
1

ISTANBUL TECHNICAL UNIVERSITY

ELECTRICAL – ELECTRONICS ENGINEERING FACULTY

IMPLEMENTATION of SECURE HASH ALGORITHM on FIELD
PROGRAMMABLE GATE ARRAY

BSc Thesis by

Oğuz YELBEY

 040040367

 Department: Electronics and Communication Engineering

Programme: Electronics Engineering

 Supervisor : Assis. Prof. Dr. Sıddıka Berna Örs Yalçın

MAY 2010

2

 FOREWORD

I would like to thank my supervisors Assis. Prof. Dr Sıddıka Berna Örs Yalçın and Assis.

Prof. Dr Gökay Saldamlı. Without their help this work would not have been possible.

May 2010 Oğuz Yelbey

3

TABLE of CONTENTS

ÖZET v

SUMMARY vi

1. INTRODUCTION 1

2. SECURE HASH ALGORITHM-1 2

2.1. Appending Padding Bits 2

2.2. Appending Length 2

2.3. Initialization of Default Hash Values 2

2.4. Processing of the message 3

3. GROESTL-256 ALGORITHM 6

3.1. The Hash Function Construction 6

3.2. The Compression Function Construction 6

3.3. The Output Transformation 7

3.4. The Design of P and Q 8

3.5. Mapping From a Byte Sequence to a State Matrix 9

3.6. Add Round Constant 10

3.7. Sub Bytes 11

3.8. Shift Bytes 12

3.9. Mix Bytes 12

3.10. Number of rounds 14

3.11. Initial value 14

3.12. Padding 14

3.13. Summary 15

4. IMPLEMENTATION of SECURE HASH ALGORITHM-1 on FPGA 16

4.1. Architecture of the Overall System 16

4.2. Architecture and Operation of the SHA-1 Module 18

4.3. Architecture of the “Calculate Digest” Module 19

4.4. Operation of the SHA-1 Module With CPU 20

4.5. Simulation of the Implemented Design 21

4

5. IMPLEMENTATION of GROESTL-256 on FPGA 24

5.1. Implementation of Add Round Constant 24

5.2. Implementation of Sub Bytes 24

5.3. Implementation of Shift Bytes 25

5.4. Implementation of Mix Bytes 25

5.5. Construction of One Round 26

5.6. Complete Groestl-256 System 27

5.7. Simulation of Groestl-256 Implementation 29

6. RESULTS and DISCUSSION 31

REFERENCES 32

APPENDIX A 33

APPENDIX B 34

AUTOBIOGRAPHY 38

5

ÖZET

Mesaj doğrulama, kriptogrfide önemli bir kavramdır. Bir mesaj alındığında veya bir yere

kaydedildiğinde kullanıcı, mesajın değişmediğinden emin olmalıdır. Bunu sağlamak için

uygulanan metotlardan bir tanesi de Güvenli Karma Algoritması (SHA)’dır. Amerikan Ulusal

Standart ve Teknoloji Enstitüsü (NIST) tarafından geliştirilmiştir. Bu metot ile bir mesajdan

belli uzunlukta özet çıkarılır ve mesaj gönderilecekse veya kaydedilecekse bu özet ile birlikte

kaydedilir veya gönderilir. Mesaj tekrar kullanılmadan önce bu özet, tekrar hesaplanır ve

önceki kaydedilmiş olan özetle karşılaştırılır. Eğer özetlerde fark yoksa mesajın değişmemiş

olduğu anlaşılır.

Bu projede iki Güvenli Karma Algoritması Sahada Programlanabilir Kapı Dizileri(FPGA)

üzerinde gerçeklenmiştir. Bunlar SHA-1 ve SHA-3 aday algoritması olan Groestl’dır. Đki

algoritma da tekrarlı bir yapıda ve az alan kaplayacak şekilde gerçeklendiğinden, donanım

olarak kullanılmaları için geçerli bir sebep taşımaktadırlar. Minimum alan bu algoritmaların

gerçeklenmesinde ilk hedeftir çünkü yeteri kadar hızlı çalışmaktadırlar.

6

 SUMMARY

Message integrity is one of the most important subjects in cryptography. When a message is

received or stored in a location, user must be sure that message is not changed. To be able to

accomplish this message integrity, one of the methods is Secure Hash Algorithm (SHA),

which is being published by National Institute of Standards and Technology (NIST). In this

method, a message digest is produced from a message and message is sent or stored in a

location with its digest. Before the message is used, the digest is produced again. If there is a

difference in the message, the digest is changes also. Otherwise the message is not changed

and reliable to be used.

In this project, two SHA algorithms are implemented on Field Programmable Gate Array

(FPGA) which are SHA-1 and SHA-3 candidate algorithm called Groestl. Because of their

recursive structure, both of the algorithms are reasonable to be used for hardware

implementations. The main consideration of these implementations is minimum area because

they’re fast enough to use on most applications. Also, area means cost and low cost is mostly

first consideration of most applications.

7

1. INTRODUCTION

There are several versions of SHA. The three SHA algorithms are structured differently and

are distinguished as SHA-0, SHA-1, and SHA-2. The SHA-2 family uses an identical

algorithm with a variable digest size which is distinguished as SHA-224, SHA-256, SHA-

384, and SHA-512[1]. SHA-3 is not published as a standard but there is a competition for

that. 12 candidate algorithms are distinguished so far. One of them is Groestl, which is used to

be implemented on this project.

Algorithm may be implemented as hardware or software. All of them have advantages and

disadvantages. Software implementations cannot provide desired throughput for high-speed

systems such as video transmission systems. However, hardware implementations are

expensive and change in algorithm means a new hardware. Because of this reason,

reconfigurable hardware is commonly used for hash functions such as FPGA.

In the following, algorithms that are used in project will be explained. Then implemented

algorithms on FPGA will be described and two of them will be compared on their area

requirements and speed.

8

2. SECURE HASH ALGORITHM-1

The SHA-1 consists of the following steps:

2.1. Appending Padding Bits

The b-bit M is padded as follows: a single 1-bit is added into the end of M, after which 0-bits

are added until the length of the message is equivalent to 448, modulo 512[1].

2.2. Appending Length

After message is padded, 64 bit representation of b is added to the end of the padded message

so that message length becomes multiple of 512 bits [1].

2.3. Initialization of Default Hash Values

Let ��, ��, ��, ��, ��,be 32-bit hash value registers. These registers are used in the

derivation of a 160-bit hash H. At the beginning, they are ��initialized as follows [1]:

 �� = x′′67452301′′

 �� = x′′efcdab89′′

 �� = x′′98badcfe′′ (2.1)

 �� = x′′10325476′′

 �� = x′′c3d2e1f0′′

9

2.4. Processing of the message

The algorithm which is used for processing of the padded message is explained next. First, the

padded message needs to be divided into 512-bit blocks, denoted here as Mj where j ≥ 0 is the

index of the block. The algorithm processes one Mj at once, starting from M0, until all Mj

have been processed. Five 32-bit registers, A, B, C, D and E are defined for algorithm. At the

beginning of processing of each Mj their values are set as follows: A←H0, B←H1, etc. The

algorithm consists of 80 steps. Let t denote the index of a step, i.e. 0 ≤t ≤ 79. First, a 32-bit

message block Wt is derived for every step t from the 512-bit message block Mj using a

message schedule. For t < 16, Wt is simply the t.th 32-bit word of Mj. When t ≥ 16, Wt are

derived recursively with the following formula:

 Wt = (Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16) ≪1 (2.2)

Where ≪ denotes circular shift to the left by s bits and ⊕ is a logical xor-operation. Let Kt be

a constant value for step t. The values of K are set as follows:

 x′′5a827999′′ 0 ≤ t ≤ 19

 x′′6ed9eba1′′ 20 ≤ t ≤ 39

 x′′8fbbcdc′′ 40 ≤ t ≤ 49

 x′′ca62c1d6′′ 50 ≤ t ≤ 79

	
 �
�2.3)

10

A function F(X,Y,Z) depending on the step t is defined as follows:

 (X ∧Y) ⊕ (¬X ∧Z) 0 ≤ t ≤ 19

 X ⊕ Y ⊕ Z 20 ≤ t ≤ 39

 (X ∧Y) ⊕ (X ∧Z) ⊕ (Y ∧Z) 40 ≤ t ≤ 59

 X ⊕ Y ⊕ Z 60 ≤ t ≤ 79

Where ∧, ⊕and ¬ are bitwise logical and, xor and complement, respectively.

The message is processed for 0 ≤t ≤ 79 with the following function, which

is here called the SHA-1 step function:

 T = (A≪5) +F (B, C, D)+Wt +Kt +E (2.5)

Where + denotes an addition modulo 232. After each step, the values of the registers are set as

follows:

A ←T

B ←A

C ←B≪30 (2.6)

D ←C

E ←D

�2.4)

�

F(x,y,z) =

11

Finally, when all 80 steps have been processed, the following operations are performed:

H0 ←H0+A

H1 ←H1+B

H2 ←H2+C (2.7)

H3 ←H3+D

H4 ←H4+E

If all Mj have been processed, the algorithm is terminated. Otherwise, the algorithm is

processed with Mj+1.

12

3. GROESTL-256 ALGORITHM

3.1. The Hash Function Construction

The Groestl hash functions iterate the compression function f as follows [2]. The message M

is padded and split into ℓ-bit message blocks m1, . . . ,mt, and each message block is processed

sequentially. An initial ℓ-bit value h0 = iv is defined, and subsequently the message blocks mi

are processed as hi ← f(hi−1,mi) for i = 1, . . . , t. Hence, f maps two inputs of ℓ bits each to an

output of ℓ bits. The first input is called the chaining input, and the second input is called the

message block. For Groestl-256, ℓ is defined to be 512.

After the last message block has been processed, the output H(M) of the hash function is

computed as H(M) = (ht), where is an output transformation which is defined in Section 3.3.

The output size of is n bits, and n < ℓ. See Figure 3.1.

Figure 3.1 Processing of the message. Here, mi is 512 bits message block, iv is initial hash
value and H(m) is the final hash value[2].

3.2. The Compression Function Construction

The compression function f is based on two underlying ℓ-bit permutations P and Q. It is

defined as follows [2]:

13

 f(h,m) = P(h ⊕ m) ⊕ Q(m) ⊕ h. (3.1)

The construction of f is illustrated in Figure 3.2. In Section 3.4, P and Q are explained.

 Figure 3.2 Function f. Here, ⊕ is bitwise logical xor operation.

3.3. The Output Transformation

Output transformation is illustrated in Figure 3.3. Let truncn(x) be the operation that discards

all but the trailing n bits of x. Then the output transformation is defined as

 Ω(x) = truncn(P(x) ⊕ x). (3.2)

14

Figure 3.3 Output transformation. Here, ⊕ is bitwise logical xor operation. Block in the
most right is truncn(x) which is described in equation (3.2)[2].

3.4. The Design of P and Q

The design of P and Q was inspired by the Rijndael block cipher algorithm [3, 4]. This means

that their design consist of a number of rounds R, which consists of a number of round

transformations. Since P and Q are much larger than the 128-bit state size of Rijndael, most

round transformations have been redefined. In Groestl, a total of four round transformations

are defined for each permutation. These are

• AddRoundConstant

• SubBytes

• ShiftBytes

• MixBytes.

Hence,

R = MixBytes ◦ ShiftBytes ◦ SubBytes ◦ AddRoundConstant. (3.3)

15

A round R consists of these four round transformations applied in the above order. In Figure

3.4, one round process is illustrated.

All rounds follow this definition. Here, R the number of rounds. The transformations operate

on a state, which is represented as a matrix A of bytes (of 8 bits each). The matrix has 8 rows

and 8 columns. In Figure 3.4, v the number of columns, described how to map a byte

sequence to a state matrix and back, and then described each round transformation.

 Figure 3.4 One round process [2].

3.5. Mapping From a Byte Sequence to a State Matrix

Since Groestl operates on bytes, it is generally endianness neutral. Mapping is done in a

similar way as in Rijndael[3,4]. Hence, the 64-byte sequence 00 01 02 ... 3f is mapped to an 8

× 8 matrix as in Figure 3.5.

16

 Figure 3.5 Byte sequence 00 01 02 ... 3f is mapped to an 8 × 8 matrix [2].

3.6. Add Round Constant

The Add round constant transformation adds a round-dependent constant to the state matrix

A. By addition it is meaned exclusive-or (XOR). P and Q have different round constants,

which is the only difference between the two permutations. The round constants can be seen

as matrices of the same size as the state matrix. All round constants bytes are zero except for a

single position. The byte in the top leftmost corner of the round constant in round i of P has

the value i; all other positions in the round constant matrix have the value 00. In Q, the byte in

the bottom leftmost corner has the value i ⊕ ff, and all other bytes have the value 00. The

round number is reduced modulo 256, if necessary.

To be precise, the add round constant transformation in round i updates the state A as

 A ← A ⊕ C[i] (3.4)

where C[i] is the round constant used in round i. Add round constant for permutations P and Q

modify a single byte of the state by adding a constant derived from the round number i. This

is illustrated in Figure 3.6.

17

Figure 3.6. Add round constant P and Q on matrix. Here, i is the Round Number.

3.7. Sub Bytes

The Sub Bytes transformation substitutes each byte in the state matrix by another value, taken

from the

s-box S. This s-box is the same as the one used in Rijndael and its specification can be found

in Appendix A. Hence, if ai,j is the element in row i and column j of A, then the Sub Bytes

performs the following transformation as illustrated in Figure 3.7.

 ai,j ← S(ai,j), 0 ≤ i < 8, 0 ≤ j < v (3.5)

18

Figure 3.7 Sub bytes substitutes each byte of the state by its image under the s-box.

3.8. Shift Bytes

Shift bytes cyclically shift the bytes within a row to the left by a number of positions. Let σ =

[σ0, σ1, . . . , σ7] be a list of distinct integers in the range from 0 to v − 1.

Then, ShiftBytes moves all bytes in row i of the state matrix σi positions to the left, wrapping

around as necessary. The vector σ is defined as σ = [0, 1, 2, 3, 4, 5, 6, 7]. In Figure 3.8, this

process is illustrated.

 Figure 3.8. The Shift Bytes transformation.

19

3.9. Mix Bytes

In the Mix Bytes transformation, each column in the matrix is transformed independently. To

describe this transformation, finite field F256 will be introduced. This finite field is defined in

the same way as in Rijndael[3,4] via the irreducible polynomial x8 ⊕x4 ⊕x3 ⊕x⊕1 over

F2. The bytes of the state matrix A can be seen as elements of F256, i.e., as polynomials of

degree at most 7 with coefficients in {0, 1}. The least significant bit of each byte determines

the coefficient of x0, etc. Mix bytes transformation multiplies each column of A by a constant

8 × 8 matrix B in F256. Hence, the transformation on the whole matrix A can be written as

the matrix multiplication

A ← B × A (3.6)

The matrix B is specified as in Figure 3.9.

 Figure 3.9. Matrix B.

This matrix is circulant, which means that each row is equal to the row above rotated right by

one position as in Figure 3.10. In short, B = circ (02, 02, 03, 04, 05, 03, 05, 07) instead.

20

Figure 3.10 Illustration of mix bytes transformation. The MixBytes transformation left-
multiplies each column of the state matrix treated as a column vector over F256 by a circulant
matrix B.

3.10. Number of rounds

The number R of rounds is a tunable security parameter. For Groestl1-256 recommend value

of R for the four permutations is 10.

3.11. Initial value

The initial value iv256 of Grøstl-256 is the ℓ-bit representation of 256 which is: 00 ... 00 01 00.

3.12. Padding

As mentioned, the length of each message block is ℓ. To be able to operate on inputs of

varying length, a padding function pad is defined. This padding function takes a string x of

length N bits and returns a padded string x∗ = pad(x) of a length which is a multiple of ℓ.The

padding function does the following. First, it appends the bit ‘1’ to x. Then, it appends w =

−N − 65 mod ℓ ‘0’ bits, and finally, it appends a 64-bit representation of (N + w + 65)/ℓ. This

number is an integer due to the choice of w, and it represents the number of message blocks in

the final, padded message. Since it must be possible to encode the number of message blocks

in the padded message within 64 bits, the maximum message length is 65 bits short of 264 −1

message blocks. The maximum message length in bits is therefore 512 ・ (264 −1) −65 = 273

−577.

21

3.13. Summary

First, a message which is to be digested by Groestl is padded using the padding function

pad.The hash function then iterates a compression function f : {0, 1}ℓ × {0, 1}ℓ → {0, 1}ℓ,

which is based on two permutations P and Q. Because of the output size n of the hash function

is 256 bits, ℓ = 512. At the end, the output of the last call to f is processed by the output

transformation, which reduces the output size from ℓ to n bits.

22

4. IMPLEMENTATION of SECURE HASH ALGORITHM-1 on FPGA

4.1. Architecture of The Overall System

A hash module cannot be used by itself because message integrity is sub part of a system.

These kinds of systems have a Central Processing Unit (CPU) and all data is received and

managed by CPU. If CPU needs a hash computation, routes message to hash module and

receives back the digest of the message. Because of that, a hash module must be designed

compatible to a CPU. Also, data communication between the hash module and CPU must be

fast to accomplish high speed calculation.

In the next implementation, hash module’s behavior is like as a RAM. This is because of all

CPU’s are compatible to operate a RAM. This makes hash module flexible to use on wide

range of systems. Additionally, software implementations of read and write data to a RAM is

easier. There are several block RAMs on Spartan 3E so that, a RAM on the system does not

consume device’s reconfigurable parts[5]. In Figure 4.1, overall system is imagined.

23

Figure 4.1 Overall system with CPU and FPGA. In the system, the CPU is a soft CPU that
exists only in simulation.

One port of Block RAM is connected to CPU and the other one is to SHA-1. Either of them

can read data any location on RAM but one of it is must write data to one location. Figure 4.2

illustrates memory map of Dual Port Block RAM. In SHA-1, message is computed as 512 bit

parts. There are two 512 bit blocks on RAM reserved for two message blocks and 160 bit

digest block to use as storage for computed digest. Two 512 bit block storage are used in

order to provide CPU and SHA-1 module use RAM simultaneously while SHA-1 using one

block, CPU can write next computation data to other block. By this method, performance is

boosted.

24

 Figure 4.2 Memory map of the system.

4.2. Architecture and Operation of the SHA-1 Module

SHA-1 Module consists of three blocks which are Control block, Write Digest block, Read

Data block, and Calculate Digest block. Calculate Digest block’s function is calculating

message digest. Write Digest block performs write operation of calculated message digest.

Read Data block reads necessary part of processing message from RAM. Control block

activates necessary blocks depending on value t of algorithm. For t≤15, “Read Data” block

reads “32” bits word values on RAM and sends to the “Calculate Digest” module. “Calculate

Digest” module uses the word on round operation and increments t value. For t>15, 512 bit

message block is no longer needed so “Read Data” block is deactivated by “Control Block”.

When t reaches to 80, calculation is finished for the 512 bits message block and “Write

Digest” block is activated to write data to RAM. If there are more 512 bits to be processed,

same operation is repeated only with change of the starting address of next message block

address on RAM. First message block and second message block is used respectively on

every computation. Overall relationship between those blocks is illustrated in Figure 4.3.

00D

14D
1st 512 bits block

32D

15D
 2nd 512 bits block

Message Digest

31D

36D

25

 Figure 4.3 Architecture of SHA-1 module.

4.3. Architecture of the “Calculate Digest” Module

Calculate Digest module is the main module that performs 80 rounds hash computation. As

illustrated in Figure 4.4, on one clock cycle, one round computation is performed. Default

digest value is stored in 32 bit registers called A, B, C, D and E. Their values are changed on

every round operation. Each round’s computation behavior is determined by t value, which is

produced by “Counter”. If module is enabled by its upper module, “Counter” counts up.

Determining by the “t” value, controller on upper module orders to start or stop computation.

When “Reset” input is “logic low”, “Counter” and A, B, C, D, E registers return their default

value.

26

 Figure 4.4 Architecture of calculate digest module.

4.4. Operation of the SHA-1 Module With CPU

First, CPU writes data to first 512 bits storage block on RAM and raises “execute” signal to

logic “1”. Then, SHA-1 module computes message digest and writes data to 160 bits “Hash

Location” on RAM. While SHA-1 module calculating digest, CPU can write the next message

block to the second storage block. After one block message computation is finished, SHA-1

module raises ready signal to “high”. If message consists of more than one 512 bit block,

CPU raises “Next Block” signal to logic “1” for 5 clock cycles then second block is read from

the other message block location on RAM and calculated by SHA-1 block. All it is repeated

until all message blocks are processed. Digest is ready on “Message Digest” location on

RAM. CPU resets the “Calculate Digest” module by lowering the execute signal to logic “0”

and reads digest of the message from RAM. Flowchart of the process is illustrated on Figure

4.5.

27

 Figure 4.5 Operation process of SHA-1 module.

4.5. Simulation of the Implemented Design

Placing and routing of the design is done by Xilinx ISE9.2i. 1113 slices are occupied by the

design. Figure 4.6 shows the implemented module block. The module can operate on

maximum 56 Mhz clock frequency.

28

 Figure 4.6 SHA-1 module.

Figure 4.7 shows testbench for two block hash computation. Testbench behaviors like a CPU.

In Step 1, CPU writes first 512 bit block to RAM and raises execute signal to logic “1” to start

computation process. In Step 2, SHA-1 module computes digest. When finished, it raises

sha1_digest_ready signal. In Step 3, CPU writes next message block and raises new_block

signal to logic “1”. Because of the block is a message’s next block, it doesn’t lower the

execute signal. In Step 4, SHA-1 module computes the digest again but in this step, initial

hash value is first previous computation’s value. In Step 5, CPU reads the final digest value.

Because of data communication signal on module isn’t identical, Appendix B is more

identical version of Step 1, Step 2, and Step 3.

29

 Figure 4.7 Testbench of SHA-1 module.

Step 1 Step 2 Step 3 Step 5 Step 4

30

5. IMPLEMENTATION of GROESTL-256 on FPGA

First step of the Groestl-256 is designing one round computation. All the design is almost the

repeated parts of one round computation. Main concept of reducing the area by using shift

registers. Shifting the registers doesn’t need additional device resources because of there are

shift registers on Spartan3E.

5.1. Implementation of Add Round Constant

Depending on the function, Add Round Constant changes in behavior. In function P, first byte

of the column is processed. In function Q, 8.th byte is processed. A select signal is used to

control the behavior of the module. A block diagram is illustrated this behavior on Figure 5.1.

 Figure 5.1 Block diagram of add round constant module.

31

5.2. Implementation of Sub Bytes

Because of Sub Bytes is operated on each byte with the same operation, one column’s Sub

Byte operation is done in 64 steps. It is illustrated on Figure 5.2.

 Figure 5.2 Block diagram of sub bytes module.

5.3. Implementation of Shift Bytes

There is no logic implementation for shift bytes. Shift bytes process is done by only necessary

connection of signal to other module’s input.

5.4. Implementation of Mix Bytes

Mix bytes module is similar to sub bytes module. It consists of 8 column operation that every

column is multiplied by circular column vector which is

 Counter

512 bits shift register

 Comparator

Load

 Comparator

0

64

S Box

Data[512:505]
Shift

Done

Input

Output

32

circ[02 02 03 04 05 0305]. Instead of circulating the logic operation, vector variables are

shifted connected to input as illustrated on Figure 5.3.

 Figure 5.3 Illustration of mix bytes module.

 Counter

512 bits shift register

Comparator

 Comparator

0

8

Data[512:449]

Done

Input

Output

Shift column

02020304050305
X

33

5.5. Construction of One Round

Figure 5.4 illustrates one round computation. Add round constant, sub bytes, shift rows, and

mix columns are four steps of one round.

 Figure 5.4 One round operation.

5.6. Complete Groestl-256 System

Figure 5.7 illustrates a complete Groestl-256 system. First, function P is executed by the

round module. When 10 rounds are completed, result is stored in a register. Then function Q

is executed. When finished, one message block is computed on the output. If there is another

message block is needed to be computed, the process is repeated. The present digest value is

next process’ initial value. After all blocks are computed, round module calculates the output

transformation. Then the message digest is ready on output.

Add round constant

Sub bytes

Shift rows

Mix columns

Input

Output

34

 Figure 5.7 Complete Groestl-256 system.

35

5.7. Simulation of Groestl-256 Implementation

Groestl implementation occupied 1865 slices on Spartan3E. Because of there are limited

number of input-output pins on Sparta3e, simulation of it is impossible without reducing the

input-output pins. To be able to make a simulation, input message is made by using as a signal

inside of FPGA and 256 bits output is recursively outputted 128 bits on two cycles. After

making these changes, The Module occupied 1929 slices. Last changes are made only for

simulation purposes, actual module must be accepted as 1865 slices because modifying this

implemented design changes depending on the system that uses this module. Simulation

results are illustrated on Figure 5.8. In step 2, P function is processed. In step 4, Q function is

processed. In step 6, an output transformation is performed. In step 7, output is ready. There

are odd number of steps which are not seen here. Their only difference from their next even

number processes is new_block pulse. Step 7 is more identical on Figure 5.9.

Figure 5.8 Testbench of The Groestl-256 Module. Step_signal determines the calculation
type.

36

 Figure 5.9 Identical version of Step 7 on Figure 5.8.

37

6. RESULTS and DISCUSSION

Most SHA-1 hash functions occupy approximately 700 slices between 1200 slices.

Implementation of SHA-1 is occupied 1113 slices that it can be seen large in comparison to

the other implementations. This is because there are several blocks to interface between RAM

and CPU. Interface modules occupy extra area. Still it is reasonable to use because of its

compatibility on RAM. 56 Mhz maximum clock frequency is reasonable too because of it is

faster than most processors.

Implementation of Groestl-256 is achieved its design goal as occupying 1865 slices on

Spartan3E. In comparison to 6582 slices implementation of Authors’ of Groestl[3] and 2486

slices of another implementation[6], its design goal of minimum area is achieved. 86 Mhz is

fast enough to use it on wide variety of systems.

To be able to detailed comparison on SHA-1 and Groestl-256, their output must be equal.

Because of there is no 160 bits version of Groestl, it couldn’t be implemented to compare both

two algorithms.

38

REFERENCES

[1] FIPS 180-1, 1995. Secure Hash Algorithm, US Department of Commerce, N.I.S.T,
Washington.

[2] Kayser, R.F., 2007, Announcing Request for Candidate Algorithm Nominations for a
New Cryptographic Hash Algorithm (SHA-3) Family. In: Federal Register.
Volume 72. National Institute of Standards and Technology, Washington.

[3] J. Daemen and V. Rijmen.,1999, AES Proposal: Rijndael. AES Algorithm
 Submission, N.I.S.T., Washington.

[4] J. Daemen and V. Rijmen., 2002, The Design of Rijndael. Springer.

[5] Xilinx, 2009. Spartan-3 Generation FPGA User Guide,UG331

[6] Bernhard Jungk,2009, On Optimized FPGA Implementations of theSHA-3 Candidate
 Groestl, Fachhochschule Wiesbaden University of Applied Sciences.

39

APPENDIX A

 S box values.

40

APPENDIX B

Testbench of SHA-1 module. Time range is 0 to 300 ns.

Testbench of SHA-1 module time range 300 to 600 ns.

41

Testbench of SHA-1 module time range 600 to 900 ns.

Testbench of SHA-1 module time range 900 to 1200 ns.

Testbench of SHA-1 module time range 3800 to 4100 ns.

42

Testbench of SHA-1 module time range 4100 to 4400 ns.

Testbench of SHA-1 module time range 4400 to 4700 ns.

Testbench of SHA-1 module time range 4700 to 5000 ns.

43

Testbench of SHA-1 module time range 7300 to 7600 ns.

44

AUTOBIOGRAPHY

Oğuz Yelbey was born in Bursa/Mustafakemalpaşa in 1986. He completed elementary school

and middle school in there and completed Balıkesir Science High School in 2004. He was

accepted Istanbul Technical University Electronics Engineering Program in same year. He is

interesting in digital circuit design, cryptograpy and expecing to work on these subjects in

future.

