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ABSTRACT
This paper describes a hardware implementation of an arith-
metic processor which is efficient for elliptic curve (EC) cryp-
tosystems, which are becoming increasingly popular as an
alternative for public key cryptosystems based on factor-
ing. The modular multiplication is implemented using a
Montgomery modular multiplication in a systolic array ar-
chitecture, which has the advantage that the clock frequency
becomes independent of the bit length m.

Categories and Subject Descriptors: B.2.1 [Hardware]:
Arithmetic and Logic Structures—Design Styles

General Terms: Design

Keywords: Elliptic Curve Cryptosystems, FPGA, Mont-
gomery Modular Multiplication

1. INTRODUCTION
Elliptic curve (EC) cryptography was proposed indepen-

dently by Miller [1] and Koblitz [2] in the 1980’s. The bene-
fits of EC, when compared with classical cryptosystems such
as RSA [3] include: higher speed, lower power consump-
tion and smaller certificates, which are particularly useful
for wireless applications.

The performance of an EC cryptosystem and of several
other public key cryptosystems strongly depends on the im-
plementation of finite field arithmetic. In this article a hard-
ware architecture of a processor for an EC cryptosystem over
the finite field GF (2m) is presented.
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The remainder of this paper is organized as follows. In
Section 2 we discuss the related work. Section 3 provides
the necessary mathematical background to understand Sec-
tion 4, that describes the hardware implementation. Sec-
tion 5 presents some implementation results and Section 6
concludes the paper.

2. PREVIOUS WORK
Agnew et al. reported the first results for performing el-

liptic curve operations over GF (2155) on hardware [4]. A
detailed overview of other EC cryptosystems over GF (2m)
is given in [5]. All these previous implementations use a
normal modular multiplication to perform the field multi-
plication in GF (2m). Our work uses MMM in a systolic ar-
ray architecture, which allows to make the clock frequency
independent of the bit length m.

3. MATHEMATICAL BACKGROUND
3.1 Elliptic curves overGF (2m)

An elliptic curve E is often expressed in terms of the
Weierstrass equation:

y2 + xy = x3 + ax2 + b , (1)

where a, b, x, y ∈ GF (2m), b 6= 0.
The points on the curve and the point at infinity O form

an abelian group together with the operation of ”addition”.
The point or scalar multiplication, this is the multiplication
of a point on the curve with a scalar, is the main operation
for EC cryptography. This operation can be calculated by
using the double-and-add algorithm shown in Algorithm 1.
For details see [1, 2, 6, 7].

Algorithm 1 Elliptic Curve Point Multiplication

Require: EC point P = (x, y), k = (kl−1, kl−2, · · · , k0)2, kl−1 = 1
Ensure: Q = (x′, y′) = kP
1: Q← P
2: for i from l− 2 downto 0 do
3: Q← 2Q
4: if ki = 1 then
5: Q← Q + P
6: end if
7: end for

In the above definition of the EC group affine coordinates
are used, but so-called projective coordinates have some im-



plementation advantages. In affine coordinates, the point
addition uses many field inversions. A field inversion is a
very expensive operation. In projective coordinates, only
one inversion needs to be performed at the end of a point
multiplication operation. The benefits of using projective
coordinates in EC cryptosystems are explained in more de-
tail in [6].

3.2 Projective coordinates
A projective plane, denoted by P 2, is defined to be the

set of equivalence classes of triples (X, Y, Z), not all zero.
(X1, Y1, Z1) and (X2, Y2, Z2) are said to be equivalent if
there exists a λ 6= 0 ∈ GF (2m) such that X1 = λX2,
Y1 = λ2Y2 and Z1 = λZ2. Each equivalence class is called a
projective point (x, y, 1), where x = X/Z and y = Y/Z2.
The projective equation derived from the affine equation
Eq. (1) is given by Y 2 + XY Z = X3Z + aX2Z2 + bZ4.

To convert an affine point (x, y) to a projective point,
one sets X = x, Y = y, Z = 1. To convert a projective
point (X, Y, Z) to an affine point, we compute x = X/Z,
y = Y/Z2. The formulae for elliptic curve point addition
and doubling are given by López and Dahab in [8].

3.3 Polynomial representation
Our algorithm for Montgomery modular multiplication is

defined on the polynomial representation. An element a of
GF (2m) is then represented by a polynomial with m coeffi-
cients, as follows:

a(x) = am−1x
m−1 + · · ·+ a1x + a0 , (2)

where the coefficients ai ∈ GF (2). In the word-level descrip-
tion of the algorithms, these bits are grouped into s words
of equal length. Let w be the word length and m = s · w.
Hence, a can be written as a(x) =

∑s−1
i=0 Ai(x)xiw, where

each polynomial Ai(x) corresponds to a word of length w,
or Ai(x) = aiw+w−1x

w−1 + · · ·+ aiw+1x + aiw.
The addition of two elements a and b in GF (2m) is per-

formed by adding the polynomials a(x) and b(x), where the
coefficients are added in the field GF (2). This is equivalent
to a bit-wise XOR operation on the vectors a and b. In or-
der to multiply two elements a and b in GF (2m), we need
to select an irreducible polynomial of degree m. Note that a
different choice of polynomial leads to a different finite field
representation, but all finite fields with the same number
of elements are isomorphic. Different choices of irreducible
polynomials are discussed in [9]. Let p(x) be an irreducible
polynomial of degree m over the field GF (2), hence pm = 1
and p0 = 1. The product c = a · b in GF (2m) is obtained by
computing c(x) = a(x)b(x) mod p(x), where c(x) is a poly-
nomial of length m, representing the element c ∈ GF (2m).

3.4 Montgomery modular multiplication over
GF (2m)

The Montgomery multiplication of a and b is defined as
c(x) = a(x)b(x)r−1(x) mod p(x) where r(x) = xm mod
p(x) = (pm−1pm−2 · · · p1p0) [10]. This equation can be eval-
uated with Algorithm 2 given by Koç and Acar in [11].

Algorithm 2 requires the computation of the polynomial
P ′

0(x) = P−1
0 (x) mod xw, that consists of w bits, where w is

the word length.

4. HARDWARE IMPLEMENTATION
Our Elliptic Curve processor (ECP) can be divided into

four hierarchical levels as shown in Fig. 1.

Algorithm 2 Word-Level Montgomery modular multipli-
cation
Require: a(x), b(x), p(x), P ′

0(x)

Ensure: c(x) = a(x)b(x)x−m mod p(x)
1: c(x) = 0
2: for i from 0 to (s− 1) do
3: M(x) = (C0(x) + Ai(x)B0(x)) P ′

0(x) mod xw

4: c(x) = (c(x) + Ai(x)b(x) + M(x)p(x)) /xw

5: end for
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Figure 1: EC point multiplier circuit block diagram

The operation blocks at each level from top to bottom are
as follows:

• Level 1: Main Controller (MC)
• Level 2:

1. affine to projective converter (AtoP) (4.4)
2. normal to Montgomery converter (NtoM) (4.5)
3. EC point multiplier (EPM) (4.6)
4. projective to affine converter (PtoA) (4.7)
5. Montgomery to normal converter (MtoN) (4.8)

• Level 3:
1. EC point doubling circuit (EPD) (4.2)
2. EC point addition circuit (EPA) (4.2)
3. modular multiplicative inverter (MMI) (4.3)

• Level 4:
1. modular addition (MA) (4.1)
2. Montgomery modular multiplication circuit

(MMMC) (4.1)

The bit length m, the word length w and the key length l
are input parameters to the circuit.

4.1 Modular addition and Montgomery
modular multiplication circuit

The Modular Addition Circuit in GF (2m) is a bitwise
logical XOR operation. The output is clocked into a register,
so the computation is finished in one clock cycle.

The MMMC that performs Algorithm 2 is designed as a
systolic array with variable bit length m and variable word
length w. This systolic array architecture makes the maxi-
mum clock frequency independent of the bit length m. The
clock frequency only depends on the word length w. The
details of the MMMC can be found in [12].

As explained in Section 3.4 P ′
0(x) = P−1

0 (x) mod xw needs
to be computed. This is done by using the observation that
P0(x) and its inverse satisfy P0(x)P−1

0 (x) = 1 mod xi for i =
1, 2, · · ·w [11]. We have designed a circuit that calculates the
coefficients of the polynomial P−1

0 during the first clock cycle
and writes the result in a register. Then the value of this
register is used as an input for the MMMC in Algorithm 2.



4.2 EC point doubling and addition
Algorithm 3 realises an EC point doubling (a) and an EC

point addition (b) based on [8]. The inputs to the algo-
rithms are points on the curve that are written in projective
coordinates, as explained in Section 3.2. The output points
are also in projective coordinates.

The doubling algorithm consists of eleven steps and needs
three temporary registers. In each step a modular addition
and/or a Montgomery modular multiplication is executed.
Because MA and MMMC are seperate hardware blocks, the
operations can be performed in parallel. The first ten steps
all contain a Montgomery modular multiplication that is
sometimes accompanied by a modular addition, while the
11th step only consists of a modular addition. This makes
the total execution time 10TMMM + 1, with TMMM the la-
tency of one Montgomery modular multiplication. In the
same way, it can be found that the total execution time of
one EC point addition is 14TMMM + 1.

Algorithm 3 EC Point Doubling and Addition
Require: P1 = (X1, Y1, Z1)
Ensure: 2P1 = (X3, Y3, Z3)

1. T1 ← Z2
1

2. T2 ← X2
1

3. Z3 ← T1T2

4. T1 ← T 2
1

5. T2 ← T 2
2

6. T1 ← bT1

7. T2 ← Y 2
1 X3 ← T1 + T2

8. T3 ← aZ3 T2 ← T2 + T1
9. T1 ← T1Z3 T3 ← T3 + T2
10. T3 ← X3T3
11. Y3 ← T3 + T1

(a)

Require: P1 = (x, y, 1),
P2 = (X2, Y2, Z2)

Ensure: P1 + P2 = (X3, Y3, Z3)

1. T1 ← Z2
1

2. T2 ← Y2T1
3. T3 ← X2Z1 T2 ← T2 + Y1
4. T1 ← aT1 T3 ← T3 + X1
5. T4 ← Z1T3

6. T3 ← T 2
3 T1 ← T4 + T1

7. T1 ← T3T1

8. Z3 ← T 2
4

9. T4 ← T2T4

10. T2 ← T 2
2 T1 ← T1 + T4

11. T1 ← X2Z3 X3 ← T2 + T1
12. T2 ← Y2Z3 T1 ← X3 + T1
13. T1 ← T4T1 T2 ← X3 + T2
14. T3 ← Z3T2
15. Y3 ← T1 + T3

(b)

4.3 Modular multiplicative inverter
Modular multiplicative inversion is computed using Fer-

mat’s theorem [13, 9], a(x)−1 = a(x)2
m−2 mod p(x). This

modular exponentiation of a(x) by 2m−2 = (1, 1, · · · 1, 1, 0)2,
using the square-and-multiply algorithm [9], is shown in Al-
gorithm 4.

Algorithm 4 Modular multiplicative inversion

Require: polynomial a(x), 0 ≤ a(x) < p(x) and p(x)

Ensure: b(x) = a(x)2
m−2 mod p(x) = a(x)−1 mod p(x)

1: b(x)← a(x)
2: for i from 2 to m− 2 do
3: b(x)← b(x)b(x) mod p(x)
4: b(x)← b(x)a(x) mod p(x)
5: end for
6: b(x)← b(x)b(x) mod p(x)

The MMI circuit controls the execution of the square-and-
multiply algorithm. It gets its START signal from the PtoA
circuit. The MMI circuit then commands the MMMC to
perform a MMM twice in every loop iteration in Algorithm 4
and once at the end.

4.4 Affine to projective representation
converter

As explained in Section 3.2, it is more efficient to do
point operations using projective instead of affine coordi-
nates. The conversion to projective coordinates is as follows:

(xp(x),yp(x))→(X(x),Y (x),Z(x))=(xp(x),yp(x),1) (3)

where (xp(x),yp(x)) is the point in affine coordinates and
(X(x),Y (x),Z(x)) is the same point in projective coordi-
nates.

4.5 Normal to Montgomery representation
converter

The conversion of a(x) from the normal to the Mont-
gomery representation is computed as Mont(a(x), r(x)2) =
a(x)r(x) mod p(x). Multiplication by the MMMC of two
polynomials that are in Montgomery representation will pro-
duce the Montgomery representation of the product as
Mont(a(x)r(x), b(x)r(x)) = a(x)b(x)r(x) mod p(x).

Modular addition of two polynomials that are in Mont-
gomery representation will produce the Montgomery repre-
sentation of the sum as a(x)r(x) mod p(x) + b(x)r(x) mod
p(x) = (a(x) + b(x)) r(x) mod p(x). Because of these rela-
tions, the Montgomery representation of the coordinates of
P , the coefficients a, b and the number 1 will be calculated
in the beginning of the point multiplication by the NtoM
circuit and all the operations during the EC point multipli-
cation will be performed in Montgomery representation.

The conversion to Montgomery representation of the num-
ber one is computed as Mont(1, r(x)2) = r(x) mod p(x).

The other conversions in NtoM are done by the following
four operations:

Mont(a(x), r(x)2) = a(x)r(x) mod p(x)
Mont(b(x), r(x)2) = b(x)r(x) mod p(x)
Mont(xp(x), r(x)2) = xp(x)r(x) mod p(x)
Mont(yp(x), r(x)2) = yp(x)r(x) mod p(x) .

4.6 EC point multiplier
The EPM circuit controls the execution of Algorithm 1.

In every iteration of the loop, an EPD is executed. An EPA
is only performed when the evaluated key bit is 1.

4.7 Projective to affine coordinates converter
After completing the EC point multiplication the result

point Q must be converted from projective coordinates to
affine coordinates. This is done as (X(x), Y (x), Z(x)) →
(xq(x), yq(x)) such that xq(x) = X(x)Z(x)−1 and yq(x) =
Y (x) Z(x)−2 [8]. PtoA controls four operations in the fol-
lowing order:

Z(x)−1r(x) mod p(x) =MMI of Z(x)
Mont(X(x)r(x), Z(x)−1r(x)) =xq(x)r(x) mod p(x)
Mont(Z(x)−1r(x), Z(x)−1r(x))=Z(x)−2r(x) mod p(x)
Mont(Y (x)r(x), Z(x)−2r(x)) =yq(x)r(x) mod p(x) .

4.8 Montgomery to normal representation
converter

Because the coordinates of the product point must be in
normal representation, as a last action a conversion from
Montgomery representation to normal representation is nee-
ded. This conversion requires two additional executions
of the MMMC operation with the inputs xq(x)r(x) mod
p(x) and 1, then yq(x)r(x) mod p(x) and 1, as xq(x) =
Mont(xq(x) r(x), 1), yq(x) = Mont(yq(x)r(x), 1).

5. IMPLEMENTATION RESULTS
The EC processor has been implemented on a Xilinx Vir-

tex XCV800-4-HQ240 FPGA. The implementation results
are given in Table 1. The number of gates in the table are



Table 1: Area and latency results of 160-bit imple-
mentations (for hw = 80)
w 1 4 8
Number of gates 138 528 149 037 150 678
Clock Period (ns) 19.956 19.977 20.923
Latency of ECP (ms) 9.652 7.249 3.801

not the same as ASIC gates. They are equivalent gates com-
puted by Xilinx Project Manager. The table shows that the
minimum clock period and the area of the circuit decrease
when the word length w is enlarged. When using a larger w,
the latency of the circuit becomes lower, because the point
multiplication can be done in less clock cycles.

The maximum clock frequency is independent of the bit
length m. The total latency of the ECP can be calculated
as (1900 + 14hw) TMMMC + 316 + 2hw, where hw is the
Hamming Weight of the key and TMMMC is the latency of
one MMM. TMMMC = m for w = 1 and TMMMC = 3m

w
for w > 1. One elliptic curve point multiplication (ECPM)
requires 3.810 ms at 47 MHz. Because there is no previ-
ous work which uses modular Montgomery multiplication
method and all of the used platforms are different from the
platform we use, it is hard to compare the area of the cur-
rent work with the previous ones. The time needed for one
ECPM with our design is approximately the same as the re-
sult reported in [4], smaller than the results reported in [14,
15, 16, 17, 18, 19, 20]. Unfortunately our circuit is slower
than the ones reported in [21] and [22].

6. CONCLUSIONS
We have described an efficient implementation of an el-

liptic curve processor over GF (2m). The processor can be
programmed to execute a modular multiplication, addition,
multiplicative inversion, EC point addition/doubling and
multiplication. Our architecture uses the Montgomery method
for modular multiplication because of its implementation ad-
vantages. It allows to use a systolic array which makes the
clock frequency independent of the bit length m.
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[12] N. Mentens, S. B. Örs, B. Preneel, and J. Vandewalle.
An FPGA implementation of a Montgomery
multiplier over GF(2m). 2004. DDECS, Stara Lesna,
Slovakia, 18-21 April, 8 pages, to appear.

[13] N. Koblitz. A Course in Number Theory and
Cryptography, volume 114 of Graduate text in
mathematics. Springer-Verlag, Berlin, Germany,
second edition, 1994.

[14] S. Sutikno, R. Effendi, and A. Surya. Design and
implementation of arithmetic processor GF(2155) for
elliptic curve cryptosystems. In Proceedings of the
1998 IEEE Asia-Pacific Conference on Circuits and
Systems (APCCAS’98), pages 647–650, 1998.

[15] L. Gao, S. Shrivastava, H. Lee, and G. E. Sobelman.
A compact fast variable key size elliptic curve
cryptosystem coprocessor. In Proceedings of the
Seventh Annual IEEE Symposium on
Field-Programmable Custom Computing Machines
(FCCM), pages 304–305, 1999.

[16] L. Gao, S. Shrivastava, and G. E. Sobelman. Elliptic
curve scalar multiplier design using FPGAs. In Ç.
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