

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

A
GERÇEK

Anabilim Dalı : EL

Programı : ELE

 Tez Danışmanı:

ES UYGULAMASI’NIN FPGA
LEMELERİNE KARŞI GÜÇ ANALİZİ

SALDIRISI
YÜKSEK LİSANS TEZİ
Müh. Hakan KAYIŞ

EKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ

KTRONİK VE HABERLEŞME MÜHENDİSLİĞİ

 Yard. Doç.Dr. Sıddıka Berna ÖRS YALÇIN

HAZİRAN 2006

ÖNSÖZ

Çağımızda bilgi, en önemli güç konumundadır, bilgiye sahip olanlar diğerlerinden

daha üstün konumdadırlar, bu gerçek ise bilgiye sahip olma çabasını inanılmaz

boyutlara çıkartmaktadır. Bilgi elde edimi , her türlü yoldan yapılmaktadır, kendiniz

uğraşarak , bularak veya başkasının bulduğunu , bildiğini değişik yollardan elde

ederek.

Bu nedenle bilgiye sahip olmak kadar onu korumak , istenilen yerlere ulaştırmak ve

istenilen amaca yönelik kullanılabilmesini sağlamak da bilginin kendisi kadar önemli

hale gelmektedir.

Bu çaba, neredeyse bilgi tarihi kadar eskidir ve kriptografi biliminin temellerini

oluşturmaktadır. Tarihte Romalıların Sezar şifrelemesinden , günümüzün gelişmiş

değişik şifreleme metod ve algoritmalarına kadar bu çaba sürmüştür, görünen o ki

bilginin boyutu ile de katlanarak artacaktır. Bir taraf bilgiye sahip olacak ve

saklayacak , birileri de saklananı elde etmeye, kendine göre değişik amaçlarla

kullanmaya çalışacaktır. Öyle ki iyi ve kötü dahi burada subjektif kalacaktır.

Örneğin, kendi ülkesi için başka bir ülkenin haberleşme şifrelerini çözmeye çalışan

kişi , ülkesi için “iyi”, diğer taraf için “kötü” olacaktır.

Kısacası şifreleme ve şifreleri çözme çabası , her zaman devam edecektir, daha

gelişmiş şifreleme teknikleri çıkacak , bunlar da farklı yöntemlerle kırılmaya

çalışılacaktır; önemli olan bu yarışta kazanmak değil, daima güncel olabilmektir,

çünkü “kırılamayacak algoritma yoktur”. Bu sanıyorum Hint destanlarındaki iyi ile

kötünün mücadelesi gibidir, asla bitmeyecektir.

Bizim tez çalışmamız , bir standart olarak kabul gören AES algoritmasını ve akıllı

kart gerçeklemesine yönelik bir saldırı olan farksal güç analizi saldırısını

incelemektir. Gerçeklemede önlem alınmadığı takdirde AES algoritmasının ciddi bir

 ii

zayıflığı olduğu tez çalışması kapsamında ayrıntılı olarak incelenmiştir; tasarımcılar

bir güvenlik açığı ile karşı karşıya kalmamak için önlem almalıdırlar.

Tez çalışmalarım sırasındaki özverili yardımlarından dolayı danışman hocam Yrd.

Doç. Dr. Sıddıka Berna Örs Yalçın’a teşekkür ederim. Bu yoğun dönemde bana

manevi desteğini esirgemeyen eşim Ayça Kayış’a şükran borçluyum.

Haziran 2006 Hakan KAYIŞ

 iii

İÇİNDEKİLER

ÖNSÖZ ıı
KISALTMALAR vı
TABLO LİSTESİ vıı
ŞEKİL LİSTESİ vııı
SEMBOL LİSTESİ ıx
ÖZET x
SUMMARY xıı

1. GİRİŞ 1
1.1. Giriş ve Çalışmanın Amacı 1

2. SONLU UZAY ARİTMETİĞİ 2
2.1. Giriş 2
2.2. Bayt Gösterim Şekilleri 2

2.2.1. İkilik Gösterim 3
2.2.2. Onluk Gösterim 3
2.2.3. Onaltılık Gösterim 3
2.2.4. Polinom Gösterim 4

2.3. Polinom Toplama işlemi 5
2.4. Polinom Çarpım işlemi 6
2.5. Polinom Bölme işlemi 7

3. AES - GELİŞMİŞ ŞİFRELEME STANDARDI 10
3.1. Giriş 10
3.2. Rijndael Algoritmasının Genel Yapısı 11
3.3. Durum Atanması 14
3.4. Bayt yer değiştirme 14
3.5. Satır Öteleme İşlemi 17
3.6. Sütun karıştırma işlemi 19
3.7. Tur sonu XOR işlemi 22
3.8. Anahtar liste Mekanizması 23

3.8.1. Kelime Döndürme işlemi 26
3.9. AES şifreleme adımları örneği 31

4. GÜÇ ANALİZİ SALDIRISI 33
4.1. Giriş 33
4.2. Basit güç analizi saldırısı 34
4.3. Farksal güç analizi saldırısı 35
4.4. Saldırı için Öngörülen Algoritma 36

4.4.1 Saldırı Amaçlı Model 1 36
4.4.2 Saldırı Amaçlı Model 2 38

4.5. Teorik Altyapı 39

 iv

4.6. Ölçüm İşlemleri 40
4.7. Saldırı Öncesi Benzetim Çalışması 42

4.7.1. Giriş dosyaları 42
4.7.2. Yazılan Programlar 43

4.7.2.1 AES Şifreleme 43
4.7.2.2 Şifre Çözme 44
4.7.2.3 Bellek İçerik Gösterimi 44
4.7.2.4 Durum Geçişi Analizi 47
4.7.2.5 Saldırı Noktası Durum Geçiş Analizi Sonuç Çıktıları 49
4.7.2.6 Tüm Bellek Durum Geçiş Analizi Sonuç Çıktıları 50
4.7.2.7 Saldırı Noktası Durum Bit Analizi Sonuç Çıktıları 50

4.8. Farksal Güç analizi Saldırısı, Verilerin Kullanımı 52
4.9. Farksal Güç analizi Saldırısı, Ölçüm Verileri Kullanımı 60

5. SONUÇLAR VE TARTIŞMA 61

KAYNAKLAR 62

ÖZGEÇMİŞ 64

 v

KISALTMALAR

AES : Advanced Encryption Standart
DES : Data Encryption Standart
NIST : National Institute of Standards and Technology
SPN : Substitution-Permutation Network
TDES : Triple Data Encryption Standart
SPA : Simple Power Analysis
DPA : Differential Power Analysis
XOR : Exclusive OR
GF : Galois Field
CMOS : Complementary Metal Oxide Semiconductor
RCON : Round constant
FPGA : Field Programmable Gate Array
NSA : National Security Agency

 vi

TABLO LİSTESİ

Sayfa No

Tablo 2.1 : XOR işlemi sonuçları 5

Tablo 3.1 : Anahtar uzunluğu – tur sayısı ilişkisi 11

Tablo 3.2 : Byte Yer Değiştirme tablosu– S kutusu[xy] (onaltılık düzende) 16

Tablo 3.3 : rcon değerleri 25

 vii

ŞEKİL LİSTESİ

 Sayfa No

Şekil 2.1
Şekil 2.2
Şekil 2.3
Şekil 2.4
Şekil 2.5
Şekil 2.6
Şekil 3.1
Şekil 3.2
Şekil 3.3
Şekil 3.4
Şekil 3.5
Şekil 3.6
Şekil 3.7
Şekil 3.8
Şekil 3.9
Şekil 3.10
Şekil 3.11
Şekil 4.1
Şekil 4.2
Şekil 4.3
Şekil 4.4
Şekil 4.5
Şekil 4.6
Şekil 4.7

Şekil 4.8

Şekil 4.9

Şekil 4.10
Şekil 4.11

Şekil 4.12
Şekil 4.13

Şekil 4.14
Şekil 4.15

: ”Klasik” polinom toplama işlemi
: İkilik polinom toplama işlemi
: ”Klasik” polinom çarpımı
: İkilik polinom çarpım işlemi
: ”Klasik” polinom bölme işlemi
: İkilik düzende bölme işlemi
: AES turları
: Tüm AES resmi
: Durum Ataması işlemi
: Bayt yer değiştirme işlemi
: Satır öteleme işlemi
: Sütun öteleme işlemi
: Tur sonu değeri ile XOR işlemi
: Anahtar üretme fonksiyonu
: Anahtar Üretimi
: Kelime döndürme işlemi
: AES işlem değerleri
: Yan kanal çıkışları
: Saldırı amaçlı model-1’e ait algoritma
: Saldırı amaçlı model-2’e ait algoritma
: Ölçüm düzeneği
: Devre yapısı için geliştirilen algoritma
: AES algoritması için öngörülen register düzeneği resmi
: R2, Model 1 için Anahtarın En yüksek Anlamlı Bitinin

korelasyon değerleri
: R2, Model 1 için Kullanılan mesaj sayısının korelasyon

bağlantısı
: R3, Model 1 için Anahtarın En yüksek Anlamlı Bitinin

korelasyon değerleri
: R3, Model 1 için kullanılan mesaj sayısının korelasyon değerleri
: R2, Model 2 için Anahtarın En yüksek Anlamlı Bitinin

korelasyon değerleri
: R2, Model 2 için kullanılan mesaj sayısının korelasyon değerleri
: R3, Model 2 için Anahtarın En yüksek Anlamlı Bitinin

korelasyon değerleri
: R2, Model 2 için kullanılan mesaj sayısının korelasyon değerleri
: Benzetim Verisi ile gerçek ölçümün birleştirilmesi ve korelasyon

eldesi

 5
 6
 6
 7
 8
 9
12
13
14
15
18
20
22
24
25
26
32
33
38
39
42
45
53
55

56

57

57
58

58
59

59
60

 viii

SEMBOL LİSTESİ

R1 : Register 1
R2 : Register 2
R3 : Register 3
R4 : Register 4
R5 : Register 5
S : Durum
GF : Galois Field, Galois Uzayı
F : AES adımlarının herbiri
K1 ... 10 : AES Anahtar dizisinden tur değerleri
S1... S15 : AES Durum bytelarının herbiri
bi : işlem yapılan bit değerleri
mi : Ölçüm matrisi değerleri
ci,j : Tahmin için gerekli ölçüm miktarı değeri

 ix

AES UYGULAMASI’NIN FPGA GERÇEKLEMELERİNE KARŞI GÜÇ

ANALİZİ SALDIRISI

ÖZET

AES algoritmasının FPGA kart gerçeklemeleri , çalışma sırasında yan kanal etkisi

olarak değişik çıktılar üretirler; ısı, elektromanyetik radyasyon, güç harcaması gibi.

Bu çıktılar önlem alınmadığı takdirde şifreleme algoritmasına ve anahtarına ait

bilgiler içerebilirler.

Tez kapsamında 128 bit anahtar kullanılan AES algoritması ve bu algoritmanın akıllı

kart gerçeklemesine yönelik farksal güç analizi incelenmiştir.Günümüzde AES

algoritması ve donanım gerçeklemeleri yoğun olarak kullanılmaktadır. Farksal güç

analizi ilk olarak Paul KOCHER tarafından 1998 yılında gündeme getirilmiştir.

Farksal güç analizinin temel prensibi , gerçeklemenin yapıldığı akıllı kartta

kullanılan registerların durum değiştirme anında harcadıkları gücün AES

algoritmasının temel dayanağı olan şifreleme anahtarına ait bilgi içermesidir.

Algoritmanın gerçeklemesi sırasında fonksiyonlar arası geçişler registerlarda

tutulmaktadır. Registerlarda saklanan bit değerleri, değişimlerini 4 farklı şekilde

yapabilirler ; 0 > 0, 0 > 1, 1 > 0, 1 > 1 şeklinde geçişler mümkündür. Güç harcaması

0 > 1 geçişinde diğer durum değiştirmelerine göre çok daha fazladır ve diğerleri

bunun yanında ihmal edilebilir.

Bu işlem için 20000 adet giriş değeri alınmış ve yazılan C programları ile öngörülen

model kapsamında güç harcaması analizi yapılmıştır. Belli tur ve saat dilimindeki

güç harcaması , anahtarın sadece 1 byte değeri değiştirilerek incelenmiş ve bir

korelasyon analizi yapılmıştır. Bu veriler gerçek ölçüm verileri ile beraber

kullanılacaktır.

Güç harcamasının bu karakteristiği, bize yapılan ölçümler ile AES anahtarının

korelasyon analizi yardımı ile eldesini mümkün kılar. Ölçüm ortamının kalitesine

 x

göre belli sayıda güç ölçümü , bir bilgisayarda yapılan öngörülen model güç harcama

verileri ile beraber kullanılarak AES anahtarına ait 8 bit elde edilir. Analiz, 8 bitlik

anahtar parçasını elde etmeye yöneliktir ve öngörülü model için hazırlanan veri ile

sırayla 128 bitlik anahtarın tamamı elde edilebilir.

 xi

DIFFERENTIAL POWER ANALYSIS ATTACK AGAINST FPGA

IMPLEMENTATION OF AES ALGORITHM

SUMMARY

Implementations of the AES algorithm on FPGA cards produce side channel effects

during runtime; like heat, electromagnetic radiation, power consumption .If not

avoided in the design phase, these side channel effects may have information about

the algorithm and the AES encryption key .

In our thesis work, AES with 128 bits encryption key and differential power analysis

(DPA) against the FPGA implementation of this algorithm is studied. Nowadays, the

AES algorithm and hardware implementations are mostly used. Differential power

analysis against the hardware implementations are firstly pronounced by Paul

KOCHER in 1998 .

The basic principal of the DPA depends on the power consumption of the toggle

operation of the registers used in the implementation of FPGA; this side effect may

have information about one of the main part of the algorithm, the AES key.

In the implementation, the transition results between the AES function blocks are

stored in registers. The transition of the bits stored in registers may vary in 4

different states; as given 0 > 0, 0 > 1, 1 > 0, 1 > 1 . The power consumption is much

more than the others in 0 > 1 transition and the others can be negligible according to

this one.

For the analysis , 20000 input text is prepared and analyzers coded in C are used for

DPA for the assumed models. The power consumption is calculated in the suggested

round and clock cycle and correlation analysis is done. After all, the datas gathered

in this phase will be used with the measured data from the FPGA card.

The characteristics of the power consumption makes it feasible to get the AES key

with the correlation analysis. Depending on the quality of the measurement system,

 xii

an amount of the measurement data, an analysis of the DPA for the suggested model

in a PC , the 8 bits of the AES key can be found. Analysis is for 8 bits and after all,

by repeating this procedure , all 128 bits of the key can be found.

 xiii

1. GİRİŞ

1.1 Giriş ve Çalışmanın Amacı

Tez kapsamında 128 bit anahtar kullanılarak 128 bitlik girişlerin şifrelendiği

algoritma incelenmiştir. AES Algoritmasına Farksal Güç Analizi saldırısı

incelenmesi 3 farklı bölümde gerçeklendi.

2. bölümde konuya ait matematiksel altyapı ve kullanılan aritmetik işlemleri örnekler

de verilerek ayrıntılı olarak incelendi.

3. bölümde AES algoritmasının ayrıntılı olarak incelenmesi yapıldı. Algoritmaya ait

anahtar üretme fonksiyonu, bayt yer değiştirme, satır öteleme, sütun karıştırma , tur

sonu XOR işlemi fonksiyonları şekillerle anlatıldı. Bu fonksiyonların C

gerçeklemesinin kod bölümleri de açıklamalar eklendi. Bölüm sonunda verilen bir

şifre ve giriş için 10 tur boyunca tüm işlem sonuçlarını içeren örnek verildi.

Son bölümde ise yan kanal saldırılarına ait basit bir açıklama yapıldıktan sonra

belirlediğimiz 2 tane gerçekleme modeline ait algoritmalar için analiz amaçlı yazılan

programlar ayrıntılı olarak anlatıldı, analizler sonucunda oluşan korelasyon

sonuçlarına ait grafikler verildi , inceleme sonucunda 1. turun 2. saat diliminde R2

belleği , yani bayt yer değiştirme işlem sonucu belleği ve 3. saat diliminde saldırı R3

belleği, yani satır öteleme belleği içerik değişimlerinin uygun olduğu görüldü.

Analiz programlarının öngörülen modeller için korumasız yapılacak akıllı kart

gerçeklemelerinin saldırıya açık oldukları tespit edildi ve sonuç olarak gösterildi.

Yazılan programlar ve programlar sonucunda oluşturulan analiz verileri, ekler altında

bir CD’de verilmiştir.

 1

2. SONLU UZAY ARİTMETİĞİ

2.1 Giriş

Sonlu uzay aritmetiği, sonlu sayıda eleman içeren sayı uzayı içerisinde, tanımlı tüm

işlemlerin yine aynı uzayda sonuçlar ürettiği aritmetiktir. Bu özelliği ile normal

aritmetikten ayrılmaktadır. Yine bu özelliğinden dolayı da birçok alanda uygulama

bulmaktadır, kriptografi ve Rijndael şifreleme algoritması da bunların arasındadır.

Bu bölümde bir baytın değişik gösterilim şekilleri gösterilmiştir ve sonlu uzayda

temel aritmetik işlemleri anlatılmaktadır. Sonlu uzay kavramı aynı zamanda Galois

Uzayı olarak da tanımlanır. En basit ifade ile sonlu sayıda eleman içeren uzay

şeklinde tanımlanabilir.Örnek Galois sonlu uzayı,

GF(), = 256 82 82

adet farklı sayı içermektedir. Bu sayılar bir bayt ile gösterilebilen (0 . . . 255)

arasındaki sayılardır. Rijndael şifreleme algoritmasında karakteristiği 2 olan Galois

Uzayı (GF()) kullanılmaktadır. 82

Devam eden bölümlerde anlatılan işlemlerde sonlu uzaya ait iki elemanın toplama

veya çarpması anlatılmaktadır ve sonuç yine sonlu uzay içinde bir elemandır. Özel

XOR ve kalan işlemleri, işlem sonucunun sonlu uzayda olmasını sağlamaktadır [3].

2.2 Bayt Gösterilim Şekilleri

Aşağıdaki dört bölümde sonlu uzaydaki bir elemana ait farklı gösterilim şekilleri

verilmiştir. Ayrıca birer örnekte her gösterilim için eklenmiştir.

 2

2.2.1 İkilik Gösterilim

Bir bayt , 8 bit içermektedir. Aşağıda ikilik gösterilime ait örnek vardır.

 210100011

2.2.2 Onluk Gösterilim

Onluk gösterilim, ikilik sayının tüm bitlerinin karşı düşen ikinin üs değeri ile çarpılıp

toplanması ile elde edilen sayıdır. Ekteki örnekte ayrıntılı gösterilim mevcuttur:

1 · + 0 · + 1 · + 0 · + 0 · + 0 · + 1 · + 1 · = + + + (1) 72 62 52 42 32 22 12 02 72 52 12 02

 = 128 + 32 + 2 + 1

 =

10163

2.2.3 Onaltılık Gösterilim

0 ile 15 arası rakamlar dört bit ile gösterilebilirler . Ancak 10 ile 15 arası rakamlar (0

. . . 9) arası rakamlarla gösterilemezler ve bu nedenle A ile F arası harfler onaltılık

düzende bu rakamları göstermek için kullanılırlar.

20000 = = 100 160

20001 = = 101 161

20010 = = 102 162

20011 = = 103 163

20100 = = 104 164

20101 = = 105 165

20110 = = 106 166

20111 = = 107 167

21000 = = 108 168

21001 = = 109 169

 3

21010 = = 1010 16A

21011 = = 1011 16B

21100 = = 1012 16C

21101 = = 1013 16D

21110 = = 1014 16E

21111 = = 1015 16F

İkilik gösterilimden onaltılık gösterilime geçmek için bir bayt iki adet dörtlüye

bölünür ve her iki dörtlü, karşı düşen onaltılık karşılığı ile gösterilir. Aşağıdaki

örnekte ayrıntılı gösterilmiştir:

b10100011 = = { {

hhA 3
00111010 hA3

Onaltılık düzenden onluk düzene geçmek için sol hane 16 sayısı ile çarpılır ve sağ

hane 1 ile çarpılır ve her iki çarpım sonucu toplanır:

A = A · + 3 · = 10 · 16 + 3 · 1 = 160 + 3 = h3 42 02 d163

2.2.4 Polinom Gösterilim

Bir baytın polinom gösterilimi ikilik sistemden onluk sisteme geçmek için kullanılan

(1) denklemine çok benzer. Bu denklemde 2 sayısı yerine x konularak polinom

gösterilim elde edilir:

1 · + 0 · + 1 · + 0 · + 0 · + 0 · + 1 · + 1 · = + + + 1 7x 6x 5x 4x 3x 2x 1x 0x 7x 5x x

Unutulmaması gereken en önemli nokta polinom gösterilimde GF() sonlu

uzayında katsayıların 1 değerini alabileceğidir. (ve 0 değeri tabiki).

82

 4

2.3 Polinom toplama işlemi

İki adet polinomun toplaması işlemi aynı üstel değere sahip x değerlerinin

katsayıların toplanması şeklindedir ve Şekil 1’de gösterilmiştir.

 (+ + + + 1) + (+ + + 1) 6x 4x 2x x 7x 5x x

 + + + + 1 6x 4x 2x x

 + + + 1 7x 5x x

 + + + + + 2 + 2 7x 6x 5x 4x 2x x

Şekil 2.1: “Klasik” polinom toplama işlemi

Bu işlem sonucunda sonuç polinomun bazı katsayıları 0 veya 1 olmayabilir.

(Şekil2.1’de 2x ve 2 değerinde olduğu gibi), bu nedenle sonuç polinomu bir bayt

gösterilimi olamayacaktır.

Toplama sonuç polinomunda sadece ikilik düzende katsayıların olmasını sağlamak

için Tablo 2.1’de sonuç kümesi gösterilmiş olan XOR işlemi kullanılacaktır. İki adet

1 rakamının XOR işlemi 2 olmadığından sonuç polinomda 2 değerinde katsayı

olmayacaktır.

Tablo 2.1: XOR işlemi sonuçları

X y x xor y

0 0 0

0 1 1

1 0 1

1 1 0

Şekil 2.2’de 2 adet ikilik düzende sayının toplama işlemi ve sonuç bayt değeri

gösterilmiştir:

 5

Şekil 2.2: İkilik polinom toplama işlemi

Sonuç polinomu

b11110100 = = = + + + + d244 hF 4 7x 6x 5x 4x 2x

Şekil 2.2’deki değeri gösterir , burada 2x ve 2 değerleri çıkarılmıştır.

2.4 Polinom Çarpım İşlemi

İki adet polinomun çarpımı, aynı üstel değere sahip x’lerin katsayılarının toplanması

ile gerçeklenir. Bu klasik polinom çarpımıdır.

 (+ + + + 1) * (+ + + 1) 6x 4x 2x x 7x 5x x

 + + + 1 + 7x 5x x
 + + + + 8x 6x 2x x

9x + 7x + + + 3x 2x
 + + + + 11x 9x 5x 4x

13x + + + + 11x 7x 6x

 +2 +2 + +3 +2 +2 + + +2 +2 +1 13x 11x 9x 8x 7x 6x 5x 4x 3x 2x x

Şekil 2.3: “Klasik” polinom çarpımı

Tekrar klasik polinom çarpımında bazı katsayılar 1 veya 0 değerinden farklı değerler,

(2 ve hatta 3 değerleri) almıştır. Bu katsayılar sonlu uzay işleminde bu değerleri

almamalıdırlar ve bu nedenle düzenlenmesi gereklidir. Bu nedenle genelleştirilmiş

1 0 1 0 1 1 1 + 1 0 1 0 1 1 1

1 0 1 0 0 0 1 1

1 0 1 0 1 1 1

1 1 1 1 0 1 0 0

)3163(hd A=)5787(hd =

bitxor

)4244(hd F=

 6

XOR işlemi her katsayı için gözönüne alınmalıdır ve her tek sayı 1 değerine

çevrilmelidir.

13x + + + + + 1 8x 7x 4x 3x

Şekil 2.4’de bit seviyesinde çarpma işlemi verilmiştir. İkilik sayılardan bir tanesi

diğerinin bit değerine göre her bit için ötelenir. Eğer sıradaki sayı 1 değerinde ise

diğer baytın hepsi, 0 ise sadece 0 değerleri konulur. Sırayla her bit için öteleme

işlemi bittikten sonra aynı sıradaki tüm bitler xor işlemine tabi tutulurlar ve sonuç bit

serisi elde edilir.

)3163(hd A=)5787(hd =

Şekil 2.4: İkilik polinom çarpım işlemi

Ancak sonuçta görüldüğü üzere polinomumuzun derecesi 7 değerinden büyüktür ve

bayt olarak gösterilemez; sonuç polinomunun GF() içinde değildir. Sonucun

Galois sonlu uzayında olması için indirgenmesi gerekmektedir.

82

2.5 Polinom Bölme işlemi

Klasik bölme işlemi Şekil 2.5’de gösterilmiştir:

1 0 1 0 1 1 1 * 0 0 1 11 0 1 0

0 0 1 11 0 1 0

XOR

)21998601(hd =

0 0 0 0 1 0 1 1 1 1 1 0 0 1

1 0 1 0 0 1 10

1 0 1 0 0 1 10

0 0 0 00 0 0 0

1 0 1 0 0 1 10

0 0 0 0 0 0 0 0

1 0 1 0 0 0 1 1

Bit öteleme

 7

 (+ + + + + 1) : (+ + + + 1) = - 13x 8x 7x 4x 3x 8x 4x 3x x 5x x

 - (+ + + +) 13x 9x 8x 6x 5x

 - + - - + + + 1 9x 7x 6x 5x 4x 3x
- (- - - - -) 9x 5x 4x 2x x

 - +2 + + + + 1 7x 6x 4x 3x 2x x

Şekil 2.5: “Klasik” polinom bölme işlemi

Bölünen polinomun en büyük üstel değeri (x13) , bölenin en yüksek üstel değeri (x8)

ile bölünür ve sonuç (x5) olarak elde edilir. Daha sonra (x5) bölenin tüm değerleri ile

çarpılarak bölünen polinomunda çıkarılır ve yeni bir bölünen polinomu elde edilir:

(- + - - + + + 1) 9x 7x 6x 5x 4x 3x

Daha sonra aynı işlemler tekrar yapılır ve bu işlem bölünen polinomunun en yüksek

üstel değeri bölenin en yüksek üstel değerinden küçük değerde oluncaya kadar

devam eder. En sonda kalan bölünen, işlem sonucunda kalan polinomunu oluşturur:

 (- + 2 + + + + 1) 7x 6x 4x 3x 2x x

Sonuç polinomuna genel xor işlemi uygulanarak (tek katsayılar > 1 , çift katsayılar >

0 işlemi) bayt gösteriliminde sonuç elde edilir:

(+ + + + + 1) 7x 6x 3x 2x x

Bit seviyesinde işlemler Şekil 2.6 ‘da gösterilmiştir:

 8

)11283(hd B=)21998601(hd =

Şekil 2.6: İkilik düzende bölme işlemi

)207(hd CF=

XOR

XOR

1 0 0 0 0 1 1 : 0 0 1 1 0 0 1 1 0 0 1 1 1 1 00

1 0 0 0 1 1 0 1 1

0 0 0 0 1 0 1 1 1 1 1 0 0 1

1 0 0 0 1 1 0 1 1

Bit ötele

0 0 1 1 0 0 1 11 1

 9

3. AES - GELİŞMİŞ ŞİFRELEME STANDARDI

3.1 Giriş

Teknolojinin geliştiği ve gelişmeye çok hızlı bir şekilde devam edeceği bu bilgi

çağında bilgisayarlar ve internet ortamı hayatımızın vazgeçilmez birer unsuru haline

gelmiştir. Böyle bir ortamda bilginin korunması ve bir noktadan bir noktaya

iletilmesi çok büyük önem kazanmıştır. Verilerin güvenli bir biçimde aktarımı ve

elde edilmesi için, kriptografi bilimi aracılığı ile çeşitli şifreleme, anahtarlama ve

çözümleme algoritmaları oluşturulmaktadır. Bu yeni algoritmalar gelişen teknolojiye

uygun bir şekilde oluşturulmalı ve gelişen teknolojilere uygun tasarlanmalıdır.

Şifreleme algoritmalarını yapısal olarak iki ana gruba ayırabiliriz. Simetrik ve

Asimetrik şifreleme algoritmaları. Simetrik şifreleme algoritmalarında verilerin

şifrelenmesinde ve şifrenin çözülmesinde tek anahtar, Asimetrik şifreleme

algoritmalarında şifreleme ve şifre çözmede ayrı iki anahtar kullanılmaktadır.

Bu yeni oluşturulan algoritmaların standartlaşması için birçok ülke kendi

standartlaştırma enstitülerini kurmuştur. Bunların en önemlisi Amerika’da 1960’da

kurulan NIST’tir. NIST 1977 yılında bir simetrik şifreleme algoritması olan DES’i

bir standart olarak belirlemiştir. DES uzun yıllar güvenilir bir algoritma olarak

kullanıldı. Kriptanalistler teknolojinin gelişimine paralel daha güçlü donanıma sahip

bilgisayarlar sayesinde DES kırmak için yoğun bir şekilde uğraştılar. Bunun sonucu

olarak DES kırılmıştır ve daha güvenli olan TDES kullanılmaya başlanmıştır. TDES

arka arkaya DES şifreleme algoritmasını tekrarlayarak ortaya çıkmıştır. DES’in ve

TDES’ in güvenirliğini kaybetmesiyle NIST yeni şifreleme algoritmasına

yönelmiştir.

1997’de NIST DES’in yerine AES’i seçmek ve geliştirmek için bir program

duyurdu. Tek bir standart geliştirmek için kriptografi topluluğundan algoritmalar

 10

istediler. 1998 yılında 15 algoritma önerildi ve NIST bunların içinden beş finalisti

1999 yılında seçti. NIST’in planı 2000 yılında standart olması için bir yada birkaç

algoritma seçmekti.

DES’in yerine getirilen AES, daha hızlı daha güçlü ve daha ucuz olmalıydı.

Yazılımda kullanıldığı zaman daha hızlı olmakla birlikte donanımda da kolay

kullanılabilmeliydi (Akıllı kart vs). Uzun zaman kullanımda olan DES gibi o da

saldırılara uzun süre karşı koymalıydı. Bir çok algoritma uzun süre incelendikten

sonra beş tane finalistte karar kılındı. Bunlar Serpent, Rc6, Rijndael, Twofish ve

Mars şifreleme algoritmalarıydı. Bu noktadan sonra bu algoritmalar arasından

hangisinin standartlaşması gerektiği hakkında yoğun çalışmalar yapıldı. Bu beş

finalist arasında şifreleme ve şifre çözme hızlarının yanında yazılım ve donanım

uygunluğu, kolay uygulanması ve en önemli olarak güvenlik performansı açısından

incelendi. Bu çalışmalardan sonra Rijndael şifreleme algoritması birinci olarak

seçildi [1].

3.2 Rijndael Algoritmasının Genel Yapısı

AES (Rijndael) algoritması 128 bit veri bloklarını 128, 192, 256 bit anahtar

seçenekleri ile şifreleyen bir algoritmadır. Döngü sayısı anahtarın büyüklüğüne yani

içerdiği bit sayısına göre değişmektedir. Tablo 3.1’de şifreleme anahtar uzunluğu ve

bunlara karşı düşen şifreleme tur sayıları verilmiştir:

Tablo 3.1: Anahtar uzunluğu – tur sayısı ilişkisi

Anahtar uzunluğu (bit) Tur sayısı

128 10

192 12

256 14

DES, 56 bitlik anahtar ile 64 bitlik bloğu şifrelemektedir. Triple DES (üçlü DES) ise

 11

genellikle 112 bitlik anahtar ile 64 bitlik blokları şifrelemektedir.

F F F
Giriş Çıkış

K0

K1 K2 K10

Şekil 3.1: AES turları

Geliştirilmiş şifreleme standardının (AES) işlemsel yolu Şekil 3.1’de gösterilmiştir.

AES algoritmasında her tur dört katmandan oluşur. İlk olarak 128 bit veri 4×4 bayt

matrisine dönüştürülür. Daha sonra her döngüde sırasıyla baytların yerdeğiştirmesi,

satırların ötelenmesi, sütunların karıştırılması ve anahtar planlamadan gelen o tur için

belirlenen anahtar ile XOR’lama işlemleri yapılır. Baytların yerdeğiştirilmesinde 16

bayt değerinin her biri 8 bit girişli ve 8 bit çıkışlı S kutusuna sokulur. S kutusu

değerleri, Galois alanı’nda (Galois Field - GF) GF(28), 8 bitlik polinom için

çarpmaya göre ters alındıktan sonra doğrusal bir dönüşüme sokularak elde edilmiştir.

Satırların ötelenmesi işleminde 4×4 bayt matrisinde satırlar ötelenmiş ve sütunların

karıştırılması işleminde herhangi bir sütun için o sütundaki değerler karıştırılmıştır.

Döngünün son katmanında ise o döngüye ait anahtar ile XOR işlemi yapılmaktadır.

Şekil 3.2, 128 bit anahtar ile şifreleme için AES algoritmasını göstermektedir [6].

 12

Şekil 3.2: Tüm AES resmi [2].

1

2

3

4

5

6

7

8

9 13 K0

10

12

14
Açık Metin

11 15

16

Byte
Yerdeğiştirme

Satırları
Öteleme

Sütunları
Karıştırma

Tur 1

K1

Byte
Yerdeğiştirme

Satırları
Öteleme

Sütunları
Karıştırma

K2

Byte
Yerdeğiştirme

Satırları
Öteleme

Sütunları
Karıştırma

K3

Byte
Yerdeğiştirme

Satırları
Öteleme

Sütunları
Karıştırma

K4

Byte
Yerdeğiştirme

Satırları
Öteleme

Sütunları
Karıştırma

K5

Byte
Yerdeğiştirme

Satırları
Öteleme

Sütunları
Karıştırma

K6

Byte
Yerdeğiştirme

Satırları
Öteleme

Sütunları
Karıştırma

Tur 2

K7

Byte
Yerdeğiştirme

Satırları
Öteleme

Sütunları
Karıştırma

K8

Byte
Yerdeğiştirme

Satırları
Öteleme

Sütunları
Karıştırma

K9

Byte
Yerdeğiştirme

Satırları
Öteleme

Tur 3

Tur 4

Tur 5

Tur 6

Tur 7

Tur 8

Tur 9

Tur 10

Şifreli Metin

K10

 13

AES’de baytlar üzerinde tanımlanan operasyonlar kullanılmasının yanında, 2 önemli

avantaj sağlamaktadır:

• AES 'in katıksız yazılım uygulaması çok hızlıdır. Örneğin Pentium 200Mhz

üzerinde çalışan bir C++ uygulaması, 70Mbit/s şifreleme performansı

göstermektedir ;

• AES 'in farksal ve doğrusal şifreleme analizlerine direnci S kutusu seçimine

bağlı değildir. DES için S kutuların NSA için açık içerdiğinden

şüphelenilmektedir. Aslında bütün operasyonlar basittir.

3.3 Durum Atanması

16 baytlık giriş veri bloğu için işlemler 4x4 lük matris formuna atanarak yapılır.

Bunun için veri bloğumuzu ilk olarak bu matrise çevirmemiz gerekmektedir. Şekil

3.3’de bu işlem gösterilmiştir.

Şekil 3.3: Durum Ataması işlemi

3.4 Bayt yer değiştirme

Bayt yer değiştirmesi işlemi , 16 baytlık tüm veri bloğunun baytları için ayrı ayrı

yeni bayt değerleri yaratılmasıdır. Bu dönüşüm işlemi için S kutusu (S-box) tabloları

kullanılır [4].

Şekil 3.4’de 16 baytlık bir blok için bayt yer değiştirme işlemi gösterilmiştir:

1

2

3

4

5

6

7

8

9 13

10

12

14
Açık Metin

11 15

16

 14

S-kutusu

Şekil 3.4: Bayt yer değiştirme işlemi

Bayt Yer Değiştirme işlemi tersi olan bir işlemdir ve iki adet dönüşüm ile elde edilir:

1. İlk adımda çarpmaya göre ters işlemi uygulanır.

3. İkinci adımda GF(2) uzayında Ilgın dönüşüm uygulanır.

iiiiiii cbbbbbb ⊕⊕⊕⊕⊕= ++++ 8mod)7(8mod)6(8mod)5(8mod)4(
'

Matris formunda S kutusundaki ılgın dönüşümü (2) denklemi ile gösterilmiştir:

S kutusu için yer değiştirme işleminin olası tüm sonuçları Tablo 3.2’de gösterilmiştir.

S0,0

S1,0

S2,0

S3,0

S0,1

S2,1

S3,1

S0,2

S1,2

S3,2

S0,3

S2,2

S1,3

S2,3

S3,3

Ś0,0

Ś 1,0

Ś 2,0

Ś 3,0

Ś 0,1

Ś 2,1

Ś 3,1

Ś 0,2

Ś 1,2

Ś 3,2

Ś 0,3

Ś 2,2

Ś 1,3

S1,1 Ś 1,1

Ś 2,3

Ś 3,3

b’7

b’6

b’5

b’4

b’3

b’2

b’1

b’0

=

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

b7

b6

b5

b4

b3

b2

b1

b0

0

1

1

0

0

0

1

1

(2) +

 15

Tablo 3.2: Bayt Yer Değiştirme tablosu– S kutusu[xy] (onaltılık düzende)

y
Hex

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7c 77 7b f2 6b 6f c5 30 1 67 2b fe d7 ab 76

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

3 4 c7 23 c3 18 96 5 9a 7 12 80 e2 eb 27 b2 75

4 9 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

5 53 d1 0 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

6 d0 ef aa fb 43 4d 33 85 45 f9 2 7f 50 3c 9f a8

7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a e0 32 3a 0a 49 6 24 5c c2 d3 ac 62 91 95 e4 79

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 8

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d 70 3e b5 66 48 3 f6 0e 61 35 57 b9 86 c1 1d 9e

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

x

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Yazılımda ise yer değiştirme fonksiyonu aşağıdaki kod ile gerçeklenmiştir:

 k = 0;

 while (k < Nk)

 {

 // buraya r1 ara degeri konacak.

 enc[k].key0 = r1_ara[4*k];

 enc[k].key1 = r1_ara[4*k+1];

 enc[k].key2 = r1_ara[4*k+2];

 enc[k].key3 = r1_ara[4*k+3];

 16

 // subbytes

 a = enc[k].key0/16; b = enc[k].key0%16;

 sb_output = s_box[a][b];

 enc[k].key0 = sb_output;

 a = enc[k].key1/16; b = enc[k].key1%16;

 sb_output = s_box[a][b];

 enc[k].key1 = sb_output;

 a = enc[k].key2/16; b = enc[k].key2%16;

 sb_output = s_box[a][b];

 enc[k].key2 = sb_output;

 a = enc[k].key3/16; b = enc[k].key3%16;

 sb_output = s_box[a][b];

 enc[k].key3 = sb_output;

 k = k+1;

 } // register r2 dolduralim. after subbytes register

 for (i=0; i<=3; i++)

 {

 r2[n][4*i] = enc[i].key0;

 r2[n][4*i+1] = enc[i].key1;

 r2[n][4*i+2] = enc[i].key2;

 r2[n][4*i+3] = enc[i].key3;

 }

3.5 Satır Öteleme İşlemi

Satır öteleme işlemi son üç satır üstünde işlem yapar. Şekil 3.5’de gösterilmiştir [4].

 17

Şekil 3.5: Satır öteleme işlemi

Satır Öteleme işlemi yazılımda aşağıdaki kod ile gerçeklenmiştir:

 k = 0;

 while (k < Nk)

 {

 // buraya r2 ara degeri konacak.

 enc[k].key0 = r2_ara[4*k];

 enc[k].key1 = r2_ara[4*k+1];

 enc[k].key2 = r2_ara[4*k+2];

 enc[k].key3 = r2_ara[4*k+3];

 k = k+1;

 }

 temp.key0 = enc[0].key1;

 temp.key1 = enc[1].key1;

 temp.key2 = enc[2].key1;

 temp.key3 = enc[3].key1;

 enc[0].key1 = temp.key1;

 enc[1].key1 = temp.key2;

 enc[2].key1 = temp.key3;

 enc[3].key1 = temp.key0;

 temp.key0 = enc[0].key2;

S0,0

S1,0

S2,0

S3,0

S0,1

S2,1

S3,1

S0,2

S1,2

S3,2

S0,3

S2,2

S1,3

S2,3

S3,3

Ś0,0

Ś 1,0

Ś 2,0

Ś 3,0

Ś 0,1

Ś 2,1

Ś 3,1

Ś 0,2

Ś 1,2

Ś 3,2

Ś 0,3

Ś 2,2

Ś 1,3

Ś 2,3

Ś 3,3

S1,1 Ś 1,1

S0,0 S0,1

Satır Öteleme

S0,2 S0,3 Ś0,0 Ś 0,1 Ś 0,2 Ś 0,3

 18

 temp.key1 = enc[1].key2;

 temp.key2 = enc[2].key2;

 temp.key3 = enc[3].key2;

 enc[0].key2 = temp.key2;

 enc[1].key2 = temp.key3;

 enc[2].key2 = temp.key0;

 enc[3].key2 = temp.key1;

 temp.key0 = enc[0].key3;

 temp.key1 = enc[1].key3;

 temp.key2 = enc[2].key3;

 temp.key3 = enc[3].key3;

 enc[0].key3 = temp.key3;

 enc[1].key3 = temp.key0;

 enc[2].key3 = temp.key1;

 enc[3].key3 = temp.key2;

 // register r3 dolduralim. after shift rows register

 for (i=0; i<=3; i++)

 {

 r3[n][4*i] = enc[i].key0;

 r3[n][4*i+1] = enc[i].key1;

 r3[n][4*i+2] = enc[i].key2;

 r3[n][4*i+3] = enc[i].key3;

 }

///// r3 bitir /////

3.6 Sütun karıştırma işlemi

Sütun karıştırma işlemi girişine gelen 16 baytlık verinin sütunları üzerinde işlem

yapar. Bölüm 2.3’de gösterildiği gibi her sütun 4. dereceden bir polinom gibi

kullanılır.

Matris formunda yapılan işlem aşağıdaki gibidir:

 19

S’3,c

S’2,c

S’1,c

S’0,c

S’3,c

S’2,c

S’1,c

S’0,c

02 01 01 03

03 02 01 01

01 03 02 01

01 01 03 02

 =

Şekil 3.6’da sütun karıştırma işlemini nasıl çalıştığı gösterilmiştir [4].

Sütun
Karıştırma

Şekil 3.6: Sütun karıştırma işlemi

Sütun karıştırma işlemi yazılımda aşağıdaki kod ile gerçeklenmiştir:

 k = 0;

 while (k < Nk)

 {

 // buraya r3 ara degeri konacak.

 enc[k].key0 = r3_ara[4*k];

 enc[k].key1 = r3_ara[4*k+1];

 enc[k].key2 = r3_ara[4*k+2];

 enc[k].key3 = r3_ara[4*k+3];

 k = k+1;

 }

 k = 0;

S0,0

S1,0

S2,0

S3,0

S0,2

S1,2

S3,2

S0,3

S2,2

S1,3

S2,3

S3,3

Ś0,0

Ś 1,0

Ś 2,0

Ś 3,0

Ś 0,2

Ś 1,2

Ś 3,2

Ś 0,3

Ś 2,2

Ś 1,3

Ś 2,3

Ś 3,3

S1,1

S0,1 Ś 0,1

Ś 1,1

S2,1 Ś 2,1

S3,1 Ś 3,1

 20

 while (k < Nk)

 {

 temp.key0 = FFmul(0x02, enc[k].key0)^

 FFmul(0x03, enc[k].key1)^

 enc[k].key2^

 enc[k].key3 ;

 temp.key1 = FFmul(0x02, enc[k].key1)^

 FFmul(0x03, enc[k].key2)^

 enc[k].key3^

 enc[k].key0 ;

 temp.key2 = FFmul(0x02, enc[k].key2)^

 FFmul(0x03, enc[k].key3)^

 enc[k].key1^

 enc[k].key0 ;

 temp.key3 = FFmul(0x02, enc[k].key3)^

 FFmul(0x03, enc[k].key0)^

 enc[k].key2^

 enc[k].key1 ;

 enc[k].key0 = temp.key0;

 enc[k].key1 = temp.key1;

 enc[k].key2 = temp.key2;

 enc[k].key3 = temp.key3;

 k = k+1;

 } // register r4 dolduralim. after mix columns register

 for (i=0; i<=3; i++)

 {

 r4[n][4*i] = enc[i].key0;

 21

 r4[n][4*i+1] = enc[i].key1;

 r4[n][4*i+2] = enc[i].key2;

 r4[n][4*i+3] = enc[i].key3;

 }

3.7 Tur Anahtarı ile Toplama işlemi

AES algoritmasında her bir tur sonunda elde edilen matris, AES şifresinin ilgili tur

için üretilmiş anahtarı ile XOR’a tabi tutulur. Şekil 3.7’de işlem gösterilmiştir[4]:

Şekil 3.7: Tur sonu değeri ile XOR işlemi

Yapılan işleme ait XOR işlem detayı Bölüm 2.2’de verilmiştir. Gösterilimler 128

bitlik bir anahtar ile, 128 bitlik bir bloğun AES şifrelemesi için verilmiştir.

Tur Anahtarı ile toplama işlemi yazılımda aşağıdaki kod ile gerçeklenmiştir:

 k = 0;

 while (k < Nk)

 { // buraya r4 ara degeri konacak.

 enc[k].key0 = r4_ara[4*k];

 enc[k].key1 = r4_ara[4*k+1];

 enc[k].key2 = r4_ara[4*k+2];

 enc[k].key3 = r4_ara[4*k+3];

 k = k+1;

S0,0

S1,0

S2,0

S3,0

S0,2

S1,2

S3,2

S0,3

S2,2

S1,3

S2,3

S3,3

Ś0,0

Ś 1,0

Ś 2,0

Ś 3,0

Ś 0,2 k2 k3 Ś 0,3 k0

Ś 1,2

Ś 3,2

Ś 2,2

Ś 1,3

Ś 2,3

Ś 3,3

S1,1 Ś 1,1

S0,1

S2,1

S3,1

Ś 0,1

Ś 2,1

Ś 3,1

 k1

 22

 }

 k = 0;

 while (k < Nk)

 {

 // key degerleri ile exor islemi

 enc[k].key0 = enc[k].key0^key[k].key0;

 enc[k].key1 = enc[k].key1^key[k].key1;

 enc[k].key2 = enc[k].key2^key[k].key2;

 enc[k].key3 = enc[k].key3^key[k].key3;

 aes_steps[n+1][4*k] = enc[k].key0;

 aes_steps[n+1][4*k+1] = enc[k].key1;

 aes_steps[n+1][4*k+2] = enc[k].key2;

 aes_steps[n+1][4*k+3] = enc[k].key3;

 k = k+1;

 }

 // register r5 dolduralim. round sonu register

 for (i=0; i<=3; i++)

 {

 r5[n][4*i] = enc[i].key0;

 r5[n][4*i+1] = enc[i].key1;

 r5[n][4*i+2] = enc[i].key2;

 r5[n][4*i+3] = enc[i].key3;

 }

3.8 Anahtar Üreteci Oluşturma İşlemi

Anahtar üreteci, şifreleme ve şifreyi çözmede kullanılacak anahtar dizisini üretir. Bu

işlem içinde “rcon” işlemi ve “s kutusu” işlemleri kullanılır. Şekil 3.8’de girişe gelen

16 bayt için bir adet anahtar üretme işlemi gösterilmiştir:

Kesik çizgili oklarla oluşturulmuş olan döngü, bayt çevrim ve bayt yer değiştirme

fonksiyonlarının anahtar üreteci tarafından iteratif olarak çağırıldığını

göstermektedir.

 23

Anahtar rcon S_box

Anahtar üreteci

Şekil 3.8: Anahtar üretme fonksiyonu

Anahtar üretmenin temel prensibi bir satır ile dört önceki satırın bit - bit xor işlemine

girmesi şeklindedir. Yedinci satır olan (k71 . . . k74) satırı, altıncı satır (k61 . . .

k64) ve üçüncü satır (k31 . . . k34) ile XORlanması ile elde edilir. Şekil 3.9’da

işlemin ayrıntısı gösterilmiştir [3].

Farklı olarak dördün katının her bir satır fazlası (satır 5,9, ...)’dan farklı olarak

üretilir. XOR işlemi uygulanmadan önce bir önceki satır, kendisine karşı düşen tur

sabiti ile döngü işlemi , değiştirme işlemi ve XOR işlemine tabi tutulur. Her tur için

tur sabitleri Tablo 3.3’te verilmiştir.

Rot_word Bayt Değiştirme

Çıkış

temp S_box

temp

temp

 24

Şekil 3.9: Anahtar Üretimi

Tur sabiti değerleri Tablo 3.3’te verilmiştir. Aşağıda gerçekleştirilen kod içinde rcon

değerlerini bulan kısım ayrı bir fonksiyon olarak gerçekleştirilmiş ve değerler bu

fonksiyon yardımı ile bulunmuştur.

Tablo 3.3: rcon değerleri

tur değeri tur sabiti (rcon) değeri

1 01 00 00 00

2 02 00 00 00

3 04 00 00 00

4 08 00 00 00

5 10 00 00 00

6 20 00 00 00

S0,0

S1,0

S2,0

S3,0

S0,1

S2,1

S3,1

S0,2 S0,3

S1,2

S3,2

S2,2

S1,3

S2,3

S3,3

S1,1

Ś0,0

Ś 1,0

Ś 2,0

Ś 3,0

Ś 0,1

Ś 2,1

Ś 3,1

Ś 0,2

Ś 1,2

Ś 3,2

Ś 0,3

Ś 2,2

Ś 1,3

Ś 2,3

Ś 3,3

Ś 1,1

FRcon1

FRcon2

Döngü 10 defa tekrarlanarak devam eder........

Ś0,0

Ś 1,0

Ś 2,0

Ś 3,0

Ś 0,1

Ś 2,1

Ś 3,1

Ś 0,2 Ś 0,3

Ś 1,2

Ś 3,2

Ś 1,3

Ś 2,2 Ś 2,3

Ś 3,3

Ś 1,1

 25

7 40 00 00 00

8 80 00 00 00

9 1b 00 00 00

10 36 00 00 00

3.8.1 Kelime Döndürme işlemi

Kelime Döndürme fonksiyonu kendi girişine gelen dört bayt bilgisini Şekil 3.10’da

gösterildiği gibi çevirerek yeniden oluşturur ve çıkış değeri olarak iletir.

b1 B2 B3 B4 B2 B3 b1 B4

Şekil 3.10: Kelime döndürme işlemi

Şifre üretim işlemi yazılımda aşağıdaki kod ile gerçeklenmiştir:

void key_sch(void)

{

Nk = 4;

Nb = 4;

Nr = 10;

i = 0;

while (i < Nk)

{

 w[i].key0 = kx[0][4*i];

 w[i].key1 = kx[0][4*i+1];

 w[i].key2 = kx[0][4*i+2];

 w[i].key3 = kx[0][4*i+3];

 26

 i = i+1;

}

i = Nk;

while (i < Nb * (Nr+1))

{

 temp.key0 = w[i-1].key0;

 temp.key1 = w[i-1].key1;

 temp.key2 = w[i-1].key2;

 temp.key3 = w[i-1].key3;

 if (i%Nk == 0)

 {

 rotated[0] = temp.key1; rotated[1] = temp.key2; rotated[2] = temp.key3;

rotated[3] = temp.key0;

 temp.key0 = rotated[0];

 temp.key1 = rotated[1];

 temp.key2 = rotated[2];

 temp.key3 = rotated[3];

 // temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]

 a = temp.key0/16; b = temp.key0%16;

 sb_output = s_box[a][b];

 temp.key0 = sb_output;

 temp.key0 = temp.key0^rcon(i/Nk);

 a = temp.key1/16; b = temp.key1%16;

 sb_output = s_box[a][b];

 temp.key1 = sb_output;

 a = temp.key2/16; b = temp.key2%16;

 sb_output = s_box[a][b];

 temp.key2 = sb_output;

 27

 a = temp.key3/16; b = temp.key3%16;

 sb_output = s_box[a][b];

 temp.key3 = sb_output;

 }

 else if (Nk > 6 & i%Nk == 4)

 {

 a = temp.key0/16; b = temp.key0%16;

 sb_output = s_box[a][b];

 temp.key0 = sb_output;

 a = temp.key1/16; b = temp.key1%16;

 sb_output = s_box[a][b];

 temp.key1 = sb_output;

 a = temp.key2/16; b = temp.key2%16;

 sb_output = s_box[a][b];

 temp.key2 = sb_output;

 a = temp.key3/16; b = temp.key3%16;

 sb_output = s_box[a][b];

 temp.key3 = sb_output;

 }

// w[i] = w[i-Nk] xor temp

 w[i].key0 = w[i-Nk].key0^temp.key0;

 w[i].key1 = w[i-Nk].key1^temp.key1;

 w[i].key2 = w[i-Nk].key2^temp.key2;

 w[i].key3 = w[i-Nk].key3^temp.key3;

 a = i/Nk;

 b = ((i-Nk)*Nk)%16 ;

 kx[a][b] = w[i].key0;

 kx[a][b+1] = w[i].key1;

 kx[a][b+2] = w[i].key2;

 kx[a][b+3] = w[i].key3;

 i = i + 1;

}}

// rcon degerini return eden fonksiyon.

 28

int rcon(int p_i)

{

 int y;

 int i;

 clrscr();

 y = 1;

 for (i=1; i<p_i; i++)

 { y = xtime(y);}

 return y;}

int xtime(int a)

{

 int b;

 int sonuc;

 if (a == 0x80)

 b = 0x1B;

 else

 b = 0;

 sonuc = LShiftByte(a, 1);

 sonuc = sonuc^b;

 return sonuc;

}

int LShiftByte(int bytValue,int bytShiftBits)

{

 int m_bytOnBits[8];

 int m_byt2Power[8];

 int kayd;

 m_bytOnBits[0] = 1;

 m_bytOnBits[1] = 3;

 m_bytOnBits[2] = 7;

 m_bytOnBits[3] = 15;

 m_bytOnBits[4] = 31;

 29

 m_bytOnBits[5] = 63;

 m_bytOnBits[6] = 127;

 m_bytOnBits[7] = 255;

 m_byt2Power[0] = 1;

 m_byt2Power[1] = 2;

 m_byt2Power[2] = 4;

 m_byt2Power[3] = 8;

 m_byt2Power[4] = 16;

 m_byt2Power[5] = 32;

 m_byt2Power[6] = 64;

 m_byt2Power[7] = 128;

 if (bytShiftBits == 0)

 return bytValue;

 else

 {

 if (bytShiftBits == 7)

 {

 if (bytValue && 1)

 kayd = 0x80;

 else

 kayd = 0;

 return kayd;

 }

 }

 kayd = ((bytValue & m_bytOnBits[7 - bytShiftBits]) *

m_byt2Power[bytShiftBits]);

 return kayd;

}

 30

3.9 AES şifreleme adımları örneği

Şekil 3.11’de 128 bitlik bir blok ve 128 bitlik bir anahtar için, şifreleme adımları

adım adım gösterilmiştir. Her işlemin sonunda aldığı değer onaltılık sistemde durum

olarak incelenebilir [5].

Giriş Bloğu = 32 43 f6 a8 88 5a 30 8d 31 31 98 a2 e0 37 07 34

Anahtar = 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c

Tur Bayt Satır Sütun Tura ait Tur

Başlangıcı Yer Değiştirme Öteleme Karıştırma Anahtar dizisi

32 88 31 e0 2b 28 ab 9

43 5a 31 37 7e ae f7 cf Giriş

f6 30 98 7

15 d2 15 4f

a8 8d a2 34 16 a6 88 3c

19 a0 9a e9 d4 e0 b8 1e d4 e0 b8 1e 4 e0 48 28 a0 88 23 2a

3d f4 c6 f8 27 bf b4 41 bf b4 41 27 66 cb f8 6 fa 54 a3 6c 1

e3 e2 8d 48 11 98 5d 52 5d 52 11 98 81 19 d3 26

fe 2c 39 76

be 2b 2a 8 ae f1 e5 30 30 ae f1 e5 e5 9a 7a 4c 17 b1 39 5

a4 68 6b 2 49 45 7f 77 49 45 7f 77 58 1b db 1b f2 7a 59 73

9c 9f 5b 6a de db 39 2 db 39 2 de 4d 4b e7 6b c2 96 35 59 2

7f 35 ea 50 d2 96 87 53 87 53 d2 96 ca 5a ca b0

95 b9 80 f6

f2 2b 43 49 89 f1 1a 3b 3b 89 f1 1a f1 ac a8 e5 f2 43 7a 7f

aa 61 82 68 ac ef 13 45 ac ef 13 45 75 20 53 bb 3d 47 1e 6d

8f dd d2 32 73 c1 b5 23 c1 b5 23 73 ec 0b c0 25 80 16 23 7a 3

5f e3 4a 46 cf 11 d6 5a d6 5a cf 11 9 63 cf d0

47 fe 7e 88

3 ef d2 9a 7b df b5 b8 b8 7b df b5 93 33 7c dc 7d 3e 44 3b

48 67 4d d6 52 85 e3 f6 52 85 e3 f6 0f 60 6f 5e ef a8 b6 db

6c 1d e3 5f 50 a4 11 cf a4 11 cf 50 d6 31 c0 b3 44 52 71 0b 4

4e 9d b1 58 2f 5e c8 6a c8 6a 2f 5e da 38 10 13

a5 5b 25 ad

ee 0d 38 e7 28 d7 7 94 94 28 d7 7 a9 bf 6b 1 41 7f 3b 0

 31

e0 c8 d9 85 e1 e8 35 97 e1 e8 35 97 25 bd b6 4c d4 7c ca 11

92 63 b1 b8 4f fb c8 6c fb c8 6c 4f d1 11 3a 4c d1 83 f2 f9 5

7f 63 35 be d2 fb 96 ae 96 ae d2 fb a9 d1 33 c0

c6 9d b8 15

e8 c0 50 1 9b ba 53 7c 7c 9b ba 53 ad 68 8e b0 f8 87 bc bc

f1 c1 7c 5d a1 78 10 4c a1 78 10 4c 4b 2c 33 37 6d 11 db ca

0 92 c8 b5 63 4f e8 d5 4f e8 d5 63 86 4a 9d d2 88 0b f9 0 6

6f 4c 8b d5 a8 29 3d 3 3d 3 a8 29 8d 89 f4 18

a3 3e 86 93

55 ef 32 0c fc df 23 fe fe fc df 23 6d 80 e8 d8 7a fd 41 fd

26 3d e8 fd f7 27 9b 54 f7 27 9b 54 14 46 27 34 4e 5f 84 4e

0e 41 64 d2 ab 83 43 b5 83 43 b5 ab 15 16 46 2a 54 5f a6 a6 7

2e b7 72 8b 31 a9 40 3d 40 3d 31 a9 b5 15 56 d8

f7 c9 4f dc

17 7d a9 25 f0 ff d3 3f 3f f0 ff d3 bf ec d7 43 0e f3 b2 4f

5a 19 a3 7a be d4 0a da be d4 0a da 0 b1 54 fa ea b5 31 7f

41 49 e0 8c 83 3b e1 64 3b e1 64 83 51 c8 76 1b d2 8d 2b 8d 8

42 dc 19 4 2c 86 d4 f2 d4 f2 2c 86 2f 89 6d 99

73 ba f5 29

b1 1f 65 0c c8 c0 4d fe fe c8 c0 4d d1 ff cd ea 21 d2 60 2f

ea 4 65 85 87 f2 4d 97 87 f2 4d 97 47 40 a3 4c ac 19 28 57

83 45 5d 96 ec 6e 4c 90 6e 4c 90 ec 37 d4 70 9f 77 fa d1 5c 9

5c 33 98 b0 4a c3 46 e7 46 e7 4a c3 94 e4 3a 42

66 dc 29 0

f0 2d ad c5 8c d8 95 a6 a6 8c d8 95 ed a5 a6 bc f3 21 41 6e

eb 59 8b 1b e9 cb 3d af e9 cb 3d af d0 c9 e1 b6

40 2e a1 c3 9 31 32 2e 31 32 2e 9 14 ee 3f 63 10

f2 38 13 42 89 7 7d 2c 7d 2c 89 7

f9 25 0c 0c

1e 84 e7 d2 72 5f 94 b5 b5 72 5f 94 a8 89 c8 a6

39 2 dc 19

25 dc 11 6a çıkış

84 9 85 0b

1d fb 97 32

Şekil 3.11: AES işlem değerleri

 32

4. GÜÇ ANALİZİ SALDIRISI

4.1 Giriş

Genel olarak kriptografik donanımlar, bir şifreleme işlemini veya bir şifreleme

algoritmasının tamamını içerirler. Uygulamalarda donanımda ayrıca saklanması

gereken bir gizli veya özel anahtar olması gerekebilir. Bu nedenle bir kriptografik

cihaz, bu özel bilginin elde edinimi veya çeşitli yollarla bulunmasını engelleyecek

şekilde tasarlanmalıdır [7].

Kriptografik sistemlere aktif saldırılar uzun bir dönemdir yapılagelmektedir. Pasif

atakların ise ilk olarak 1996 yılında konu hakkında yayınlanan bir makale ile [8]

büyük bir tehdit olduğunu gösterilmiştir. Pasif saldırıda, saldırıyı yapan kişi,

kriptografi cihazının standart işlevlerini kullanır [7].

Bu kullanım sırasında elde edilen fiziksel / elektriksel etkiler daha sonra saldırı

amaçlı kullanılır.

Güç
Elektromanyetik
radyasyon

Harcaması Hatalı
Çıktılar

Şekil 4.1: Yan kanal çıkışları

Kriptografik

Algoritma

Zamanlama
Isı

Ses
Tasarım
Detayları

 33

Şekil 4.1’de de gösterildiği şekilde değişik yan kanal bilgileri mevcuttur; örneğin

işlem süresi, güç harcaması, elektromanyetik radyasyon, gibi. Eğer bu şekilde elde

edilen çıkışlar, kriptografik anahtara ait bilgi içeriyorsa veya bulunması konusunda

ipucu veriyorsa, yan kanal olarak adlandırılır. Günümüzde CMOS teknolojisi sayısal

devrelerin gerçeklemesinde büyük oranda kullanılan teknolojidir. Bir CMOS

devresinin güç harcamasında en önemli paya sahip olan kısmı dinamik güç

harcamasıdır [7].

İki tür bilgi mevcuttur: Geçiş sayısı sızıntısı ve Hamming ağırlığı sızıntısı.

Geçiş sayısı sızıntısı bize değişen bitlerin sayısı hakkında bilgi verirken, Hamming

ağırlığı sızıntısı eşzamanlı olarak işlenen 1 bitlerinin sayısı hakkında bilgi verir.

İki tür güç analizi saldırısından bahsedilebilir:

• SPA: Basit güç analizi saldırısı

• DPA: Farksal güç analizi saldırısı.

4.2 Basit Güç Analizi Saldırısı

Saldırıyı yapan kişi, yan kanal saldırısından elde ettiği ölçüm ve bilgiyi, şifreleme

anahtarını veya bir kısmını elde etmek için direkt olarak kullanır.

Özetleyecek olursak;

• Şifreleme algoritmasında kullanılan her bloğun kendi güç tüketim

karakteristiği var ise yapılabilir.

• Saldırı güç harcamasından direkt şifreleme anahtarını elde eder. Güç

harcaması dalga şekli gözle kontrol edilir. Bu nedenle tek bir ölçüm

yapılması yeterlidir.

• Basit güç analizine karşı savunma geliştirmek kolaydır.

 34

4.3 Farksal Güç Analizi Saldırısı

Farksal güç analizi ilk olarak Paul KOCHER tarafından 1998 yılında gündeme

getirilmiş ve kriptografi dünyasında ses getirmiştir. Bir DES algoritması üzerinde

güç analizi saldırısı ilk olarak [9] nolu makalede yapılmıştır. “Akıllı kart” üreticileri

konu hakkında risk olduğunu görmüş ve bu konuya ciddi olarak eğilmişlerdir.

Farksal güç analizinde çok sayıda ölçüm yapılır ve elde edilen ölçümlerden gürültü

filtrelenir. Bu şekilde elde edilen gerçek ölçüm sonuçlarına ek olarak saldırıyı yapan

kişi(ler) tarafından bir model öngörülür. Bu modele göre ölçüm sonuçlarının

bilgisayar ortamında benzetimi yapılır ve uygun veriler oluşturulur [7].

Güç Harcaması Saldırıları sonuç alıcıdır; çünkü

• İstatistikseldir, sinyal işlenir

• Rastlansal mesaj gönderilir.

• Bilinen algoritmaya saldırılır.

• Tek bir akıllı kart yeterli olur.

Farksal güç analizi saldırısı için bileşenler şunlardır:

• Güvenilir Güç Ölçümleri

• Algoritma

• Güç Harcaması Öngörüleri

• Elde edilebilecek diğer tüm ek bilgiler

Saldırı 2 adımda yapılır:

• Gerçek ölçüm: akıllı kartta ölçüm yapılır.

• Analiz kısmı : Bir bilgisayarda öngörülü analiz gerçekleştirilir.

SPA yapılan işlemler ve güç harcaması arasındaki bağlantıyı kullanır, DPA ise

işlenen veri ve güç harcaması arasındaki bağlantıdan yola çıkmaktadır.

 35

4.4. Saldırı için Öngörülen Algoritma

Algoritma, saldırı yapılacak düzeneğin öngörülen, değişik şekilde elde edilen -ki bu

her türlü elde etmeyi içerir, modeli anlamındadır. Biz saldırı yapılacak düzeneğin bir

AES algoritması olduğunu biliyoruz, ancak bunun yanında elde edilecek her türlü

veri bizim işimizi çok daha fazla kolaylaştıracaktır.

Algoritmaların en önemli özelliği, öngörülen AES gerçeklemesi çalışma şeklinin

taklit edilmiş olmasıdır. Ayrıca ölçme ortamının getireceği etkiler de algoritma

içinde yer almıştır. Ölçüm düzeneğinde, 20.000 adet giriş, sırasıyla kart

gerçeklemesine gönderilecek ve ölçümler yapılacaktır. Bu durumda her giriş için

ölçüm öncesinde devrede bellek içerikleri sıfırlanmamış olacaktır. Yani bir önceki

ölçümün etkileri hala devam ediyor olacak ve bellek içeriklerine bu durum üzerinden

işlemler yapılacaktır. Algoritmalar bu durumu gözönüne alacak şekilde

gerçeklenmiştir.

Bu tezde saldırı yaptığımız düzeneğe ait iki adet model bilgisine sahip olduğumuzu

varsaydık ve bunlara göre varsayım verisi oluşturduk. Aşağıdaki bölümlerde bu

modeller incelenmiştir.

4.4.1. Saldırı Amaçlı Model 1

Şekil 4.2’de ilk model için genel algoritma verilmiştir. Şekilde görüldüğü üzere beş

adet belleğimiz var ve bunların güç harcaması bizim algoritmalarımızın temel

dayanağı olacaktır.

Algoritmadaki her bir işlem bloğu kendisine ait işlemi yapar, bu bloklar ekte verilmiş

olan AES işlem bloklarıdır.

• Giriş değeri ile anahtarın XOR işlemi

• Bayt Yer Değiştirme

• Satır Öteleme

• Sütun Karıştırma

 36

• Anahtarın turun durum değeri ile XOR işlemi

Her bir blok kendi girişindeki değeri, işlevine göre değiştirerek kendi bloğunu takip

eden belleğe yazar. Bu nedenle, her turda, bellekler, sadece kendine ait saat

diliminde anlamlı değer içerir. Onun dışındaki saat dilimlerinde anlamlı olmayan

değerler içerebilirler. Ancak kesin olan, 5. saat diliminin sonunda R5 belleğinde

olması gereken değer, tur sonu değeri olmalıdır. Buna göre anlamlı bellek değerleri

için şunu diyebiliriz:

1. saat diliminde R1,

2. saat diliminde R2,

3. saat diliminde R3,

4. saat diliminde R4,

5. saat diliminde R5

bellekleri anlamlı değer içerecektir. 10 tur sonunda ve 10. turun 5. saat dilimi

sonunda R5 belleğinde şifrelenmiş mesaj mevcut olacaktır.

Kullandığımız iki model arasındaki fark ise Anahtar dizisi ile ilgili davranış farkıdır.

Şifreleme anahtar dizisinin tüm turlar için değerleri bellidir ve birinci modelde 10

adet AES turunun 5 adet saat dilimi boyunca anahtar dizisi çıkışlarının ideal tur

değerinde olduğu varsayılacaktır. Sonuçta bu bir modeldir ve ilk modelimizin bu

dezavantajlı noktasıdır. Ancak bu gerçek devrede böyle değildir.

 37

Giriş

Şekil 4.2: Saldırı amaçlı model-1’e ait algoritma

4.4.1. Saldırı Amaçlı Model 2

Şekil 4.3’de model 2 için genel algoritma verilmiştir. İşlem bloklarının çalışması ve

bellek içeriklerinin değiştirilmesi ilk model ile tamamen aynıdır. Yine 5 adet bellek

mevcuttur ve işlem blokları her saat diliminde kendi girişlerindeki değerleri

işlevlerine göre değiştirerek çıkışlarındaki belleklere iletirler.

İkinci modelimiz anahtar üretecinin tüm saat dilimlerinde karakteristiğini elde

ettiğimiz ve kullandığımız model olacaktır. 10 tur ve her turda da 5 saat diliminde

anahtar devresi çıkışlarını elde ederek kullandık. Bu değerler, “keysched_output.txt”

dosyasında verilmiştir. Bu modelin çok daha gerçekçi olduğu tartışılmazdır.

Bayt
Yerdeğiştirme

Satırları
Öteleme

Sütunları
Karıştırma

Bellek 1

Bellek 2

Bellek 3

Bellek 4

Bellek 5

Anahtar Dizisi
Tur değeri

Şifreleme
Anahtar

 38

Bu modelde elde ettiğimiz bir diğer bilgi de, onuncu tur boyunca R5 belleğinin

içeriğinin 5 tur boyunca sabit olacağıdır. Bu nedenle 10. turda R5 içeriği değişmez ve

daha sonraki işlemlere değişmeyen R5 içeriği yansıtılmıştır.

Giriş

Şekil 4.3: Saldırı amaçlı model-2’e ait algoritma

4.5 Teorik Altyapı

DPA saldırısında saldırıyı yapan kişi, kriptografik cihaza ait bir modeli

öngörmektedir. Bu modelin kalitesi, saldırıyı yapan kişinin cihaz hakkında elde

edebildiği bilgi ile sınırlı olacaktır. Bu model yardımı ile cihaza ait çok sayıda yan

kanal çıktısı kestirimi/öngörüsü elde edilir. Daha sonra elde edilen bu veriler gerçek

cihazdan ölçülen yan kanal verileri ile karşılaştırılır. Bunun için istatistiksel

fonksiyonlar kullanılır.

Bayt
Yerdeğiştirme

Satırları
Öteleme

Sütunları
Karıştırma

Bellek 1

Bellek 2

Bellek 3

Bellek 4

Bellek 5

Anahtar Dizisi
Tur değeri

Şifreleme Anahtar

Çıkış

 39

Bunların içinde en çok kullanılanları ortama farkı testi ve korelasyon analizidir. Biz

bu tez kapsamında korelasyon analizi fonksiyonunu kullandık. Korelasyon analizi

için öngördüğümüz model belli bir zaman dilimi içindeki çalışma için bize güç

harcaması bilgisini verir. Daha sonra öngörülen modelin çıktıları ile gerçek

ortamdaki cihazın aynı girişler için çalışması sırasında ölçülen güç harcaması ile

korelasyonuna bakılır. Bu korelasyon ölçümü Pearson korelasyon katsayısı

kullanılarak yapılabilir.

Bu noktada ekteki varsayımları yapalım:

it , i. ölçüm datası olsun (i. ölçüm).

T ölçümler kümesi olsun.

ip , i. ölçüm için öngörülen model.

P öngörülen model kümesi.

T ve P’nin korelasyonu için aşağıdaki fonksiyon kullanılır.

)().(
)().().(),(

PVarTVar
PETEPTEPTC −

=

Burada E(T) ölçüm kümesi T'nin beklenen değerini (ortalamasını) ve Var(T) bir
ölçümün ortalamadan ne kadar saptığını gösterir.

Bu noktada eğer korelasyon yüksekse (1 veya -1’e yakınsa), öngörülen model ve ek

olarak anahtar bulunması doğru demektir.

4.6 Ölçüm İşlemleri

Teknik olarak güç analizi saldırısı yapmak birçok zorluklar içermektedir. En önemli

nokta, gürültü olmayan ve iyi durumda ölçüm yapılmasıdır. Gürültü miktarı ne kadar

az olursa, o kadar az ölçüm ile istenilen sonuçlara ulaşılabilir.

Ölçüm işleminde bir başka önemli noktada ölçüm düzeneğinin karmaşıklığıdır.

Böyle bir düzenek genel olarak üç kısımdan oluşur:

 40

• Saldırı yapılan cihaz

• bir adet ölçüm cihazı

• saldırıyı kontrol etmek için bir cihaz.

Bunlara ek olarak ölçüm sonuçlarının elde edilmesi ve saklanması amaçlı yazılım ve

donanım gerekli olacaktır. Bu nedenle bir saldırı düzeneği hazırlanacağı zaman,

saldırılan sistemin saldırıya karşı direncini ölçmek için ilk önce saldırının

benzetiminin yapılması iyi olacaktır. Bu şekilde pratik saldırı düzeneğinde bir sorun

olup olmadığı da görülmüş olacaktır. Bu şekilde benzetimi yapılan bir saldırıda,

pratikte olabilecek gürültü olmayacağı için saldırının ne derece başarılı olabileceği

de kestirilebilir.

Tez kapsamında saldırı yapılacak olan düzeneğe 20.000 adet giriş ile saldırı

yapılacağı ve sonuçların elde edileceği bilgisi ile başladık. Ölçüm düzeneğinde

önceden belirlenmiş girişler, sırayla kart gerçeklemesine gönderilir, ölçüm sonuçları

bir bilgisayarda saklanır. İki adet ölçüm arasında kartta bir açma kapama işlemi

yapılmaz; yani kartın içerisindeki bellek içerikleri bir önceki ölçüm işleminden kalan

değerleri içerir.

Şekil 4.4’te temel ölçüm düzeneği basit gösterimle verilmiştir:

 41

Güç Kaynağı

Güç
Ölçümü

R

Şekil 4.4: Ölçüm düzeneği

4.7 Saldırı Öncesi Benzetim Çalışması

Güç analizi saldırısı için benzetim veri oluşturma öncesi önşart, bir adet anahtar

belirlemek ve rastlansal olacak şekilde uygun sayıda giriş verisi oluşturmaktır. Bu iki

veri, ekteki giriş dosyalarında tutulmuştur. Belirleme rastlantısal olarak yapılmıştır.

Gerçek ortamda ölçüm amaçlı olarak aynı veriler kullanılacaktır. Herhangi bir

durumda verilerde bir değişiklik olursa sadece bu dosyaların içeriği değiştirilerek

benzetim verisi tekrar elde edilebilecektir.

4.7.1 Giriş dosyaları

“aes_key.txt” : Şifreleme amaçlı kullanılan 128 bitlik AES anahtarı bu dosyada

tutulur. Veri onaltılık düzende girilmelidir; harflerin büyük küçük olması önemli

değildir ancak fazla veya eksik girilmemesi gereklidir.

CB 49 06 49 C9 B1 B3 35 BA 4E 4D 6F 5F BC C5 AB

Kriptografik
 cihaz

Saldırı Noktası

 42

“plain.txt” : Şifrelenecek 128 bitlik blokların tutulduğu dosyadır. Her bir blok

baytlar şeklinde ve düzgün olarak girilmelidir. Şifrelenecek blok sayısı önemli

değildir. “Plain.txt” dosyası içinde bloklar sıra ile okunur ve şifreleme yapılarak çıkış

dosyalarına yazılır. Programlar sırada bekleyen okunacak blok olduğu sürece

amaçlanan analizi yaparak çıktılarını üretecektir. Dikkat edilecek noktalardan biri de

her bir bloğun farklı bir satıra yazılmasıdır.

Ekte bir örnek dizi verilmiştir:

1D EA D0 FA 92 41 62 24 ED 3B B6 85 BF D2 0A 58

99 98 B6 B9 98 15 06 2A 4B 29 32 A5 00 73 D0 51

9D 06 3E 93 6E 5E 3D 23 00 91 5B 28 31 05 78 1A

B9 1A 6A 43 D8 DA 60 01 C5 40 EB C6 BC 2B 24 F8

0D 6B F0 71 36 D8 A2 7F B4 CA 71 3C 42 BC 50 4F

5A 06 B4 C7 3E 71 F9 42 84 2E BB 5D D8 5B 35 90

70 28 13 53 78 52 29 3D 2B 86 85 8E 81 22 26 97

A1 4A 0C 10 57 30 9B 0B B0 33 40 09 6A C1 FD E1

F8 E6 36 91 F9 C7 AA 81 36 BD 4C EB 05 A4 74 76

F3 DC 7C 2D 6A 42 55 8C 4E 4B 2D 9C AB FE 73 44

.......

4.7.2 Yazılan Programlar

4.7.2.1 AES Şifreleme

“Aes_bul.c” programı bu amaçla yazılmıştır. Verilen “plain.txt” karşılığında birebir

çıkış dosyasının oluşturulması amaçlanmıştır. Temel şifreleme programıdır. Ölçüm

düzeneği için input hazırlamak amacıyla yazılmıştır. Kodun algoritması sadece

şifreleme amaçlı olarak yazılmıştır. Standart AES algoritmasını gerçekler. Anahtarı

“aes_key.txt” dosyasından, şifrelenecek blokları ise “plain.txt” dosyasından okur;

programın çalışması sonunda girişlere karşı düşen çıkışları içeren “register.txt” adlı

dosyayı oluşturur.

 43

4.7.2.2 Şifre Çözme

“Aes_desc.c” programı bu amaçla yazılmıştır. Daha sonraki çalışmalara yardımcı

olması amacıyla yazılmıştır. Şifrelenmiş 128 bitlik blok için şifre ile giriş bloğunu

oluşturur. Temel olarak şifre çözme işlemini gerçekleştirmektedir. Amaçlanan tez

için gerekli değildir.

4.7.2.3 Bellek içerik gösterimi

Saldırı yapılacak modeller için sırasıyla “aes_rgv1.c”, model 1 için, “aes_key1.c” ise

model 2 için yazılmıştır. Programlar, “aes_key.txt” dosyasından şifreleme anahtarını

alır, daha sonra sırası ile “plain.txt” dosyasından giriş değerlerini alarak şifreler.

Saldırı yapılacak olan AES algoritması gerçeklemesinin yapısı gözönüne alarak

devre elemanlarının modellendiği programlardır. Sadece AES algoritmasının çıkışı

olan şifre değil, aynı zamanda tur ve saat dilimi düşünülerek yazılımın algoritması

oluşturulmuştur. Şekil 4.2 ve Şekil 4.3’de gösterilen R1, ... R5 belleklerinin her saat

darbesinde değerleri bulunacak şekilde yazılım gerçeklenmiştir. Tur sayısı 10 ve her

turdaki saat dilimi 5 olacak şekilde her tur ve saat diliminde bellek içerik

hesaplamaları yapılmıştır. Her bir giriş için şifreleme yapıldıktan sonra, bir sonraki

giriş değeri okunur ve şifreleme işlemi son giriş değerine kadar devam eder.

Şifreleme işleminde bellek içerikleri bir sonraki işlemi etkileyecektir.

Şekil 4.5’de algoritma akışı verilmiştir. Programın akışında her bir işlem bloğu

girişindeki bellek içeriğini alarak kendi işlevini yapacak şekilde çalışmakta ve çıkış

belleğine sonucu aktarmaktadır. Bu nedenle program AES algoritmasının

gerçeklemesi gibi çalışmaktadır. 10 tur ve 5 saat dilimi sonunda R5 belleğin

içeriğinde şifrelenmiş çıkış değeri elde edilmektedir.

Model 2 için yazılan “aes_key1.c” programında ayrıca anahtar üreteci davranışı da

eklenmiştir. 10. tur boyunca R5 içeriğinin sabit kaldığı bilinmektedir. Koda bu

davranış da konularak R5 içeriğinin 10. tur boyunca sabit olması sağlanmıştır.

 44

AES Tur İşlemi döngüsü
1 – 10 arası sayılır.

AES Saat dilim döngüsü
1 – 5 arası sayılır.

Bellek değerleri
hesaplama R1 – R5

AES Saat dilim döngüsü
sonu

AES Tur İşlemi döngüsü
sonu

İstenen Analiz
Fonksiyon ve Çıktıları

Şekil 4.5: Devre yapısı için geliştirilen algoritma

 Bu programın en önemli çıktısı, tüm tur ve zaman dilimlerinde kontrol amaçlı olarak

oluşturulan, belleklerin önceki ve sonraki değerleridir. Çıktılar, “sonuclar.txt”

dosyasına yazılır. Bu şekilde tüm çalışma süresince devre içindeki belleklerin

içerikleri görülmüştür. Aşağıda bu programın çıktısı verilmiştir:

round 0

 time clock 1

 r1 register 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 36 94 c5 ec ba ef b0 82 46 cc a3 d b6 1d 45 64

 r2 register 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 45

 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63

 r3 register 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 r4 register 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 r5 register 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 9 cf 4f 3c

 time clock 2

 r1 register 36 94 c5 ec ba ef b0 82 46 cc a3 d b6 1d 45 64

 36 94 c5 ec ba ef b0 82 46 cc a3 d b6 1d 45 64

 r2 register 36 94 c5 ec ba ef b0 82 46 cc a3 d b6 1d 45 64

 5 22 a6 ce f4 df e7 13 5a 4b a d7 4e a4 6e 43

 r3 register 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63

 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63

 r4 register 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 r5 register 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 9 cf 4f 3c

 time clock 3

 r1 register 36 94 c5 ec ba ef b0 82 46 cc a3 d b6 1d 45 64

 36 94 c5 ec ba ef b0 82 46 cc a3 d b6 1d 45 64

 r2 register 36 94 c5 ec ba ef b0 82 46 cc a3 d b6 1d 45 64

 5 22 a6 ce f4 df e7 13 5a 4b a d7 4e a4 6e 43

 46

 r3 register 5 22 a6 ce f4 df e7 13 5a 4b a d7 4e a4 6e 43

 5 df a 43 f4 4b 6e ce 5a a4 a6 13 4e 22 e7 d7

 r4 register 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63

 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63

 r5 register 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 9 cf 4f 3c

..........................

Bu yapı daha sonraki çalışmaların da altyapısını oluşturacaktır.

4.7.2.4 Durum Geçişi Analizi

Bu amaçla “aes_rgv2.c” yazılmıştır. “Aes_rgv1.c” versiyonunda bulunmuş olan

bellek değerleri bizim için altyapıyı oluşturan değerlerdir. “aes_rgv2.c” bu değerleri

kullanarak saldırı amaçlı analiz kısımlarını eklediğimiz versiyondur. Her tur ve tüm

saat dilimlerinde bellek değerleri bir önceki versiyonda anlatıldığı şekilde

bulunmaktadır. Bu program ise her tur, saat diliminde çalışan ve belleklerin bir

önceki değeri ile o anki değeri arasındaki geçiş sayılarını bularak uygun toplam tur

değerini bulan versiyondur.

Belleklar arası geçişte 4 farklı durum sözkonusudur:

0 >> 0

0 >> 1

1 >> 0

1 >> 1

Tüm bu geçiş sayıları ayrı ayrı değişkenlerde bulunmuştur. Ancak bizim saldırı

algoritmamızda anlamlı olan 0 >> 1 geçişidir. Diğer geçiş rakamları olası ileri

çalışmalar için eklenmiş olup anlamlı olmaları durumunda kullanılmak üzere kodda

gösterilmiştir. Ancak bizim saldırı algoritmamızda kulanılmayacaklardır.

 47

Geçiş sayılarını bulmak için koda iki adet bayt giriş alan ve bunlar arasındaki geçiş

sayılarını bulan fonksiyon eklenmiştir. Kodu aşağıdadır.

void gec_say(void)

{

mx = 0x80;

for (ix = 0; ix<8; ix++)

{

 if (gec_x & mx)

 xx[ix] = 1;

 else

 xx[ix] = 0;

 if (gec_y & mx)

 yy[ix] = 1;

 else

 yy[ix] = 0;

 mx = mx >> 1;

}

s10 =0;

s00 =0;

s01 =0;

s11 =0;

for (ix = 0; ix<8; ix++)

{

 if (xx[ix] == 0 & yy[ix] == 0)

 s00 ++;

 if (xx[ix] == 1 & yy[ix] == 0)

 s01 ++;

 if (xx[ix] == 0 & yy[ix] == 1)

 s10 ++;

 if (xx[ix] == 1 & yy[ix] == 1)

 48

 s11 ++;

}

}

Her tur ve saat dilimi için çalışma sonrasında bellek içeriği ile bir önceki değeri

arasındaki tüm değişim sayıları bu fonksiyon ile elde edilmektedir.

Bu versiyonda da AES anahtarı tur boyunca tüm saat dilimlerinde olması gereken tur

değerinde olduğu varsayılmıştır. Programın en başında 10 tur için anahtar dizisi elde

edilmektedir ve “key_sch.txt” adlı dosyaya kontrol amaçlı olarak yazılmaktadır.

Anahtar dizisi, tüm tur ve saat dilimlerinde kullanılmaktadır.

4.7.2.5 Saldırı Noktası Durum Geçiş Analizi Sonuç Çıktıları

Saldırı yapılacak modeller için sırasıyla “aes_rgv4.c”, model 1 için, “aes_key4.c” ise

model 2 için yazılmıştır.

Bir önceki versiyonun kontrol çıktılarının olmadığı ve sadece kullanılacak olan

“r2_ileri.txt” dosyasının oluşturulduğu versiyondur. Bu versiyon, saldırı amaçlı

çıktılardan birini üreten versiyondur.

Burada en önemli nokta; saldırı noktamız olan 1. tur, 2. saat dilimine ait rakamları

çıktı olarak ürettiğimizdir. Seçilen bu saldırı noktasının özelliği bu turda belleklerin

içerdiği değerlerin değişimi incelendiğinde, sadece giriş anahtarının etkilediği R2

belleğinde değişiklik olmasıdır. Ayrıca bizim saldırı amaçlı olarak AES anahtarının

sadece en yüksek anlamlı 8 bitini değiştirmemiz, 1. tur 2. saat dilimi sonunda sadece

R2’nin 8 bitini etkileyecektir. Bu şekilde anahtar ile R2 belleğindeki değişim

arasında ilişki olduğunu ve bu ilişkinin güç harcamasında da görülebileceği

söyleyebiliriz.

Aslında tüm saat dilimleri için üretilen geçiş sayıları sadece bu saat dilimi için çıktı

dosyasına işlenir. Bu sayede, başka bir saat dilimini görmek istersek, programda

bunlar da hazır vaziyettedir. Tek yapılacak olan, bu değerlerin çıkış dosyasına

“r2_ileri.txt” yazılacak şekilde analiz kısmı sonuna eklemektir.

 49

“Aes_rgv4.c” ve “Aes_key4.c” programları kullanılarak, AES anahtarının en yüksek

anlamlı baytı, 0x00 – 0xff değerleri arasında değiştirilerek çıktı değerleri hesaplanır.

Bu hesaplama, programın beklediği giriş dosyalarından “aes_key.txt” dosyasının

içeriğinin değiştirilmesi ve programın tekrar çalıştırılması ile elde edilir. Her anahtar

için program çalışmasının çıktıları saklanarak korelasyon analizi için giriş verileri

oluşturulur.

Aynı kod kullanılarak R3 bellek içeriğine 1. tur ve 3. saat dilimi içinde saldırı

yapılabileceği görülmüştür. Kodlarda yapılan bir değişiklikle elde edilen verilerde bu

noktanın da saldırıya açık olduğunu göstermiştir. Programların bu versiyonları ayrıca

ekte verilmiştir.

Model 1 için “r3_gec.c” programı, 0>1 geçişlerini sayan programdır. Model 2 için

“M2_r3_4.c” programı, 0>1 geçişlerini sayan programdır.

4.7.2.6 Tüm Bellek Durum Geçiş Analizi Sonuç Çıktıları

Saldırı yapılacak modeller için sırasıyla “aes_rgv5.c”, model 1 için, “aes_key5.c” ise

model 2 için yazılmıştır.

Bu programlarda bir tam AES şifreleme döngüsü için hesaplamalar yaptırıldı. Sadece

bir adet giriş bloğu için tüm tur ve saat dilimlerinde tüm belleklar için toplam

sıfırdan bire (0 >> 1) geçişler sayılmıştır. Program giriş dosyası “plain.txt”

dosyasında mevcut olan girşler için işlemleri yapacaktır, bu nedenle program

çalıştırılmadan önce bu dosyada sadece bir adet giriş olduğu kontrol edilmelidir.

Sonuçta elde edilen sayı bir bellek için değil, tüm bellekler için toplam olacaktır.

Program çalışması sonucunda 50x1 boyutlarında bir matris elde edilir.

4.7.2.7 Saldırı Noktası Durum Bit Analizi Sonuç Çıktıları

Saldırı yapılacak modeller için sırasıyla “aes_rgv6.c”, model 1 için, “aes_key6.c” ise

model 2 için yazılmıştır.

 50

Şifreleme anahtarı “aes_key.tx”t dosyasından, giriş değerleri ise “plain.txt”

dosyasından alınarak kullanılır. Bu programlarda R2 belleği için tur 1, saat dilimi

2'de sadece en yüksek anlamlı bayt içindeki 1 olan bitlerin sayısını bulmak

amaçlanmıştır.

Tüm açık mesajlar için çalışır. Anahtara ait en yüksek anlamlı 8 bit, 0x00 – 0xff

arasında değiştirilerek R2 belleğinin değişen 8 bitindeki 1 sayısı sayılır. Değiştirilen

her anahtar değeri için 1 olan bit sayıları matrisi korelasyon analizi için girdi olacak

şekilde saklanır.

Burada amaç, anahtarın sadece değişen 8 biti için, R2 belleğinin 8 bitinin değiştiğini

bilmemizden dolayı bir korelasyon olabileceğini öngörmemizdir. Sadece 1 olan

bitleri saymak yerine sıfırdan bire geçişleri saymak bizim için çok daha iyi bir

korelasyon vereceğini söyleyebiliriz. Çünkü 1 olan bitleri saymak ve bu sayı ile güç

harcaması arasında korelasyon aramak bize % 50 daha fazla ölçüm yapmak ihtiyacını

doğuracaktır. 1 olan bitin bir önceki saat diliminde de değeri 1 olabilir. Yani burada

bir güç harcaması olmamış demektir. Biz bu konuda daha fazla ölçüm yaparak bu

sorunu aşmayı planlıyoruz. Bir bellek içerisindeki 1 olan bitlerin sayısını bulmak için

aşağıdaki kod yazılmıştır:

void bir_say(void)

{

mx = 0x80;

for (ix = 0; ix<8; ix++)

{

 if (gec_x & mx)

 xx[ix] = 1;

 else

 xx[ix] = 0;

 mx = mx >> 1;

}

s10 =0;

s00 =0;

s01 =0;

 51

s11 =0;

for (ix = 0; ix<8; ix++)

{

 if (xx[ix] == 0)

 s00 ++;

 if (xx[ix] == 1)

 s11 ++;

}

}

Bu fonksiyon, 1. tur ve 2. saat diliminde şifreleme anahtarının değiştirilen 8 biti

karşılığında, R2’nin değişen 8 bitindeki 1 sayılarını bulmak için kullanılır. Bulunan

sayılar çıkış dosyası, “r2_ileri.txt” a yazılır.

Aynı kod kullanılarak R3 belleği içeriğine 1. tur ve 3. saat dilimi içinde saldırı

yapılabileceği görülmüştür. Kodlarda yapılan bir değişiklikle elde edilen verilerde bu

noktanın da saldırıya açık olduğunu göstermiştir. Model 1 için “A_r3t1c3.c”

programı en yüksek anlamlı 8 bit içinde 1 değerindeki bit sayısını sayan programdır.

Model 2 için “M2_r3_6.c” programı en yüksek anlamlı 8 bit içinde 1 değerindeki bit

sayısını sayan programdır.

4.8 Farksal Güç analizi saldırısı, verilerin kullanımı

DPA saldırısı için hedef, Şekil 4.6’da gösterilen R2’nin en yüksek anlamlı 8 biti

olacaktır.

 52

Giriş

Şekil 4.6: AES algoritması için öngörülen bellek düzeneği resmi

Bu algoritma için saldırı noktamızı belirlememizdeki en büyük etken R2’nin

şifreleme için kullanılan ana anahtardan doğrudan etkilenmesidir. Giriş değeri ile

XOR işlemine tabi tutulan anahtarın işlem sonucu R1 belleğinde saklanır. R2 ise bu

değerin bayt yer değiştirme işlemi sonucunu içerir ve içerdiği değer anahtarın en

yüksek anlamlı 8 bitine doğrudan bağlıdır. Bu amaçla bu noktada yani R2’deki güç

harcamasının benzetiminin yapılmasına karar verildi. Saldırı öncesi benzetim verisi

ile bu düzeneğin ve öngörünün çalışacağının; yani R2’ye yapılacak saldırının başarılı

olacağının gösterilmesi amaçlanmaktadır.

Dinamik güç harcamasının benzetiminin yapılması için algoritmasının

gerçeklemesinin yapısı biliniyor. Bu gerçeklemeye yönelik iki adet model öngörüldü.

Modeller AES için benzetimi yapılan saldırı başarılı olursa; gerçek ortamda ölçülen

Bayt
Yerdeğiştirme

Satırları
Öteleme

Sütunları
Karıştırma

Bellek 1

Bellek 2

Bellek 3

Bellek 4

Bellek 5

Anahtar Dizisi
Tur değeri

Şifreleme Anahtar

Çıkış

 53

verilere yapılacak saldırının da başarılı olabileceğini söylemek ve gerçek saldırı için

hazırlık yapmak anlamlı olur.

Benzetim verileri ile saldırı için oluşturulan ilk dosya güç harcamalarını içeren

dosyadır. Bunun için N adet rastgele giriş (plain text) ve bir adet sabit anahtar

(rastgele seçilmiş) oluşturulmuştur. Bunlar “aes_key.txt” ve “plain.txt” adlı

dosyalarda saklanmaktadırlar. Analiz için yazılan kodlar bu dosyaları giriş olarak

okuyacak şekilde yazılmıştır.

İlk olarak AES şifrelemesinde mevcut olan 10 tur için, donanımdaki beş adet

belleğin önceki ve şimdiki durum geçişleri sayıldı. Bunlardan analizde kullanılmak

üzere 1. tur ve 2. saat diliminde sıfırdan bire (0 > 1) geçiş sayıları sonuç dosyasına

yazdırıldı. Bulunmak istenen anahtar için ve tüm girişler için yapılan hesaplamalar

ile Nx1 boyutlu bir matris üretildi. Anahtarın en yüksek anlamlı sekiz biti için 0x00

ve 0xff değerleri arasındaki tüm değerler için bu hesaplamalar tekrarlandı ve Nx256

boyutlu bir matris üretildi. Bunun için yazılan kod, “aes_rgv4.c”, “aes_key4.c” adlı

C programlarıdır.

İkinci olarak oluşturulan analiz dosyasında, sadece R2 belleği için tur 1'de en yüksek

anlamlı bayt içinde değeri 1 olan bitlerin sayısı bulundu. Tüm giriş değerleri

(plain.txt) için çalıştırıldı. Ayrıca anahtarın en anlamlı 8 biti için 0x00 ve 0xff

arasında değişecek şekilde hesaplamalar tekrarlandı.

Her iki dosyada da oluşturulan verilerle orijinal anahtarla oluşturulan veriler

birbiriyle uyumlu olması gerekmektedir. Bu ikisi arasındaki korelasyon, diğer

anahtar değerleri ile yapılan ölçümlerdeki korelasyondan daha anlamlıdır. Şekil

4.7’de deneme yoluyla en anlamlı 8 biti değiştirilmiş anahtarlar için korelasyon

analizi görülmektedir.

 54

Şekil 4.7: R2 , Model 1 için Anahtarın En yüksek Anlamlı Bitinin korelasyon

değerleri

Bu şekilde 0x00 – 0xff arası değişen anahtarlar ve korelasyonlarının grafiği Şekil

4.6’da verilmiştir. Beklenen, aranan anahtar ile korelasyonun diğerlerine göre daha

yüksek değerde olmasıdır. Şekil 4.7’de 44 değerinde yani anahtarın 2B değerinde

korelasyonun en yüksek olduğun gösterir. Bu sonuç şunu göstermektedir; saldırı

amaçlı tasarlanan model, saldırı için düşünülen bellek, seçilen tur ve saat dilimi

uygundur. Benzetim verileri ile olan saldırı, gerçek ortamda ölçülecek değerleri

karşılayabilecektir.

Bu aşamadan sonra karşılaşılacak sorun ne kadar deneme ile devre içinde saklanmış

olan anahtarın bulabileceğidir.

Şekil 4.8’de farklı açık mesaj sayısı kullanılarak anahtarın mümkün bütün değerileri

için korelasyon değişimi gösterilmiştir. Bu nedenle en anlamlı 8 biti bulmak için

benzetim yapılmış saldırıda 4000 adet ölçüm yeterli olacaktır denebilir.

 55

Şekil 4.8: R2 , Model 1 için Kullanılan mesaj sayısının korelasyon bağlantısı

Aynı sebeple Bellek 3 için de saldırı yapılabileceği görülmüştür. Saldırı zamanı

olarak birinci turun 3. saat dilimi öngörülmüştür. Bu konuda analiz programları

kullanılarak başka bir saldırı noktası arayışına girilmiş ve R2 için yapılan çalışma R3

için de yapılmıştır. Sonuç olarak oluşturulan verilerle korelasyon analizi yapılınca,

bu noktada da saldırının mümkün olabildiği görülmüştür. Aşağıda Şekil 4.9’da

korelasyon analizi sonuç grafikleri mevcuttur.

 56

Şekil 4.9: R3 , Model 1 için Anahtarın En yüksek Anlamlı Bitinin korelasyon

değerleri

 Korelasyon analizi – plaintext sayısı arasındaki grafik Şekil 4.10’da verilmiştir.

Şekil 4.10: R3 , Model 1 için kullanılan mesaj sayısının korelasyon değerleri

 57

Model 2 için hesaplamalar neticesinde R2 belleği için ekteki Şekil 4.11’de

korelasyon analizi sonuç grafikleri mevcuttur:

Şekil 4.11: R2 , Model 2 için Anahtarın En yüksek Anlamlı Bitinin korelasyon

değerleri

Model 2’nin R2 için Korelasyon analizi–plaintext sayısı korelasyonu Şekil

4.12’dedir.

Şekil 4.12: R2 , Model 2 için kullanılan mesaj sayısının korelasyon değerleri

 58

Model 2 için, 1 tur içinde 3. saat diliminde R3 belleğine saldırı da anlamlı değerler

korelasyon içermektedir. Ekteki şekil 4.13’de bu görülebilir.

Şekil 4.13: R3 , Model 2 için Anahtarın En yüksek Anlamlı Bitinin korelasyon

değerleri

Model 2’nin R3 için Korelasyon analizi–plaintext sayısı korelasyonu Şekil

4.14’dedir.

Şekil 4.14: R3 , Model 2 için kullanılan mesaj sayısının korelasyon değerleri

 59

4.9 Farksal Güç Analizi saldırısı, ölçüm verileri kullanımı

Bu bölümde DPA saldırısı benzetim yaptığımız ve benzetim sonucu ölçüm verisiyle

saldırı yapılabileceğini gördüğümüz modelin gerçek ortam ölçüm verileri ile

tekrarlayacağız.

Bölüm 4 de benzetim amaçlı kullandığımız N adet plaintext için şifreleme işlemini

gerçekleştiririz.

Ölçüm detayları sonucunda elde edilen matris, tahmin sonuçları ile korelasyona tabi

tutulur, bu işlem sonucunda ölçüm sonuçları ile en yüksek korelasyonu veren bayt,

aradığımız anahtar bayt bilgisidir sonucuna ulaşırız. Şekil 4.15’da bu konudaki ilişki

verilmiştir.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅⋅⋅⋅
⋅⋅⋅
⋅⋅⋅
⋅⋅⋅
⋅⋅⋅
⋅⋅⋅
⋅⋅⋅
⋅⋅⋅

⋅⋅⋅⋅⋅

nmnnnn

m

m

mmmmm

mmmmm
mmmmm

3210

113121110

003020100

1M :m)x Matrisi(n Ölçüm

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

nort

ort

ort

ort

ort

m

m
m
m
m

3

2

1

0

2M :1)x Matrisi(n Sütun Ölçüm

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅
⋅⋅
⋅⋅
⋅⋅
⋅⋅

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

nnnn pppp

pppp
pppp
pppp
pppp

,255,2,1,0

3,2553,23,13,0

2,2552,22,12,0

1,2551,21,11,0

0,2550,20,10,0

3M :)256(n x isiTahminMatr

M2 ile M3 ‘ün korelasyonunun
max olduğu nokta doğru
anahtarı verir

Şekil 4.15: Benzetim Verisi ile gerçek ölçümün birleştirilmesi ve korelasyon eldesi

 60

5. SONUÇLAR VE TARTIŞMA

Konu ile ilgili olarak en önemli nokta, Türkiye’de bu konuda ilk defa bu kapsamda

çalışma yapılmış olmasıdır. Yaklaşım tarzı olarak oluşturulan algoritmalar ve yazılan

programlar Türkiye ötesinde dünyada da ilk defa uygulandığı söylenebilir.

Tez kapsamında yapılan çalışmalarda AES algoritmasının FPGA gerçeklemesinde

güç analizi ile algoritmanın en önemli bileşeni olan şifreleme anahtarının eldesinin

mümkün olduğunu gördük, gerçeklemelerde farksal güç harcamalarına karşı önlem

alınmasının gerekli olduğu elde ettiğimiz sonuçlardan görülmektedir.

Yazılım dili olarak C programlama dili kullanılmıştır. C dili , mühendislik

uygulamalarında bit seviyesinde sağladığı operatörleri nedeniyle ve hız açısından

diğerlerinden üstünlüğü nedeniyle tercih edilmiştir. Analiz datalarından Matlab ile

korelasyon analizi yapılmıştır.

Yazılan programlar ve elde edilen sonuçlar, AES gerçeklemesinin güç analizi

saldırılarına karşı korumalı olarak yapılması gerekliliğini göstermiştir.

Gerçeklemeler farksal güç analizi saldırısına karşı korumalı olarak tasarlanmalıdır.

 61

KAYNAKLAR

[1] Yerlikaya, T., Buluş, E., Arda, D., 2004. AES Aday Şifreleme Algoritmalarının

Yazılım ve Donanım Performans Karşılaştırması ve Uygulamalar,

Elektrik Elektronik Bilgisayar Mühendisliği Sempozyumu (ELECO

2004), Bursa-TÜRKİYE, s. 1

 [2] Şahin A., Buluş E., Sakallı T., 2005. Modern Blok Şifreleme Algoritmalarının

Gücünün İncelenmesi, II. Mühendislik Bilimleri Genç

Araştırmacılar Kongresi,İ.Ü. İstanbul, 17 – 19 Kasım, s. 4

[3] J¨org J. Buchholz, 2001. Matlab Implementation of the Advanced Encryption

Standard report , Hochschule Bremen Almanya s. 5 - 28

[4] Gladman B., 2002. A Specification for Rijndael, the AES Algorithm v3.3, 1

Mayıs 2002., s. 2 - 20

[5 Federal Information Processing Standards Publication., 2001. Announcing the

Advanced Encryption Standart (AES) report, Kasım 2001, s. 18 - 34

[6] Loidreau P., 2002. Kriptografiye Giriş, Linux Magazine dergisi, Mayıs 2002,

http://www.linuxfocus.org/Turkce/May2002/article243.shtml

[7] Ors S., Gürkaynak F., Oswald E., Preneel B.,2004. Power-Analysis Attack on

an ASIC AES implementation, International Conference on

Information Technology: Coding and Computing (ITCC'04) Volume

2, s. 546

[8] P. Kocher., 1996.Timing attacks on implementations of Diffie-Hellman, RSA,

DSS and other systems. In N. Koblitz, editor,Advances in

 62

Cryptology: Proceedings of CRYPTO’96,number 1109 in Lecture

Notes in Computer Science, s.104–113, Santa Barbara, CA, USA,

Springer-Verlag.

[9] P. Kocher, J. Jaffe, and B. Jun.,1999. Differential power analysis.In M. Wiener,

editor, Advances in Cryptology: Proceedingsof CRYPTO’99,

number 1666 in Lecture Notes in ComputerScience, s. 388–397,

Santa Barbara, CA, USA, Springer-Verlag.

 63

ÖZGEÇMİŞ

14.06.1973 Suluova/Amasya doğumlu Hakan Kayış, ilk öğrenimini bu şehirde

tamamladıktan sonra orta ve lise öğrenimini Samsun Anadolu Lisesi’nde tamamladı.

1991 yılında İstanbul Teknik Üniversitesinde Elekronik ve Haberleşme Mühendisliği

eğitimine başladı. İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü Elektronik ve

Haberleşme Bölümünde yüksek lisans eğitimine devam etti. Sırasıyla TEM

Elektronik (8 bitlik mikroişlemcilerle sistem tasarımı), AB Develioğlu (değişik tıp

cihazları teknik destek ve satış), Pamukbank (yazılım geliştirme), Dışbank (yazılım

geliştirme), Turkcell (test mühendisi) firmalarında çalıştı. Meslek yaşamına halen

Turkcell’de devam etmektedir.

 64

	giris.pdf
	giris.pdf
	1. GİRİŞ
	2. SONLU UZAY ARİTMETİĞİ

	sonuclar.pdf
	5. SONUÇLAR VE TARTIŞMA

