Instrument, 2010. Universal Asynchronous Receiver/Transmitter

(UART), User Guide.

[12] Hoffstein, J., 2008. An Introduction to Mathematical Cryptography, pp. 66.

[13] Ritter, E., 2013. “Asymmetric Ciphers and Public Key Cryptography”,

Handout, pp. 32.

[14] Williams, D., 2008. The Tiny Encryption Algorithm (TEA), pp. 1-7.

[15] Jorganxhi, A., 2014. “A Software-Hardware Common Implementation of a

Secured data communication protocol using AES algorithm”, Thesis.

[16] Network Associates, 1999. An Introduction to Cryptography, pp. 11.

http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_2/SDK_Doc/index.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_2/SDK_Doc/index.html

33

RESUME

Name Surname: Arif Gencosmanoglu

Birth Place and Date: Maine/USA, 1990

HighSchool: Ihlas Collage; 2004 – 2006

BSc: Istanbul Technical University, Electronics Engineering;

2009-20014

