
Hardware Implementation of a Montgomery Modular Multiplier in a Systolic
Array

Sıddıka BernäOrs1 Lejla Batina1,2 Bart Preneel1 Joos Vandewalle1
1Katholieke Universiteit Leuven, ESAT/SCD-COSIC

Kasteelpark Arenberg 10
B-3001 Leuven-Heverlee, Belgium

{Siddika.BernaOrs, Lejla.Batina, Bart.Preneel, Joos.Vandewalle}@esat.kuleuven.ac.be
2SafeNet BV

Boxtelseweg 26a
5261 NE Vught, The Netherlands

lbatina@safenet-inc.com

Abstract

This paper describes a hardware architecture for modu-
lar multiplication operation which is efficient for bit-lengths
suitable for both commonly used types of Public Key Cryp-
tography (PKC) i.e. ECC and RSA Cryptosystems. The
challenge of current PKC implementations is to deal with
long numbers (160-2048 bits) in order to achieve system’s
efficiency, as well as security. RSA, still the most popular
PKC, has at its root the modular exponentiation operation.
Modular exponentiation consists of repeated modular mul-
tiplications, which is also the basic operation for ECC pro-
tocols. The solution proposed in this work uses a systolic
array implementation and can be used for arbitrary preci-
sions. We also present modular exponentiation based on the
Montgomery’s Multiplication Method (MMM).

Keywords:Montgomery’s Multiplication Method, Pub-
lic Key Cryptography, RSA, ECC, FPGA, systolic array

1 Introduction

In 1976, Diffie and Hellman introduced the idea of public
key cryptography [5]. They used this concept to eliminate
the need for a secure channel to exchange some secret infor-
mation. Also, digital signatures were introduced which al-
low to uniquely bind a message to its sender. Since then, nu-
merous public-key cryptosystems have been proposed and
all these systems based their security on the difficulty of
some mathematical problem. The most prominent examples
are RSA, named after its inventors Rivest, Shamir and Adel-

man [23] and Elliptic Curve Cryptosystems (ECC), which
are proposed by Koblitz [13] and Miller [18]. When com-
paring these two most popular public-key cryptosystems,
there are several aspects to be taken into account such as:
security, key lengths, speed and implementation issues. For
security, the hardness of the underlying mathematical prob-
lem is essential. It is important to point out that ECC are
plural equivalent security as RSA for much smaller key
sizes. The reason is that all algorithms solving the math-
ematical problem on which ECC are based take fully ex-
ponential time. Other benefits include higher speed, lower
power consumption and smaller certificates which is espe-
cially useful in constrained environments (smart cards, cel-
lular phones, pagers etc.). The basic operation for RSA is
modular exponentiation which can be realized by using re-
peated multiplications overGF (p). The basic operation for
ECC is point multiplication which also relies on efficient
finite field multiplication. Commonly used finite fields in
ECC protocols areGF (p) andGF (2n). As a consequence,
a substantial amount of research is focused on efficient and
secure implementation of modular multiplication in hard-
ware.

In 1985 Montgomery introduced a new method for mod-
ular multiplication [19]. The approach of Montgomery
avoids the time consuming trial division that is a common
bottleneck of other algorithms. His method is proved to
be very efficient and is the basis of many implementations
of modular multiplication, both in software and hardware.
In this paper we look at an efficient hardware implementa-
tion of the Montgomery’s modular multiplication (MMM)
in FPGA.

Efficient implementation of the MMM in hardware was
considered by many authors [1, 3, 4, 6, 7, 8, 9, 10, 11, 12,

14, 16, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36].
A systolic array architecture is one possibility for imple-
mentations of public key cryptography in hardware. Vari-
ous solutions for systolic arrays were proposed, for exam-
ple [1, 3, 4, 7, 8, 9, 10, 11, 14, 25, 28, 29, 30, 31, 35, 36].

Our contribution is in combining a systolic array archi-
tecture, which is assumed to be the best choice for hard-
ware on current integrated circuits (ICs), with the MMM
in Field Programmable Gate Array (FPGA). In this work
we present the implementation results of a modular expo-
nentiator which we designed using our MMM circuit. The
implementation results for ECC using MMM can be found
in [20]. Similar work was done by Blum and Paar [3]. How-
ever, their solution is less efficient because they had to use
an extra step in the main algorithm for the MMM; this step
was required because they do not use the optimal bound
for the main parameterR (so-called Montgomery param-
eter) [37]. The modular exponentiation algorithm is usu-
ally repeating modular multiplication around 1500 times
(assuming balanced Hamming weight of the exponent) for
1024-bit operands. Therefore, the implementation in [3] is
far less efficient compared to implementation in this work.

The remainder of this paper is organized as follows. In
Section 2, the underlying methods invented by Montgomery
are explained in detail and we introduce common notation
and parameters. We also give some comments on the bound
condition for avoiding subtraction at the end of every expo-
nentiation step introduced by Walter [37]. Section 3 gives a
survey of previous work on systolic arrays and Montgomery
based operations in hardware. Section 4 describes a sys-
tolic array architecture and design steps as well as the re-
sults of implementation. Conclusions and benchmarks for
future work conclude the paper.

2 Previous work

This section reviews some of the most relevant previ-
ous contributions in this area. Eldridge and Walter [6] and
Kornerup [14] were the first researchers who report hard-
ware solutions for implementing the Montgomery’s Mul-
tiplication Method. However, Iwamura, Matsumoto and
Imai [10, 9] are the first ones to our knowledge proposing a
systolic array which can execute a modular exponentiation
operation using Montgomery modular multiplication.

Tenca and Koç introduced a pipelined Montgomery mul-
tiplier, which has the ability to work on any given operand
precision and is adjustable to any chip area in [26]. Savaşet
al. used the same design methodology to obtain a dual-field
multiplier, i.e., the unit which can handle multiplication in
both types of finite fields in [24]. That multiplier would
have obvious benefits for many applications of public key
cryptography.

Iwamura, Matsumoto and Imai [11] considered the usual

bottleneck for hardware implementations of Montgomery’s
algorithm, i.e., the fact that the number of output bits may
exceed the number of input bits. They derived the bound
R ≥ 2n+2 for R = 2r. Hence, they concluded that
r = n + 2 is the minimum possible value for which the
examination of the size of the output each time the Mont-
gomery method is executed, may be omitted. This property
is desired in order to be able to feed back directly the result
of each multiplication. Here,n is the maximal number of
bits of N , N < 2n. This bound can be further improved to
the conditionR > 4N , which is according to Walter [37],
the best possible bound in practice. The work of Walter
offers many useful results for Montgomery’s techniques.
In [34], which is further improved in [37], he showed that
the Montgomery exponentiation method requires no final
subtraction, which is very important for fast implementa-
tions. Detailed review of previous work can be found in [2].

Relevant previous work considering FPGA is presented
by Blum and Paar [3]. The latency of processing elements
used to construct the systolic array introduced in that work
is higher than the processing elements introduced in this
work. This difference brings to our work higher clock fre-
quency, hence results in a fast implementation. We also im-
prove on the work of [3] by giving a practical implemen-
tation of the most recent theoretical work on the bound.
More precisely, in their work the Montgomery parameter
R is set asR = 2n+3. We use4N < R = 2n+2. In this
way, the number of repetitions for Montgomery’s algorithm
is only n + 2 for radix 2 implementations, compared with
n + 3. In the case of higher radix it can perform multipli-
cation indn+2

α e as explained in [1]. Also this architecture
is equally suitable for both types of cryptography, ECC as
well as RSA. Note that, the same authors have reported an
implementation with high-radix in [4].

3 Montgomery Modular Multiplication

For modular multiplication Montgomery’s technique is
chosen [19]. Montgomery multiplication is defined as fol-
lows:

Mont(x, y) = xyR−1 mod N (1)

For a word baseb = 2α, R should be chosen such thatR =
2r = (2α)l > N . There is a one-to-one correspondence be-
tween each elementx ∈ ZN and its Montgomery represen-
tationxR mod N . This Montgomery representation allows
very efficient modular arithmetic especially for multiplica-
tion. Montgomery’s method for multiplying two integers
x andy (calledN -residues) moduloN , avoids division by
N which is the most expensive operation in hardware. The
method requires conversion ofx andy to anN -residue do-
main and conversion of the calculation result back toZN.
The procedure is as follows. To computeZ = xy mod N ,

one first has to compute the Montgomery multiplication of
x andR2 mod N to getZ ′ = xR mod N . Mont(Z ′, y)
gives the desired result. When computing the Montgomery
productT = Mont(x, y) = xyR−1 mod N , the procedure
shown in Algorithm 1 is performed [17].

In the original notation of Montgomery after each mul-
tiplication a reduction was needed (Step 7 in Algorithm 1).
The input had the restrictionX, Y < N and the outputT
was bounded byT < 2N . As a consequence, ifT > N , N
must be subtracted so that the output can be used as input of
the next multiplication. To avoid this subtraction a bound
for R is known [37] such that for inputsX, Y < 2N the
output is also bounded byT < 2N .

In [34] the need of avoiding reduction after each multi-
plication is addressed. In practice this means that the output
of the multiplication can be directly used as an input of the
next Montgomery multiplication. We want to find a bound
on R such that withX, Y < 2N the output of the Mont-
gomery multiplicationT < 2N . Write R ≥ kN , then:

T =
XY + mN

R
=

XY

R
+

m

R
N <

4
k

N + N (2)

where,m = (XY mod R)N ′ mod R [1].
Hence,T < 2N for k ≥ 4, implying: 4N ≤ R. We

will use 4N < R = 2l+2, by takingα = 1 for simplicity
and making the iteration starting from Step 2 executel + 2
times. As the result of the decision forα, −N−1 mod 2α

can be written as(2− n0)−1 mod 2. BecauseN is odd for
RSA and an odd prime for ECC,n0 = 1 which results to
N ′ = 1. We will use the Algorithm 2 for MMM which
includes these improvements.

Algorithm 1 Montgomery modular multiplication with fi-
nal subtraction
Require: N = (nl−1 · · ·n1n0)2α , x = (xl−1 · · ·x1x0)2α ,

y = (yl−1 · · · y1y0)2α with x, y ∈ [0, N − 1], R = (2α)l,
gcd(N, 2α) = 1 andN ′ = −N−1 mod 2α

Ensure: xyR−1 mod N
1: T← 0.
2: for i from 0 to(l − 1) do
3: mi ← (t0 + xiy0) N ′ mod 2α

4: T ← (T + xiy + miN)/2α

5: end for
6: if T ≥ N then
7: T ← T −N
8: end if
9: Return (T)

All the operations will be done modulo2N through the
modular exponentiation. The final round in the modular ex-
ponentiation is the conversion to the integer domain, i.e.,
calculating the Montgomery multiplication of the last result
and 1. The same arguments as above prove that this final

Algorithm 2 Montgomery modular multiplication without
final subtraction
Require: N = (nl−1 · · ·n1n0)2, x = (xl · · ·x1x0)2, y =

(yl · · · y1y0)2 with x, y ∈ [0, 2N − 1], R = 2l+2,
gcd(N, 2) = 1

Ensure: xyR−1 mod 2N
1: T ← 0
2: for i from 0 to l + 1 do
3: mi ← (t0 + xiy0) mod 2
4: T ← (T + xiy + miN)/2
5: end for
6: Return (T)

step remains within the following bound:Mont(T, 1) ≤
N . In practice,AB mod N = N will never occur since
A 6= 0 mod N [1].

4 Hardware Implementation

4.1 Design Overview

Our system can be divided hierarchically into three lev-
els:

1. Systolic Array Cell: computes1 bit of T in Step 4 of
Algorithm 2.

2. Systolic Array: computes one iteration of Step 2 of
Algorithm 2.

3. Montgomery Modular Multiplication Circuit
(MMMC): computes complete Algorithm 2.

4. Modular Exponentiator: combines modular multipli-
cations to realize modular exponentiation according to
Algorithm 3.

In the following sections we have described the system us-
ing a bottom-up approach.

4.2 Systolic Array Cells

Thei-th iteration of Step 2 in Algorithm 2 computes the
temporary results

Ti = 2−α(Ti−1 + xi × Y + mi ×N + 2) (3)

wherei = 0, · · · , l + 1 andT−1 = 0 [35]. Thej-th digit of
Ti is obtained using the recurrence relation

22×c1i,j +2×c0i,j +ti,j = ti−1,j+1+xi×yj +mi×nj

+2×c1i,j−1+c0i,j−1

(4)
i = 0, · · · , l + 1, j = 0, · · · , l, c1i,−1 = 0 andc0i,−1 = 0.
In Eq.(4),2×c1i,j +c0i,j , j = −1, · · · , l, denotes the carry
chain up the adder.

The regular cell of the systolic array consists of two full-
adders (FA), one half-adder (HA) and two AND-gates as
shown in Fig. 1.(a). We can calculatemi by the following
equation:

mi = (ti−1,1 + xi × y0) mod 2 = ti−1,1 ⊕ xi × y0 (5)

i = 0, · · · , l + 1 andt−1,1 = 0. Heremi is not an input to
the rightmost cell, but obtained in the rightmost cell.

Because there is no carry input to the rightmost cell, the
equation for calculatingti,0 can be simplified as shown by
Eq. (6).

2× c0i,0 + ti,0 = ti−1,1 + xi × y0 + mi (6)

i = 0, · · · , l + 1 andt−1,1 = 0. By combining Eq. (5) and
Eq. (6), it can easily be shown thatti,0 = 0 and the equation
for calculatingc0i,0 is as follows:

c00 = ti−1,1 + xi × y0 (7)

i = 0, · · · , l + 1 andt−1,1 = 0. The rightmost cell of the
systolic array consists of one AND, one OR and one XOR
gate as shown in the Fig. 1.(b).

Because there is only one carry input from rightmost cell,
Eq.(4) can be simplified forti,1 as follows, which is ob-
tained by the cell shown in Fig. 1.(c). It consists of one FA,
two HAs and two AND-gates.

22×c1i,1+2×c0i,1+ti,1 = ti−1,2+xi×y1+mi×n1+c00

(8)
i = 0, · · · , l + 1 andt−1,2 = 0.

Becausenl = 0, the equation ofti,l can be simplified as
follows:

2× ti,l+1 + ti,l = ti−1,l+1 + xi × yl

+2× c1i,l−1 + c0i,l−1
(9)

i = 0, · · · , l + 1 andt−1,l+1 = 0. This equation is imple-
mented by thel-th cell, which is shown in Fig. 1.(d). This
cell consists of one FA, one AND and one XOR-gate.

Thei-th row computesTi from Ti−1. Each cell operates
in a single clock cycle. Then thei, j-th cell processes the
digits of Eq.(4) at clock cycle time2i + j.

4.3 Systolic Array

To obtain a linear, pipelined modular multiplier, only one
row of cells is taken. Thej-th cell behaves like cell(i, j),
computing Eq.(4) at time2i + j for i = 0, · · · , l + 1.

The schematic view of the systolic array is shown in
Fig. 2. X(0) denotes the least significant bit (LSB) of the
register in which the inputX is stored.T denotes the inter-
mediate value register. The carry chain is stored in theC0
andC1 registers.

Fig. 2 shows that theTj+1 output of (j + 1)-th cell is
used as an input forj-th cell during the next iteration. This
way the division by2 in Step 4 of Algorithm 1 is realized.

Total area of the systolic array is(5l − 3)XOR + (7l −
7)AND + (4l − 5)OR gates and4l flip-flops. The critical
path is the same as the critical path of one regular cell and
it is independent of the bit length of the operands. So it is
2TFA(cin → cout) + THA(cin → cout).

4.4 Modular Montgomery Multiplication Circuit

The MMMC has threel-bit data inputsX, Y and N ,
one START instruction input, one DONE output, which in-
dicates that the operation is ended, and anl-bit RESULT
output.

The MMMC is designed using the algorithmic state ma-
chine (ASM) approach. For detailed information about
ASM approach, reader is referred to [15]. The circuit con-
sists of a controller and a data path as shown in Fig. 3. The
controller has four states, IDLE, MUL1, MUL2 and OUT.
The data path consists of a systolic array, four internal reg-
isters, a counter and a comparator. The controller stays in

0

T register 0
N register X input

counter 0

Y register Y input
X register X input

MUL2

MUL1

T register output of
systolic array

RESULT T register

OUT

DONE 1

IDLE

START

1

MMM=1

count−end

1

0

T register output of
systolic array

counter=counter+1
right shift X

Figure 4. Algorithmic state machine of Mont-
gomery modular multiplier

the IDLE state waiting for the START instruction. When

Sum

Carry

FA

m
i

c1i,j−1

i,j−1c0

c1i,j

jy

Sum

Carry

HA

FA

Carry

Sum

t
i,j

c0i,j

jn

ix

t
i−1,j+1

i−1,1t

m
i

0
y

c0
i,0

x
i

(a) (b)
Sum

Carry

FA

nj

mi

yj

t
i−1,2 Sum

Carry

HA

Carry

SumHA

c0
i,0

t
i,1

c0 i,1

i,1c1

xi

c0
i,l−1

i−1,l+1
t

Sum

Carry

t
i,l

i,l−1
c1

t
i,l+1

ix

yl
FA

(c) (d)

Figure 1. Schematic view of systolic array cells; (a) Regular, (b) Rightmost, (c) 1-st bit, (d) Leftmost

xi mimi

x(l−2)/2

0
ynl−1

n2

C0(1)
C1(1)

T(2)

C0(2)
C1(2)

C0(l−2)
C1(l−2)

cellcell
l l−1

C0(l−1)

C1(l−1)

T(l)

T(2)T(3)

T(l−1)

T(l)T(l+1)

T(l+1)

1st−bit
cell

rightmost
cell

regular
cell

C0(1)
xixi−1

mi−1
m(l−2)/2

y
l−1

y
2

y
1

n1 T(1)

T(1)

y
l

X(0)

Figure 2. Schematic view of complete systolic array

the START input is set,X, Y andN registers are loaded by
input values, theT register and the counter are reset.

In MUL1, the outputs of the systolic array cells are writ-
ten to theT register and controller goes to the MUL2 state.
When the controller is in the MUL2 state, the counter is in-
cremented by1. When the counter value reaches2(l + 1),
the comparator sets the “count-end” signal. Then the con-
troller goes to the OUT state in which the value of theT
register is written to the RESULT output and the acknowl-
edgement signal DONE is set.

In the MUL2 state, theX register is shifted one bit right
and the most significant bit (MSB) of theX register is filled
0. This ensures that, during the last iteration of Step 2 of
Algorithm 2, the value ofX(0) will be 0.

As mentioned beforeti,j is calculated at the(2i + j)-th
clock cycle,i = 1, · · · , l + 2 andj = 1, · · · , l. tl+2,l is
calculated at the(2(l + 2) + l)-th clock cycle. Hence, the
total number of clock cycles for completing one modular
Montgomery multiplication equals3l + 4 .

In the previous work from Blum and Paar [4] the cells
processu-bit data in one clock cycle. The3-bit control reg-

isters are put in the cells to control the output of four com-
plex multiplexors. These bring high latency on the critical
path of the one cell and as a consequence, the clock fre-
quency is lower. In this work, cells process1-bit in one
clock cycle, the circuit is constructed only using combina-
tional elements and the architecture is much more simpler
as shown in Fig. 1.

In [4], total number of bits used for control logic is
3ḋl/ue-bit. The role of the control in their circuit and how
they implemented the complete algorithm using it is not
clear. In this work, the control logic islog2(l + 2) + 2-bit,
including 2-bit state register,log2(l + 2)-bit counter and
a comparator. It is implemented separately from systolic
array as shown in Figure 3 and controls the execution of
the modular Montgomery multiplication algorithm accord-
ing to the ASM shown in Figure 4.

Implementation Results of The Modular Mont-
gomery Multiplication Circuit: The MMMC is imple-
mented on Xilinx V812E-BG-560-8 (Virtex E) FPGA.
Number of slices (S), clock period (Tp), time-area prod-
uct (TA) and time for one MMM (TMMM) for different bit

CONTROLLER SYSTOLIC ARRAY

START

DONE

X NY

RESULT

load

COUNTER

0 to l+1

RATOR

COMPA−

shift right for X register
load

reset
increment value of counter

count−end

l+1−bit X, Y, N Registers

(l+1)−bit T Register

Figure 3. Architecture of the Montgomery modular multiplier circuit

lengthl are given in Table 2.
As it is shown in Table 2, the clock frequency is inde-

pendent from the bit length. This property gives our circuit
the advantage of suitability to various applications with dif-
ferent bit lengths like RSA and ECC.

4.5 Modular Exponentiation and RSA

The RSA algorithm is based on modular exponentia-
tion. The private key of a user consists of two large primes
p and q and an exponentD. The public key consists of
the modulusN = p · q and an exponentE such that
E = D−1 mod lcm((p − 1), (q − 1)). To encrypt a mes-
sageM the user computes:C = ME mod N . Decryption
is done byM = CD mod N . Modular exponentiation can
be realized by using the standard square and multiply algo-
rithm as given by Algorithm 3 [17].

Algorithm 3 Modular exponentiation
Require: IntegersN , 0 ≤ M < N , 0 < E < N , E =

(et−1, et−2, · · · , e0)2, et−1 = 1
Ensure: ME mod N

1: A → M
2: for i from t− 2 to 0 do
3: A → AA mod N
4: if ei = 1 then
5: A → AM mod N
6: end if
7: end for
8: Return (A)

If MMMC is used for multiplication then the result will
be with an extra factorR−1 = 2−(l+2). This is compen-

sated by pre-Montgomery multiplyingM by R2 mod N ,
so thatMR mod N is fed into the exponentiator. The
square in Step 3 of Algorithm 3 will beMont(AR,AR) =
A2R mod N and the multiplication in Step 5 of Algo-
rithm 3 will beMont(AR,MR) = AMR mod N . Hence
the result of the modular exponentiation will beMER mod
N . The only post-processing is then another Montgomery
multiplication by1, which removesR.

The pre-computation is done in2(2(l + 2) + 1) + l =
5l + 10 clock cycles. One multiplication or square takes
3l + 4 clock cycles. If all the bits ofE are1 then the com-
plete exponentiation takes2l(3l + 4) clock cycles. If only
one bit ofE is 1 then it takesl(3l+4). The post-processing
takes2 + l clock cycles. So the complete timing of modu-
lar exponentiation,Tmod−exp can be given by the following
inequality:

3l2 + 10l + 12 ≤ Tmod−exp ≤ 6l2 + 14l + 12 (10)

l is the number of bits inN . The average times needed
for one modular exponentiation for different bit lengths are
given in Table 1.

5 Conclusions and Future Work

We have described an efficient systolic array architecture
for modular multiplication which is basic operation for pub-
lic key cryptosystems as RSA and ECC. We use the method
of Montgomery, which is proven to be very efficient and
secure in hardware. Namely, the optimal bound is achieved
which, with some savings in hardware, omits completely all
reduction steps that are presumed to be vulnerable to side-
channel attacks. Also we realize a modular exponentiator

Table 1. Clock period (Tp) and average time for one mod-
ular exponentiation (Tmod−exp) for different bit lengthl on
Xilinx V812E-BG-560-8

Tp The averageTmod−exp

l ns ms
32 9.256 0.046
128 10.242 0.775
256 9.956 2.974
512 10.501 12.468
1024 10.458 49.508

Table 2. Number of slices (S), clock period (Tp), time-
area product (TA) and time for one MMM (TMMM) for
different bit lengthl on Xilinx V812E-BG-560-8

S Tp TA TMMM

l ns S · ns µs
32 225 9.256 2082.6 0.926
64 418 9.221 3854.38 1.807
128 806 10.242 8255.05 3.974
256 1548 9.956 15411.88 7.686
512 2972 10.501 31208.97 16.171
1024 5706 10.458 59673.35 32.168

which uses repeating modular multiplications. We imple-
mented our architecture on Xilinx V812E-BG-560-8 (Vir-
tex E) FPGA which is very useful to try efficiently different
design choices, i.e., different algorithms for modular multi-
plication and exponentiation for less expense compared to
ASIC.

One direction in which this work should go is to imple-
ment also an ECC basic operation, i.e., point multiplication.
This operation does not require modular exponentiation but
modular multiplication only, so all required components are
available. A cryptographic device dealing with both types
of PKC would be very useful to secure communication sys-
tems.

Acknowledgements

Sıddıka BernäOrs is funded by a research grant of the
Katholieke Universiteit Leuven, Belgium. Dr. Bart Preneel
and Dr. Joos Vandewalle are professors at the Katholieke
Universiteit Leuven, Belgium. This work was supported
by Concerted Research Action GOA-MEFISTO-666 of the
Flemish Government and by the FWO “Identification and
Cryptography” project (G.0141.03).

References

[1] L. Batina and G. Muurling. Montgomery in practice: How
to do it more efficiently in hardware. In B. Preneel, editor,
Proceedings of RSA 2002 Cryptographers’ Track, number
2271 in Lecture Notes in Computer Science, pages 40–52,
San Jose, USA, February 18-22 2002. Springer-Verlag.

[2] L. Batina, S. B.Örs, B. Preneel, and J. Vandewalle. Hard-
ware architectures for public key cryptography.Elsevier Sci-
ence Integration the VLSI Journal, in print, 2002.

[3] T. Blum and C. Paar. Montgomery modular exponentiation
on reconfigurable hardware. InProceedings of 14th IEEE
Symposium on Computer Arithmetic, pages 70–77, Ade-
laide, Australia, April 14-16 1999.

[4] T. Blum and C. Paar. High-radix Montgomery modular ex-
ponentiation on reconfigurable hardware.IEEE Transac-
tions on Computers, 50(7):759–764, July 2001.

[5] W. Diffie and M. E. Hellman. New directions in cryptog-
raphy. IEEE Transactions on Information Theory, 22:644–
654, 1976.

[6] S. E. Eldridge and C. D. Walter. Hardware implementation
of Montgomery’s modular multiplication algorithm.IEEE
Transactions on Computers, 42:693–699, 93.

[7] S. Even. Systolic modular multiplication. In A. J. Menezes
and S. A. Vanstone, editors,Advances in Cryptology: Pro-
ceedings of CRYPTO’90, number 537 in Lecture Notes in
Computer Science, pages 619–624. Springer-Verlag, 1990.

[8] W. L. Freking and K. K. Parhi. Performance-scalable ar-
ray architectures for modular multiplication. InProceed-
ings of the IEEE International Conference on Application-
Specific Systems, Architectures, and Processors, pages 149–
160. IEEE, 2000.

[9] K. Iwamura, T. Matsumoto, and H. Imai. High-speed im-
plementation methods for RSA scheme. In R. A. Ruep-
pel, editor,Advances in Cryptology: Proceedings of EU-
ROCRYPT’92, number 658 in Lecture Notes in Computer
Science, pages 221–238. Springer-Verlag, 1992.

[10] K. Iwamura, T. Matsumoto, and H. Imai. Systolic-arrays
for modular exponentiation using Montgomery method. In
R. A. Rueppel, editor,Advances in Cryptology: Proceed-
ings of EUROCRYPT’92, number 658 in Lecture Notes in
Computer Science, pages 477–481. Springer-Verlag, 1992.

[11] K. Iwamura, T. Matsumoto, and H. Imai. Montgomery mod-
ular multiplication method and systolic arrays suitable for
modular exponentiation.Electronics and Communications
in Japan, 77(3):40–50, 1994.

[12] Y. S. Kim, W. S. Kang, and J. R. Choi. Implementation
of 1024-bit modular processor for RSA cryptosystem. In
Proceedings of Asia-Pasific Conference on ASIC (AP-ASIC),
Cheju Island, Korea, August 28-30 2000.

[13] N. Koblitz. Elliptic curve cryptosystem. Math. Comp.,
48:203–209, 1987.

[14] P. Kornerup. A systolic, linear-array multiplier for a class
of right-shift algorithms.IEEE Transactions on Computers,
43(8):892–898, August 1994.

[15] M. M. Mano and C. R. Kime.Logic and Computer Design
Fundamentals. Prentice Hall, Upper Saddle River, New Jer-
sey 07458, second edition, 2001.

[16] W. P. Marnane. Optimised bit serial modular multiplier for
implementation on field programmable gate arrays.Elec-
tronics Letters, 34(8):738–739, April 1998.

[17] A. Menezes, P. van Oorschot, and S. Vanstone.Handbook
of Applied Cryptography. CRC Press, 1997.

[18] V. Miller. Uses of elliptic curves in cryptography. In H. C.
Williams, editor,Advances in Cryptology: Proceedings of
CRYPTO’85, number 218 in Lecture Notes in Computer Sci-
ence, pages 417–426. Springer-Verlag, 1985.

[19] P. Montgomery. Modular multiplication without trial divi-
sion. Mathematics of Computation, Vol. 44:519–521, 1985.

[20] S. B. Örs, L. Batina, B. Preneel, and J. Vandewalle. Hard-
ware implementation of an elliptic curve processor over
GF(p). 2002. Submitted for publication.

[21] H. Orup. Simplifying quotient determination in high-radix
modular multiplication. InProceedings of the 12th Sympo-
sium on Computer Arithmetic, pages 193–199. IEEE, 1995.

[22] J. Poldre, K. Tammemae, and M. Mandre. Modular expo-
nent realization on FPGAs. InProceedings of 8th Inter-
national Workshop on Field-Programmable Logic and Ap-
plications, From FPGAs to Computing Paradigm (FPL’98),
pages 336–347, Tallinn, Estonia, August 31-September 3
1998.

[23] R. L. Rivest, A. Shamir, and L. Adleman. A method for
obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21(2):120–126, 1978.

[24] E. Savaş, A. F. Tenca, and Ç. K. Koç. A scalable and unified
multiplier architecture for finite fields GF(p) and GF(2m).
In C. Paar and Ç. K. Koç, editors,Proceedings of Cryp-
tographic Hardware and Embedded Systems (CHES 2000),
number 1965 in Lecture Notes in Computer Science, pages
281–296. Springer-Verlag, 2000.

[25] C.-Y. Su, S.-A. Hwang, P.-S. Chen, and C.-W. Wu. An
improved Montgomery’s algorithm for high-speed RSA
public-key cryptosystem.IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 7(2):280–284, June 1999.

[26] A. F. Tenca and Ç. K. Koç. A scalable architecture for
Montgomery multiplication. In Ç. K. Koç and C. Paar, ed-
itors, Proceedings of Cryptographic Hardware and Embed-
ded Systems (CHES 1999), number 1717 in Lecture Notes
in Computer Science, pages 94–108. Springer-Verlag, 1999.

[27] A. F. Tenca, G. Todorov, and Ç. K. Koç. High-radix design
of a scalable modular multiplier. In Ç. K. Koç, D. Nac-
cache, and C. Paar, editors,Proceedings of Cryptographic
Hardware and Embedded Systems (CHES 2001), number
2162 in Lecture Notes in Computer Science, pages 189–205.
Springer-Verlag, 2001.

[28] A. A. Tiountchik. Systolic modular exponentiation via
Montgomery algorithm.Electronics Letters, 34(9):874–875,
April 1998.

[29] E. Trichina and A. Tiountchik. Scalable algorithm for Mont-
gomery multiplication and its implementation on the coarse-
grain reconfigurable chip. In D. Naccache, editor,Pro-
ceedings of Topics in Cryptology - CT-RSA 2001, number
2020 in Lecture Notes in Computer Science, pages 235–249.
Springer-Verlag, 2001.

[30] W.-C. Tsai, C. B. Shung, and S.-J. Wang. Two systolic archi-
tectures for modular multiplication.IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 8(1):103–107,
February 2000.

[31] C. D. Walter. Systolic modular multiplication.IEEE Trans-
actions on Computers, 42:376–378, 1993.

[32] C. D. Walter. Still faster modular multiplication.Electronics
Letters, 31(4):263–264, February 1995.

[33] C. D. Walter. Techniques for the hardware implementation
of modular multiplication. InProceedings of 2nd IMACS In-
ternational Conference on Circuits, Systems & Computers,
volume 2, pages 945–949, Athens, October 1998.

[34] C. D. Walter. Montgomery exponentiation needs no final
subtraction.Electronic letters, 35(21):1831–1832, October
1999.

[35] C. D. Walter. Montgomery’s multiplication technique: How
to make it smaller and faster. In Ç. K. Koç and C. Paar, ed-
itors, Proceedings of Cryptographic Hardware and Embed-
ded Systems (CHES 1999), number 1717 in Lecture Notes
in Computer Science, pages 80–93. Springer-Verlag, 1999.

[36] C. D. Walter. An improved linear systolic array for fast mod-
ular exponentiation.IEE Computers and Digital Techniques,
147(5):323–328, September 2000.

[37] C. D. Walter. Precise bounds for Montgomery modular mul-
tiplication and some potentially insecure RSA moduli. In
B. Preneel, editor,Proceedings of Topics in Cryptology- CT-
RSA 2002, number 2271 in Lecture Notes in Computer Sci-
ence, pages 30–39, 2002.

