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ÖZET 

Mesaj doğrulama, kriptogrfide önemli bir kavramdır. Bir mesaj alındığında veya bir yere 

kaydedildiğinde kullanıcı, mesajın değişmediğinden emin olmalıdır. Bunu sağlamak için 

uygulanan metotlardan bir tanesi de Güvenli Karma Algoritması (SHA)’dır. Amerikan Ulusal 

Standart ve Teknoloji Enstitüsü (NIST) tarafından geliştirilmiştir. Bu metot ile bir mesajdan 

belli uzunlukta özet çıkarılır ve mesaj gönderilecekse veya kaydedilecekse bu özet ile birlikte 

kaydedilir veya gönderilir. Mesaj tekrar kullanılmadan önce bu özet, tekrar hesaplanır ve 

önceki kaydedilmiş olan özetle karşılaştırılır. Eğer özetlerde fark yoksa mesajın değişmemiş 

olduğu anlaşılır. 

Bu projede iki Güvenli Karma Algoritması Sahada Programlanabilir Kapı Dizileri(FPGA) 

üzerinde gerçeklenmiştir. Bunlar SHA-1 ve SHA-3 aday algoritması olan Groestl’dır. Đki 

algoritma da tekrarlı bir yapıda ve az alan kaplayacak şekilde gerçeklendiğinden, donanım 

olarak kullanılmaları için geçerli bir sebep taşımaktadırlar. Minimum alan bu algoritmaların 

gerçeklenmesinde ilk hedeftir çünkü yeteri kadar hızlı çalışmaktadırlar.  
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    SUMMARY 

Message integrity is one of the most important subjects in cryptography. When a message is 

received or stored in a location, user must be sure that message is not changed. To be able to 

accomplish this message integrity, one of the methods is Secure Hash Algorithm (SHA), 

which is being published by National Institute of Standards and Technology (NIST). In this 

method, a message digest is produced from a message and message is sent or stored in a 

location with its digest. Before the message is used, the digest is produced again. If there is a 

difference in the message, the digest is changes also. Otherwise the message is not changed 

and reliable to be used.  

In this project, two SHA algorithms are implemented on Field Programmable Gate Array 

(FPGA) which are SHA-1 and SHA-3 candidate algorithm called Groestl. Because of their 

recursive structure, both of the algorithms are reasonable to be used for hardware 

implementations. The main consideration of these implementations is minimum area because 

they’re fast enough to use on most applications. Also, area means cost and low cost is mostly 

first consideration of most applications.   
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1. INTRODUCTION 

There are several versions of SHA. The three SHA algorithms are structured differently and 

are distinguished as SHA-0, SHA-1, and SHA-2. The SHA-2 family uses an identical 

algorithm with a variable digest size which is distinguished as SHA-224, SHA-256, SHA-

384, and SHA-512[1]. SHA-3 is not published as a standard but there is a competition for 

that. 12 candidate algorithms are distinguished so far. One of them is Groestl, which is used to 

be implemented on this project. 

Algorithm may be implemented as hardware or software. All of them have advantages and 

disadvantages. Software implementations cannot provide desired throughput for high-speed 

systems such as video transmission systems. However, hardware implementations are 

expensive and change in algorithm means a new hardware. Because of this reason, 

reconfigurable hardware is commonly used for hash functions such as FPGA.  

In the following, algorithms that are used in project will be explained. Then implemented 

algorithms on FPGA will be described and two of them will be compared on their area 

requirements and speed. 
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2. SECURE HASH ALGORITHM-1 

The SHA-1 consists of the following steps:  

2.1. Appending Padding Bits 

The b-bit M is padded as follows: a single 1-bit is added into the end of M, after which 0-bits 

are added until the length of the message is equivalent to 448, modulo 512[1]. 

2.2. Appending Length 

After message is padded, 64 bit representation of b is added to the end of the padded message 

so that message length becomes multiple of 512 bits [1].  

2.3. Initialization of Default Hash Values 

Let ��, ��, ��, ��, ��,be 32-bit hash value registers. These registers are used in the 

derivation of a 160-bit hash H. At the beginning, they are ��initialized as follows [1]: 

     

   �� = x′′67452301′′ 

   �� = x′′efcdab89′′ 

   �� = x′′98badcfe′′   (2.1) 

   �� = x′′10325476′′ 

   �� = x′′c3d2e1f0′′ 
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2.4. Processing of the message 

The algorithm which is used for processing of the padded message is explained next. First, the 

padded message needs to be divided into 512-bit blocks, denoted here as Mj where j ≥ 0 is the 

index of the block. The algorithm processes one Mj at once, starting from M0, until all Mj 

have been processed. Five 32-bit registers, A, B, C, D and E are defined for algorithm. At the 

beginning of processing of each Mj their values are set as follows: A←H0, B←H1, etc. The 

algorithm consists of 80 steps. Let t denote the index of a step, i.e. 0 ≤t ≤ 79. First, a 32-bit 

message block Wt is derived for every step t from the 512-bit message block Mj using a 

message schedule. For t < 16, Wt is simply the t.th 32-bit word of Mj. When t ≥ 16, Wt are 

derived recursively with the following formula:  

    

 Wt = (Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16) ≪1   (2.2) 

 

Where ≪ denotes circular shift to the left by s bits and ⊕ is a logical xor-operation. Let Kt be 

a constant value for step t. The values of K are set as follows: 

 

 

  x′′5a827999′′    0 ≤ t ≤ 19    

  x′′6ed9eba1′′    20 ≤ t ≤ 39 

  x′′8fbbcdc′′      40 ≤ t ≤ 49 

  x′′ca62c1d6′′    50 ≤ t ≤ 79 

 

 

 

 

 

 

 

 

 

 

	
 � 
�2.3) 
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A function F(X,Y,Z) depending on the step t is defined as follows: 

 

  (X ∧Y) ⊕ (¬X ∧Z)    0 ≤ t ≤ 19 

   X ⊕ Y ⊕ Z     20 ≤ t ≤ 39 

  (X ∧Y) ⊕ (X ∧Z) ⊕ (Y ∧Z)  40 ≤ t ≤ 59 

  X ⊕ Y ⊕ Z     60 ≤ t ≤ 79 

 

 

 

Where ∧, ⊕and ¬ are bitwise logical and, xor and complement, respectively. 

The message is processed for 0 ≤t ≤ 79 with the following function, which 

is here called the SHA-1 step function: 

 

 T = (A≪5) +F (B, C, D)+Wt +Kt +E     (2.5) 

 

Where + denotes an addition modulo 232. After each step, the values of the registers are set as 

follows: 

 

A ←T 

B ←A 

C ←B≪30       (2.6) 

D ←C 

E ←D 

 

 

�2.4) 

 

 

 
�

F(x,y,z) = 
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Finally, when all 80 steps have been processed, the following operations are performed: 

 

 

H0 ←H0+A 

H1 ←H1+B 

H2 ←H2+C    (2.7) 

H3 ←H3+D 

H4 ←H4+E 

 

If all Mj have been processed, the algorithm is terminated. Otherwise, the algorithm is 

processed with Mj+1. 
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3. GROESTL-256 ALGORITHM 

3.1. The Hash Function Construction 

The Groestl hash functions iterate the compression function f as follows [2]. The message M 

is padded and split into ℓ-bit message blocks m1, . . . ,mt, and each message block is processed 

sequentially. An initial ℓ-bit value h0 = iv is defined, and subsequently the message blocks mi 

are processed as hi ← f(hi−1,mi) for i = 1, . . . , t. Hence, f maps two inputs of ℓ bits each to an 

output of ℓ bits. The first input is called the chaining input, and the second input is called the 

message block. For Groestl-256, ℓ is defined to be 512. 

After the last message block has been processed, the output H(M) of the hash function is 

computed as H(M) = (ht), where  is an output transformation which is defined in Section 3.3. 

The output size of is n bits, and n < ℓ. See Figure 3.1. 

 

 

 

 

Figure 3.1 Processing of the message. Here, mi is 512 bits message block, iv is initial hash 
value and H(m) is the final hash value[2]. 

 

3.2. The Compression Function Construction 

The compression function f is based on two underlying ℓ-bit permutations P and Q. It is 

defined as follows [2]: 
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 f(h,m) = P(h ⊕ m) ⊕ Q(m) ⊕ h.    (3.1) 

 

The construction of f is illustrated in Figure 3.2. In Section 3.4, P and Q are explained. 

 

 

                       Figure 3.2 Function f. Here, ⊕ is bitwise logical xor operation.  

 

 

3.3. The Output Transformation 

Output transformation is illustrated in Figure 3.3. Let truncn(x) be the operation that discards 

all but the trailing n bits of x. Then the output transformation is defined as  

 

  Ω(x) = truncn(P(x) ⊕ x).           (3.2) 
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Figure 3.3 Output transformation. Here, ⊕ is bitwise logical xor operation.  Block in the 
most right is truncn(x) which is described in equation (3.2)[2]. 

 

3.4. The Design of P and Q 

The design of P and Q was inspired by the Rijndael block cipher algorithm [3, 4]. This means 

that their design consist of a number of rounds R, which consists of a number of round 

transformations. Since P and Q are much larger than the 128-bit state size of Rijndael, most 

round transformations have been redefined. In Groestl, a total of four round transformations 

are defined for each permutation. These are 

 

• AddRoundConstant 

• SubBytes 

• ShiftBytes 

• MixBytes. 

 

Hence, 

 

R = MixBytes ◦ ShiftBytes ◦ SubBytes ◦ AddRoundConstant.         (3.3) 
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A round R consists of these four round transformations applied in the above order. In Figure 

3.4, one round process is illustrated.  

All rounds follow this definition. Here, R the number of rounds. The transformations operate 

on a state, which is represented as a matrix A of bytes (of 8 bits each). The matrix has 8 rows 

and 8 columns. In Figure 3.4, v the number of columns, described how to map a byte 

sequence to a state matrix and back, and then described each round transformation. 

                        

  Figure 3.4 One round process [2]. 

 

 

3.5. Mapping From a Byte Sequence to a State Matrix  

Since Groestl operates on bytes, it is generally endianness neutral. Mapping is done in a 

similar way as in Rijndael[3,4]. Hence, the 64-byte sequence 00 01 02 ... 3f is mapped to an 8 

× 8 matrix as in Figure 3.5. 
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          Figure 3.5 Byte sequence 00 01 02 ... 3f is mapped to an 8 × 8 matrix [2]. 

 

3.6. Add Round Constant 

The Add round constant transformation adds a round-dependent constant to the state matrix 

A. By addition it is meaned exclusive-or (XOR). P and Q have different round constants, 

which is the only difference between the two permutations. The round constants can be seen 

as matrices of the same size as the state matrix. All round constants bytes are zero except for a 

single position. The byte in the top leftmost corner of the round constant in round i of P has 

the value i; all other positions in the round constant matrix have the value 00. In Q, the byte in 

the bottom leftmost corner has the value i ⊕ ff, and all other bytes have the value 00. The 

round number is reduced modulo 256, if necessary. 

To be precise, the add round constant transformation in round i updates the state A as 

 

    A ← A ⊕ C[i]              (3.4) 

 

where C[i] is the round constant used in round i. Add round constant for permutations P and Q 

modify a single byte of the state by adding a constant derived from the round number i. This 

is illustrated in Figure 3.6. 
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Figure 3.6. Add round constant P and Q on matrix. Here, i is the Round Number. 

 

 

3.7. Sub Bytes 

The Sub Bytes transformation substitutes each byte in the state matrix by another value, taken 

from the  

s-box S. This s-box is the same as the one used in Rijndael and its specification can be found 

in Appendix A. Hence, if ai,j is the element in row i and column j of A, then the Sub Bytes 

performs the following transformation as illustrated in Figure 3.7. 

 

 ai,j ← S(ai,j), 0 ≤ i < 8, 0 ≤ j < v    (3.5) 
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Figure 3.7 Sub bytes substitutes each byte of the state by its image under the s-box. 

3.8. Shift Bytes  

Shift bytes cyclically shift the bytes within a row to the left by a number of positions. Let σ = 

[σ0, σ1, . . . , σ7] be a list of distinct integers in the range from 0 to v − 1. 

Then, ShiftBytes moves all bytes in row i of the state matrix σi positions to the left, wrapping 

around as necessary. The vector σ is defined as σ = [0, 1, 2, 3, 4, 5, 6, 7]. In Figure 3.8, this 

process is illustrated. 

 

                     

 

                   Figure 3.8. The Shift Bytes transformation. 
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3.9. Mix Bytes 

In the Mix Bytes transformation, each column in the matrix is transformed independently. To 

describe this transformation, finite field F256 will be introduced. This finite field is defined in 

the same way as in Rijndael[3,4] via the irreducible polynomial x8 ⊕x4 ⊕x3 ⊕x⊕1 over 

F2. The bytes of the state matrix A can be seen as elements of F256, i.e., as polynomials of 

degree at most 7 with coefficients in {0, 1}. The least significant bit of each byte determines 

the coefficient of x0, etc. Mix bytes transformation multiplies each column of A by a constant 

8 × 8 matrix B in F256. Hence, the transformation on the whole matrix A can be written as 

the matrix multiplication 

 

A ← B × A    (3.6) 

 

The matrix B is specified as in Figure 3.9. 

 

                            

 

   Figure 3.9. Matrix B. 

 

This matrix is circulant, which means that each row is equal to the row above rotated right by 

one position as in Figure 3.10. In short, B = circ (02, 02, 03, 04, 05, 03, 05, 07) instead.  
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Figure 3.10 Illustration of mix bytes transformation. The MixBytes transformation left-
multiplies each column of the state matrix treated as a column vector over F256 by a circulant 
matrix B. 

3.10. Number of rounds 

The number R of rounds is a tunable security parameter. For Groestl1-256 recommend value 

of R for the four permutations is 10. 

 

3.11. Initial value 

The initial value iv256 of Grøstl-256 is the ℓ-bit representation of 256 which is: 00 ... 00 01 00.  

3.12. Padding 

As mentioned, the length of each message block is ℓ. To be able to operate on inputs of 

varying length, a padding function pad is defined. This padding function takes a string x of 

length N bits and returns a padded string x∗ = pad(x) of a length which is a multiple of ℓ.The 

padding function does the following. First, it appends the bit ‘1’ to x. Then, it appends w = 

−N − 65 mod ℓ ‘0’ bits, and finally, it appends a 64-bit representation of (N + w + 65)/ℓ. This 

number is an integer due to the choice of w, and it represents the number of message blocks in 

the final, padded message. Since it must be possible to encode the number of message blocks 

in the padded message within 64 bits, the maximum message length is 65 bits short of 264 −1 

message blocks. The maximum message length in bits is therefore 512 ・ (264 −1) −65 = 273 

−577. 



21 
 

 

3.13. Summary 

First, a message which is to be digested by Groestl is padded using the padding function 

pad.The hash function then iterates a compression function f : {0, 1}ℓ × {0, 1}ℓ → {0, 1}ℓ, 

which is based on two permutations P and Q. Because of the output size n of the hash function 

is 256 bits, ℓ = 512. At the end, the output of the last call to f is processed by the output 

transformation, which reduces the output size from ℓ to n bits. 
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4.  IMPLEMENTATION of SECURE HASH ALGORITHM-1 on FPGA  

4.1. Architecture of The Overall System 

A hash module cannot be used by itself because message integrity is sub part of a system. 

These kinds of systems have a Central Processing Unit (CPU) and all data is received and 

managed by CPU. If CPU needs a hash computation, routes message to hash module and 

receives back the digest of the message. Because of that, a hash module must be designed 

compatible to a CPU. Also, data communication between the hash module and CPU must be 

fast to accomplish high speed calculation. 

In the next implementation, hash module’s behavior is like as a RAM. This is because of all 

CPU’s are compatible to operate a RAM. This makes hash module flexible to use on wide 

range of systems. Additionally, software implementations of read and write data to a RAM is 

easier. There are several block RAMs on Spartan 3E so that, a RAM on the system does not 

consume device’s reconfigurable parts[5]. In Figure 4.1, overall system is imagined. 
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Figure 4.1 Overall system with CPU and FPGA. In the system, the CPU is a soft CPU that 
exists only in simulation. 

 

One port of Block RAM is connected to CPU and the other one is to SHA-1. Either of them 

can read data any location on RAM but one of it is must write data to one location. Figure 4.2 

illustrates memory map of Dual Port Block RAM. In SHA-1, message is computed as 512 bit 

parts. There are two 512 bit blocks on RAM reserved for two message blocks and 160 bit 

digest block to use as storage for computed digest. Two 512 bit block storage are used in 

order to provide CPU and SHA-1 module use RAM simultaneously while SHA-1 using one 

block, CPU can write next computation data to other block. By this method, performance is 

boosted. 
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          Figure 4.2 Memory map of the system. 

 

4.2. Architecture and Operation of the SHA-1 Module 

SHA-1 Module consists of three blocks which are Control block, Write Digest block, Read 

Data block, and Calculate Digest block. Calculate Digest block’s function is calculating 

message digest. Write Digest block performs write operation of calculated message digest. 

Read Data block reads necessary part of processing message from RAM. Control block 

activates necessary blocks depending on value t of algorithm. For t≤15, “Read Data” block 

reads “32” bits word values on RAM and sends to the “Calculate Digest” module. “Calculate 

Digest” module uses the word on round operation and increments t value. For t>15, 512 bit 

message block is no longer needed so “Read Data” block is deactivated by “Control Block”. 

When t reaches to 80, calculation is finished for the 512 bits message block and “Write 

Digest” block is activated to write data to RAM.  If there are more 512 bits to be processed, 

same operation is repeated only with change of the starting address of next message block 

address on RAM. First message block and second message block is used respectively on 

every computation. Overall relationship between those blocks is illustrated in Figure 4.3. 

 

 

 

 

 

 

00D

14D 
1st 512 bits block 

32D 

15D 
    2nd 512 bits block 

Message Digest 

31D 

36D 
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 Figure 4.3 Architecture of SHA-1 module. 

 

4.3. Architecture of the “Calculate Digest” Module 

Calculate Digest module is the main module that performs 80 rounds hash computation. As 

illustrated in Figure 4.4, on one clock cycle, one round computation is performed. Default 

digest value is stored in 32 bit registers called A, B, C, D and E. Their values are changed on 

every round operation. Each round’s computation behavior is determined by t value, which is 

produced by “Counter”.  If module is enabled by its upper module, “Counter” counts up. 

Determining by the “t” value, controller on upper module orders to start or stop computation. 

When “Reset” input is “logic low”, “Counter” and A, B, C, D, E registers return their default 

value. 
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 Figure 4.4 Architecture of calculate digest module. 

 

4.4. Operation of the SHA-1 Module With CPU 

First, CPU writes data to first 512 bits storage block on RAM and raises “execute” signal to 

logic “1”. Then, SHA-1 module computes message digest and writes data to 160 bits “Hash 

Location” on RAM. While SHA-1 module calculating digest, CPU can write the next message 

block to the second storage block. After one block message computation is finished, SHA-1 

module raises ready signal to “high”. If message consists of more than one 512 bit block, 

CPU raises “Next Block” signal to logic “1” for 5 clock cycles then second block is read from 

the other message block location on RAM and calculated by SHA-1 block. All it is repeated 

until all message blocks are processed. Digest is ready on “Message Digest” location on 

RAM. CPU resets the “Calculate Digest” module by lowering the execute signal to logic “0” 

and reads digest of the message from RAM. Flowchart of the process is illustrated on Figure 

4.5. 
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 Figure 4.5 Operation process of SHA-1 module. 

4.5. Simulation of the Implemented Design 

Placing and routing of the design is done by Xilinx ISE9.2i. 1113 slices are occupied by the 

design. Figure 4.6 shows the implemented module block. The module can operate on 

maximum 56 Mhz clock frequency. 
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 Figure 4.6 SHA-1 module. 

 

Figure 4.7 shows testbench for two block hash computation. Testbench behaviors like a CPU. 

In Step 1, CPU writes first 512 bit block to RAM and raises execute signal to logic “1” to start 

computation process. In Step 2, SHA-1 module computes digest. When finished, it raises 

sha1_digest_ready signal. In Step 3, CPU writes next message block and raises new_block 

signal to logic “1”. Because of the block is a message’s next block, it doesn’t lower the 

execute signal. In Step 4, SHA-1 module computes the digest again but in this step, initial 

hash value is first previous computation’s value. In Step 5, CPU reads the final digest value. 

Because of data communication signal on module isn’t identical, Appendix B is more 

identical version of Step 1, Step 2, and Step 3. 
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 Figure 4.7 Testbench of SHA-1 module.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 1 Step 2 Step 3 Step 5 Step 4  
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5. IMPLEMENTATION of GROESTL-256 on FPGA 

First step of the Groestl-256 is designing one round computation. All the design is almost the 

repeated parts of one round computation. Main concept of reducing the area by using shift 

registers. Shifting the registers doesn’t need additional device resources because of there are 

shift registers on Spartan3E. 

5.1. Implementation of Add Round Constant 

Depending on the function, Add Round Constant changes in behavior. In function P, first byte 

of the column is processed. In function Q, 8.th byte is processed. A select signal is used to 

control the behavior of the module. A block diagram is illustrated this behavior on Figure 5.1. 

  

       Figure 5.1 Block diagram of add round constant module. 

 

 



31 
 

5.2. Implementation of Sub Bytes 

Because of Sub Bytes is operated on each byte with the same operation, one column’s Sub 

Byte operation is done in 64 steps. It is illustrated on Figure 5.2. 

 

 

 Figure 5.2 Block diagram of sub bytes module. 

 

5.3. Implementation of Shift Bytes 

There is no logic implementation for shift bytes. Shift bytes process is done by only necessary 

connection of signal to other module’s input. 

5.4. Implementation of Mix Bytes 

Mix bytes module is similar to sub bytes module. It consists of 8 column operation that every 

column is multiplied by circular column vector which is  
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circ[02 02 03 04 05 0305]. Instead of circulating the logic operation, vector variables are 

shifted connected to input as illustrated on Figure 5.3. 

 

 

 Figure 5.3 Illustration of mix bytes module. 
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5.5. Construction of One Round 

Figure 5.4 illustrates one round computation. Add round constant, sub bytes, shift rows, and 

mix columns are four steps of one round. 

 

                                     Figure 5.4 One round operation. 

5.6. Complete Groestl-256 System 

Figure 5.7 illustrates a complete Groestl-256 system. First, function P is executed by the 

round module. When 10 rounds are completed, result is stored in a register. Then function Q 

is executed. When finished, one message block is computed on the output. If there is another 

message block is needed to be computed, the process is repeated. The present digest value is 

next process’ initial value. After all blocks are computed, round module calculates the output 

transformation. Then the message digest is ready on output.  

 

Add round constant 

Sub bytes 

Shift rows 

Mix columns 

Input 

Output 
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                     Figure 5.7 Complete Groestl-256 system. 
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5.7. Simulation of Groestl-256 Implementation 

Groestl implementation occupied 1865 slices on Spartan3E. Because of there are limited 

number of input-output pins on Sparta3e, simulation of it is impossible without reducing the 

input-output pins. To be able to make a simulation, input message is made by using as a signal 

inside of FPGA and 256 bits output is recursively outputted 128 bits on two cycles. After 

making these changes, The Module occupied 1929 slices. Last changes are made only for 

simulation purposes, actual module must be accepted as 1865 slices because modifying this 

implemented design changes depending on the system that uses this module. Simulation 

results are illustrated on Figure 5.8. In step 2, P function is processed. In step 4, Q function is 

processed. In step 6, an output transformation is performed. In step 7, output is ready. There 

are odd number of steps which are not seen here. Their only difference from their next even 

number processes is new_block pulse. Step 7 is more identical on Figure 5.9. 

 

 

 

Figure 5.8 Testbench of The Groestl-256 Module. Step_signal determines the calculation 
type.  
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 Figure 5.9 Identical version of Step 7 on Figure 5.8. 
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6. RESULTS and DISCUSSION 

Most SHA-1 hash functions occupy approximately 700 slices between 1200 slices. 

Implementation of SHA-1 is occupied 1113 slices that it can be seen large in comparison to 

the other implementations. This is because there are several blocks to interface between RAM 

and CPU. Interface modules occupy extra area. Still it is reasonable to use because of its 

compatibility on RAM. 56 Mhz maximum clock frequency is reasonable too because of it is 

faster than most processors.  

Implementation of Groestl-256 is achieved its design goal as occupying 1865 slices on 

Spartan3E. In comparison to 6582 slices implementation of Authors’ of Groestl[3] and 2486 

slices of another implementation[6],  its design goal of minimum area is achieved. 86 Mhz is 

fast enough to use it on wide variety of systems. 

To be able to detailed comparison on SHA-1 and Groestl-256, their output must be equal. 

Because of there is no 160 bits version of Groestl, it couldn’t be implemented to compare both 

two algorithms.  
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APPENDIX A 

 

    S box values. 
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APPENDIX B 

 

Testbench of SHA-1 module. Time range is 0 to 300 ns. 

 

 

 

 

Testbench of SHA-1 module time range 300 to 600 ns. 
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Testbench of SHA-1 module time range 600 to 900 ns. 

 

 

Testbench of SHA-1 module time range 900 to 1200 ns. 

 

 

 

Testbench of SHA-1 module time range 3800 to 4100 ns. 
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Testbench of SHA-1 module time range 4100 to 4400 ns. 

  

Testbench of SHA-1 module time range 4400 to 4700 ns. 

  

Testbench of SHA-1 module time range 4700 to 5000 ns. 
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Testbench of SHA-1 module time range 7300 to 7600 ns. 
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