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THE SOFTWARE AND HARDWARE COMMON IMPLEMENTATION OF A 

SECURE DATA COMMUNICATION PROTOCOL USING AES ALGORITHM 

 

SUMMARY 

Cryptography is the one of the most important study areas at the present time that deals  

with the study and practice of techniques for secure communication. Generally a 

cryptographic system first encryps message, and after by using a secured shared key 

provide secured communication between two systems. Modern cryptograhphic systems 

intersect important disciplines such as computer science, mathematics and electrical 

engineering.  

The first step of this project was to provide this secured key that in the next steps will be 

shared between two systems. For this key exchange Diffier-Hellman key exchange 

method is used. The Diffie-Hellman key exchange method allows two systems that have 

no prior knowledge of each other to jointly establish a shared secret key over an insecure 

communication channel. This key exchange method is designed as hardware in Verilog 

Hardware Description Language as combination of two different modules: one module 

which performs multiplication by using “Karatsuba” algorithm and another module 

which performs exponentiation operation by using “Square and Multiply” algorithm and 

modulo operation. By using these three mathematical operations 𝑎𝑏𝑚𝑜𝑑𝑝 operation was 

realized, where a, b and p where 128-bit numbers. 

After the designed Diffie-Hellman module together with Advanced Encryption Standard 

(AES) algorithm is imported to MicroBlaze as peripheral. MicroBlaze is a soft core 

processor designed for Xilinx Field Programmable Gate Array’s (FPGA) from Xilinx. In 

this project two Spartan-6 FPGA wass used, one for encrypting data and one for 

decrypting data. So MicroBlaze in this case wass used as a controller between these two 

designed modules and forms a cryptographic system. These two systems first by using 

Universal Asynchronous Receiver/Transmitter (UART) protocol communication method 
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a key exchange was achieved. Then in one system, MicroBlaze by using encryption 

algorithm of AES, encrypts data with the secured key, that was exchanged between two 

system, and again by using UART protocol was sent to the other FPGA, where its 

MicroBlaze receives it. First the key is checked from the MicroBlaze and after the 

verification of key was achieved the received encrypted data by using the exchanged key 

and decryption algorithm of the AES is decrypted by MicroBlaze.  
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GÜVENLİ BİR VERİ HABERLEŞME PROTOKOLÜNÜN AES ALGORİTMASI 

İLE DONANIM-YAZILIM ORTAK OLARAK GERÇEKLENMESİ 

 

ÖZET 

Kriptografi günümüzde güvenli haberleşme tekniklerini araştıran ve bu teknikleri 

uygulayan bir şifreleme bilimidir. Genel olarak bir kriptografik sistem şifrelenmemiş bir 

mesajı şifreler ve ortak paylaşılmış olan bir anahtar sayesinde iki sistem arasında güvenli 

haberleşmeyi sağlar. Modern kriptografik sistemler bilgisayar bilimleri, matematik ve 

elektrik mühendisliği gibi önemli bilim dallarının kesişmeleri sonucu oluşur. 

Bu projenin gerçekleşmesinde ilk adım olarak iki sistem tarafında paylaşılacak olan 

güvenli ortak anahtarı sağlayan birimin tasarımı gerçeklendi. Bu birimin tasarımında 

anahtar paylaşım yöntemi olarak Diffie-Hellman yöntemi kullanıldı. Diffie-Hellman 

anahtar paylaşım yöntemi  önceden birbirinden hiçbir bilgisi olmaan iki sistemin güvenli 

olmayan bir haberleşme kanalında anahtar paylaşımını sağlar. Bu anahtar paylaşım birimi 

bir donanım olarak Verilog Donanım Tanımlama Dili kullanılarak iki modülünü birleşimi 

olarak tasarlandı. Bu modüllerden biri “Karatsuba” algoritmasını kullanarak çarpım 

işlemini gerçekleştirirken diğer modülde “Square and Multiply” yöntemini kullanarak üst 

alma ve elde edilen sonucun bir sayıya göre mod alma işlemini gerçekleştiriyor. 

Tasarlanan bu donanım bu üç matematiksel işlemi kullanarak 𝑎𝑏𝑚𝑜𝑑𝑝, a, b ve p 128- bit 

sayılar olmak üzere işlemini gerçekleştirecektir. 

Bu tasarlan Diffie-Hellman donanımı ve şifreleme ve çözme işlemini gerçekleştiren 

gelişmiş şifreleme standardı (Advanced Encryption Standar, AES) algoritması donanımı 

ile birlikte MicroBlaze çevresel birim olarak eklenmiştir. MicroBlaze Xilinx 

FPGA’lerinde kullanılan bir soft-core işlemcidir. Bu projede biri şifrelemek diğeri de 
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çözmek amaçlı olmak üzere iki Spartan-6 FPGA kullanılmıştır. Bu projede MicroBlaze 

tasarlanan bu iki donanımı kontrol ederek bir kriptografik sistem oluşturarak güvensiz bir 

haberleşme kanalında güvenli bir haberleşme gerçekleşdirdi. İlk olarak iki sistem UART 

haberleşme protokolünü kullanarak anahtar paylaşım işlemini gerçekleşecektir. Bu 

adımdan sonra bir sistemin MicroBlaze işlemcisi AES donanımını ve bir adım önce 

güvenli bir şekilde paylaşılmış olan anahtarı kullanarak bir mesajı şifreleyerek diğer 

taraftaki sisteme, yani MicroBlaze’e şifrelemiş mesajı Evrensel Eşzamansız Alıcı İletici ( 

Universal Asynchronous Receiver/Transmitter,UART) haberleşme protokolü üzerinden 

gönderilimiştir. Şifrelenmiş mesajı kabul eden MicroBlaze işlemcisi AES donanımını ve 

paylaşılmış olan anahtarı kullanarak şifrelenmiş mesajı çözerek güvensiz bir haberleşme 

kanalında güvenli haberleşme işlemini gerçekleştirmiştir. 
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1. INTRODUCTION 

 In this technological age indeed there is no any situation where the security is a not a 

considerable situtaion because of universal electronic conncectivity, of viruses and 

hackers. The reasons stated above have made cryptography as a discipline more 

complete, sophisticated and main discipline for improvement of practical, readily 

available utilizations to carry out security in different situations [1]. The crucial goal of 

cryptography is to implement communication of two systems over an insecure channel in 

such a way that an observer system, cannot find out the data that is communicating in the 

insecure channel. System A encrypts the data, which can be anything arbytrary, using a 

prearranged secured key, and sends the encrypted message over the insecured channel. 

The oberver O, upon seeing the encrypted in the channel cannot resolve what the data 

was, but the system B that knows the prearranged secure key can decrypt the encrypted 

message and determine message.  

The initial step of a cryptographic system is to share a common key between two system 

in such a way that the observer system cannot determine it. One of the methods for 

sharing specific cryptographic key between two systems over an insecure channel is 

Diffie-Hellman key exchange method. The Diffie-Hellman key exchange method provide 

a secret key, which is shared in two systems, that can be used for secure communication 

of information in insecure communication channel. The key is shared between two 

systems by using two matheamtical operations such as exponentiation and mod operation. 

In this thesis these two mathematical operations are designed as a hardware by the means 

of the Verilog Hardware Description Language. In the design of this unit two methods 

are used: one for multiplication “Karatsuba” method is used and one for exponentiation 

“Square and Multiply” method is used. The mod operation is achieved by subtraction 

operation by the means of an adder. 

As the security has become more important issue the need for the different cryptographic 

algorithms also has rised. One of the algorithms that is used in cryptography is Advanced 
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Encryption Standard (AES) which is a computer security standard issued by the National 

Institute of Standards and Technology (NIST) and the specifications of this encryption 

standard are published in the Federal Information Processing Standards (FIPS) 

Publication 197 [2]. Different versions of AES algortihms are used in cryptography  

(AES128, AES196 and AES256) varying according to the size of the key which is going 

to be used for encryption. In this project the hardware model of AES128 is used which is 

implemented by using Very high speed integrated circuit Hardware Description 

Language.  

Finally both Diffie-Hellman key exchange unit and AES unit are added to soft core 

processor of the Xilinx Field Programmable Gate Array’s (FPGA) named as MicroBlaze. 

The MicroBlaze is a virtual microprocessor where constructionf of this microprocessor is 

achieved by linking blocks of code named as core which are found inside a Xilinx FPGA 

[3]. In this project MicroBlaze with its own peripherals and the two added peripherals 

forms one cryptographic system. Two such systems will communicate through their 

UART communication protocol. Then under control of MicroBlaze of each system 

sequentially a secured key will be shared, a message will be encrypted with the obtained 

secured key and will be sent from the UART communication protocol and from the other 

system will be decrypted by using the common shared key. 
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 2.CRYPTOGRAPHY 

 2.1 Overview 

Cryptography is an indispensable tool for protecting information in computer systems[6]. 

The core of cryptography is of course secure communication that essentially consist of 

two parts: first is secret key establishment and how it is communicated securely once a 

key is ensured.Already is stated that secure key establishment essentially makes two 

system to send messages to each other such that at the end of this protocol there is a 

shared key that both systems agreed on, and with this shared key both systems would 

know that they are talking to each other. But an attacker who listen this conservation has 

no idea what a shared key is. Once both systems have a shared key they want to exchange 

their messages securely using this key. In other words encryption keys provide both 

confidentiality and integrity.  

Except of these two things stated above, cryptography aslo deals with digital signature. 

Digital signature basically is the analog signature in the physical world. In the physical 

world, when you sign a document essentially you write your signature on that document 

and your signature is always the same. In the digital world this cannot possibly work 

because if the attacker just obtain one signed document, attacker can copy the signature 

and use it. And so is simply not possible in the digital world that the signiture to be same 

for all cases. The way digital signatures work is basically by making the digital signature 

to be a function of the content being signed[6]. So an attacker who tries to copy the 

signature from one document to another is not going to succeed because the signature on 

the new document is not going to be the proper function of the data in new document. As 

a result the signature will not verify.  

Another application of cryptography is anonymous communication. So here imagine user 

A wants to talk to a chat server B, and perhaps user wants to talk about his/her medical 

condition and wants to do that anonumously so that the chat server does not actually 
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know who he/she is. There is a standart method called mix net that allows user A to 

communicate over the public internet with the server B through the sequence of proxies 

such that at the end of the communciation server B has no idea who has just talked to[6]. 

The way mix net work is basically as user A sends messages to serve B through sequence 

of approxies, these messages getting encrypted in the encrypter appropriately so that 

server B has no idea has talked to and the proxies themselves do not even know that user 

A is talking to server B or actually who is talking to who more geneally. One interesting 

thing about this anonymous communication channel is that communication is 

bidirectional. In other words even though server B has no idea who has talking to, server 

B can still response to user A and user A can get this messages. 

  

 

           

  

 

   Figure 2.1: Schematic of anonymous communication 

Once anonymous communication is achieved, other privacy mechanisms can be built. 

One example of these mechanisms is anonymous digital cash[12]. In the physical if a 

person has a physical money, he/she can walk to a book store and buy a book and seller 

have no idea who the buyer is. In the digital world basically user A may have digital 

money, and he/she might want to spend that digital money at some online stores. When 

user A spends his/her coin at store, the store have no idea who user A is. So the same 

anonimity is provided as in the physical cash. Now the problem is, in the digital world 

user A can take the coin that he/she had and before he/she spent it, user A can actually 

make copies of it. Then instead of having just one coin, now he/she has more than one 

coin and they are all same. There is no anything that prevents user A of having this 

replicas of digital coins and spend them in other stores. The question is how the digital 

cash is provided but at the same time how to prevent the user from double spending the 

digital coin at different stores? In some situations there is a paradox when anonimity is in 

User A 
Server 

B 
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confilct with security because if we have anonymous cash there is nothing to prevent user 

from double spending the coin and because the digital coin is anonymous we have no 

way of telling it. The way how this tension is resolved is basically by making sure that if 

user spends the digital coin once then no one knows who he/she is but if user spends the 

digital coin more than once all of his/her sudden identities completely will be exposed 

and then user could be subject to all relatively illegal problems. 

There are some applications of cryptography that can be classified as purley magical. One 

such application is Privately outsourcing computation[6]. An example of illustrating the 

main point of this application a google search example can be considerable. Imagine a 

user A has search that he/she wants to issue. It turns that they are many special 

encryption scemes such that user A can send an encryption of her query to google and 

then because of property of encryptiom sceme google can actuallay compute on the 

encrypted values wihout knowing what the information are. So google can actually run its 

massive search algorihm on the encrypted query and recover an encrypted results. Google 

would send an encrypted result back to user A, user A would decrypt and then he/she 

would receive the results but the magic here is all google saw is just the encryption of the 

queries and nothing else. So google as a result has no idea what user has just searched for 

and nevertheless user actually learn exactly what he/she wants to learn. 

  

  

 

  

  

  Figure 2.2: Simplified model of privately outsourcing computation  

  

Another application that can be considered as pure magic of cryptography is zero  

knowledge[6]. Here what happens is that there is a certain number N which an user 

knows and the way how the number N is constructed is as a product of two large primes. 

These two primes are p and q, where each one size is thousand digitis. Multiplying two 
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numbers of size thousand of digits is fairly easy, but if just their product is given, figuring 

out their factorization into primes is actually quite difficult. So user happens to have this 

number N and also knows the factorization of N. On the other side a system, which can 

be an a system or any arbitrary cryptographic system, just has the number N. It does not 

know actually about the factorization. Now the magical fact about the zero knowledge is 

that user can proof to system that he/she knows the factorization of N and system can 

check and become convinced that user actually knows factoriaztion of N. However 

system learns nothing at all about the factors p and q and this is proofable. System 

absolytely learns nothing at all about the factors  p and q.  

Modern cryptography is very rigorous. Every concept in modern cryptography is 

following three rigorous steps. First step is a new primitive like a digital signature is 

precisely specifying a threat model, that is what can an attacker  do to attack a digital 

signature and there is an exact definition on signature for being unforgeable. Then the 

next step is proposing a construction and in final step a proof is going to be obtained. 

This proof is about any attacker that can attack the construction under this threat model, 

and that attacker also can be used for solving some underlied hard problem. And as a 

result if the problem is really hard that actually prooves no attacker can break the 

construction under the threat model[6]. 

       

 2.2 History of Cryptography    

A growing discipline in this technological age is cryptology. Despite the fact that it has 

been used  for thousand years to protect secret messages, the systematic study of 

cryptography as a science quite new. Before the modern era, encryption was attempted to 

provide confidency in communication, such as those of agents, military leaders and 

diplomats. 

The first admitted sign about the beginning point of cryptography is in or around 2000 

BC in Egypt where hieroglyphics were used to adorn the tombs of decreased 

emperors[4]. Scriber has used some uncommon hieroglyphics in place of more typical 

ones. The aim of the scriber was not to mask the message but perhaps to adjust its form in 
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a way which would make it to come out more dignified. Even though the epigraph was 

not a form of secret writing, but combinated some sort of conversion of the original text, 

and is the oldest text to do so.  

Fast forwarding to around 100BC, Italian emperor Julius Ceasar used a system of 

cryptograpghy (i.e. the “Ceasar Cipher”) which moved each letter two places farther over 

the alphaber (A cipher is an algorithm used for an ecnryption or decryption)[4]. So the 

cipher developed by Ceasar was just shifting each character by 3, so the character ‘A’ 

was substituted by ‘D’, character ‘B’ was substituted by ‘E’ and so on. 

  

Figure 2.3: Ceasar Cipher 

Easily can be seen these kind of system such as Ceasar Cipher depends on the 

confidentiality of the system and not on the encryption key. So once the mysteri of the 

system is solved, the encrypted messages can be decrypted easily. The substitution 

ciphers can be broken easily by the frequency of the letters in the language. 

During the 16th century, the most famous cryptographer Blaise de Vigenere (1523-1596), 

wrote “Tracte des Chiffres”, where a Trithemius table  was used, but the way the system 

key was working was changed[4]. Vigenere has designed a cipher that was using the 

encryption key. In one of the designed chiphers, the encryption key was repeated multiple 

times traversing the whole message, and then the encrypted text was by adding the 

message character with the key character module 26. As Ceasar cipher also Vigeneres 

cipher can be broken easily, however the Vigeneres cipher is considered as the first 

cipher that has introduced the use of the encryption key. 
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The importance and the development of the ciphers has continued with development on 

elecetricity and electronics during the periods following World Wars and after. During 

World War II , the nutral country Sweden had one of the most cryptanalysis departmen in 

the world which it was formed in 1936 and 22 peoples were employed. In World War II, 

U.S. army has shown a great success at breaking Japanese code, while the same success 

could not be shown from Japanese, even though Japanese were thinking that their codes 

were unbreakable[4].  Today cryptography is one of the most study area that each day 

improves itself as a science for providing high level security to every one. 

2.3 Symmetric-key Cryptography 

Symmetric-key cryptography is one type of cryptography where the encryption key is 

common for both encryption and decryption algorithms[5]. A symmetric key 

cryptosystem is constructed from five main components. These components are: 

plaintext, encryption algorithm, secret key, ciphertext and decryption algorithm. 

1-  Plaintext: is the original clear data or information that is provided as input to the  

encryption algorithm. 

2-  Encryption algorithm: is the algorithm that executes different mathematical 

operations such as permutation and substitutions on the plaintext. 

3- Secret Key: is another input that is applied to the encryption algorithm and also to 

the decryption algorithm. The output of the encryption algorithm differs according to 

the secret key, because is the factor which determines the definite substitutions and 

permutations. 

4-  Ciphertext: is the scrambled message obtained as output from encryption algorithm. 

It varies according to the plaintext and secret key. 

5-  Decryption Algorithm: necessarily is the inversion process of the encryption 

algorithm. Ciphertext and secured key are applied as input and as output the original 

plaintext is produced. 

Easily can be seen that in symmetric-key cryptosystems the point is not to keep secret the 

algorithm but it is required to keep secret the secret key. In the symmetric-key 

cryptosystems senders and receivers must have shared this secret key securely because if 

an attacker can discover he can decrypt the ciphertext and obtain the plaintext. 
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Figure 2.4: Model of symmetric encryption 
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3. DIFFIE-HELLMAN KEY EXCHANGE 

 3.1 The Diffie-Hellman Key Exchange Mechanism 

The Diffie-Hellman key exchange method allows two systems that have no prior 

knwoledge of each other to jointly establish a shared secret key over an insecure 

communication channel. This key exchange method was matured in 1976 and announced 

in “New Directions in Cryptography”[6]. The Diffie-Hellman key exchange fixes the 

following problem. System A and system B are both a symmetric-key cryptosystems. 

System A and system B wants to share their secret key in order to communicate securely 

with each other. Both systems A and B must have a shared secret key but the attacker 

must not have any idea about this secret key. One mechanism of key exchange is Merkle 

Puzzles, where with block ciphers, a secret key can be shared with one and another. On 

the other hand in the case of Merkle puzzles the attacker has a quadratic gap compared to 

the the participant, in other words if the participant spent time proportional to “n” , the 

attacker can break the protocol in time proportional to 𝑛2 . As a result, that protocol is too 

insecured to be considered practical. In contrast to the Markle puzzle key exchnage 

mechanism, in Diffie-Hellman key exchange mechanism an exponential gap is achieved 

between the attackers work and the participants work.  

The mechanism of Diffie-Hellman key exchange works as follow. First select a large 

prime “p”, actually “p” is usually used to denote primes, and a fix an integer “α”, that 

happens to live in the range of {1,...,p}. Both “p” and “α” are parameters of Diffie-

Hellman protocol that are choosen once and are fixed forever. After both systems A and 

B, choose a random number “a” and “b” respectively, in the range of {1,...,p-1}. Then 

system A is going to compute RA= α 𝑎modp. So system A computes the exponentation 

and reduces the result to the modulo of p, and the result is sent to the system B. On the 

other hand also system B computes RB= α 𝑏modp and sends to the system A. So system 

A sends RA to system B and system sends RB to system A, and now a shared secret key 
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can be generated. So what is the shared key? Well it is named 𝐾𝑎𝑏 and it is defined as 

 α 𝑎𝑏modp. The amazing observation that Diffie-Hellman had back in 1976 is that in fact 

both parties can compute the value of K= α 𝑎𝑏. System A can compute this value since, it 

can take the value RB, that it had received from system B, and raise to the power of “a” . 

Also the system B compute the value in same manner as system A, and as a result both 

systems A and B, have computed the K and end up with the same secret key. This 

protocol has introduced a new age in cryptography, where now is not just about designing 

block ciphers but it is actually about designing algebraic protocols that have properties as 

in this case.  

   

 

 

 

 

 

 

 

Figure 3.1: Schematic of Diffie-Hellman key exchange method 

 

3.2 Security 

It is very easy to verify that both systems A and B end up with the same secret key. The 

bigger questions is why this protocol is secure? In other words, why an attacker can not 

figure out the same shared key that both systems A and B have computed themselves ?  

The attacker or eavesdropper sees α and p which are fixed forever and everybody knows 

what they are. He also sees the value that system A sends to system B namely as RA and 

he sees the value that system B sends to system A namely as RB. The question is can 

attacker compute  α 𝑎𝑏 just given these four values. The solution of this problem is that 

the attacker has to solve the Discrete Logarithm Problem (DLP) or the Diffie-Hellman 
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Problem (DHP), and then he can find random generated numbers “a” and “b” after which 

is very easy for attacker to calculate  α 𝑎𝑏[7].  

The DLP is the problem of solving “x” if 𝑦 ≡ α 𝑥(𝑚𝑜𝑑 𝑝), wih y, α and p given. Two 

solutions are known but there is no any algorithm that can succeed this in an acceptable 

amount of time. First solution is known as Brute Force, which is not an efficient solution, 

since it needs “p” steps to compute the solution and in every trial needs a fair amount of 

work. The other solution is Shank’s algorithm, which is more efficient than Brute Force, 

but is not practical for high values of “p”, since it needs √𝑝*log(p) steps for calculation. 

If it is supposes that “p” is selected as 170141183460469231731687303715884105727 

than the number of steps would be approximately 1.14824x1021. Even if Google’s 

computers were used, which are calculated to perform 300 trillion calculations per 

second, it would last nearly 5 years to solve[7].  

 

3.3 Design and implementation  

In this thesis the Diffie-Hellman key exchange algorithm is designed with Verilog 

Hardware Description Language in Xilinx ISE 14.1 and is both implemented and tested 

in a Spartan-6 FPGA. The diffie-hellman key exchange is designed for 128-bit key. In its 

design for multiplication, a multiplier module with “Karatsuba” algorithm, and a modulo 

module,  where a Ripple-Carry adder is used as a sub-module, are designed first. Then 

these two designed modules are used as sub-modules in a module where the 

exponentation operation is performed by using “Square and Multiply” algorithm, and as a 

result a unit which performs exponentation and modulo operation is obtained. 

3.3.1 Verilog hardware description language  

Verilog Hardware Description Language (Verilog HDL) is a formal notation designed by 

Xilinx for use in all stages of th establishment of an electronic system. Since it is both 

machine and human readable, it backs the development, verification, synthesis and 

testing of hardware[7].Verilog HDL serves as a tool with great power in digital system 

design since it offers to a designer the oppurtinity of simulation of the design, where the 

designer obtains the case to make critical decisions about his/her design. Designer also 
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can make analysis how his/her design will behave if it woulde be designed synchronously 

or assynchronously by just adding using command. As it is mentioned above the 

readability of the Verilog HDL makes it very attractive to engineers and useful. All these 

operations such as synthesis, simulations, verifications etc. are compiled in a tool 

designed from Xilinx known as Xilinx ISE. 

 3.3.2 Karatsuba multiplication 

Multiplying two n digit numbers requires 𝑛2 multiplications, this is actually how peoples 

multiply two n digit numbers. Let’s consider multiplying two 2-digit numbers 14 and 16. 

It is clear that the result is 224, but it is also clear that it is more difficult than 

multiplication of 10 and 16. Since when a number is multiplied by 10, just a zero is added 

to the multiplicand number, so in this case the result becomes 160. It is known that the 

multiplication of 14 and 16 is equal to multiplication of 10 and 16 and multiplication of 4 

and 16 where the result will be 160+24=224. As it can be seen for multiplication of two 

2-digit numbers four multiplication and some addition is required. On the other hand if it 

is required multiplication of two 10-digit number, it is very difficult to perform 

multiplication with classical way. In 1960, in a seminar one of the most famous russian 

mathematican Andrey Kolmogorov has stated that the multiplcation of two n-digit 

number cannot be performed with less than 𝑛2  multiplication. On the other hand just one 

week later a young student with name Anatolii Alexeevitch Karatsuba has demonstrated 

that two n-digit numbers can be multiplied with 𝑛𝑙𝑜𝑔3 multiplications [8]. The 

proposition of this young student was as follow. Two numbers x and y can be represented 

in terms of x1, x2 and y1, y2 as x=x1 * 𝐵𝑚+x2 and y=y1*𝐵𝑚+y2 where here B is the 

base of the numbers x and y and m is the half of the digit numbers. Certainly the 

multiplication of x and y becomes as the following product  

 

 

 

   x*y=(x1 * 𝐵𝑚+x2) * (y1*𝐵𝑚+y2) = x1*y1*𝐵2𝑚 + (x1*y2 + x2*y1)*𝐵𝑚 + x2y2.  
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So as it can be seen with four multiplication x*y is got. Karatsubla also came up with a 

great idea which has reduced the number of multiplication to three. The proposition was 

to calculate (x1*y2 + x2*y1) as follow.   

 

  

As a result wiht three multiplications the result of multiplication of x and y could be 

obtained.  

As it can be seen, Karatsuba multiplication algorithm is much more faster and efficient 

than the standart multiplication algorithm. Karatsuba algorithm is not only used in for 

integer multiplication, it is used also for polynomial mutliplication. Karatsuba progresses 

multiplication process by substituing inital complexity of O(𝑛2) with O(𝑛𝑙𝑜𝑔3) (O 

describes the limiting behavior of a function when the argument tends towards a 

particular value or infinity, usually in terms of simpler functions), where the case is 

described also in the diagram below[8]. 

 

 

 

 

 

 

 

 

Figure 3.2: Complexity comparison of Standard and Karatsuba multiplication[8] 

 

 

(x1*y2 + x2*y1)=(x1+x2)*(y1+y2)-x1y1-x2y2 



15 

 

3.3.3 Design and implementation of karatsuba multiplication 

Karatsuba Multiplication is designed as combination of both combinational and sequental 

logics.Combinational logic is a type of digital logic where output is a pure function of the 

present only. On the other hand sequential logic is a type of digital logic where output is 

not just function of present inputs but also it depends also on the past inputs so the past 

outputs. The module is designed for multiplication of two 128-bit numbers, so it will 

have two 128-bit inputs and one 256-bit output.  

The combinational part of the design is the two multiplier module and the ripple-carry 

adder module. Two bit multiplier module by using standard multplication algorithm, 

multiplies two 2-bit numbers and produces 4-bit result. The ripple-carry adder is a 

module designed for addition two n-bit number and produce n+1-bit number as output. 

The ripple-carry adder is composed of full-adders and it is named as ripple-carry since 

each carry bit is rippled to the next full-adder.  

The other parts of the design are sequentially designed. Two separate Finite State 

Machine (FSM) are designed for the design. Finite State Machine (FSM) or simply state 

machine is a mathematical model of computation used to design sequential logic. These 

two state machines are described by using Algorithmic State Machine (ASM) diagrams. 

ASM method is a method for designing finite state machines. One state machine is 

designed for multiplication of two 4-bit numbers. In this module two-bit multiplier and n-

bit ripple-carry adder are used as sub-module.Since the module is designed in 

sequentially manner,  in each clock cycle, operations that are in line will be performed.  

 

 

 

 

 

 

  Figure 3.3: Simplified model of 4-bit Karatsuba multiplier 
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The 4-bit multiplier is designed to perform multiplication as Karatsuba algorithm. As it is 

described in previous section, in Karatsuba multiplication, both multiplier and 

multiplicand are divided into higher and lower parts, and then after some multiplication 

and addition operations the product is obtained. In this case, since the multiplier and 

multiplicand are 4-bit, their higher and lower parts will be 2-bit, and for this reason the 

designed 2-bit multiplier will be used for multiplication of these parts. For addition the 

ripple-carry adder module is used. The order of these operations is controlled by the state 

machine, so in a way it will serve as controller. In each state, the operation which is in the 

seqeunce is performed by sending the values that are required to be calculated to these 

modules, and the results are returned and stored in different registers. In final state the 

final result is assigned to the product output and “done” output will be assigned to 1 since 

it will notify that the calculation is over. The 4-bit mutliplier module has also two extra 

inputs, namely “start” and “reset”, where start input is for enabling multiplication 

operation and reset is for clearing the outputs and to start the operation from the 

beginning.  
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Figure 3.4: ASM diagram of 4-bit Karatsuba multiplier  
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The described designs above can be considered as substructure of main Karatsuba 

multiplication module. In this thesis, Karatsuba multiplier is designed for 128-bit 

multiplication, so for multiplication a 64-bit Karatsuba multiplier is required. This is 

achieved by first by designing 8-bit, then 16-bit, 32-bit multiplier and finally 64-bit 

Karatsuba multiplier. So each multiplier is constructed from other lower multipliers, for 

example 8-bit multiplier will be constructed from 4-bit Karatsuba multiplier and a ripple-

carry adder. Also 16-bit Karatsuba multiplier is constructed from 8-bit Karatsuba 

multiplier and a ripple-carry adder and this continues to higher bit multipliers. The state 

machine of the 8-bit Karatsuba multiplier is same as the 128-bit Karatsuba multiplier. 

The difference from the state machine used in 4-bit Karatsuba multiplier is that in this 

case the multiplication is going to be calculated from a sequential module, so the product 

requires a period of time for calculation. So for getting the calculated result, extra states 

are added for getting the result from the 4-bit Karatsuba multiplier. During transition to 

these states first the “done” output is controlled if the calculation is ready or not. If the 

“done” output is 1 then it gets the product and performs the operations that must be 

performed in that state and passes to the next state otherwise it waits for calculation. Also 

after every calculation the reset input of sub-modules becomes to 1, in order to make 

system ready for new calculation. 

 

 

 

  Figure 3.5: Simplified model of 128-bit Karatsuba multiplier 
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Figure 3.6: ASM diagram of 128-bit Karatsuba Multiplier 

 

The RTL Schematic and the Design Summary of the 128-bit Karatsuba Multiplier 

obtained from Xilinx ISE 14.1 are as shown in the images below. 
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  Figure 3.7: RTL schematic of 128-bit Karatsuba Multiplier 

 

    Figure 3.8: Design Summary of 128-bit Karatsuba Multiplier 

 3.3.4 Square and multiply algorithm 

The last step of Diffie-Hellman key exchange protocol design was designing the module 

which was going to perform exponentiation and module operation The exponentiation 

operation is performed by using Square and Multiply algorithm but the algorithm is 

modified in such a way it performs also modulo operation. So as a result 𝑎𝑏𝑚𝑜𝑑𝑝 is 

obtained. Square and Multiply algorithm or referred as exponentiation by squaring is a 

common technique used for fast computation large integer powers of a number [9]. The 

modification on the algorithm since in Diffie-Hellman key exchange protocol the secret 

key is shared between systems over  α 𝑎𝑏modp computation. 



21 

 

In square and multiply are many different methods such as basic method, 2𝑘-ary method, 

sliding window method, Montogomery’s ladder technique and Fixed base exponent. In 

this thesis 2𝑘-ary method is used. 2𝑘-ary method is a method proposed by Brauer in1939 

that calculates 𝑥𝑛 after expanding the exponent in base of 2𝑘. The pseudo code of the 

modified version of the  algorithm is shown below. 

  

  

 

 

 

 

 

 

Figure 3.9: The pseudo code of the Square and multiply algorithm 

3.3.5 Design and implementation of square and multiply algorithm 

The square and multiply algorithm is also designed and implemented in Verilog 

Hardware Description Language in a Spartan-6 with two 128-bit inputs and one 128-bit 

output. By implementing the modified version of in a way the Diffie-Hellman key 

exchange protocol is also implemented. Since a module which performs 𝑎𝑏𝑚𝑜𝑑𝑝 

operation will be obtained. 

As it can be seen from the algorithm above to design this algorithm, modules that can 

perform multiplication and modulo operations are required. The multiplication process is 

performed by using 128-bit Karatsuba multiplier since inputs are 128-bits and the modulo 

operation is performed by using the ripple-carry adder, since the modulo operation is 

simply a subtraction process which continues until the minimum one is obtained. Modulo 

module is a sequential logic design where the finite state machine controls if the result 

has arrived to the minimum or not. 

 C= 𝐴𝐵𝑚𝑜𝑑 𝑁 

B= (𝑏𝑘 𝑏𝑘−1 … … … . 𝑏1 𝑏0 ) 

C=1 

for i=k-1 to 0 

C=𝐶2𝑚𝑜𝑑𝑁 

If 𝑏𝑖=1 

C= C.A modN 
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Figure 3.10: Simplified model of Square and Multiply module 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.11: Simplified model of modified Square and Multiply module   
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Figure 3.11 : RTL schematic of Modulo module [10] 

  

 

 

 

 

 

 

 

 

 

 

Figure 3.12 : RTL schematic of modified Square and Multiply module[10] 
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4. ADVANCED ENCRYPTION ALGORITHM (AES) 

4.1 Introduction 

In 1997, National Institute of Standards and Technology (NIST) requested proposals for 

new block ciphers and it received 15 submissions a year later, in 1998. And finally in 

2000 it adopted the cipher called Rijndael as Advanced Encryption Standard (AES). AES 

algorithm is a symmetric block cipher that can perform both encryption and decryption 

process. AES was designed in Belgium and its input, output, round key and state length is 

128 bits so can encrypt or decrypt 128 bits data and can use three possible key sizes, a128 

bits, 192 bits and 256 bits[2]. The assumption is that a larger key size is, the more secure 

the block cipher is as a suit random permutation. On the other hand since many round 

operations are inclusive in the operation of this block cipher, the largest key means the 

slowest block cipher. So AES with 128 bit key size is the fastest block cipher than the 

others.  

The AES is constructed according Substitution-Permutation Network mechanism, which 

is a mechanism where all bits are changed in every round[2]. The operation mechanism 

of the Substitution-Permutation Network is as in each round the current state is exored 

with round key, here round key states for the values derived from the cipher key using the 

key expansion routine and state states for two dimensional arrays of bytes, then according 

to the substitution tables blocks of states are replaced with other blocks and then bits are 

permitted and shuffled around. This process goes until it reaches the final round and then 

the output is obtained[6]. 
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 Figure 4.1: Simplified model of Substitution-Permutation Network 

 

The main point in this construction is that every stage is reversible so for decryption the 

output would be taken and is applied to each step of the network as described above in 

the reverse order. So inversion in the Substitution-Permutation Network is simply done 

by just applying all stages in the reverse order. This is the main difference between the 

AES and Data Encryption Standard (DES), since in DES the substitution tables are nor 

reversible, so the encrypted data cannot be decrypted as in the AES case just by applying 

operations in the reverse order[12]. 

 4.2 Specifications of AES 128 encryption 

In this thesis AES with 128-bit key size is used for encryption and decryption, since the 

shared secret key by using Diffie-Hellman key exchange protocol is 128-bit.AES 

operates over 128-bits block, which means the length of input, output, round key and 

state is 128-bit. Those 128-bits are written as 4x4 matrix, where each cell of the matrix 

contain 8-bits or in the other words 1-byte and then operation starts with first round. As 

described in the previous section first with the round key is exored and then some 

functions that involves substitution and permutations and other operations are applied on 

the state. The applied functions are named as SubByte, ShiftRow and MixColumn. These 

functions that are applied are reversible, otherwise the decryption could not be occurred 

as described in the previous section. These operations are repeated ten times but 

intestinally in the last round function named as MixColumn is not applied and then 
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finally it is exored with last round key and the output are obtained. The output is in the 

form of 4x4 matrix since in all phases this form is kept. 

 

 

 

 

 

Figure 4.2: Schematic of AES encryption process 

4.2.1 SubByte transformation 

SubByte function is a non-linear byte replacement which operates on every byte of State 

according to a substitution table, which is invertible, namely as S-box. This S-box is 

composed by using two transformations. 

 For mapping element {0,0} to itself perform multiplicative inverse operation in  

the finite field GF(28). 

 The affine transformation shown below is applied over GF(2):  

 

where i changes from 0 to 8, 𝑏𝑖 is the 𝑖𝑡ℎ bit of the byte and 𝑐𝑖 is the 𝑖𝑡ℎ bit of byte 

c with the value {63}. 𝑏𝑖
′ shows the new value of the 𝑖𝑡ℎ bit of the byte[2]. 

 

 

 

 

 

 

  Figure 4.3: Operation of SubBytes function [2] 
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Figure 4.4: Hexadecimal form of S-box[2] 

 

 4.2.2 ShiftRows transformation 

This transformation operates on the rows of the state, where the bytes in the last three 

rows are shifted cyclically by a certain offset[11]. As it can be understood thar only the 

first row is not shifted. ShiftRow functions shifts the bytes in the row according to the 

relation below: 

   𝑠𝑟,𝑐
′ =  𝑠𝑟,(𝑐+𝑠ℎ𝑖𝑓𝑡(𝑟,𝑁𝑏))𝑚𝑜𝑑𝑁𝑏 

 

The shift(r,Nb) function is for swapping the bytes in the highest position with the lowest 

one.  
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Figure 4.5: The operation of ShiftRow function[2] 

 

4.2.3 MixColumns transformation 

In this transformation each column is treated as a four term polynomial and investigated 

as polynomial over GF(28) and is multiplied with a fixed polynomial a(x) which is given 

as 𝑎(𝑥) = {03}𝑥3 + {01}𝑥2 + {01}𝑥 + {02}. So the new column values can be 

computed according to the relations below[2]. 
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Figure 4.6: The operation of MixColumns function[2] 

 

4.2.4 AddRoundKey() transformation 

In this transformation the round key is added to the state by the means of the XOR 

operation. Every round key includes Nb words, that are each added into the columns of 

the state. The relation of the transformation is as follow[2]. 

  

 

  

 

 

 

 

 

 

Figure 4.7: The operation of AddRoundKey() function[2] 
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4.3 Key expansion 

Key expansion is the process in the AES algorithm, in which the key schedule is derived 

by using the cipher key. Totally Nb(Nr+1 ) words are generated in the key expansion 

process . In the key expansion algorithm initially a set of Nb words is required and in 

every Nr rounds Nb words of key data are required [2]. 

The pseudo code of the key expansion algorithm is as follow. 

 

 

 

 

 

 

 

 

 

Figure 4.8: The pseudo code of the Key Expansion algorithm [2] 

 

In the pseudo code, the array w[ i ] represents the round keys that are derived from the 

Key Expansion process and 𝑁𝑘 represent the length of the cipher key. The SubWord() 

function implements the same S-box substitution to each 4-bytes in the word. In the 

RotWord() function a word [𝑎0, 𝑎1, 𝑎2, 𝑎3]  is taken as input and it is returned as 
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[𝑎1, 𝑎2, 𝑎3, 𝑎0] in the output. The round constant word array, Rcon[ i ], is consist of 32 bit 

value given by [𝑥𝑖−1, {00},{00},{00}] [2].  

 

 4.4  Specifications of AES128 decryption 

In the decryption process of the AES algorithm the same steps as in the encryption prcess 

will be followed, but in reverse order. Since the transformations used in the encryption 

process are reversible, this property brings out a great ease for decryption process. The 

transformations that are used in the decryption process are named as InvShiftRows(), 

InvSubBytes (), InvMixColumns() and AddRoundKey(). In the decryption case, the 

output generated from the encryption process is considered as input, and it undergoes first 

the AddRoundKey(), where the current state goes through a XOR operation with the 

round key. After ten times the state undergoes a transformation process, where the 

applied transformations are InvShiftRows(), InvSubBytes(), AddRoundKey() and 

InvColumns() respectively. Then in the final round the state undergoes a transformation 

process of InvShiftRows(), InvSubBytes() and AddRoundKey(). 

 

 

 

 

 

 

Figure 4.9: Schematic of AES decryption process 

 

 4.4.1 InvShiftRows() transformation 

Simply is the inverse of the ShiftRows() transformation. The first row r=0 is not shifted, 

just the last three rows are cyclically shifted by Nb-shift(r,Nb) where the shift(r,Nb) is a 



32 

 

value which depends on the row number[11]. This transformation progresses as shown in 

the relation below: 

 𝑠𝑟,(𝑐+𝑠ℎ𝑖𝑓𝑡(𝑟,𝑁𝑏))𝑚𝑜𝑑𝑁𝑏
′ = 𝑠𝑟,𝑐    for 0<r<4 and 0≤ 𝑐 ≤ 𝑁𝑏  

Figure 4.10: The operation of InvShiftRows() Transformation [2] 

 

4.4.2 InvSubBytes() transformation 

Simply as in the InvShiftRows() transformation case, also in this case this transformation 

is the inverse of the SubBytes() transformation. It applies the inverse S-box to each byte 

of the State. The inverse S-box is derived by applying the inverse affine transformation 

followed by taking the multiplicative inverse in GF(28) [2]. 
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Figure 4.11: The inverse S-box used in InvSubBytes() Transformation[2] 

4.4.3 InvMixColumns() transformation 

InvMixColumns() transformation is the inverse of the MixColumns() transformation. It 

acts on the State column-by-column and every column is considered as four term 

polynomial over GF(28) and multiplied with a fixed 𝑎−1(𝑥) polynomial given as[2]: 

𝑎−1(𝑥) = {0𝑏}𝑥3 + {0𝑑}𝑥2 + {09}𝑥 + {0𝑒}[11]  

As outcome of this transformation, the four bytes in the column are substituted by the 

following: 

 

 

 

[2] 

 

4.5 Design and implementation of AES128 algorithm 

The AES 128 algorithm used in this thesis is designed and implemented in Very high 

speed integrated circuit Hardware Description Language (VHDL). The designed AES 

128 encryption and decryption modules are taken from the library of Embedded System 

Laboratory of Electrics-Electronics faculty of ITU. The encryption part was named as 

Cipher_serial_Table and decryption part was named as inv_cipher_serial_table. The 
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Register Transfer Level (RTL) schematic and the design summary of the designs are 

shown in the images below. 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: RTL schematic of cipher_serial_table module 

Figure 4.13: Design summary of cipher_serial_table module 
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Figure 4.14: RTL schematic of inv_cipher_serial_table module 

   

 

 

 

Figure 4.15: Design summary of inv_cipher_serial_table module 
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5. MICROBLAZE 

 5.1 Overview 

The designed modules are used as peripheral of a microprocessor, and the used 

microprocessor will undertake the role of controller by controlling these peripherals and 

implement a secure data communication protocol. The used microprocessor in this thesis 

is, the usable soft-core microprocessor of Xilinx Field Programmable Gate Arrays 

(FPGAs) with Xilinx Embedded Development Kit (EDK) software tool known as 

MicroBlaze[3].  

The MicroBlaze is a virtual microprocessor, which is constructed by integration of blocks 

of code named as core located in the internal of a Xilinx FPGA [3]. The main point of the 

MicroBlaze is that, according to the specific needs of the design can be concluded and fit 

with special peripherals such as UART, Flash, General Purpose Input / Output and etc. 

According to its instruction-set architecture, the MicroBlaze process is optimized model 

of 32-bit Harward Reduce Instruction Set Computer (RISC) architecture for 

implementation in Xilinx FPGAs. Its apart 32-bit data and instruction buses operates at 

high speed to accomplish programs and access data from both chip and external memory 

at the same time [3].  

 

 

 

 

 

 

Figure 5.1: MicroBlaze core block diagram [12] 



37 

 

The pipeline mechanism of the MicroBlaze is parallel and is separated into three steps: 

Fetch, Decode and Execute. For each step is required one clock cycle to be 

supplemented, so for one instruction three clock cycles are required to be completed. 

Addition to the specific above, MicroBlaze contains 32-bit general-purpose registers, an 

Arithmetic Logic Unit (ALU), a shift unit and two levels of interrupt [3]. The MicroBlaze 

provides to the designer a great ease with being configurable according to required 

specific needs. 

 

 

5.2 Xilinx Embedded Development Kit (EDK) 

The Xilinx Embedded Development Kit (EDK) provides to the designer an environment 

where the designer can construct an embedded processor system with its all specifications 

which can be implemented in a Xilinx FPGA device. EDK is a fragment a tool, which is 

developed by Xilinx, which is required for implementation of a design into Xilinx 

programmable logic devices known as Integrated Software Environment (ISE®) Design 

Suite Embedded and System Edition [11]. Components of EDK are: 

1-  The Xilinx Platform Studio 

2-  The Software Development Kit (SDK) 

3-  Intellectual Property (IP) cores 

The flow of design in EDK, in the other words the steps that designer has to follow are to 

start with an ISE project, then to add an embedded processor source to the ISE project. 

As the ISE components preparation is completed, then EDK start synthesizing the 

microprocessor hardware design, mapping it into a FPGA and as a final step of flow it 

generates and downloads the bitstream. 

An embedded hardware platform is consisted of one or more processors, peripherals and 

memory blocks and interconnection via processor busses [13]. EDK as tool provides a 

great ease to a designer, since as a tool it deals with connection of peripherals and FPGA 

hardware designs, address mapping of the designed system, establishing communication 

protocol and with other interconnection, so to the designer is just left to focus on its 
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hardware and software designs. In the image below is shown the design flow diagram of 

a system which is designed by using the microcontroller located inside the FPGA. The 

stages shown in the image are created by EDK and are offer to the designer with a user 

interface and make the complex designs to be implemented more easily and in a shorter 

time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Embedded Development Kit (EDK) tools architecture [11] 

In the previous section it is stated that MicroBlaze can be configured according to the 

needs. This case is implemented in EDK tool. EDK provides to the designer to create its 

own system base with Base System Builder (BSB). BSB provides to the designer to add 

its designed hardware on the MicroBaze as peripheral by using Intellectual Property (IP) 

cores, the connections of these systems is implemented from EDK. 
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 5.2.1 Xilinx Platform Studio (XPS) 

One of the components of EDK is Xilinx Platform Studio (XPS), which provides 

environment for constructing embedded processor systems based on MicroBlaze and 

PowerPC processors [11]. In the XPS the address mapping stage of the peripherals, 

which are connected to the MicroBlaze, is completed. Later the synthesizing and 

implementation stages of the design project are accomplished. 

5.2.2 Xilinx Software Development Kit (SDK) 

Another component of EDK is Xilinx Software Development Kit (SDK), which provides 

to the designer a development environment based on the Eclipse open-source standard for 

software application projects [13]. As a tool includes some feature that it includes[11]:  

1- Feature-rich C/C++ code editor and compilation environment 

2- Project management 

3- Supports environment for group working 

4- 4- Imports the hardware platform definitions generated by XPS 
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6. IMPLEMENTATION 

The final stage in this thesis was collecting the designed unit, combining them in a 

embedded hardware platform, where in this thesis was MicroBlaze, and implement a 

secure data communication between these two systems. Initial step in the implementation 

the designed Diffie-Hellman Key exchange module and the AES 128 module, including 

both encryption and decryption parts, in the ISE platfrom are created as peripheral of the 

MicroBlaze in the Xilinx Platform Studio. Next, for both designs the definitions are 

defined and imported back.  In the EDK platform, to the each hardware designs an IP is 

defined so that it can be added with other available IP’s to a microprocessor based 

system. Then the defined system in the EDK platform is exported and launched in the 

SDK platform and automatically from the system the libraries of each IP is formed. Then 

in the SDK for controlling these hardware’s a C/C++ base programming code is written 

and by the means of the SDK, the files with extensions “bit”and “elf” are combined and 

sent to FPGA. 

 

 

 

 

 

 

 

Figure 6.1: System Design Flow [11] 
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6.1 Optimization 

During the design and the implementation of this thesis the Diffie-Hellman key exchange 

module was designed twice. The reason of designing twice the key exchange design was 

that the first design was too large to be fit in the Spartan-6 FPGA. So it has been faced 

with an area problem since it was being used ineffectively. The area was being used 

ineffectively because of the Karatsuba multiplier was designed as combinational digital 

system 

Designing Karatsuba multiplier completely combinational was providing a great 

efficiency in the aspect of the operation speed but it was covering a large area. If the 

relation 3.1 of the Karatsuba Multiplication is taken in view, it can be easily seen for the 

multiplication of two 128-bit numbers it is required to perform four multiplication 

operation of two 64-bit number, so the multiplication operation will be implemented over 

the numbers that the size is half of the main multiplier or multiplicand number’s size. 

This fact continues for 64-bit multiplication and for multiplication of other numbers with 

lower sizes. In the first design, as in the final case, the design has started with the design 

of a 2-bit combinational multiplier. This designed multiplier was performing the 

multiplication operation using standard multiplication method. Then by using a Ripple-

Carry adder and the 2-bits multiplier a 4-bit Karatsuba multiplier was designed. The idea 

of the design was the same as in the optimized version of the 4-bit Karatsuba multiplier. 

But the difference is that in the first designed 4-bit Karatsuba multiplier four separate 2-

bit multipliers and three separate Ripple-Carry adders are used as sub-module. The 

schematic of the design is illustrated in the Figure 6.2 below. On the other hand in the 

final designed 4-bit Karatsuba multiplier only one 2-bit multiplier and Ripple-Carry 

adder as sub-module. Later 8-bit Karatsuba multiplier is designed with the same idea by 

using separate four 4-bit Karatsuba multipliers and three Ripple-Carry adders as sub-

module. The design has continued for the other higher order bit sizes until 128-bit 

Karatsuba multiplier with the idea described above. The schematic below describes also 

the structure of other designed Karatsuba multipliers of higher order bits. As a result with 

redesigning the Karatsuba multiplier as sequential digital system the required 

optimization in the covering was obtained. 
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Figure 6.2: Schematic of the 4-bit Karatsuba Multiplier 

 

An optimization is done also to the module which was computing the 𝐴𝐵𝑚𝑜𝑑𝑝 operation 

in the aspect of speed. In the first case the operation was being calculated as repeating (B-

1) time 𝐴 ∙ 𝐴 ∙ 𝑚𝑜𝑑𝑝 operation and this was causing to cover a large area in the device 

and was taking time for computation. The percentage of covering large area of the device 

was not changed after the optimization. The module was optimized by redesigning it 

according to the Square and Multiple algorithm and after optimization every calculation 

was calculated approximately for 128 clock cycle [10].  

In the following the design summaries of 128-bit Karatsuba multiplier designed as 

combinational digital system, of first design and optimized version exponentiation and 

modulo operation calculation module.  
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Figure 6.3: Design summary of 128-bit Karatsuba multiplier designed as combinational 

digital system 

 

 

 

Figure 6.4: Design summary of first design of exponentiation and modulo operation 

module 

 

 

Figure 6.5: Design summary of Square and Multiply module 

6.2 Simulations and results 

After the optimization of the components of the Diffie-Hellman key exchange, it was the 

turn to simulate the optimized Diffie-Hellman key exchange module and the AES 128 

encryption and decryption modules with the ISim tool of ISE. Below the simulation 

images of these three modules are shown. The result in the simulation of the Diffie-

Hellman key exchange module is computed for the input values A=670, B=5 and p=53. 

In the AES128 encryption module the result displayed in the simulation image is the 

encrypted value of the input plaintext with the hexadecimal value 

3243f6a8885a308d313198a2e03034. Lastly the result desplayed in the simulation image 

of the AES128 decryption module is decrypted value of the input cipher with the 

hexadecimal value 3925841d02dc09fbdc118597196a0b32. 
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Figure 6.6: Simulation image of Diffie-Hellman key exchange module 

  

  

 

 

 

 

 

Figure 6.7: Simulation image of AES128 encryption module 
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The simulation results were the facts that ensured the designed hardware’s work properly, 

so there was no any reason in the respect of right results which prevents to use the 

modules as peripheral of MicroBlaze. But considering the fact that the registers of the 

MicroBlaze were 32-bit, it was required to make also some changes on designed modules 

since the input size and output size of the modules were 128-bit. For this reason a module 

which in each clock cycle with rising edge of the enable input takes 32-bit input data and 

collects in a 128-bit register and then supplies as an input to the main module was 

designed. Also a module which takes 128-bit output data as input and in each clock cycle 

with the rising edge of the enable input gives the 32-bit portions of the data as output was 

designed. As a result, by connecting these buffer modules, the designed modules has 

become ready for using them as peripheral of MicroBlaze. The new schematic of the 

Diffie-Hellman key exchange module is illustrated in the image below. 

 

  

 

 

 

 

Figure 6.8: Simplified model of Diffie-Hellman key exchange module 

After adding the designed modules as peripheral to MicroBlaze, the project was exported 

to the SDK for developing software for controlling the activation sequence of the 

peripherals, operations between the peripherals such as sending data to the other system 

and receiving data from the other system.  

In the images below, the results obtained during implementation of the project are shown. 

Initially the same modules are added as peripheral into two separate MicroBlaze. Then 

for both MicroBlaze software is developed for performing a secure data communication 

between each other. First, for each MicroBlaze a secret key is obtained. Then by using 

RS232 UART communication protocol both systems have shared their secret key. After 

this communication process, each system has executed the last step in order to complete 
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the common shared key process as described in the Diffie-Hellman key exchange 

mechanism. Since a common shared key was obtained, it was the turn of encrypting a 

message by using AES128 encryption peripheral. As the encryption process was over, the 

encrypted message was sent to the other MicroBlaze by the means of the RS232 UART 

communication protocol. Finally, the received encrypted message by using the AES128 

decryption peripheral is decrypted and a secure data communication in a insecure 

communication channel is implemented. 
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Figure 6.9: Process of producing secret key of first MicroBlaze 
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Figure 6.10: Process of producing secret key of second MicroBlaze 

 

 

 

 

 

 

 

 

 

Figure 6.11: Computing the shared secret key in first MicroBlaze 
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     Figure 6.12: Computing the shared secret key in the second MicroBlaze 
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7. CONCLUSION 

In this project a protocol which implements secure data communication in an insecure 

communication channel was implemented. The system consists of two parts, including 

software and hardware. The basic components of the secure data communication protocol 

were designed, modeled and verified using the Verilog HDL and VHDL. Initially for sharing 

secret key mechanisms and AES algorithm a research was carried on. As a result of these 

researches it was observed that the most secured and practical key exchange mechanism was 

Diffie-Hellman key exchange mechanism.  

The project has been followed with design and implementation of the Diffie-Hellman key 

exchange mechanism using Verilog hardware description language. The Diffie-Hellman is a 

mechanism where the secret key is shared between two systems through the algebraic 

operation 𝛼𝛽𝑚𝑜𝑑𝑝. The designed hardware is composed of two components, including a 

multiplier hardware, which performs multiplication through Karatsuba algorithm, and an 

exponentiation and modulo hardware, which operates through Square and Multiply 

algorithm. In operation the multiplier hardware has created problem on covering the area of 

FPGA ineffectively. The problem has been fixed with optimizing the designed hardware with 

redesigning it as sequential digital system. 

Later the designed hardware together with the AES 128 hardware is added into two separate 

MicroBlaze as peripheral. By exporting the project into the SDK, software for the control 

between these peripherals and MicroBlaze is generated and as a result a secure data 

communication protocol is implemented. 

There are specific aspects of this project that may be investigated in the future. One example 

is redesigning the multiplier hardware in a way that it takes less time for calculation. Another 

aspect is increasing the capability of the Diffie-Hellman hardware so it can perform operation 

for higher order bits such as 192 bits or 256 bits, so it can be implemented with AES192 and 

AES256 hardware’s and implement a more secured communication. 
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