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ÖNSÖZ 

 

Çağımızda bilgi,  en önemli güç konumundadır, bilgiye sahip olanlar diğerlerinden 

daha üstün konumdadırlar, bu gerçek ise bilgiye sahip olma çabasını inanılmaz 

boyutlara çıkartmaktadır. Bilgi elde edimi , her türlü yoldan yapılmaktadır, kendiniz 

uğraşarak , bularak veya başkasının bulduğunu , bildiğini değişik yollardan elde 

ederek.  

 

Bu nedenle bilgiye sahip olmak kadar onu korumak , istenilen yerlere ulaştırmak ve 

istenilen amaca yönelik kullanılabilmesini sağlamak da bilginin kendisi kadar önemli 

hale gelmektedir.  

 

Bu çaba, neredeyse bilgi tarihi kadar eskidir ve kriptografi biliminin temellerini 

oluşturmaktadır. Tarihte Romalıların Sezar şifrelemesinden , günümüzün gelişmiş 

değişik şifreleme metod ve algoritmalarına kadar bu çaba sürmüştür, görünen o ki 

bilginin boyutu ile de katlanarak artacaktır.  Bir taraf bilgiye sahip olacak ve 

saklayacak , birileri de saklananı elde etmeye, kendine göre değişik amaçlarla 

kullanmaya çalışacaktır. Öyle ki iyi ve kötü dahi burada subjektif kalacaktır. 

Örneğin, kendi ülkesi için başka bir ülkenin haberleşme şifrelerini çözmeye çalışan 

kişi , ülkesi için “iyi”, diğer taraf için “kötü” olacaktır. 

 

Kısacası şifreleme ve şifreleri çözme çabası , her zaman devam edecektir, daha 

gelişmiş şifreleme teknikleri çıkacak , bunlar da farklı yöntemlerle kırılmaya 

çalışılacaktır; önemli olan bu yarışta kazanmak değil, daima güncel olabilmektir, 

çünkü “kırılamayacak algoritma yoktur”. Bu sanıyorum Hint destanlarındaki iyi ile 

kötünün mücadelesi gibidir, asla bitmeyecektir. 

 

Bizim tez çalışmamız , bir standart olarak kabul gören AES algoritmasını ve akıllı 

kart gerçeklemesine yönelik bir saldırı olan farksal güç analizi saldırısını 

incelemektir. Gerçeklemede önlem alınmadığı takdirde AES algoritmasının ciddi bir 
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zayıflığı olduğu tez çalışması kapsamında ayrıntılı olarak incelenmiştir; tasarımcılar 

bir güvenlik açığı ile karşı karşıya kalmamak için önlem almalıdırlar. 

 

Tez çalışmalarım sırasındaki özverili yardımlarından dolayı danışman hocam Yrd. 

Doç. Dr. Sıddıka Berna Örs Yalçın’a teşekkür ederim. Bu yoğun dönemde bana 

manevi desteğini esirgemeyen eşim Ayça Kayış’a şükran borçluyum. 

 

Haziran 2006             Hakan KAYIŞ 
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AES UYGULAMASI’NIN FPGA GERÇEKLEMELERİNE KARŞI GÜÇ 

ANALİZİ SALDIRISI 

ÖZET 

AES algoritmasının FPGA kart gerçeklemeleri , çalışma sırasında yan kanal etkisi 

olarak değişik çıktılar üretirler; ısı, elektromanyetik radyasyon, güç harcaması gibi. 

Bu çıktılar önlem alınmadığı takdirde şifreleme algoritmasına ve anahtarına ait 

bilgiler içerebilirler. 

Tez kapsamında 128 bit anahtar kullanılan AES algoritması ve bu algoritmanın akıllı 

kart gerçeklemesine yönelik farksal güç analizi incelenmiştir.Günümüzde AES 

algoritması ve donanım gerçeklemeleri yoğun olarak kullanılmaktadır. Farksal güç 

analizi ilk olarak Paul KOCHER tarafından 1998 yılında gündeme getirilmiştir. 

Farksal güç analizinin temel prensibi , gerçeklemenin yapıldığı akıllı kartta 

kullanılan registerların durum değiştirme anında harcadıkları gücün AES 

algoritmasının temel dayanağı olan şifreleme anahtarına ait bilgi içermesidir.  

Algoritmanın gerçeklemesi sırasında fonksiyonlar arası geçişler registerlarda 

tutulmaktadır. Registerlarda saklanan bit değerleri, değişimlerini 4 farklı şekilde 

yapabilirler ; 0 > 0, 0 > 1, 1 > 0, 1 > 1 şeklinde geçişler mümkündür. Güç harcaması 

0 > 1 geçişinde diğer durum değiştirmelerine göre çok daha fazladır ve diğerleri 

bunun yanında ihmal edilebilir.  

Bu işlem için 20000 adet giriş değeri alınmış ve yazılan C programları ile öngörülen 

model kapsamında güç harcaması analizi yapılmıştır. Belli tur ve saat dilimindeki 

güç harcaması , anahtarın sadece 1 byte değeri değiştirilerek incelenmiş ve bir 

korelasyon analizi yapılmıştır. Bu veriler gerçek ölçüm verileri ile beraber 

kullanılacaktır. 

Güç harcamasının bu karakteristiği, bize  yapılan ölçümler ile AES anahtarının 

korelasyon analizi yardımı ile eldesini mümkün kılar. Ölçüm ortamının kalitesine 
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göre belli sayıda güç ölçümü , bir bilgisayarda yapılan öngörülen model güç harcama 

verileri ile beraber kullanılarak AES anahtarına ait  8 bit elde edilir. Analiz, 8 bitlik 

anahtar parçasını elde etmeye yöneliktir ve öngörülü model için hazırlanan veri ile 

sırayla 128 bitlik anahtarın tamamı elde edilebilir.  
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DIFFERENTIAL POWER ANALYSIS ATTACK AGAINST FPGA 

IMPLEMENTATION OF AES ALGORITHM 

SUMMARY 

Implementations of the AES algorithm on FPGA cards produce side channel effects 

during runtime; like heat, electromagnetic radiation, power consumption .If not 

avoided in the design phase, these side channel effects may have information about 

the algorithm and the AES encryption key . 

In our thesis work, AES with 128 bits encryption key and differential power analysis 

(DPA) against the FPGA implementation of this algorithm is studied. Nowadays, the 

AES algorithm and hardware implementations are mostly used. Differential power 

analysis against the hardware implementations are firstly pronounced by Paul 

KOCHER in 1998 . 

The basic principal of the DPA depends on the power consumption of the toggle 

operation of the registers  used in the implementation of FPGA; this side effect may 

have information about one of the main part of the algorithm, the AES key.  

In the implementation, the transition results between the AES function blocks are 

stored in registers. The transition of the bits stored in registers may vary in 4 

different states; as given 0 > 0, 0 > 1, 1 > 0, 1 > 1 . The power consumption is much 

more than the others in 0 > 1 transition and the others can be negligible according to 

this one.  

For the analysis , 20000 input text is prepared and analyzers coded in C are used for 

DPA for the assumed models. The power consumption is calculated in the suggested 

round and clock cycle and correlation analysis is done. After all, the datas gathered 

in this phase will be used with the measured data from the FPGA card.  

The characteristics of the power consumption makes it feasible to get the AES key 

with the correlation analysis. Depending on the quality of the measurement system, 
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an amount of the measurement data, an analysis of the DPA for the suggested model 

in a PC , the 8 bits of the AES key can be found. Analysis is for 8 bits and after all, 

by repeating this procedure , all 128 bits of the key can be found.  
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1. GİRİŞ  

 

1.1 Giriş ve Çalışmanın Amacı 

 

Tez kapsamında 128 bit anahtar kullanılarak 128 bitlik girişlerin şifrelendiği 

algoritma incelenmiştir. AES Algoritmasına Farksal Güç Analizi saldırısı 

incelenmesi 3 farklı bölümde gerçeklendi.  

 

2. bölümde konuya ait matematiksel altyapı ve kullanılan aritmetik işlemleri örnekler 

de verilerek ayrıntılı olarak incelendi. 

 

3. bölümde AES algoritmasının ayrıntılı olarak incelenmesi yapıldı. Algoritmaya ait 

anahtar üretme fonksiyonu, bayt yer değiştirme, satır öteleme, sütun karıştırma , tur 

sonu XOR işlemi fonksiyonları şekillerle anlatıldı. Bu fonksiyonların C 

gerçeklemesinin kod bölümleri de açıklamalar eklendi. Bölüm sonunda verilen bir 

şifre ve giriş için 10 tur boyunca tüm işlem sonuçlarını içeren örnek verildi.  

 

Son bölümde ise yan kanal saldırılarına ait basit bir açıklama yapıldıktan sonra 

belirlediğimiz 2 tane gerçekleme modeline ait algoritmalar için analiz amaçlı yazılan 

programlar ayrıntılı olarak anlatıldı, analizler sonucunda oluşan korelasyon 

sonuçlarına ait grafikler verildi , inceleme sonucunda 1. turun 2. saat diliminde R2 

belleği , yani bayt yer değiştirme işlem sonucu belleği ve 3. saat diliminde saldırı R3 

belleği, yani satır öteleme belleği içerik değişimlerinin uygun olduğu görüldü.  

 

Analiz programlarının öngörülen modeller için korumasız yapılacak akıllı kart 

gerçeklemelerinin saldırıya açık oldukları tespit edildi ve sonuç olarak gösterildi. 

Yazılan programlar ve programlar sonucunda oluşturulan analiz verileri, ekler altında 

bir CD’de verilmiştir. 
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2. SONLU UZAY ARİTMETİĞİ  

 

2.1 Giriş 

 

Sonlu uzay aritmetiği, sonlu sayıda eleman içeren sayı uzayı içerisinde, tanımlı tüm 

işlemlerin yine aynı uzayda sonuçlar ürettiği aritmetiktir. Bu özelliği ile normal 

aritmetikten ayrılmaktadır. Yine bu özelliğinden dolayı da birçok alanda uygulama 

bulmaktadır, kriptografi ve Rijndael şifreleme algoritması da bunların arasındadır.  

 

Bu bölümde bir baytın değişik gösterilim şekilleri gösterilmiştir ve sonlu uzayda 

temel aritmetik işlemleri anlatılmaktadır. Sonlu uzay kavramı aynı zamanda Galois 

Uzayı olarak da tanımlanır. En basit ifade ile sonlu sayıda eleman içeren uzay 

şeklinde tanımlanabilir.Örnek Galois sonlu uzayı,  

 

GF( ),   = 256  82 82

 

adet farklı sayı içermektedir. Bu sayılar bir bayt ile gösterilebilen (0 . . . 255) 

arasındaki sayılardır. Rijndael şifreleme algoritmasında karakteristiği 2 olan Galois 

Uzayı (GF( )) kullanılmaktadır.   82

 

Devam eden bölümlerde anlatılan işlemlerde sonlu uzaya ait iki elemanın toplama 

veya çarpması anlatılmaktadır ve sonuç yine sonlu uzay içinde bir elemandır. Özel 

XOR ve kalan işlemleri, işlem sonucunun sonlu uzayda olmasını sağlamaktadır [3]. 

 

2.2 Bayt Gösterilim Şekilleri 

 

Aşağıdaki dört bölümde sonlu uzaydaki bir elemana ait farklı gösterilim şekilleri 

verilmiştir. Ayrıca birer örnekte her gösterilim için eklenmiştir. 
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2.2.1 İkilik Gösterilim 

 

Bir bayt , 8 bit içermektedir. Aşağıda ikilik gösterilime ait örnek vardır. 

 

      210100011

 

2.2.2 Onluk Gösterilim 

 

Onluk gösterilim, ikilik sayının tüm bitlerinin karşı düşen ikinin üs değeri ile çarpılıp 

toplanması ile elde edilen sayıdır. Ekteki örnekte ayrıntılı gösterilim mevcuttur: 

 

1 ·  + 0 ·  + 1 · + 0 ·  + 0 ·  + 0 ·  + 1 ·  + 1 ·  = + + +       (1) 72 62 52 42 32 22 12 02 72 52 12 02

 = 128 + 32 + 2 + 1 

 =          

           

10163

2.2.3 Onaltılık Gösterilim 

 

0 ile 15 arası rakamlar dört bit ile gösterilebilirler . Ancak 10 ile 15 arası rakamlar (0 

. . . 9) arası rakamlarla gösterilemezler ve bu nedenle A ile F arası harfler onaltılık 

düzende bu rakamları göstermek için kullanılırlar. 

 

20000   =    =  100 160  

20001   =    =  101 161  

20010   =    =  102 162  

20011   =    =  103 163  

20100   =    =  104 164  

20101   =    =  105 165  

20110   =    =  106 166  

20111   =    =  107 167  

21000   =    =  108 168  

21001   =    =  109 169  
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21010   =    =   1010 16A

21011   =    =   1011 16B

21100   =    =   1012 16C

21101   =    =   1013 16D

21110   =    =   1014 16E

21111   =    =   1015 16F

 

İkilik gösterilimden onaltılık gösterilime geçmek için bir bayt iki adet dörtlüye 

bölünür ve her iki dörtlü, karşı düşen onaltılık karşılığı ile gösterilir. Aşağıdaki 

örnekte ayrıntılı gösterilmiştir: 

 

b10100011  =    = { {

hhA 3
00111010 hA3  

 

Onaltılık düzenden onluk düzene geçmek için sol hane 16 sayısı ile çarpılır ve sağ 

hane 1 ile çarpılır ve her iki çarpım sonucu toplanır: 

 

A  = A ·  + 3 · = 10 · 16 + 3 · 1 = 160 + 3 =  h3 42 02 d163

 

2.2.4 Polinom Gösterilim 

 

Bir baytın polinom gösterilimi ikilik sistemden onluk sisteme geçmek için kullanılan 

(1) denklemine çok benzer.  Bu denklemde 2 sayısı yerine x konularak polinom 

gösterilim elde edilir: 

 

1 ·  + 0 ·  + 1 · + 0 ·  + 0 ·  + 0 ·  + 1 ·  + 1 ·  =  + + + 1 7x 6x 5x 4x 3x 2x 1x 0x 7x 5x x

 

Unutulmaması gereken en önemli nokta polinom gösterilimde GF( ) sonlu 

uzayında katsayıların 1 değerini alabileceğidir. (ve 0 değeri tabiki). 

82
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2.3 Polinom toplama işlemi 

 

İki adet polinomun toplaması işlemi aynı üstel değere sahip x değerlerinin 

katsayıların toplanması şeklindedir ve Şekil 1’de gösterilmiştir.  

 

  (  +  +  + + 1 ) + (  + + + 1 ) 6x 4x 2x x 7x 5x x

 

         +       +  + + 1 6x 4x 2x x

            + +                         + 1 7x 5x x

 

     +  + +  +  + 2 + 2 7x 6x 5x 4x 2x x

 

Şekil 2.1: “Klasik” polinom toplama işlemi 

 

Bu işlem sonucunda sonuç polinomun bazı katsayıları 0 veya 1 olmayabilir. 

(Şekil2.1’de 2x ve 2 değerinde olduğu gibi), bu nedenle sonuç polinomu bir bayt 

gösterilimi olamayacaktır.  

 

Toplama sonuç polinomunda sadece ikilik düzende katsayıların olmasını  sağlamak 

için Tablo 2.1’de sonuç kümesi gösterilmiş olan XOR işlemi kullanılacaktır. İki adet 

1 rakamının XOR işlemi 2 olmadığından sonuç polinomda 2 değerinde katsayı 

olmayacaktır. 

 

Tablo 2.1: XOR işlemi sonuçları 

X  y  x xor y 

0  0  0 

0  1  1 

1  0  1 

1  1    0 

 

Şekil 2.2’de 2 adet ikilik düzende sayının toplama işlemi ve sonuç bayt değeri 

gösterilmiştir:  
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Şekil 2.2: İkilik polinom toplama işlemi 

 

Sonuç polinomu  

 

b11110100   =    =       =   +  + +  +  d244 hF 4 7x 6x 5x 4x 2x

 

Şekil 2.2’deki değeri gösterir , burada 2x ve 2 değerleri çıkarılmıştır. 

 

2.4 Polinom Çarpım İşlemi 

 

İki adet polinomun çarpımı, aynı üstel değere sahip x’lerin katsayılarının toplanması 

ile gerçeklenir. Bu klasik polinom çarpımıdır. 

 
  (  +  +  + + 1 ) * (  + + + 1 ) 6x 4x 2x x 7x 5x x
 
                    + +                                + 1 + 7x 5x x
                          +               +  +  + 8x 6x 2x x

9x  + 7x                 +  +   + 3x 2x
               +                     +  +    + 11x 9x 5x 4x

13x     +                         +  +      + 11x 7x 6x
 
             +2               +2 + +3 +2 +2 +  +  +2  +2 +1 13x 11x 9x 8x 7x 6x 5x 4x 3x 2x x
 
Şekil 2.3:  “Klasik” polinom çarpımı 

 

Tekrar klasik polinom çarpımında bazı katsayılar 1 veya 0 değerinden farklı değerler, 

( 2 ve hatta 3 değerleri ) almıştır. Bu katsayılar sonlu uzay işleminde bu değerleri 

almamalıdırlar ve bu nedenle düzenlenmesi gereklidir.  Bu nedenle genelleştirilmiş 

1 0 1 0 1 1 1 + 1 0 1 0 1 1 1

1 0 1 0 0 0 1 1

1 0 1 0 1 1 1

1 1 1 1 0 1 0 0

)3163( hd A=)5787( hd =   

bitxor 

)4244( hd F=  
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XOR işlemi her katsayı için gözönüne alınmalıdır ve her tek sayı 1 değerine 

çevrilmelidir. 

 
13x  +  + +  +  + 1 8x 7x 4x 3x

 

Şekil 2.4’de bit seviyesinde çarpma işlemi verilmiştir. İkilik sayılardan bir tanesi 

diğerinin bit değerine göre her bit için ötelenir. Eğer sıradaki sayı 1 değerinde ise 

diğer baytın hepsi, 0 ise sadece 0 değerleri konulur. Sırayla her bit için öteleme 

işlemi bittikten sonra aynı sıradaki tüm bitler xor işlemine tabi tutulurlar ve sonuç bit 

serisi elde edilir. 

)3163( hd A=  )5787( hd =  

 
Şekil 2.4:  İkilik polinom çarpım işlemi 

 

Ancak sonuçta görüldüğü üzere polinomumuzun derecesi 7 değerinden büyüktür ve 

bayt olarak gösterilemez; sonuç polinomunun GF( ) içinde değildir. Sonucun 

Galois sonlu uzayında olması için indirgenmesi gerekmektedir.  

82

 

2.5 Polinom Bölme işlemi 

 

Klasik bölme işlemi Şekil 2.5’de gösterilmiştir: 

 

 

1 0 1 0 1 1 1 * 0 0 1 11 0 1 0

0 0 1 11 0 1 0

XOR 

)21998601( hd =  

0 0 0 0 1 0 1 1 1 1 1 0 0 1

1 0 1 0 0 1 10

1 0 1 0 0 1 10

0 0 0 00 0 0 0

1 0 1 0 0 1 10 

0 0 0 0 0 0 0 0

1 0 1 0 0 0 1 1

Bit öteleme 
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  (  +  +  +  +  + 1 ) : (  +  +  + + 1 ) =   -   13x 8x 7x 4x 3x 8x 4x 3x x 5x x
           
 - (  +  +  +  +  )       13x 9x 8x 6x 5x
 
 -  + -  - +  +  + 1 9x 7x 6x 5x 4x 3x
-         ( - -  -  - -  ) 9x 5x 4x 2x x
 
  -  +2  + +  + + 1 7x 6x 4x 3x 2x x
 
Şekil 2.5:  “Klasik” polinom bölme işlemi 

 

Bölünen polinomun en büyük üstel değeri (x13) , bölenin en yüksek üstel değeri (x8) 

ile bölünür ve sonuç (x5) olarak elde edilir. Daha sonra (x5) bölenin tüm değerleri ile 

çarpılarak bölünen polinomunda çıkarılır ve yeni bir bölünen polinomu elde edilir: 

 

(-  +  - - +  +  + 1 ) 9x 7x 6x 5x 4x 3x

 

Daha sonra aynı işlemler tekrar yapılır ve bu işlem bölünen polinomunun en yüksek 

üstel değeri bölenin en yüksek üstel değerinden küçük değerde oluncaya kadar 

devam eder. En sonda kalan bölünen, işlem sonucunda kalan polinomunu oluşturur:  

 

 (  - + 2  +  +  + + 1  ) 7x 6x 4x 3x 2x x

 

Sonuç polinomuna genel xor işlemi uygulanarak (tek katsayılar > 1 , çift katsayılar > 

0 işlemi) bayt gösteriliminde sonuç elde edilir: 

 

(  + +  +  + + 1  ) 7x 6x 3x 2x x

 

Bit seviyesinde işlemler Şekil 2.6 ‘da gösterilmiştir: 
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)11283( hd B=  )21998601( hd =  

 
Şekil 2.6: İkilik düzende bölme işlemi  

)207( hd CF=  

XOR 

XOR 

1 0 0 0 0 1 1 : 0 0 1 1 0 0 1 1 0 0 1 1 1 1 00

1 0 0 0 1 1 0 1 1

0 0 0 0 1 0 1 1 1 1 1 0 0 1

1 0 0 0 1 1 0 1 1

Bit ötele 

0 0 1 1 0 0 1 11 1
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3. AES - GELİŞMİŞ ŞİFRELEME STANDARDI 

3.1 Giriş 

 

Teknolojinin geliştiği ve gelişmeye çok hızlı bir şekilde devam edeceği bu bilgi 

çağında bilgisayarlar ve internet ortamı hayatımızın vazgeçilmez birer unsuru haline 

gelmiştir. Böyle bir ortamda bilginin korunması ve bir noktadan bir noktaya 

iletilmesi çok büyük önem kazanmıştır. Verilerin güvenli bir biçimde aktarımı ve 

elde edilmesi için, kriptografi bilimi aracılığı ile çeşitli şifreleme, anahtarlama ve 

çözümleme algoritmaları oluşturulmaktadır. Bu yeni algoritmalar gelişen teknolojiye 

uygun bir şekilde oluşturulmalı ve gelişen teknolojilere uygun tasarlanmalıdır.  

 

Şifreleme algoritmalarını yapısal olarak iki ana gruba ayırabiliriz. Simetrik ve 

Asimetrik şifreleme algoritmaları. Simetrik şifreleme algoritmalarında verilerin 

şifrelenmesinde ve şifrenin çözülmesinde tek anahtar, Asimetrik şifreleme 

algoritmalarında şifreleme ve şifre çözmede ayrı iki anahtar kullanılmaktadır.  

 

Bu yeni oluşturulan algoritmaların standartlaşması için birçok ülke kendi 

standartlaştırma enstitülerini kurmuştur. Bunların en önemlisi Amerika’da 1960’da 

kurulan NIST’tir. NIST 1977 yılında bir simetrik şifreleme algoritması olan DES’i 

bir standart olarak belirlemiştir. DES uzun yıllar güvenilir bir algoritma olarak 

kullanıldı. Kriptanalistler teknolojinin gelişimine paralel daha güçlü donanıma sahip 

bilgisayarlar sayesinde DES kırmak için yoğun bir şekilde uğraştılar. Bunun sonucu 

olarak DES kırılmıştır ve daha güvenli olan TDES kullanılmaya başlanmıştır. TDES 

arka arkaya DES şifreleme algoritmasını tekrarlayarak ortaya çıkmıştır. DES’in ve 

TDES’ in güvenirliğini kaybetmesiyle NIST yeni şifreleme algoritmasına 

yönelmiştir.  

 

1997’de NIST DES’in yerine AES’i seçmek ve geliştirmek için bir program 

duyurdu. Tek bir standart geliştirmek için kriptografi topluluğundan algoritmalar 
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istediler. 1998 yılında 15 algoritma önerildi ve NIST bunların içinden beş finalisti 

1999 yılında seçti. NIST’in planı 2000 yılında standart olması için bir yada birkaç 

algoritma seçmekti. 

 

DES’in yerine getirilen AES, daha hızlı daha güçlü ve daha ucuz olmalıydı. 

Yazılımda kullanıldığı zaman daha hızlı olmakla birlikte donanımda da kolay 

kullanılabilmeliydi (Akıllı kart vs). Uzun zaman kullanımda olan DES gibi o da 

saldırılara uzun süre karşı koymalıydı. Bir çok algoritma uzun süre incelendikten 

sonra beş tane finalistte karar kılındı. Bunlar Serpent, Rc6, Rijndael, Twofish ve 

Mars şifreleme algoritmalarıydı. Bu noktadan sonra bu algoritmalar arasından 

hangisinin standartlaşması gerektiği hakkında yoğun çalışmalar yapıldı. Bu beş 

finalist arasında şifreleme ve şifre çözme hızlarının yanında yazılım ve donanım 

uygunluğu, kolay uygulanması ve en önemli olarak güvenlik performansı açısından 

incelendi. Bu çalışmalardan sonra Rijndael şifreleme algoritması birinci olarak 

seçildi [1]. 

 

3.2 Rijndael Algoritmasının Genel Yapısı 

 

AES (Rijndael) algoritması 128 bit veri bloklarını 128, 192, 256 bit anahtar 

seçenekleri ile şifreleyen bir algoritmadır. Döngü sayısı anahtarın büyüklüğüne yani 

içerdiği bit sayısına göre değişmektedir. Tablo 3.1’de  şifreleme anahtar uzunluğu ve 

bunlara karşı düşen şifreleme tur sayıları verilmiştir: 

Tablo 3.1: Anahtar uzunluğu – tur sayısı ilişkisi 

Anahtar uzunluğu (bit) Tur sayısı 

128 10 

192 12 

256 14 

 

DES, 56 bitlik anahtar ile 64 bitlik bloğu şifrelemektedir. Triple DES (üçlü DES) ise  
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genellikle 112 bitlik anahtar ile 64 bitlik blokları şifrelemektedir.  

F F F 
Giriş Çıkış

K0 

K1 K2 K10 
 

Şekil 3.1: AES turları  

 

Geliştirilmiş şifreleme standardının (AES) işlemsel yolu Şekil 3.1’de gösterilmiştir. 

AES algoritmasında her tur dört katmandan oluşur. İlk olarak 128 bit veri 4×4 bayt 

matrisine dönüştürülür. Daha sonra her döngüde sırasıyla baytların yerdeğiştirmesi, 

satırların ötelenmesi, sütunların karıştırılması ve anahtar planlamadan gelen o tur için 

belirlenen anahtar ile XOR’lama işlemleri yapılır. Baytların yerdeğiştirilmesinde 16 

bayt değerinin her biri 8 bit girişli ve 8 bit çıkışlı S kutusuna sokulur. S kutusu 

değerleri, Galois alanı’nda (Galois Field - GF) GF(28), 8 bitlik polinom için 

çarpmaya göre ters alındıktan sonra doğrusal bir dönüşüme sokularak elde edilmiştir. 

Satırların ötelenmesi işleminde 4×4 bayt matrisinde satırlar ötelenmiş ve sütunların 

karıştırılması işleminde herhangi bir sütun için o sütundaki değerler karıştırılmıştır. 

Döngünün son katmanında ise o döngüye ait anahtar ile XOR işlemi yapılmaktadır. 

Şekil 3.2, 128 bit anahtar ile şifreleme için AES algoritmasını göstermektedir [6]. 
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Şekil 3.2: Tüm AES resmi [2]. 

 

1

2

3

4

5

6

7

8

9 13 K0 

10

12

14
Açık Metin 

11 15

16

Byte  
Yerdeğiştirme 

Satırları 
Öteleme 

Sütunları 
Karıştırma  

Tur 1 

K1

Byte  
Yerdeğiştirme 

Satırları 
Öteleme 

Sütunları 
Karıştırma  

K2

Byte  
Yerdeğiştirme 

Satırları 
Öteleme 

Sütunları 
Karıştırma  

K3

Byte  
Yerdeğiştirme 

Satırları 
Öteleme 

Sütunları 
Karıştırma  

K4

Byte  
Yerdeğiştirme 

Satırları 
Öteleme 

Sütunları 
Karıştırma  

K5

Byte  
Yerdeğiştirme 

Satırları 
Öteleme 

Sütunları 
Karıştırma  

K6

Byte  
Yerdeğiştirme 

Satırları 
Öteleme 

Sütunları 
Karıştırma  

Tur 2 

K7

Byte  
Yerdeğiştirme 

Satırları 
Öteleme 

Sütunları 
Karıştırma  

K8

Byte  
Yerdeğiştirme 

Satırları 
Öteleme 

Sütunları 
Karıştırma  

K9

Byte  
Yerdeğiştirme 

Satırları 
Öteleme 

Tur 3 

Tur 4 

Tur 5 

Tur 6 

Tur 7 

Tur 8 

Tur 9 

Tur 10 

Şifreli Metin

K10
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AES’de baytlar üzerinde tanımlanan operasyonlar kullanılmasının yanında, 2 önemli 

avantaj sağlamaktadır: 

• AES 'in katıksız yazılım uygulaması çok hızlıdır. Örneğin Pentium 200Mhz 

üzerinde çalışan bir C++ uygulaması, 70Mbit/s şifreleme performansı 

göstermektedir ;  

• AES 'in farksal ve doğrusal şifreleme analizlerine direnci S kutusu seçimine 

bağlı değildir. DES için S kutuların NSA için açık içerdiğinden 

şüphelenilmektedir. Aslında bütün operasyonlar basittir.  

3.3 Durum Atanması  

 

16 baytlık giriş veri bloğu için işlemler 4x4 lük matris formuna atanarak yapılır.  

Bunun için veri bloğumuzu ilk olarak bu matrise çevirmemiz gerekmektedir. Şekil 

3.3’de bu işlem  gösterilmiştir.  

 

 
Şekil 3.3: Durum Ataması işlemi 

 

3.4 Bayt yer değiştirme   

 

Bayt yer değiştirmesi işlemi , 16 baytlık tüm veri bloğunun baytları için ayrı ayrı 

yeni bayt değerleri yaratılmasıdır. Bu dönüşüm işlemi için S kutusu (S-box) tabloları 

kullanılır [4]. 

 

Şekil 3.4’de 16 baytlık bir blok için bayt yer değiştirme işlemi gösterilmiştir: 

 

1 

2 

3 

4 

5

6

7

8

9 13

10

12

14
Açık Metin

11 15

16
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S-kutusu 

 
 

Şekil 3.4:  Bayt yer değiştirme işlemi 

 

Bayt Yer Değiştirme işlemi tersi olan bir işlemdir ve iki adet dönüşüm ile elde edilir: 

 

1. İlk adımda çarpmaya göre ters işlemi uygulanır. 

3. İkinci adımda GF(2) uzayında Ilgın dönüşüm uygulanır.  

 

iiiiiii cbbbbbb ⊕⊕⊕⊕⊕= ++++ 8mod)7(8mod)6(8mod)5(8mod)4(
'  

 

Matris formunda S kutusundaki ılgın dönüşümü (2) denklemi ile gösterilmiştir: 

 

 

 

 

 

 

 

 

 

 

 

S kutusu için yer değiştirme işleminin olası tüm sonuçları Tablo 3.2’de gösterilmiştir. 

  

 

 

S0,0 

S1,0 

S2,0 

S3,0 

S0,1 

S2,1 

S3,1 

S0,2 

S1,2 

S3,2 

S0,3 

S2,2 

S1,3 

S2,3 

S3,3 

Ś0,0

Ś 1,0 

Ś 2,0 

Ś 3,0 

Ś 0,1 

Ś 2,1 

Ś 3,1 

Ś 0,2 

Ś 1,2 

Ś 3,2 

Ś 0,3 

Ś 2,2 

Ś 1,3 

S1,1 Ś 1,1 

Ś 2,3 

Ś 3,3 

b’7 

b’6 

b’5 

b’4 

b’3 

b’2 

b’1 

b’0 

=

1     1     1     1     1     0     0     0 

0     1     1     1     1     1     0     0    

0     0     1     1     1     1     1    0    

0     0     0     1     1     1     1     1    

1     0     0     0     1     1     1     1    

1     1     0     0     0     1     1     1    

1     1     1     0     0     0     1     1 

1     1     1     1     0     0     0     1 

b7 

b6 

b5 

b4 

b3 

b2 

b1 

b0 

0 

1 

1 

0 

0 

0 

1 

1 

(2) +
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Tablo 3.2: Bayt Yer Değiştirme tablosu– S kutusu[xy] (onaltılık düzende) 

y 
Hex 

0 1 2 3 4 5 6 7 8 9 a b c d e f 

0 63 7c 77 7b f2 6b 6f c5 30 1 67 2b fe d7 ab 76 

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0 

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15 

3 4 c7 23 c3 18 96 5 9a 7 12 80 e2 eb 27 b2 75 

4 9 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84 

5 53 d1 0 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf 

6 d0 ef aa fb 43 4d 33 85 45 f9 2 7f 50 3c 9f a8 

7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2 

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73 

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db 

a e0 32 3a 0a 49 6 24 5c c2 d3 ac 62 91 95 e4 79 

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 8 

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a 

d 70 3e b5 66 48 3 f6 0e 61 35 57 b9 86 c1 1d 9e 

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df 

x 

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16 

 

Yazılımda ise yer değiştirme fonksiyonu aşağıdaki kod ile gerçeklenmiştir: 

 

      k = 0; 

 

      while (k < Nk)  

      { 

      // buraya r1 ara degeri konacak.  

 

         enc[k].key0 = r1_ara[4*k]; 

         enc[k].key1 = r1_ara[4*k+1]; 

         enc[k].key2 = r1_ara[4*k+2]; 

         enc[k].key3 = r1_ara[4*k+3]; 
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         // subbytes 

            a = enc[k].key0/16;     b = enc[k].key0%16; 

            sb_output = s_box[a][b]; 

            enc[k].key0 = sb_output; 

            a = enc[k].key1/16;     b = enc[k].key1%16; 

            sb_output = s_box[a][b]; 

            enc[k].key1 = sb_output; 

             a = enc[k].key2/16;     b = enc[k].key2%16; 

            sb_output = s_box[a][b]; 

            enc[k].key2 = sb_output; 

             a = enc[k].key3/16;     b = enc[k].key3%16; 

            sb_output = s_box[a][b]; 

            enc[k].key3 = sb_output; 

         k = k+1; 

      }   // register r2 dolduralim. after subbytes register 

      for (i=0; i<=3; i++) 

      { 

         r2[n][4*i]   = enc[i].key0; 

         r2[n][4*i+1] = enc[i].key1; 

         r2[n][4*i+2] = enc[i].key2; 

         r2[n][4*i+3] = enc[i].key3; 

      } 

 

3.5 Satır Öteleme İşlemi 

 

Satır öteleme işlemi son üç satır üstünde işlem yapar. Şekil 3.5’de gösterilmiştir [4]. 
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Şekil 3.5:  Satır öteleme işlemi 

 

Satır Öteleme işlemi yazılımda aşağıdaki kod ile gerçeklenmiştir: 

 

      k = 0; 

      while (k < Nk) 

  

      { 

      // buraya r2 ara degeri konacak.  

 

         enc[k].key0 = r2_ara[4*k]; 

         enc[k].key1 = r2_ara[4*k+1]; 

         enc[k].key2 = r2_ara[4*k+2]; 

         enc[k].key3 = r2_ara[4*k+3]; 

         k = k+1; 

      } 

     

     temp.key0 = enc[0].key1; 

         temp.key1 = enc[1].key1; 

         temp.key2 = enc[2].key1; 

         temp.key3 = enc[3].key1; 

         enc[0].key1 = temp.key1; 

         enc[1].key1 = temp.key2; 

         enc[2].key1 = temp.key3; 

         enc[3].key1 = temp.key0; 

         temp.key0 = enc[0].key2; 

S0,0 

S1,0 

S2,0 

S3,0 

S0,1 

S2,1 

S3,1 

S0,2 

S1,2 

S3,2 

S0,3 

S2,2 

S1,3 

S2,3 

S3,3 

Ś0,0

Ś 1,0 

Ś 2,0 

Ś 3,0 

Ś 0,1 

Ś 2,1 

Ś 3,1 

Ś 0,2 

Ś 1,2 

Ś 3,2 

Ś 0,3 

Ś 2,2 

Ś 1,3 

Ś 2,3 

Ś 3,3 

S1,1 Ś 1,1 

S0,0 S0,1 

Satır Öteleme

S0,2 S0,3 Ś0,0 Ś 0,1 Ś 0,2 Ś 0,3 
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         temp.key1 = enc[1].key2; 

         temp.key2 = enc[2].key2; 

         temp.key3 = enc[3].key2; 

         enc[0].key2 = temp.key2; 

         enc[1].key2 = temp.key3; 

         enc[2].key2 = temp.key0; 

         enc[3].key2 = temp.key1; 

         temp.key0 = enc[0].key3; 

         temp.key1 = enc[1].key3; 

         temp.key2 = enc[2].key3; 

         temp.key3 = enc[3].key3; 

         enc[0].key3 = temp.key3; 

         enc[1].key3 = temp.key0; 

         enc[2].key3 = temp.key1; 

         enc[3].key3 = temp.key2; 

 

   // register r3 dolduralim. after shift rows register 

      for (i=0; i<=3; i++) 

      { 

         r3[n][4*i]   = enc[i].key0; 

         r3[n][4*i+1] = enc[i].key1; 

         r3[n][4*i+2] = enc[i].key2; 

         r3[n][4*i+3] = enc[i].key3; 

      } 

/////   r3 bitir   ///// 

 

3.6 Sütun karıştırma işlemi 

 

Sütun karıştırma işlemi girişine gelen 16 baytlık verinin sütunları üzerinde işlem 

yapar. Bölüm 2.3’de gösterildiği gibi her sütun 4. dereceden bir polinom gibi 

kullanılır. 

 

Matris formunda yapılan işlem aşağıdaki gibidir: 
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S’3,c 

S’2,c 

S’1,c 

S’0,c 

S’3,c 

S’2,c 

S’1,c 

S’0,c

02     01     01      03 

03     02     01      01 

01     03     02      01 

01     01     03      02 

 =

 

Şekil 3.6’da sütun karıştırma işlemini nasıl çalıştığı gösterilmiştir [4]. 

 

Sütun  
Karıştırma 

 
 

Şekil 3.6:  Sütun karıştırma işlemi 

 

Sütun karıştırma işlemi yazılımda aşağıdaki kod ile gerçeklenmiştir: 

 

      k = 0; 

 

      while (k < Nk)  

      { 

 

      // buraya r3 ara degeri konacak.  

         enc[k].key0 = r3_ara[4*k]; 

         enc[k].key1 = r3_ara[4*k+1]; 

         enc[k].key2 = r3_ara[4*k+2]; 

         enc[k].key3 = r3_ara[4*k+3]; 

         k = k+1; 

 

      } 

 

            k = 0; 

S0,0 

S1,0 

S2,0 

S3,0 

S0,2 

S1,2 

S3,2 

S0,3 

S2,2 

S1,3 

S2,3 

S3,3 

Ś0,0

Ś 1,0 

Ś 2,0 

Ś 3,0 

Ś 0,2 

Ś 1,2 

Ś 3,2 

Ś 0,3 

Ś 2,2 

Ś 1,3 

Ś 2,3 

Ś 3,3 

S1,1 

S0,1 Ś 0,1 

Ś 1,1 

S2,1 Ś 2,1 

S3,1 Ś 3,1 
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            while (k < Nk)  

            { 

               temp.key0 = FFmul(0x02, enc[k].key0)^ 

                  FFmul(0x03, enc[k].key1)^ 

    enc[k].key2^ 

    enc[k].key3 ; 

 

               temp.key1 = FFmul(0x02, enc[k].key1)^ 

                  FFmul(0x03, enc[k].key2)^ 

                  enc[k].key3^  

                  enc[k].key0 ; 

 

               temp.key2 = FFmul(0x02, enc[k].key2)^ 

                  FFmul(0x03, enc[k].key3)^ 

                  enc[k].key1^  

                  enc[k].key0 ; 

 

               temp.key3 = FFmul(0x02, enc[k].key3)^ 

                  FFmul(0x03, enc[k].key0)^ 

                  enc[k].key2^  

                  enc[k].key1 ; 

 

               enc[k].key0 = temp.key0; 

               enc[k].key1 = temp.key1; 

               enc[k].key2 = temp.key2; 

               enc[k].key3 = temp.key3; 

               k = k+1; 

 

      }   // register r4 dolduralim. after mix columns register 

 

      for (i=0; i<=3; i++) 

 

      { 

         r4[n][4*i]   = enc[i].key0; 
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         r4[n][4*i+1] = enc[i].key1; 

         r4[n][4*i+2] = enc[i].key2; 

         r4[n][4*i+3] = enc[i].key3; 

      } 

 

3.7 Tur Anahtarı ile Toplama işlemi 

 

AES algoritmasında her bir tur sonunda elde edilen matris, AES şifresinin ilgili tur 

için üretilmiş anahtarı ile XOR’a tabi tutulur. Şekil 3.7’de işlem gösterilmiştir[4]: 

 

 
Şekil 3.7: Tur sonu değeri ile XOR işlemi 

 

Yapılan işleme ait XOR işlem detayı Bölüm 2.2’de verilmiştir. Gösterilimler 128 

bitlik bir anahtar ile, 128 bitlik bir bloğun AES şifrelemesi için verilmiştir.   

 

Tur Anahtarı ile toplama işlemi yazılımda aşağıdaki kod ile gerçeklenmiştir: 

 

      k = 0; 

 

      while (k < Nk)  

 

      {    // buraya r4 ara degeri konacak.  

         enc[k].key0 = r4_ara[4*k]; 

         enc[k].key1 = r4_ara[4*k+1]; 

         enc[k].key2 = r4_ara[4*k+2]; 

         enc[k].key3 = r4_ara[4*k+3]; 

 

         k = k+1; 

S0,0 

S1,0 

S2,0 

S3,0 

S0,2 

S1,2 

S3,2 

S0,3 

S2,2 

S1,3 

S2,3 

S3,3 

Ś0,0

Ś 1,0 

Ś 2,0 

Ś 3,0 

Ś 0,2 k2 k3 Ś 0,3 k0 

Ś 1,2 

Ś 3,2 

Ś 2,2 

Ś 1,3 

Ś 2,3 

Ś 3,3 

S1,1 Ś 1,1 

S0,1 

S2,1 

S3,1 

Ś 0,1 

Ś 2,1 

Ś 3,1 

 k1  
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      } 

      k = 0; 

      while (k < Nk)  

      { 

            // key degerleri ile exor islemi   

            enc[k].key0 = enc[k].key0^key[k].key0; 

            enc[k].key1 = enc[k].key1^key[k].key1; 

            enc[k].key2 = enc[k].key2^key[k].key2; 

            enc[k].key3 = enc[k].key3^key[k].key3; 

         aes_steps[n+1][4*k]   = enc[k].key0; 

         aes_steps[n+1][4*k+1] = enc[k].key1; 

         aes_steps[n+1][4*k+2] = enc[k].key2; 

         aes_steps[n+1][4*k+3] = enc[k].key3; 

         k = k+1; 

      } 

      // register r5 dolduralim. round sonu register 

 

      for (i=0; i<=3; i++) 

      { 

         r5[n][4*i]   = enc[i].key0; 

         r5[n][4*i+1] = enc[i].key1; 

         r5[n][4*i+2] = enc[i].key2; 

         r5[n][4*i+3] = enc[i].key3; 

      } 

 

3.8 Anahtar Üreteci Oluşturma İşlemi 

 

Anahtar üreteci, şifreleme ve şifreyi çözmede kullanılacak anahtar dizisini üretir. Bu 

işlem içinde “rcon” işlemi ve “s kutusu” işlemleri kullanılır. Şekil 3.8’de girişe gelen 

16 bayt için bir adet anahtar üretme işlemi gösterilmiştir:  

 

Kesik çizgili oklarla oluşturulmuş olan döngü, bayt çevrim ve bayt yer değiştirme 

fonksiyonlarının anahtar üreteci tarafından iteratif olarak çağırıldığını 

göstermektedir. 
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Anahtar rcon S_box 

Anahtar üreteci 

 
Şekil 3.8:  Anahtar üretme fonksiyonu 

 

Anahtar üretmenin temel prensibi bir satır ile dört önceki satırın bit - bit xor işlemine 

girmesi şeklindedir. Yedinci satır olan  (k71 . . . k74)  satırı, altıncı satır (k61 . . . 

k64) ve üçüncü satır (k31 . . . k34) ile XORlanması ile elde edilir. Şekil 3.9’da 

işlemin ayrıntısı gösterilmiştir [3]. 

 

Farklı olarak dördün katının her bir satır fazlası (satır 5,9, ... )’dan farklı olarak 

üretilir. XOR işlemi uygulanmadan önce bir önceki satır, kendisine karşı düşen tur 

sabiti ile  döngü işlemi , değiştirme işlemi  ve XOR işlemine tabi tutulur. Her tur için 

tur sabitleri Tablo 3.3’te verilmiştir. 

Rot_word Bayt Değiştirme 

Çıkış 

temp S_box 

temp 

temp 
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Şekil 3.9: Anahtar Üretimi 

 

Tur sabiti değerleri Tablo 3.3’te verilmiştir. Aşağıda gerçekleştirilen kod içinde rcon 

değerlerini bulan kısım ayrı bir fonksiyon olarak gerçekleştirilmiş ve değerler bu 

fonksiyon yardımı ile bulunmuştur. 

 

Tablo 3.3: rcon değerleri 

tur değeri tur sabiti ( rcon ) değeri 

1 01 00 00 00 

2 02 00 00 00 

3 04 00 00 00 

4 08 00 00 00 

5 10 00 00 00 

6 20 00 00 00 

S0,0 

S1,0 

S2,0 

S3,0 

S0,1 

S2,1 

S3,1 

S0,2 S0,3 

S1,2 

S3,2 

S2,2 

S1,3 

S2,3 

S3,3 

S1,1 

Ś0,0

Ś 1,0 

Ś 2,0 

Ś 3,0 

Ś 0,1 

Ś 2,1 

Ś 3,1 

Ś 0,2 

Ś 1,2 

Ś 3,2 

Ś 0,3 

Ś 2,2 

Ś 1,3 

Ś 2,3 

Ś 3,3 

Ś 1,1 

FRcon1

FRcon2

Döngü 10 defa tekrarlanarak devam eder........ 

Ś0,0

Ś 1,0 

Ś 2,0 

Ś 3,0 

Ś 0,1 

Ś 2,1 

Ś 3,1 

Ś 0,2 Ś 0,3 

Ś 1,2 

Ś 3,2 

Ś 1,3 

Ś 2,2 Ś 2,3 

Ś 3,3 

Ś 1,1 
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7 40 00 00 00 

8 80 00 00 00 

9 1b 00 00 00 

10 36 00 00 00 

 

3.8.1 Kelime Döndürme işlemi 

 

Kelime Döndürme fonksiyonu kendi girişine gelen dört bayt bilgisini Şekil 3.10’da 

gösterildiği gibi çevirerek yeniden oluşturur ve çıkış değeri olarak iletir. 

 

b1 B2 B3 B4 B2 B3 b1 B4 

 
Şekil 3.10: Kelime döndürme işlemi 

 

Şifre üretim işlemi yazılımda aşağıdaki kod ile gerçeklenmiştir: 

 

void key_sch(void) 

{ 

Nk = 4; 

Nb = 4; 

Nr = 10; 

 

i = 0; 

 

while (i < Nk)  

 

{ 

   w[i].key0 = kx[0][4*i]; 

   w[i].key1 = kx[0][4*i+1]; 

   w[i].key2 = kx[0][4*i+2]; 

   w[i].key3 = kx[0][4*i+3]; 
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   i = i+1; 

} 

i = Nk; 

 

while (i < Nb * (Nr+1)) 

{ 

   temp.key0 = w[i-1].key0; 

   temp.key1 = w[i-1].key1; 

   temp.key2 = w[i-1].key2; 

   temp.key3 = w[i-1].key3; 

 

   if (i%Nk == 0) 

   { 

      rotated[0] = temp.key1;  rotated[1] = temp.key2;  rotated[2] = temp.key3;  

rotated[3] = temp.key0; 

 

      temp.key0 = rotated[0]; 

      temp.key1 = rotated[1]; 

      temp.key2 = rotated[2]; 

      temp.key3 = rotated[3]; 

 

      //   temp = SubWord(RotWord(temp)) xor Rcon[i/Nk] 

      a = temp.key0/16;     b = temp.key0%16; 

      sb_output = s_box[a][b]; 

 

      temp.key0 = sb_output; 

      temp.key0 = temp.key0^rcon(i/Nk); 

       a = temp.key1/16;     b = temp.key1%16; 

      sb_output = s_box[a][b]; 

      temp.key1 = sb_output; 

  

      a = temp.key2/16;     b = temp.key2%16; 

      sb_output = s_box[a][b]; 

      temp.key2 = sb_output; 
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       a = temp.key3/16;     b = temp.key3%16; 

      sb_output = s_box[a][b]; 

      temp.key3 = sb_output; 

    } 

   else if (Nk > 6 & i%Nk == 4) 

   { 

      a = temp.key0/16;     b = temp.key0%16; 

      sb_output = s_box[a][b]; 

      temp.key0 = sb_output; 

       a = temp.key1/16;     b = temp.key1%16; 

      sb_output = s_box[a][b]; 

      temp.key1 = sb_output; 

       a = temp.key2/16;     b = temp.key2%16; 

      sb_output = s_box[a][b]; 

      temp.key2 = sb_output; 

       a = temp.key3/16;     b = temp.key3%16; 

      sb_output = s_box[a][b]; 

      temp.key3 = sb_output; 

    } 

 

//   w[i] = w[i-Nk] xor temp 

   w[i].key0 = w[i-Nk].key0^temp.key0; 

   w[i].key1 = w[i-Nk].key1^temp.key1; 

   w[i].key2 = w[i-Nk].key2^temp.key2; 

   w[i].key3 = w[i-Nk].key3^temp.key3; 

   a = i/Nk; 

   b = ((i-Nk)*Nk)%16 ; 

   kx[a][b] = w[i].key0; 

   kx[a][b+1] = w[i].key1; 

   kx[a][b+2] = w[i].key2; 

   kx[a][b+3] = w[i].key3; 

   i = i + 1; 

}} 

// rcon degerini return eden fonksiyon. 

 28



 

int rcon(int p_i) 

{ 

    int y; 

    int i; 

    clrscr(); 

    y = 1; 

    for (i=1; i<p_i; i++) 

    { y = xtime(y);} 

    return y;} 

 

int xtime(int a) 

{ 

    int b; 

    int sonuc; 

    if (a == 0x80) 

 b = 0x1B; 

    else 

 b = 0; 

    sonuc = LShiftByte(a, 1); 

    sonuc = sonuc^b; 

    return sonuc; 

} 

 

int LShiftByte(int bytValue,int bytShiftBits) 

{ 

   int m_bytOnBits[8]; 

   int m_byt2Power[8]; 

   int kayd; 

   m_bytOnBits[0] = 1; 

   m_bytOnBits[1] = 3; 

   m_bytOnBits[2] = 7; 

   m_bytOnBits[3] = 15; 

   m_bytOnBits[4] = 31; 

 29



   m_bytOnBits[5] = 63; 

   m_bytOnBits[6] = 127; 

   m_bytOnBits[7] = 255; 

   m_byt2Power[0] = 1; 

   m_byt2Power[1] = 2; 

   m_byt2Power[2] = 4; 

   m_byt2Power[3] = 8; 

   m_byt2Power[4] = 16; 

   m_byt2Power[5] = 32; 

   m_byt2Power[6] = 64; 

   m_byt2Power[7] = 128; 

 

    if (bytShiftBits == 0) 

 return bytValue; 

    else 

    { 

 if (bytShiftBits == 7) 

 { 

   if (bytValue && 1) 

       kayd = 0x80; 

   else 

       kayd = 0; 

   return kayd; 

 } 

    } 

 

    kayd = ((bytValue & m_bytOnBits[7 - bytShiftBits]) * 

m_byt2Power[bytShiftBits]); 

    return kayd; 

} 
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3.9  AES şifreleme adımları örneği 

 

Şekil 3.11’de 128 bitlik bir blok ve 128 bitlik bir anahtar için, şifreleme adımları 

adım adım gösterilmiştir. Her işlemin sonunda aldığı değer onaltılık sistemde durum 

olarak incelenebilir [5]. 

 

Giriş Bloğu  = 32 43 f6 a8 88 5a 30 8d 31 31 98 a2 e0 37 07 34 

Anahtar     = 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c 

 
                            

Tur  Bayt  Satır  Sütun Tura ait  Tur 

Başlangıcı Yer Değiştirme Öteleme Karıştırma Anahtar dizisi    

                      

32 88 31 e0                         2b 28 ab 9   

43 5a 31 37                         7e ae f7 cf Giriş 

f6 30 98 7                         

 

15 d2 15 4f   

a8 8d a2 34                         16 a6 88 3c   

                      

19 a0 9a e9 d4 e0 b8 1e d4 e0 b8 1e 4 e0 48 28 a0 88 23 2a   

3d f4 c6 f8 27 bf b4 41 bf b4 41 27 66 cb f8 6 fa 54 a3 6c 1  

e3 e2 8d 48 11 98 5d 52 5d 52 11 98 81 19 d3 26

 

fe 2c 39 76   

be 2b 2a 8 ae f1 e5 30 30 ae f1 e5 e5 9a 7a 4c 17 b1 39 5   

                      

a4 68 6b 2 49 45 7f 77 49 45 7f 77 58 1b db 1b f2 7a 59 73   

9c 9f 5b 6a de db 39 2 db 39 2 de 4d 4b e7 6b c2 96 35 59 2  

7f 35 ea 50 d2 96 87 53 87 53 d2 96 ca 5a ca b0

 

95 b9 80 f6   

f2 2b 43 49 89 f1 1a 3b 3b 89 f1 1a f1 ac a8 e5 f2 43 7a 7f   

                      

aa 61 82 68 ac ef 13 45 ac ef 13 45 75 20 53 bb 3d 47 1e 6d   

8f dd d2 32 73 c1 b5 23 c1 b5 23 73 ec 0b c0 25 80 16 23 7a 3  

5f e3 4a 46 cf 11 d6 5a d6 5a cf 11 9 63 cf d0

 

47 fe 7e 88   

3 ef d2 9a 7b df b5 b8 b8 7b df b5 93 33 7c dc 7d 3e 44 3b   

                      

48 67 4d d6 52 85 e3 f6 52 85 e3 f6 0f 60 6f 5e ef a8 b6 db   

6c 1d e3 5f 50 a4 11 cf a4 11 cf 50 d6 31 c0 b3 44 52 71 0b 4  

4e 9d b1 58 2f 5e c8 6a c8 6a 2f 5e da 38 10 13

 

a5 5b 25 ad   

ee 0d 38 e7 28 d7 7 94 94 28 d7 7 a9 bf 6b 1 41 7f 3b 0   
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e0 c8 d9 85 e1 e8 35 97 e1 e8 35 97 25 bd b6 4c d4 7c ca 11   

92 63 b1 b8 4f fb c8 6c fb c8 6c 4f d1 11 3a 4c d1 83 f2 f9 5  

7f 63 35 be d2 fb 96 ae 96 ae d2 fb a9 d1 33 c0

 

c6 9d b8 15   

e8 c0 50 1 9b ba 53 7c 7c 9b ba 53 ad 68 8e b0 f8 87 bc bc   

                      

f1 c1 7c 5d a1 78 10 4c a1 78 10 4c 4b 2c 33 37 6d 11 db ca   

0 92 c8 b5 63 4f e8 d5 4f e8 d5 63 86 4a 9d d2 88 0b f9 0 6  

6f 4c 8b d5 a8 29 3d 3 3d 3 a8 29 8d 89 f4 18

 

a3 3e 86 93   

55 ef 32 0c fc df 23 fe fe fc df 23 6d 80 e8 d8 7a fd 41 fd   

                      

26 3d e8 fd f7 27 9b 54 f7 27 9b 54 14 46 27 34 4e 5f 84 4e   

0e 41 64 d2 ab 83 43 b5 83 43 b5 ab 15 16 46 2a 54 5f a6 a6 7  

2e b7 72 8b 31 a9 40 3d 40 3d 31 a9 b5 15 56 d8

 

f7 c9 4f dc   

17 7d a9 25 f0 ff d3 3f 3f f0 ff d3 bf ec d7 43 0e f3 b2 4f   

                      

5a 19 a3 7a be d4 0a da be d4 0a da 0 b1 54 fa ea b5 31 7f   

41 49 e0 8c 83 3b e1 64 3b e1 64 83 51 c8 76 1b d2 8d 2b 8d 8  

42 dc 19 4 2c 86 d4 f2 d4 f2 2c 86 2f 89 6d 99

 

73 ba f5 29   

b1 1f 65 0c c8 c0 4d fe fe c8 c0 4d d1 ff cd ea 21 d2 60 2f   

                      

ea 4 65 85 87 f2 4d 97 87 f2 4d 97 47 40 a3 4c ac 19 28 57   

83 45 5d 96 ec 6e 4c 90 6e 4c 90 ec 37 d4 70 9f 77 fa d1 5c 9  

5c 33 98 b0 4a c3 46 e7 46 e7 4a c3 94 e4 3a 42

 

66 dc 29 0   

f0 2d ad c5 8c d8 95 a6 a6 8c d8 95 ed a5 a6 bc f3 21 41 6e   

                      

eb 59 8b 1b e9 cb 3d af e9 cb 3d af         d0 c9 e1 b6   

40 2e a1 c3 9 31 32 2e 31 32 2e 9         14 ee 3f 63 10  

f2 38 13 42 89 7 7d 2c 7d 2c 89 7         

 

f9 25 0c 0c   

1e 84 e7 d2 72 5f 94 b5 b5 72 5f 94         a8 89 c8 a6   

                      

39 2 dc 19                   

25 dc 11 6a                 çıkış 

84 9 85 0b                   

1d fb 97 32                   

                      

 

Şekil 3.11: AES işlem değerleri 
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4. GÜÇ ANALİZİ SALDIRISI  

 

4.1 Giriş  

 

Genel olarak kriptografik donanımlar, bir şifreleme işlemini veya bir şifreleme 

algoritmasının tamamını içerirler. Uygulamalarda donanımda ayrıca saklanması 

gereken bir gizli veya özel anahtar olması gerekebilir. Bu nedenle bir kriptografik 

cihaz, bu özel bilginin elde edinimi veya çeşitli yollarla bulunmasını engelleyecek 

şekilde tasarlanmalıdır [7]. 

 

Kriptografik sistemlere aktif saldırılar uzun bir dönemdir yapılagelmektedir. Pasif 

atakların ise ilk olarak 1996 yılında konu hakkında yayınlanan bir makale ile [8] 

büyük bir tehdit olduğunu gösterilmiştir. Pasif saldırıda, saldırıyı yapan kişi, 

kriptografi cihazının standart işlevlerini kullanır [7]. 

 

Bu kullanım sırasında elde edilen fiziksel / elektriksel etkiler daha sonra saldırı 

amaçlı kullanılır.  

Güç 
Elektromanyetik 
radyasyon  

Harcaması  Hatalı 
Çıktılar 

 
Şekil 4.1: Yan kanal çıkışları 

 

Kriptografik 

Algoritma 

Zamanlama  
Isı  

Ses 
Tasarım  
Detayları 
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Şekil 4.1’de de gösterildiği şekilde değişik yan kanal bilgileri mevcuttur; örneğin 

işlem süresi, güç harcaması, elektromanyetik radyasyon, gibi. Eğer bu şekilde elde 

edilen çıkışlar, kriptografik anahtara ait bilgi içeriyorsa veya bulunması konusunda 

ipucu veriyorsa, yan kanal olarak adlandırılır. Günümüzde CMOS teknolojisi sayısal 

devrelerin gerçeklemesinde büyük oranda kullanılan teknolojidir. Bir CMOS 

devresinin güç harcamasında en önemli paya sahip olan kısmı dinamik güç 

harcamasıdır [7].  

 

İki tür bilgi mevcuttur: Geçiş sayısı sızıntısı ve Hamming ağırlığı sızıntısı. 

Geçiş sayısı sızıntısı bize değişen bitlerin sayısı hakkında bilgi verirken, Hamming 

ağırlığı sızıntısı eşzamanlı olarak işlenen 1 bitlerinin sayısı hakkında bilgi verir. 

 

İki tür güç analizi saldırısından bahsedilebilir:  

• SPA: Basit güç analizi saldırısı   

• DPA: Farksal güç analizi saldırısı. 

 

4.2 Basit Güç Analizi Saldırısı  

 

Saldırıyı yapan kişi, yan kanal saldırısından elde ettiği ölçüm ve bilgiyi, şifreleme 

anahtarını veya bir kısmını elde etmek için direkt olarak kullanır.  

 

Özetleyecek olursak; 

 

• Şifreleme algoritmasında kullanılan her bloğun kendi güç tüketim 

karakteristiği var ise yapılabilir. 

 

• Saldırı güç harcamasından direkt şifreleme anahtarını elde eder. Güç 

harcaması dalga şekli gözle kontrol edilir. Bu nedenle tek bir ölçüm 

yapılması yeterlidir. 

 

• Basit güç analizine karşı savunma geliştirmek kolaydır.  
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4.3 Farksal Güç Analizi Saldırısı  

 

Farksal güç analizi ilk olarak Paul KOCHER tarafından 1998 yılında gündeme 

getirilmiş ve kriptografi dünyasında ses getirmiştir. Bir DES algoritması üzerinde 

güç analizi saldırısı ilk olarak [9] nolu makalede yapılmıştır. “Akıllı kart” üreticileri 

konu hakkında risk olduğunu görmüş ve bu konuya ciddi olarak eğilmişlerdir. 

 

Farksal güç analizinde çok sayıda ölçüm yapılır ve elde edilen ölçümlerden gürültü 

filtrelenir. Bu şekilde elde edilen gerçek ölçüm sonuçlarına ek olarak saldırıyı yapan 

kişi(ler) tarafından bir model öngörülür. Bu modele göre ölçüm sonuçlarının 

bilgisayar ortamında benzetimi yapılır ve uygun veriler oluşturulur [7]. 

 

Güç Harcaması Saldırıları sonuç alıcıdır; çünkü 

• İstatistikseldir, sinyal işlenir 

• Rastlansal mesaj gönderilir.  

• Bilinen algoritmaya saldırılır. 

• Tek bir akıllı kart yeterli olur. 

 

Farksal güç analizi saldırısı için bileşenler şunlardır: 

• Güvenilir Güç Ölçümleri 

• Algoritma 

• Güç Harcaması Öngörüleri 

• Elde edilebilecek diğer tüm ek bilgiler 

 

Saldırı 2 adımda yapılır: 

• Gerçek ölçüm: akıllı kartta ölçüm yapılır. 

• Analiz kısmı : Bir bilgisayarda öngörülü analiz gerçekleştirilir. 

 

SPA yapılan işlemler ve güç harcaması arasındaki bağlantıyı kullanır, DPA ise 

işlenen veri ve güç harcaması arasındaki bağlantıdan yola çıkmaktadır.  
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4.4. Saldırı için Öngörülen Algoritma 

 

Algoritma, saldırı yapılacak düzeneğin öngörülen, değişik şekilde elde edilen -ki bu 

her türlü elde etmeyi içerir, modeli anlamındadır. Biz saldırı yapılacak düzeneğin bir 

AES algoritması olduğunu biliyoruz, ancak bunun yanında elde edilecek her türlü 

veri bizim işimizi çok daha fazla kolaylaştıracaktır. 

 

Algoritmaların en önemli özelliği, öngörülen AES gerçeklemesi çalışma şeklinin 

taklit edilmiş olmasıdır. Ayrıca ölçme ortamının getireceği etkiler de algoritma 

içinde yer almıştır. Ölçüm düzeneğinde, 20.000 adet giriş, sırasıyla kart 

gerçeklemesine gönderilecek ve ölçümler yapılacaktır. Bu durumda her giriş için 

ölçüm öncesinde devrede bellek içerikleri sıfırlanmamış olacaktır. Yani bir önceki 

ölçümün etkileri hala devam ediyor olacak ve bellek içeriklerine bu durum üzerinden 

işlemler yapılacaktır. Algoritmalar bu durumu gözönüne alacak şekilde 

gerçeklenmiştir.  

 

Bu tezde saldırı yaptığımız düzeneğe ait iki adet model bilgisine sahip olduğumuzu 

varsaydık ve bunlara göre varsayım verisi oluşturduk. Aşağıdaki bölümlerde bu 

modeller incelenmiştir.  

 

4.4.1. Saldırı Amaçlı Model 1 

 

Şekil 4.2’de ilk model için genel algoritma verilmiştir. Şekilde görüldüğü üzere beş 

adet belleğimiz var ve bunların güç harcaması bizim algoritmalarımızın temel 

dayanağı olacaktır.  

 

Algoritmadaki her bir işlem bloğu kendisine ait işlemi yapar, bu bloklar ekte verilmiş 

olan AES işlem bloklarıdır. 

 

• Giriş değeri ile anahtarın XOR işlemi 

• Bayt Yer Değiştirme 

• Satır Öteleme 

• Sütun Karıştırma 
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• Anahtarın turun durum değeri ile XOR işlemi 

 

Her bir blok kendi girişindeki değeri, işlevine göre değiştirerek kendi bloğunu takip 

eden belleğe yazar. Bu nedenle, her turda,  bellekler, sadece kendine ait saat 

diliminde anlamlı değer içerir. Onun dışındaki saat dilimlerinde anlamlı olmayan 

değerler içerebilirler. Ancak kesin olan, 5. saat diliminin sonunda R5 belleğinde 

olması gereken değer, tur sonu değeri olmalıdır. Buna göre anlamlı bellek değerleri 

için şunu diyebiliriz: 

 

1. saat diliminde R1, 

2. saat diliminde R2, 

3. saat diliminde R3, 

4. saat diliminde R4, 

5. saat diliminde R5 

 

bellekleri anlamlı değer içerecektir. 10 tur sonunda ve 10. turun 5. saat dilimi 

sonunda R5 belleğinde şifrelenmiş mesaj mevcut olacaktır. 

 

Kullandığımız iki model arasındaki fark ise Anahtar dizisi ile ilgili davranış farkıdır. 

Şifreleme anahtar dizisinin tüm turlar için değerleri bellidir ve birinci modelde 10 

adet AES turunun 5 adet saat dilimi boyunca anahtar dizisi çıkışlarının ideal tur 

değerinde olduğu varsayılacaktır. Sonuçta bu bir modeldir ve ilk modelimizin bu 

dezavantajlı noktasıdır. Ancak bu gerçek devrede böyle değildir.   
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Giriş 

 
Şekil 4.2: Saldırı amaçlı model-1’e ait algoritma 

 

4.4.1. Saldırı Amaçlı Model 2 

 

Şekil 4.3’de model 2 için genel algoritma verilmiştir. İşlem bloklarının çalışması ve 

bellek içeriklerinin değiştirilmesi ilk model ile tamamen aynıdır. Yine 5 adet bellek 

mevcuttur ve işlem blokları her saat diliminde kendi girişlerindeki değerleri 

işlevlerine göre değiştirerek çıkışlarındaki belleklere iletirler. 

 

İkinci modelimiz anahtar üretecinin tüm saat dilimlerinde karakteristiğini elde 

ettiğimiz ve kullandığımız model olacaktır. 10 tur ve her turda da 5 saat diliminde 

anahtar devresi çıkışlarını elde ederek kullandık. Bu değerler, “keysched_output.txt” 

dosyasında verilmiştir. Bu modelin çok daha gerçekçi olduğu tartışılmazdır.  

 

Bayt  
Yerdeğiştirme

Satırları 
Öteleme 

Sütunları 
Karıştırma 

Bellek 1 

Bellek 2 

Bellek 3 

Bellek 4 

Bellek 5 

Anahtar Dizisi 
Tur değeri 

Şifreleme 
Anahtar  
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Bu modelde elde ettiğimiz bir diğer bilgi de, onuncu tur boyunca R5 belleğinin 

içeriğinin 5 tur boyunca sabit olacağıdır. Bu nedenle 10. turda R5 içeriği değişmez ve 

daha sonraki işlemlere değişmeyen R5 içeriği yansıtılmıştır. 

 

Giriş 

Şekil 4.3:  Saldırı amaçlı model-2’e ait algoritma 

 

4.5 Teorik Altyapı 

 

DPA saldırısında saldırıyı yapan kişi, kriptografik cihaza ait bir modeli 

öngörmektedir. Bu modelin kalitesi, saldırıyı yapan kişinin cihaz hakkında elde 

edebildiği bilgi ile sınırlı olacaktır. Bu model yardımı ile cihaza ait çok sayıda yan 

kanal çıktısı kestirimi/öngörüsü elde edilir. Daha sonra elde edilen bu veriler gerçek 

cihazdan ölçülen yan kanal verileri ile karşılaştırılır. Bunun için istatistiksel 

fonksiyonlar kullanılır. 

Bayt  
Yerdeğiştirme

Satırları 
Öteleme 

Sütunları 
Karıştırma 

Bellek 1 

Bellek 2 

Bellek 3 

Bellek 4 

Bellek 5 

Anahtar Dizisi 
Tur değeri

Şifreleme Anahtar  

Çıkış 
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Bunların içinde en çok kullanılanları ortama farkı testi ve korelasyon analizidir. Biz 

bu tez kapsamında  korelasyon analizi fonksiyonunu kullandık. Korelasyon analizi 

için öngördüğümüz model belli bir zaman dilimi içindeki çalışma için bize güç 

harcaması bilgisini verir. Daha sonra öngörülen modelin çıktıları ile gerçek 

ortamdaki cihazın aynı girişler için çalışması sırasında ölçülen güç harcaması ile 

korelasyonuna bakılır. Bu korelasyon ölçümü Pearson korelasyon katsayısı 

kullanılarak yapılabilir. 

 

Bu noktada ekteki varsayımları yapalım:  

 

it  , i. ölçüm datası olsun (i. ölçüm).  

T ölçümler kümesi olsun.  

ip , i. ölçüm için öngörülen model. 

P öngörülen model kümesi. 

T ve P’nin korelasyonu için aşağıdaki fonksiyon kullanılır. 

 

)().(
)().().(),(

PVarTVar
PETEPTEPTC −

=  

 

Burada E(T) ölçüm kümesi T'nin beklenen değerini (ortalamasını) ve Var(T) bir 
ölçümün ortalamadan ne kadar saptığını gösterir. 
 

Bu noktada eğer korelasyon yüksekse (1 veya -1’e yakınsa), öngörülen model ve ek 

olarak anahtar bulunması doğru demektir. 

 

4.6 Ölçüm İşlemleri 

 

Teknik olarak güç analizi saldırısı yapmak birçok zorluklar içermektedir. En önemli 

nokta, gürültü olmayan ve iyi durumda ölçüm yapılmasıdır. Gürültü miktarı ne kadar 

az olursa, o kadar az ölçüm ile istenilen sonuçlara ulaşılabilir. 

 

Ölçüm işleminde bir başka önemli noktada ölçüm düzeneğinin karmaşıklığıdır. 

Böyle bir düzenek genel olarak üç kısımdan oluşur:  
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• Saldırı yapılan cihaz 

• bir adet ölçüm cihazı 

• saldırıyı kontrol etmek için bir cihaz.    

 

Bunlara ek olarak ölçüm sonuçlarının elde edilmesi ve saklanması amaçlı yazılım ve 

donanım gerekli olacaktır. Bu nedenle bir saldırı düzeneği hazırlanacağı zaman,  

saldırılan sistemin saldırıya karşı direncini ölçmek için ilk önce saldırının 

benzetiminin yapılması iyi olacaktır. Bu şekilde pratik saldırı düzeneğinde bir sorun 

olup olmadığı da görülmüş olacaktır. Bu şekilde benzetimi yapılan bir saldırıda, 

pratikte olabilecek gürültü olmayacağı için saldırının ne derece başarılı olabileceği 

de kestirilebilir. 

 

Tez kapsamında saldırı yapılacak olan düzeneğe 20.000 adet giriş ile saldırı 

yapılacağı ve sonuçların elde edileceği bilgisi ile başladık. Ölçüm düzeneğinde 

önceden belirlenmiş girişler, sırayla kart gerçeklemesine gönderilir, ölçüm sonuçları 

bir bilgisayarda saklanır. İki adet ölçüm arasında kartta bir açma kapama işlemi 

yapılmaz; yani kartın içerisindeki bellek içerikleri bir önceki ölçüm işleminden kalan 

değerleri içerir. 

 

Şekil 4.4’te temel ölçüm düzeneği basit gösterimle verilmiştir: 
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Güç Kaynağı 

Güç  
Ölçümü 

R 

 
Şekil 4.4:  Ölçüm düzeneği 

 

4.7 Saldırı Öncesi Benzetim Çalışması 

 

Güç analizi saldırısı için benzetim veri oluşturma öncesi önşart, bir adet anahtar 

belirlemek ve rastlansal olacak şekilde uygun sayıda giriş verisi oluşturmaktır. Bu iki 

veri, ekteki giriş dosyalarında tutulmuştur. Belirleme rastlantısal olarak yapılmıştır. 

Gerçek ortamda ölçüm amaçlı olarak aynı veriler kullanılacaktır. Herhangi bir 

durumda verilerde bir değişiklik olursa sadece bu dosyaların içeriği değiştirilerek 

benzetim verisi tekrar elde edilebilecektir.   

 

4.7.1 Giriş dosyaları 

 

“aes_key.txt” : Şifreleme amaçlı kullanılan 128 bitlik AES anahtarı bu dosyada 

tutulur. Veri onaltılık düzende girilmelidir; harflerin büyük küçük olması önemli 

değildir ancak fazla veya eksik girilmemesi gereklidir. 

 

CB 49 06 49 C9 B1 B3 35 BA 4E 4D 6F 5F BC C5 AB 

 

Kriptografik 
 cihaz 

Saldırı Noktası 
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“plain.txt”   : Şifrelenecek 128 bitlik blokların tutulduğu dosyadır. Her bir blok 

baytlar şeklinde ve düzgün olarak girilmelidir. Şifrelenecek blok sayısı önemli 

değildir. “Plain.txt” dosyası içinde bloklar sıra ile okunur ve şifreleme yapılarak çıkış 

dosyalarına yazılır. Programlar sırada bekleyen okunacak blok olduğu sürece 

amaçlanan analizi yaparak çıktılarını üretecektir. Dikkat edilecek noktalardan biri de 

her bir bloğun farklı bir satıra yazılmasıdır. 

Ekte bir örnek dizi verilmiştir: 

 

1D EA D0 FA 92 41 62 24 ED 3B B6 85 BF D2 0A 58  

99 98 B6 B9 98 15 06 2A 4B 29 32 A5 00 73 D0 51  

9D 06 3E 93 6E 5E 3D 23 00 91 5B 28 31 05 78 1A  

B9 1A 6A 43 D8 DA 60 01 C5 40 EB C6 BC 2B 24 F8  

0D 6B F0 71 36 D8 A2 7F B4 CA 71 3C 42 BC 50 4F  

5A 06 B4 C7 3E 71 F9 42 84 2E BB 5D D8 5B 35 90  

70 28 13 53 78 52 29 3D 2B 86 85 8E 81 22 26 97  

A1 4A 0C 10 57 30 9B 0B B0 33 40 09 6A C1 FD E1  

F8 E6 36 91 F9 C7 AA 81 36 BD 4C EB 05 A4 74 76  

F3 DC 7C 2D 6A 42 55 8C 4E 4B 2D 9C AB FE 73 44 

....... 

 

4.7.2 Yazılan Programlar 

 

4.7.2.1  AES Şifreleme 

 

“Aes_bul.c” programı bu amaçla yazılmıştır. Verilen “plain.txt” karşılığında birebir 

çıkış dosyasının oluşturulması amaçlanmıştır. Temel şifreleme programıdır. Ölçüm 

düzeneği için input hazırlamak amacıyla yazılmıştır. Kodun algoritması sadece 

şifreleme amaçlı olarak yazılmıştır. Standart AES algoritmasını gerçekler. Anahtarı 

“aes_key.txt” dosyasından, şifrelenecek blokları ise “plain.txt” dosyasından okur; 

programın çalışması sonunda girişlere karşı düşen çıkışları içeren “register.txt” adlı 

dosyayı oluşturur.  
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4.7.2.2 Şifre Çözme 

 

“Aes_desc.c” programı bu amaçla yazılmıştır. Daha sonraki çalışmalara yardımcı 

olması amacıyla yazılmıştır. Şifrelenmiş 128 bitlik blok için şifre ile giriş bloğunu 

oluşturur. Temel olarak şifre çözme işlemini gerçekleştirmektedir. Amaçlanan tez 

için gerekli değildir. 

 

4.7.2.3 Bellek içerik gösterimi  

 

Saldırı yapılacak modeller için sırasıyla “aes_rgv1.c”, model 1  için, “aes_key1.c” ise  

model 2 için yazılmıştır. Programlar, “aes_key.txt” dosyasından şifreleme anahtarını 

alır, daha sonra sırası ile “plain.txt” dosyasından giriş değerlerini alarak şifreler. 

 

Saldırı yapılacak olan AES algoritması gerçeklemesinin yapısı gözönüne alarak 

devre elemanlarının modellendiği programlardır. Sadece AES algoritmasının çıkışı 

olan şifre değil, aynı zamanda tur ve saat dilimi düşünülerek yazılımın algoritması 

oluşturulmuştur. Şekil 4.2 ve Şekil 4.3’de gösterilen R1, ... R5 belleklerinin her saat 

darbesinde değerleri bulunacak şekilde yazılım gerçeklenmiştir. Tur sayısı 10 ve her 

turdaki saat dilimi 5 olacak şekilde her tur ve saat diliminde bellek içerik 

hesaplamaları yapılmıştır. Her bir giriş için şifreleme yapıldıktan sonra, bir sonraki 

giriş değeri okunur ve şifreleme işlemi son giriş değerine kadar devam eder. 

Şifreleme işleminde bellek içerikleri bir sonraki işlemi etkileyecektir.     

 

Şekil 4.5’de algoritma akışı verilmiştir. Programın akışında her bir işlem bloğu 

girişindeki bellek içeriğini alarak kendi işlevini yapacak şekilde çalışmakta ve çıkış 

belleğine sonucu aktarmaktadır. Bu nedenle program AES algoritmasının 

gerçeklemesi gibi çalışmaktadır. 10 tur ve 5 saat dilimi sonunda R5 belleğin 

içeriğinde şifrelenmiş çıkış değeri elde edilmektedir.  

 

Model 2 için yazılan “aes_key1.c” programında ayrıca anahtar üreteci davranışı da 

eklenmiştir. 10. tur  boyunca R5 içeriğinin sabit kaldığı bilinmektedir. Koda bu 

davranış da konularak R5 içeriğinin 10. tur boyunca sabit olması sağlanmıştır. 
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AES Tur İşlemi döngüsü 
1 – 10 arası sayılır. 

AES Saat dilim döngüsü 
1 – 5 arası sayılır. 

Bellek değerleri 
hesaplama R1 – R5 

AES Saat dilim döngüsü 
sonu 

AES Tur İşlemi döngüsü 
sonu 

İstenen Analiz 
Fonksiyon ve Çıktıları 

 
Şekil 4.5: Devre yapısı için geliştirilen algoritma  

 

 Bu programın en önemli çıktısı, tüm tur ve zaman dilimlerinde kontrol amaçlı olarak 

oluşturulan, belleklerin önceki ve sonraki değerleridir. Çıktılar, “sonuclar.txt” 

dosyasına yazılır. Bu şekilde tüm çalışma süresince devre içindeki belleklerin 

içerikleri görülmüştür.  Aşağıda bu programın çıktısı verilmiştir: 

 

round 0  

 time clock 1  

 

 r1 register 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

 36 94 c5 ec ba ef b0 82 46 cc a3 d b6 1d 45 64  

 

 r2 register 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
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 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63  

 

 r3 register 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

 

 r4 register 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

 

 r5 register 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 9 cf 4f 3c  

 

 time clock 2  

 

 r1 register 36 94 c5 ec ba ef b0 82 46 cc a3 d b6 1d 45 64  

 36 94 c5 ec ba ef b0 82 46 cc a3 d b6 1d 45 64  

 

 r2 register 36 94 c5 ec ba ef b0 82 46 cc a3 d b6 1d 45 64  

 5 22 a6 ce f4 df e7 13 5a 4b a d7 4e a4 6e 43  

 

 r3 register 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63  

 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63  

 

 r4 register 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

 r5 register 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 9 cf 4f 3c  

 

 time clock 3  

 

 r1 register 36 94 c5 ec ba ef b0 82 46 cc a3 d b6 1d 45 64  

 36 94 c5 ec ba ef b0 82 46 cc a3 d b6 1d 45 64  

 

 r2 register 36 94 c5 ec ba ef b0 82 46 cc a3 d b6 1d 45 64  

 5 22 a6 ce f4 df e7 13 5a 4b a d7 4e a4 6e 43  

 46



 

 r3 register 5 22 a6 ce f4 df e7 13 5a 4b a d7 4e a4 6e 43  

 5 df a 43 f4 4b 6e ce 5a a4 a6 13 4e 22 e7 d7  

 

 r4 register 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63  

 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63  

 

 r5 register 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 9 cf 4f 3c  

.......................... 

 

Bu yapı daha sonraki çalışmaların da altyapısını oluşturacaktır. 

 

4.7.2.4 Durum Geçişi Analizi 

 

Bu amaçla “aes_rgv2.c” yazılmıştır. “Aes_rgv1.c” versiyonunda bulunmuş olan 

bellek değerleri bizim için altyapıyı oluşturan değerlerdir. “aes_rgv2.c” bu değerleri 

kullanarak saldırı amaçlı analiz kısımlarını eklediğimiz versiyondur. Her tur ve tüm 

saat dilimlerinde bellek değerleri bir önceki versiyonda anlatıldığı şekilde 

bulunmaktadır. Bu program ise her tur, saat diliminde çalışan ve belleklerin bir 

önceki değeri ile o anki değeri arasındaki geçiş sayılarını bularak uygun toplam tur 

değerini bulan versiyondur.  

Belleklar arası geçişte 4 farklı durum sözkonusudur: 

 

0 >> 0 

0 >> 1 

1 >> 0 

1 >> 1 

 

Tüm bu geçiş sayıları ayrı ayrı değişkenlerde bulunmuştur. Ancak bizim saldırı 

algoritmamızda anlamlı olan 0 >> 1 geçişidir. Diğer geçiş rakamları olası ileri 

çalışmalar için eklenmiş olup anlamlı olmaları durumunda kullanılmak üzere kodda 

gösterilmiştir. Ancak bizim saldırı algoritmamızda kulanılmayacaklardır.  
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Geçiş sayılarını bulmak için koda iki adet bayt giriş alan ve bunlar arasındaki geçiş 

sayılarını bulan fonksiyon eklenmiştir. Kodu aşağıdadır. 

 

void gec_say(void) 

{ 

mx = 0x80; 

for (ix = 0; ix<8; ix++)  

{ 

   if (gec_x & mx) 

      xx[ix] = 1;  

   else 

      xx[ix] = 0;  

 

   if (gec_y & mx) 

      yy[ix] = 1;  

   else 

      yy[ix] = 0;  

   mx = mx >> 1; 

} 

s10 =0; 

s00 =0; 

s01 =0; 

s11 =0; 

 

for (ix = 0; ix<8; ix++)  

 

{ 

   if (xx[ix] == 0 & yy[ix] == 0) 

      s00 ++;   

   if (xx[ix] == 1 & yy[ix] == 0) 

      s01 ++;   

   if (xx[ix] == 0 & yy[ix] == 1) 

      s10 ++;   

   if (xx[ix] == 1 & yy[ix] == 1) 
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      s11 ++;   

} 

} 

 

Her tur ve saat dilimi için çalışma sonrasında bellek içeriği ile bir önceki değeri 

arasındaki tüm değişim sayıları bu fonksiyon ile elde edilmektedir.  

 

Bu versiyonda da AES anahtarı tur boyunca tüm saat dilimlerinde olması gereken tur 

değerinde olduğu varsayılmıştır. Programın en başında 10 tur için anahtar dizisi elde 

edilmektedir ve “key_sch.txt” adlı dosyaya kontrol amaçlı olarak yazılmaktadır. 

Anahtar dizisi, tüm tur ve saat dilimlerinde kullanılmaktadır. 

 

4.7.2.5 Saldırı Noktası Durum Geçiş Analizi Sonuç Çıktıları 

 

Saldırı yapılacak modeller için sırasıyla “aes_rgv4.c”, model 1  için, “aes_key4.c” ise  

model 2 için yazılmıştır. 

 

Bir önceki versiyonun kontrol çıktılarının olmadığı ve sadece kullanılacak olan 

“r2_ileri.txt” dosyasının oluşturulduğu versiyondur. Bu versiyon, saldırı amaçlı 

çıktılardan birini üreten versiyondur. 

 

Burada en önemli nokta; saldırı noktamız olan 1. tur, 2. saat dilimine ait rakamları 

çıktı olarak ürettiğimizdir. Seçilen bu saldırı noktasının özelliği bu turda belleklerin 

içerdiği değerlerin değişimi incelendiğinde, sadece giriş anahtarının etkilediği R2 

belleğinde değişiklik olmasıdır. Ayrıca bizim saldırı amaçlı olarak AES anahtarının 

sadece en yüksek anlamlı 8 bitini değiştirmemiz, 1. tur 2. saat dilimi sonunda sadece 

R2’nin 8 bitini etkileyecektir. Bu şekilde anahtar ile R2 belleğindeki değişim 

arasında ilişki olduğunu ve bu ilişkinin güç harcamasında da görülebileceği 

söyleyebiliriz.   

 

Aslında tüm saat dilimleri için üretilen geçiş sayıları sadece bu saat dilimi için çıktı 

dosyasına işlenir. Bu sayede, başka bir saat dilimini görmek istersek, programda 

bunlar da hazır vaziyettedir. Tek yapılacak olan, bu değerlerin çıkış dosyasına 

“r2_ileri.txt” yazılacak şekilde analiz kısmı sonuna eklemektir. 
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“Aes_rgv4.c” ve “Aes_key4.c” programları kullanılarak, AES anahtarının en yüksek 

anlamlı baytı, 0x00 – 0xff değerleri arasında değiştirilerek çıktı değerleri hesaplanır. 

Bu hesaplama, programın beklediği giriş dosyalarından “aes_key.txt” dosyasının 

içeriğinin değiştirilmesi ve programın tekrar çalıştırılması ile elde edilir. Her anahtar 

için program çalışmasının çıktıları saklanarak korelasyon analizi için giriş verileri 

oluşturulur.  

 

Aynı kod kullanılarak R3 bellek içeriğine 1. tur ve 3. saat dilimi içinde saldırı 

yapılabileceği görülmüştür. Kodlarda yapılan bir değişiklikle elde edilen verilerde bu 

noktanın da saldırıya açık olduğunu göstermiştir. Programların bu versiyonları ayrıca 

ekte verilmiştir. 

 

Model 1 için “r3_gec.c” programı, 0>1 geçişlerini sayan programdır. Model 2 için 

“M2_r3_4.c” programı, 0>1 geçişlerini sayan programdır. 

 

4.7.2.6 Tüm Bellek Durum Geçiş Analizi Sonuç Çıktıları 

 

Saldırı yapılacak modeller için sırasıyla “aes_rgv5.c”, model 1  için, “aes_key5.c” ise  

model 2 için yazılmıştır. 

 

Bu programlarda bir tam AES şifreleme döngüsü için hesaplamalar yaptırıldı. Sadece 

bir adet giriş bloğu için tüm tur ve saat dilimlerinde tüm belleklar için toplam 

sıfırdan bire  (0 >> 1) geçişler sayılmıştır. Program giriş dosyası “plain.txt” 

dosyasında mevcut olan girşler için işlemleri yapacaktır, bu nedenle program 

çalıştırılmadan önce bu dosyada sadece bir adet giriş olduğu kontrol edilmelidir. 

Sonuçta elde edilen sayı bir bellek için değil, tüm bellekler için toplam olacaktır. 

Program çalışması sonucunda 50x1  boyutlarında bir matris elde edilir. 

 

4.7.2.7 Saldırı Noktası Durum Bit Analizi Sonuç Çıktıları 

 

Saldırı yapılacak modeller için sırasıyla “aes_rgv6.c”, model 1  için, “aes_key6.c” ise  

model 2 için yazılmıştır. 
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Şifreleme anahtarı “aes_key.tx”t dosyasından, giriş değerleri ise “plain.txt” 

dosyasından alınarak kullanılır. Bu programlarda R2 belleği için tur 1, saat dilimi 

2'de sadece en yüksek anlamlı bayt içindeki 1 olan bitlerin sayısını bulmak 

amaçlanmıştır.  

 

Tüm açık mesajlar için çalışır. Anahtara ait en yüksek anlamlı 8 bit, 0x00 – 0xff 

arasında değiştirilerek R2 belleğinin değişen 8 bitindeki 1 sayısı sayılır. Değiştirilen 

her anahtar değeri için 1 olan bit sayıları matrisi korelasyon analizi için girdi olacak 

şekilde saklanır. 

 

Burada amaç, anahtarın sadece değişen 8 biti için, R2 belleğinin 8 bitinin değiştiğini 

bilmemizden dolayı bir korelasyon olabileceğini öngörmemizdir. Sadece 1 olan 

bitleri saymak yerine sıfırdan bire geçişleri saymak bizim için çok daha iyi bir 

korelasyon vereceğini söyleyebiliriz. Çünkü 1 olan bitleri saymak  ve bu sayı ile güç 

harcaması arasında korelasyon aramak bize % 50 daha fazla ölçüm yapmak ihtiyacını 

doğuracaktır. 1 olan bitin bir önceki saat diliminde de değeri 1 olabilir. Yani burada 

bir güç harcaması olmamış demektir. Biz bu konuda daha fazla ölçüm yaparak bu 

sorunu aşmayı planlıyoruz. Bir bellek içerisindeki 1 olan bitlerin sayısını bulmak için 

aşağıdaki kod yazılmıştır: 

 

void bir_say(void) 

{ 

mx = 0x80; 

for (ix = 0; ix<8; ix++)  

{ 

   if (gec_x & mx) 

      xx[ix] = 1;  

   else 

      xx[ix] = 0;  

   mx = mx >> 1; 

} 

s10 =0; 

s00 =0; 

s01 =0; 
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s11 =0; 

for (ix = 0; ix<8; ix++)  

{ 

   if (xx[ix] == 0) 

      s00 ++;   

   if (xx[ix] == 1) 

      s11 ++;   

} 

} 

 

Bu fonksiyon, 1. tur ve 2. saat diliminde şifreleme anahtarının değiştirilen 8 biti 

karşılığında, R2’nin değişen 8 bitindeki 1 sayılarını bulmak için kullanılır. Bulunan 

sayılar çıkış dosyası, “r2_ileri.txt” a yazılır.   

 

Aynı kod kullanılarak R3 belleği içeriğine 1. tur ve 3. saat dilimi içinde saldırı 

yapılabileceği görülmüştür. Kodlarda yapılan bir değişiklikle elde edilen verilerde bu 

noktanın da saldırıya açık olduğunu göstermiştir. Model 1 için “A_r3t1c3.c” 

programı en yüksek anlamlı 8 bit içinde 1 değerindeki bit sayısını sayan programdır. 

Model 2 için “M2_r3_6.c” programı en yüksek anlamlı 8 bit içinde 1 değerindeki bit 

sayısını sayan programdır. 

 

4.8 Farksal Güç analizi saldırısı, verilerin kullanımı 

 

DPA saldırısı için hedef, Şekil 4.6’da gösterilen R2’nin en yüksek anlamlı 8 biti 

olacaktır.  
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Giriş 

Şekil 4.6: AES algoritması için öngörülen bellek düzeneği resmi 

 

Bu algoritma için saldırı noktamızı belirlememizdeki en büyük etken R2’nin 

şifreleme için kullanılan ana anahtardan doğrudan etkilenmesidir. Giriş değeri ile 

XOR işlemine tabi tutulan anahtarın işlem sonucu R1 belleğinde saklanır. R2 ise bu 

değerin bayt yer değiştirme işlemi sonucunu içerir ve içerdiği değer anahtarın en 

yüksek anlamlı 8 bitine doğrudan bağlıdır. Bu amaçla bu noktada yani R2’deki güç 

harcamasının benzetiminin yapılmasına karar verildi. Saldırı öncesi benzetim verisi 

ile bu düzeneğin ve öngörünün çalışacağının; yani R2’ye yapılacak saldırının başarılı 

olacağının gösterilmesi amaçlanmaktadır. 

 

Dinamik güç harcamasının benzetiminin yapılması için algoritmasının 

gerçeklemesinin yapısı biliniyor. Bu gerçeklemeye yönelik iki adet model öngörüldü. 

Modeller AES için benzetimi yapılan saldırı başarılı olursa; gerçek ortamda ölçülen 

Bayt  
Yerdeğiştirme

Satırları 
Öteleme 

Sütunları 
Karıştırma 

Bellek 1 

Bellek 2 

Bellek 3 

Bellek 4 

Bellek 5 

Anahtar Dizisi 
Tur değeri

Şifreleme Anahtar  

Çıkış  
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verilere yapılacak saldırının da başarılı olabileceğini söylemek ve gerçek saldırı için 

hazırlık yapmak anlamlı olur. 

 

Benzetim verileri ile saldırı için oluşturulan ilk dosya güç harcamalarını içeren 

dosyadır. Bunun için N adet rastgele giriş (plain text)  ve bir adet sabit anahtar 

(rastgele seçilmiş) oluşturulmuştur. Bunlar “aes_key.txt” ve “plain.txt” adlı 

dosyalarda saklanmaktadırlar. Analiz için yazılan kodlar bu dosyaları giriş olarak 

okuyacak şekilde yazılmıştır. 

 

İlk olarak AES şifrelemesinde mevcut olan 10 tur için, donanımdaki beş adet 

belleğin önceki ve şimdiki durum geçişleri sayıldı. Bunlardan analizde kullanılmak  

üzere 1. tur ve 2. saat diliminde sıfırdan bire (0 > 1) geçiş sayıları sonuç dosyasına 

yazdırıldı. Bulunmak istenen anahtar için ve tüm girişler için yapılan hesaplamalar 

ile Nx1 boyutlu bir matris üretildi. Anahtarın en yüksek anlamlı sekiz biti için 0x00 

ve 0xff değerleri arasındaki tüm değerler için bu hesaplamalar tekrarlandı ve Nx256 

boyutlu bir matris üretildi. Bunun için yazılan kod, “aes_rgv4.c”, “aes_key4.c” adlı 

C programlarıdır. 

  

İkinci olarak oluşturulan analiz dosyasında, sadece R2 belleği için tur 1'de en yüksek 

anlamlı bayt içinde değeri 1 olan bitlerin sayısı bulundu. Tüm giriş değerleri 

(plain.txt) için çalıştırıldı. Ayrıca anahtarın en anlamlı 8 biti için  0x00 ve 0xff 

arasında değişecek şekilde hesaplamalar tekrarlandı.  

 

Her iki dosyada da oluşturulan verilerle orijinal anahtarla oluşturulan veriler 

birbiriyle uyumlu olması gerekmektedir. Bu ikisi arasındaki korelasyon, diğer 

anahtar değerleri ile yapılan ölçümlerdeki korelasyondan daha anlamlıdır. Şekil 

4.7’de deneme yoluyla en anlamlı 8 biti değiştirilmiş anahtarlar için korelasyon 

analizi görülmektedir.   

 54



 
Şekil 4.7: R2 , Model 1 için Anahtarın En yüksek Anlamlı Bitinin korelasyon 

değerleri 

 

Bu şekilde 0x00 – 0xff arası değişen anahtarlar ve korelasyonlarının grafiği Şekil 

4.6’da verilmiştir. Beklenen, aranan anahtar ile korelasyonun diğerlerine göre daha 

yüksek değerde olmasıdır.  Şekil 4.7’de 44 değerinde yani anahtarın 2B değerinde 

korelasyonun en yüksek olduğun gösterir. Bu sonuç şunu göstermektedir; saldırı 

amaçlı tasarlanan model, saldırı için düşünülen bellek, seçilen tur ve saat dilimi 

uygundur. Benzetim verileri ile olan saldırı, gerçek ortamda ölçülecek değerleri 

karşılayabilecektir.  

 

Bu aşamadan sonra karşılaşılacak sorun ne kadar deneme ile devre içinde saklanmış 

olan anahtarın bulabileceğidir.  

 

Şekil 4.8’de farklı açık mesaj sayısı kullanılarak anahtarın mümkün bütün değerileri 

için korelasyon değişimi gösterilmiştir. Bu nedenle en anlamlı 8 biti bulmak için 

benzetim yapılmış saldırıda 4000 adet ölçüm yeterli olacaktır denebilir.   
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Şekil 4.8: R2 , Model 1 için Kullanılan mesaj sayısının korelasyon bağlantısı 

 

Aynı sebeple Bellek 3 için de saldırı yapılabileceği görülmüştür. Saldırı zamanı 

olarak birinci turun 3. saat dilimi öngörülmüştür.  Bu konuda analiz programları 

kullanılarak başka bir saldırı noktası arayışına girilmiş ve R2 için yapılan çalışma R3 

için de yapılmıştır. Sonuç olarak oluşturulan verilerle korelasyon analizi yapılınca, 

bu noktada da saldırının mümkün olabildiği görülmüştür. Aşağıda Şekil 4.9’da 

korelasyon analizi sonuç grafikleri mevcuttur.  
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Şekil 4.9: R3 , Model 1 için Anahtarın En yüksek Anlamlı Bitinin korelasyon 

değerleri 

 

 Korelasyon analizi – plaintext sayısı arasındaki grafik Şekil 4.10’da verilmiştir. 

 
Şekil 4.10: R3 , Model 1 için kullanılan mesaj sayısının korelasyon değerleri 
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Model 2 için hesaplamalar neticesinde R2 belleği için ekteki Şekil 4.11’de 

korelasyon analizi sonuç grafikleri mevcuttur: 

 
Şekil 4.11: R2 , Model 2 için Anahtarın En yüksek Anlamlı Bitinin korelasyon 

değerleri 

 

Model 2’nin R2 için Korelasyon analizi–plaintext sayısı korelasyonu Şekil 

4.12’dedir. 

 
Şekil 4.12: R2 , Model 2 için kullanılan mesaj sayısının korelasyon değerleri 
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Model 2 için, 1 tur içinde 3. saat diliminde R3 belleğine saldırı da anlamlı değerler  

korelasyon içermektedir. Ekteki şekil 4.13’de bu görülebilir.  

 
Şekil 4.13: R3 , Model 2 için Anahtarın En yüksek Anlamlı Bitinin korelasyon 

değerleri 

Model 2’nin R3 için Korelasyon analizi–plaintext sayısı korelasyonu Şekil 

4.14’dedir. 

 
Şekil 4.14: R3 , Model 2 için kullanılan mesaj sayısının korelasyon değerleri 
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4.9 Farksal Güç Analizi saldırısı, ölçüm verileri kullanımı 

 

Bu bölümde DPA saldırısı benzetim yaptığımız ve benzetim sonucu ölçüm verisiyle 

saldırı yapılabileceğini gördüğümüz modelin gerçek ortam ölçüm verileri ile 

tekrarlayacağız. 

 

Bölüm 4 de benzetim amaçlı kullandığımız N adet plaintext için şifreleme işlemini 

gerçekleştiririz. 

 

Ölçüm detayları sonucunda elde edilen matris, tahmin sonuçları ile korelasyona tabi 

tutulur, bu işlem sonucunda ölçüm sonuçları ile en yüksek korelasyonu veren bayt, 

aradığımız anahtar bayt bilgisidir sonucuna ulaşırız. Şekil 4.15’da bu konudaki ilişki 

verilmiştir. 
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Şekil 4.15: Benzetim Verisi ile gerçek ölçümün birleştirilmesi ve korelasyon eldesi 
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5. SONUÇLAR VE TARTIŞMA  

 
Konu ile ilgili olarak en önemli nokta, Türkiye’de bu konuda ilk defa bu kapsamda 

çalışma yapılmış olmasıdır. Yaklaşım tarzı olarak oluşturulan algoritmalar ve yazılan 

programlar Türkiye ötesinde dünyada da ilk defa uygulandığı söylenebilir.  

 

Tez kapsamında yapılan çalışmalarda AES algoritmasının FPGA gerçeklemesinde 

güç analizi ile algoritmanın en önemli bileşeni olan şifreleme anahtarının eldesinin 

mümkün olduğunu gördük, gerçeklemelerde farksal güç harcamalarına karşı önlem 

alınmasının gerekli olduğu elde ettiğimiz sonuçlardan görülmektedir. 

 

Yazılım dili olarak C programlama dili kullanılmıştır. C dili , mühendislik 

uygulamalarında bit seviyesinde sağladığı operatörleri nedeniyle ve hız açısından 

diğerlerinden üstünlüğü nedeniyle tercih edilmiştir. Analiz datalarından Matlab ile 

korelasyon analizi yapılmıştır. 

 

Yazılan programlar ve elde edilen sonuçlar, AES gerçeklemesinin güç analizi 

saldırılarına karşı korumalı olarak yapılması gerekliliğini göstermiştir. 

Gerçeklemeler farksal güç analizi saldırısına karşı korumalı olarak tasarlanmalıdır.  
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ÖZGEÇMİŞ 

 

14.06.1973 Suluova/Amasya doğumlu Hakan Kayış, ilk öğrenimini bu şehirde 

tamamladıktan sonra orta ve lise öğrenimini Samsun Anadolu Lisesi’nde tamamladı. 

1991 yılında İstanbul Teknik Üniversitesinde Elekronik ve Haberleşme Mühendisliği 

eğitimine başladı. İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü Elektronik ve 

Haberleşme Bölümünde yüksek lisans eğitimine devam etti. Sırasıyla TEM 

Elektronik (8 bitlik mikroişlemcilerle sistem tasarımı), AB Develioğlu (değişik tıp 

cihazları teknik destek ve satış), Pamukbank (yazılım geliştirme), Dışbank (yazılım 

geliştirme), Turkcell (test mühendisi) firmalarında çalıştı. Meslek yaşamına halen 

Turkcell’de devam etmektedir. 
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