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Figure 1.1. Example of a typical embedded system (smart-phone) 



Design Flow 
 Step A: system specification 

 Step B: co-synthesis 

 Goal 
 Architecture allocation 

 Application mapping 

 Activity scheduling 

 Energy management 

 Aim : to optimise the design 

 Objectives  
 Power consumption 

 Performance 

 Cost 

 Step C: hardware and software synthesis 

 



 



Task Graph Representation 

 CGS ,

 nT  ,,, 10  : the set of tasks to be executed 

C: the set of directed edges refers to communications 

between tasks 

Cij  : a communication from task i  to task j 

•A task can only start its execution after all its 

ingoing communications have finished. 

•Task deadline  : the time by which its execution 

has to be finished. 



Figure 1.3. MP3 decoder given as (a) task graph specification (17 tasks and 18 communications) 

and (b) high-level language description in C 



System-level co-synthesis flow 

Co-synthesis steps are 

iteratively repeated until all 

design constraints and 

objectives are satisfied.  



Architectural selection problem 

Table 1.1. Trade-offs between serveral 

heterogeneous components 

(+ + highly advantageous‚ + advantageous‚ o 

moderate‚ 

disadvantageous‚ - - highly disadvantageous) 

• GPP: general-purpose 

processor 

• ASIC: application 

• specific integrated circuit 

• ASIP: application specific 

instruction set processor 

• FPGA: field-programmable 

• gate arrays 



Application mapping onto hardware 

and software components 

• Mapping explicitly determines if a task is implemented in 

hardware or software 

• hardware/software partitioning is often mentioned in this 

context 



Task execution properties (time and 

power) on different processing 

elements 





Energy Management 
 exploit idle times and slack times within the system schedule by shutting 

down PEs or by reducing the performance of individual PEs 

 Idle times refer to periods in the schedule when PEs and CLs do not 

experience any workload. 

 Slack times is the difference between task deadline and task finishing 

time of sink tasks (tasks with no outgoing edges) 

 



Energy Management Techniques 
 𝑃 = 𝛼𝐶𝐿𝐹𝑉

2 

 Dynamic Power Management (DPM) 

 Puts processing elements and communication links into standby or 
sleeping modes whenever they are idle. 

 The reactivation of components takes finite time and energy. 

 Components should only be switched off or set into a standby mode if 
the idle periods are long enough to avoid deadline violations or 
increased power consumptions . 

 Dynamic Voltage Scaling (DVS) 

 Exploits slack time by reducing simultaneously clock frequency and 
supply voltage of PEs. 

 Adapts the component performance to the actual requirement of the 
system. 



The concept of dynamic voltage scaling 

Such an optimisation requires the iterative execution of the co-

synthesis steps (allocation‚ mapping‚ scheduling)‚ until the “most” 

suitable implementation of the system has been found. 



Hardware Synthesis 
1. high-level synthesis tool (or behavioural synthesis): behavioural 

specification  structural description at the register transfer 
level (RTL). 

2. logic synthesis: RTL description  gate level representation 

3. layout synthesis: gate level representation  final layout 

 

 Power reduction can be addressed at all three synthesis stages 

 high-level: e.g. clock-gating 

 gate-level: e.g. logic optimisation 

 mask-level: e.g. technology choice 

 

 The higher the level of abstraction at which the energy 
minimisation is addressed‚ the higher are the achievable energy 
saving. 



Software Synthesis 
1. Compile: initial specification  assembly code 

 The goal of the optimisation is the effective assignment of 
variables to registers such that operations can be performed 
without ―time consuming‖ memory accesses. 

2. processor specific assemblers: assembler code  executable 
machine code 

 

 Power optimisation by 

 instruction reordering 

 reduction of memory accesses 

 careful algorithmic design at the source code level 



Energy Dissipation of Processing 

Elements 
1. Static 

 occur whenever the processing element is switched on, even when no 
computations are carried out on this unit. 

2. Dynamic 
 active computations cause switching activity within the circuitry whenever 

computations are performed. 

 

 𝑃𝐸 = 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝑃𝑙𝑒𝑎𝑘 + 𝑃𝑏𝑖𝑎𝑠
𝑃𝑠𝑡𝑎𝑡𝑖𝑐

+ 𝑃𝑆𝐶 + 𝑃𝑆𝑊
𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐

 

 

 Out of these four source of power dissipation, switching power 𝑃𝑆𝑊 is 
currently the dominant one which accounts for approximately 90% of the total 
PE power consumption. 

 With shrinking feature size (< 0.07μm) and reduced threshold voltage levels, 
the leakage currents become additionally an important issue. 



Dynamic power dissipation 

Switching power is 𝑃𝑆𝑊 dissipated due to the charging and 

discharging of the effective circuit load capacitance 𝐶𝐿 (parasitic 

capacitors of the circuit gates). 



Dissipated Switching Energy of One 

Clock Cycle 

 𝑃𝑆𝑊 = 𝑉𝑑𝑑𝑖𝐶𝐿  

 𝑖𝐶𝐿 = 𝐶𝐿
𝜕𝑉𝑜𝑢𝑡

𝜕𝑡
 

 𝑇 =
1

𝑓
 (period of on clock cycle) 𝑓: operational frequency 

 𝐸𝑆𝑊
0→1 =  𝑃𝑆𝑊𝑑𝑡

𝑇

0
=  𝑉𝑑𝑑𝑖𝐶𝐿𝑑𝑡

𝑇

0
= 𝑉𝑑𝑑  𝐶𝐿𝑑𝑉𝑜𝑢𝑡

𝑇

0
= 𝐶𝐿𝑉𝑑𝑑

2 

 The total energy 𝐸𝑆𝑊
𝜏 drawn from the batteries by a PE performing a 

computational task 𝜏 depends additionally on the number of clock cycles 𝑁𝐶  

needed to execute this task and the switching activity 𝛼. 

 𝐸𝑆𝑊
𝜏 = 𝑁𝐶𝛼𝐶𝐿𝑉𝑑𝑑

2 

 𝑃𝑆𝑊
𝜏 =

𝑁𝐶𝛼𝐶𝐿𝑉𝑑𝑑
2

𝑇𝑁𝐶
= 𝛼𝐶𝐿𝑉𝑑𝑑

2𝑓 

 

 

 



Conclusion from the Equations 
 If we assume that the load capacitance 𝐶𝐿 is a constant given by the 

complexity of the design and the circuit technology, and further the 

switching activity 𝛼 is a constant depending on the computational task 

then: 

 Although decreasing the operational frequency 𝑓 leads to a reduction in 

power dissipation (𝑃𝑆𝑊
𝜏 = 𝛼𝐶𝐿𝑉𝑑𝑑

2𝑓), it does not reduce the energy 

dissipation (𝐸𝑆𝑊
𝜏 = 𝑁𝐶𝛼𝐶𝐿𝑉𝑑𝑑

2), which is important for battery-

lifetime. 

 The only possibility to reduce the energy consumption is to reduce the 

circuit supply voltage 𝑉𝑑𝑑. 

 Reducing the supply voltage necessitates the reduction of the frequency 

in order to ensure correct operation. 



Supply voltage dependent circuit delay 

 The reduction of the supply voltage leads to longer charging 

times until the threshold is reached. 

 Reducing the supply voltage also reduces the leakage power 

consumption. 

 𝑃𝑙𝑒𝑎𝑘 = 𝑉𝑑𝑑𝐾1𝑒
𝐾2𝑉𝑑𝑑𝑒𝐾3𝑉𝑏𝑠 + 𝑉𝑏𝑠 𝐼𝐽𝑢 



Dynamic Voltage Scaling 

 DVS-enabled processors have the ability to dynamically 

change their supply voltage and operational frequency 

settings during run-time of the application. 

 Temporal performance requirements of applications can 

exploit the energy/delay trade-off to reduce energy 

dissipation. 

 



Block diagram of DVS-enabled processor 
carries out the required 

computations. 

static memory (cache unit) 

system bus 

The heart of this system, which enables a dynamic voltage selection, 

consists of a DC/DC voltage converter, a specialised frequency register, and a 

voltage controlled oscillator (VCO). 



Dynamic Voltage Scaling 
 Supply voltage and operational frequency are changed by 

writing the desired frequency 𝑓𝑑 into the frequency register. 

 Upon writing the desired frequency into the register, the 
DC/DC converter compares this frequency with the current 
frequency 𝑓𝑐 and either increases or decreases the supply 
voltage 𝑉𝑑𝑑. 

 According to the changed voltage, the VCO adapts the 
system clock to a higher or lower frequency 𝑓𝑐 . 

 Certainly, the whole voltage scaling process requires a finite 
time. Typical transition times are in the range of tenths of 
microseconds. 



Dynamic Power Management 
 The main strategy is the shutdown of idle system components. 

 An advantage is usage not only for digital circuitry, but also for other 
system components such as displays, hard drives, and analogue circuits. 

 Two approaches 

 components are switched off immediately when they become idle 

 the timeout-based policy, which switches off components after a fixed idle 
interval. 
 well known from the advanced power management (APM) widely used in today’s 

notebook  computers. 

 Since the restart of a component involves a time and power overhead to 
restore its fully functional state, such greedy policies might not result in 
power savings or may even increase the dissipated power. 

 The quality of a power management policy depends on the accuracy with 
which the future behaviour of the system can be predicted, in order to 
start-up currently inactive components or to shut down currently active 
components at the right moment. 



Dynamic Power Management versus Dynamic 

Voltage Scaling 

 A PE performs a certain task 𝜏𝑥 in 20 ms and dissipates a power of 500 mW 
when running with 33 MHz at a nominal supply voltage of 3.3 V and a 
threshold voltage of 0.8 V. 

 To meet the performance requirements of the application, the task needs to be 
repeated every 30 ms. 

 Between each consecutive execution of the task there are 10 ms of idleness 
during which the processor can be deactivated (DPM). 

 Under these circumstances the execution of task 𝜏𝑥 results in an energy 
consumption of 500mW·20ms=10mJ. 

Figure 2.5. Shutdown during idle times (DPM) 



Voltage scaling to exploit the slack time (DVS) 

 The repetition time of 30ms allow to prolong the execution time of task from 20ms to 30ms. 

 Instead of shutting down the processor during the 10ms of idleness, the processor’s performance is 

reduced from 33MHz to 22MHz, since 30ms/20ms =1.5 and 33MHz/1.5 = 22MHz. 

 The lower frequency allows the reduction of the supply voltage from 3.3V to 2.61V and the tolerable 

increase in circuit delay of 33MHz/22MHz = 1.5. 

 The exact voltage can be obtained by considering the ratio between the delays at 33MHz and 22MHz. 

 At this voltage and frequency values the processing element dissipates a power of 209.8mW. 

 The energy consumption is given by 209.8mW · 30ms = 6.29mJ, a reduction of 32.1% compared to the 

10mJ dissipated when using DPM. 

 This simple example has shown that the energy efficiency of DVS is superior when compared to DPM. 

 In fact, DVS always performs better than DPM, whenever both techniques are applicable. 



Energy Dissipation of Communication 

Links 
 Fast communication is essential to avoid undesired contention of 

processing elements. 

 Wide system buses (8 to 128 bit) 

 High speed serial buses (CAN bus, I2C bus, USB, Gigabit Ethernet, Firewire, 

etc.) have become commonplace. 

 With each transfer of data over the communication links (CLs), the line 

capacitance is charged and discharged, drawing a current  from the I/O 

pins of the processing elements. 

 The power dissipated by these currents is given by: 

 

 The drawn energy: 

 

2

trbusbusCL VfCP 

2

trbusbustrCL VfCNE  



Energy Dissipation of Communication 

Links 
 One possibility to reduce this energy dissipation is to encode the data 

before transferring it. 

 Such bus-encoding techniques have been investigated with the aim of 

reducing the switching activity . 

 Unlike the supply voltage of processing elements, the transmission 

voltage      cannot be reduced easily due to reliability issues, that is, 

environmental noise potentially corrupts data during transfers at low 

voltages. 

 Furthermore, DPM can be equally applied to CLs as to PEs, i.e., during 

intervals where no data is transfered the CLs can be switched off. 

trV



Power Variation Driven DVS 
 Many approaches to DVS in distributed systems assume that the power 

dissipation of processing elements is independent of the executed 
instructions. 

 The voltage selection is carried out considering a constant power 
dissipation, in the following referred to as fixed power model. 

 Modern IC designs often make use of low-level power minimisation 
techniques, such as clock gating to stop the switching activity in 
unutilised blocks of the circuit. 

 The power dissipation can vary considerably during the execution of 
different functions. 

 A voltage scaling technique that takes this power variation effect into 
account.  

 An energy-gradient driven heuristic 

 The concept of mapped-and-scheduled task graphs is used to account for 
task and communication dependencies in a fast and effective way. 



Motivation 
 In the case of a general-purpose processor (GPP), including an integer unit and 

a floating point unit (FPU), it is not desirable to keep the FPU active if only 
integer instructions are executed. 

 The clock signal to the FPU can be gated (stopped) during the execution of integer 
instructions, which will nullify the switching activity in the FPU.  

 Different tasks (different use of instructions) dissipate different amounts of power 
on the same processing element. 

 Several different cores reside together on a single chip. Consider an ASIC 
accommodating four different cores: a FIR filter, an IDCT algorithm, a DES 
encrypt/decrypt unit, CORDIC (coordinate rotation digital computing) 
algorithm. 

 These four cores vary considerably in complexity. 

 This heterogeneity results certainly in different power dissipations, accordingly to 
which cores are active at a given time. 

 Taking this power variations into account during the voltage scaling improves 
the overall energy efficiency, since the available slack time is distributed more 
fairly among the tasks.  



Energy-gradient 

 E : Difference between the energy dissipation of task  

with the execution time texe and the reduced energy 

dissipation (due to voltage and clock scaling) of the same task 

when extended by a time quantum t. 

E = E (texe) - E (texe + t). 



Motivational Example: Considering 

Power Variations during Voltage Scaling 
 The considered architecture is composed of two heterogeneous DVS-PEs 

 a Transmeta Crusoe 

 a StrongARM with Xscale technology 



Table 3.2. Communication times and power dissipations of communication 

activities mapped to the bus 

Table 3.1. Nominal task execution times and power dissipations 

Communications between tasks on the same PE (intra communications) are 

assumed to be instantaneous, and their power dissipation is neglected. 



Power profile of a possible mapping and schedule 

at nominal supply voltage (no DVS is applied) 

 The dynamic system energy dissipation of this 
configuration at nominal supply voltage can be 
calculated using the dynamic power values and 
execution times given in Tables 3.1 and 3.2.  

 PE0 (0 and 4)  0.15ms · 85mW + 0.15ms · 
100mW= 27.75μJ 

 PE1 (1 , 2 ,3)   0.3ms · 20mW+0.75ms · 
15mW+0.15ms.80mW = 29.25μJ 

 CL0  0.05ms · 5mW + 0.10ms · 5mW = 
0.75μJ 

 overall energy dissipation   27.75μJ + 
29.25μJ + 0.75μJ = 57.75μJ. 

 3  finishes at 1.4ms, deadline : 1.5ms, slack : 
0.1ms.  

 4  finishes at 1.5ms, deadline : 1.6ms, slack : 
0.1ms. 



A fixed power model : power variations are neglected 
 Distribute the slack time evenly among the tasks, that is, each task is 

―stretched‖ using the same extension factor.  

 Each task execution is extended using a factor of e=1.074 

 The execution of task 0 was extended to 0.161ms (0.15ms · 1.074).  

 The extension factor can be calculated considering the longest path to the task 
with the smallest slack time. 

 Both deadline tasks (3 and 4) have a slack of 0.1ms. 

 Consider the path indicated, which involves the tasks 0 ,1,2 and 4. 

 The extension factor is given by: 

𝑒 =
 𝑡𝑛𝑜𝑚 𝜏𝜏∈𝑇𝑃

+ 𝑡𝑆
 𝑡𝑛𝑜𝑚 𝜏𝜏∈𝑇𝑃

 

 𝑡𝑛𝑜𝑚 ∶ nominal execution time, 𝑡𝑆 ∶ slack time, 𝑇𝑃 ∶  all tasks on the path 

 Communications are neglected in this equation since they are not subject to 
scaling. 

𝑒 =
0.15 + 0.3 + 0.75 + 0.15 + 0.1

0.15 + 0.3 + 0.75 + 0.15
≈ 1.074 

 



Power Reduction Mechanisms in CMOS 

Circuits 

 Voltage reduction 
Expense : slower gate speeds 

 Power grid sizing and analysis 
 Power efficient design of the clock distribution network and 

flip-flops 
 Datapath width adjustment 
 Effective circuit structures 
 Clock gating 
 Low power non volatile memory 
 Dynamically varying supply voltages and threshold voltages 
 With multiple supply voltages and multiple threshold voltages 



The traditional front-end approach 

 Estimate and analyze power 

consumption at 

 the register transfer level (RTL) 

 the gate level 

 Modify the design accordingly. 

 only the RTL within given functional 

blocks is modified 

 the blocks re-synthesized 



Modifying the design for low power 

 The desired power consumption reductions may be achieved by: 

 modifying the architecture 

 modifying the algorithms 

 Modifications at system level effect other performance metrics 

 Such modifications require re-evaluation and re-verification of the entire 

design, and re-synthesis of the design.  

• datapath optimization 

• may achieve power reductions of the order of 30% 

• a delay of several weeks.  

• architectural and algorithmic re-design 

• reductions up to 75% 

• may take months.  

 

 



• algorithmic and architectural design decisions have the greatest influence 

on power consumption 

• any new methodology must start at this system level.  



The system-level solution 

• System-level optimization targets 

dynamic power consumption. 

• Short-circuit power and leakage 

power are optimized at lower 

levels of abstraction. 



Power-optimal algorithms and architectures 

• Candidate algorithms are analyzed 

• for their power characteristics 

• to identify potential function-level hot spots 

• The most promising algorithms are then selected and optimized. 

• A power optimal system architecture is created. 

• The optimal power-consuming functions are transformed into hardware. 



Algorithm analysis and optimization (1/2) 

 Power-hungry parts of each algorithm are identified. 

 The algorithm is optimized by algorithm transformation.  

 The C/C++ or SystemC specification must first undergo compilation and instrumentation. 

 Instrumentation: inserting the protocol statements necessary to derive the switching activity 

at each defined operation in the source code.  



Algorithm analysis and optimization (2/2) 
 The algorithms are then executed, and the resulting activity profile data is used to annotate a 

suitable design representation, such as a control data flow (CDF) graph. 

 Any number of power estimations may then be performed to determine the power 

characteristics of any given configuration. 

 A power-optimized architecture can be derived from this graph without executing a complete 

synthesis, using power models created for each RT-level component. 

 These models depend on the input data, component characteristics such as bit width and 

architecture, and the underlying technology or cell library. 

 Using the switching activity and the power models, the power consumption of a component 

can be estimated.  

 Algorithm transformation techniques include: 

 HW/SW partitioning, 

 operator substitutions, 

 code transformations. Code transformations include transformations on conditional 

statements, loop splitting, and loop unrolling. 

 Control statement reduction has a significant impact on the power consumption, and such 

transformations are often best effected via loop transformations.  

 



Power reduction effects of loop unrolling and 

common case optimization techniques.  
 The results show the 

power consumption 

for the original 

algorithm 

(matrix_simple), the 

algorithm optimized 

with loop unrolling 

(matrix_unrolled), 

and the matrix 

optimized by common 

case techniques 

(matrix_ccase_opt).  



Selecting the best algorithm using the initial 

specification and the input data stream 

• The benchmark compares the energy consumption of the two algorithms resulting from the 

processing of two different input streams: a high quality stream — with a low compression ratio — 

consisting of 99% of the original data, and a fast stream consisting of 30% of the original data. 

• It can be seen that the fast algorithm processes the quality stream with less power consumption, 

while the accurate algorithm consumes less power when processing the fast stream. 

• Analysis of such algorithms by the traditional method would have necessitated extensive design 

work, and introduced a delay of weeks. 



Creation of a power optimal architecture 
 The optimal power-consuming algorithm is transformed into hardware. 

 Memory architecture 

 Scheduling 

 Number and types of resources 

 How those resources are shared and bound to the algorithm operators 

 Type of data encoding, controller design, floor plan and clock tree design.  

 Resources can be distinguished not only by their function, but also by their internal 

architecture: an adder can be realized as a carry-ripple or a carry-select adder.  

 Memories have a significant effect on chip power consumption, and often account for 

the majority of it — up to 80% in some SOC designs. 

 Optimizing memory hierarchy and structure as early as possible is a major step in 

meeting power consumption constraints.  

 Common techniques for optimizing memory access and memory system performance 

include: basic loop transformations such as loop interchange, loop tiling, loop 

unrolling, array contraction, scalar replacement, code co-location. 



Visual display of power analysis results 

• The graphic shows an analysis of the power consumption of algorithms used in a digital signal processing application 

— a Wavelet transform. 

• The bar graph shows the power consumed, while the memory access traces show memory usage. 

• It can be seen that intra-array optimization reduces power consumption from 19.2 W to 12.1  W, or 37%. 

• Inter-array optimization — memory size reduction by mapping arrays onto the same addresses of another array — 

reduces the consumption by another 1.2  W, yielding a total 43% reduction. 



Tool requirements 
 Thus, the general requirements of such tools are:  

 Model creation tools must be capable of automatically characterizing RT-level macros and memories 

to create the appropriate power models for use by power estimation tools.  

 Estimation tools must perform comprehensive design space exploration automatically, calculating the 

maximum and minimum power consumption associated with each and every combination of 

algorithmic state and architecture.  

 The tools must accept data written in standard high-level languages, such as C/C++ and SystemC.  

 The tools must fit into a standard design flow, and communicate effectively with other tools in that 

flow.  

 More specifically, the estimation tools must: 

 Estimate power using actual application data.  

 Perform instrumentation automatically on the initial specification.  

 Efficiently execute the algorithmic description with application data.  

 Automatically annotate the CDF with activity profile data.  

 Automatically create constraint scripts for high-level synthesis tools.  

 Accept standard data sheet information for I/O pads, registers, and off-chip memories.  

 Have an estimation scheme for clock power and interconnect.  

 Output the analyses in graphic form.  

 



Typical Energy Distribution in a 

Multimedia Mobile Phone 



Activity at the inputs of a multiplier 

• Whenever a signal changes from 0 to 1 or vice versa capacities have to be 
switched resulting in charge currents. 

• Dynamic energy consumption can be influenced significantly if 
correlation between subsequent data values can be optimized to 
minimize the required switching. 



Estimation and Optimization of Energy 

Consumption (1/2) 
 Layout Level 

 Sufficient data is available to allow accurate simulation and estimation 
 Depending on the estimates design teams can still do transistor sizing and layout re-

arrangements to achieve optimization based on placement and interconnect. 
 The accuracy at this level of abstraction is very high 
 The amount of data to be processed and the simulation speed are so limited that typically 

only a small number of test vectors can be used for analysis. 
 The leverage on energy consumption is comparatively low as no major design changes like 

adjustments of the number of arithmetic resources can be made anymore. 

 Gate Level 
 The gate level netlist can be simulated with event based models. 
 Dynamic energy consumption can be determined fairly accurately based on the design 

activity. 
 Design teams can utilize optimizations minimizing the capacities which have to be driven by 

the most active nodes in the design. 
 Energy consumption can be optimized using balancing of path delays to avoid spikes and 

spurious transitions and re-timing. 
 The accuracy of the estimation is still quite high but the amount of data to be dealt with is 

limiting.  



Estimation and Optimization of Energy 

Consumption (2/2) 
 Register Transfer Level 

 At the RT Level – prior to logic synthesis – energy consumption can be 
estimated using event based or probabilistic simulation. 

 Development tools at this level perform a ―quick logic synthesis‖ followed by 
gate-level estimation.  

 The number of options to reduce the energy consumption is quite high, 
allowing reasonable overall leverage. 

 Specific areas of the design can be dynamically switched to low-power modes 
trading performance vs. energy during execution.  

 Popular methods are reduced clocking or full clock gating of areas in the design. 
 Optimized resource sharing, isolation of operands and optimized coding of 

controller and bus states can contribute to reduce the capacities to be switched. 
 Simulation times are still significant. 

 Electronic System Level 
 Micro Architects, who take an algorithm defined in C or SystemC and decide how 

to implement it, are facing various high impact areas for low-power 
optimization. 



Bit Width Selection 

Typical algorithms defined in C or SystemC will 
initially not contain definitions of the actual bit 
width for operations and storage elements. 

For algorithm selection the design team often 
relies on floating point and straight integer 
calculations. 

Based on the stimulus which is applied to the 
Design under Optimization users can assess the 
minimum and maximum values on specific 
operations and then choose the optimal bit width 
accordingly. 

This allows users to understand the impact of bit 
width on energy and is a step towards trade offs 
between quality, which may be higher in a video 
application using higher bit width, vs. energy which 
decreases with lower bit width in the operators. 



Trading Performance and Voltage vs. Energy 

Consumption 
 Increasing the frequency at which an algorithm runs often 

will increase the energy consumption even though the 
algorithm could run at lower frequency and still would 
meet application requirements. 

 The impact of lowering the frequency of an algorithm has 
significant impact as more operations can be chained 
between registers hence reducing the overall storage 
requirements. 

 Alternatively the supply voltage can potentially be reduced 
resulting in slower performance but significantly reducing 
energy consumption because voltage contributes to energy 
consumption in a quadratic way. 



Optimizing Design Activity 

 If the activity of a design can be determined via 

simulation, users can observe the activity profile at 

the inputs of operations. 

This information helps to guide optimizations 

reducing the activity of operations both prior to and 

after allocation and binding of resources. 

 If the simulation of activity is done at the 

C/SystemC level it is orders of magnitude faster 

than signal level simulation at the RT Level. 



Trading  Area vs. Energy Consumption 

The design space may allow to implement a schedule 
using different numbers of resources. 

Often additional resources will result in less overall 
energy consumption because with more resources 
the correlation of the subsequent data in a stream 
can be used to minimize switching of the capacities 
at the inputs. 

After going though this process the Micro Architect 
can clearly define the optimal number of resources 
trading area against low-power considerations. 



Memory Optimization 

Designers will map arrays in the C Code to different 
types of memories accessible by the data path. 

Using memory access trace graphs users can identify 
areas of suspiciously high number of memory 
accesses. 

Users can then consider alternative memory access 
protocols and their impact on energy consumption. 



Clock Gating and voltage scaling 

 If users understand on a cycle by cycle basis which resources 

are active and which resources are idle, the modules best 

suited for clock gating can be identified. 

 Detailed knowledge which modules can be run at lower 

clock frequencies identifies potential for voltage scaling. 



Trade offs between different 

abstraction levels 



Design Example – A JPEG Decoder 



SystemC overview of the example 

design 

•The input data are read from a file. 

•The compression itself has been integrated into the design as test bench. 

•The module “Decompress” is the “Design under Development”, together with the 

module reading in data (“Input”), storing intermediate data (“Inter”) 

and presenting the data at the output (“Output”). 



Behavioral code and Control-Dataflow Graph (CDFG) 

•A source code example of a matrix multiplication and the corresponding control-dataflow graph 

(CDFG). 

•This graph shows all arithmetic operations, dependencies and memory accesses. 

•The task is to find the right set of resources to map and bind the behavior to in order to achieve a 

low-power implementation. 



Initial Energy Consumption without Optimization 

•Using ChipVision ORINOCO® 

technology the energy 

consumption was estimated. 

•ORINOCO® assumes a macro 

based standard cell design flow. 

•It bridges the gap between 

system level design in C or 

SystemC using a combination of 

micro architecture prediction, 

modeling of structural blocks in 

the design and simulation. 

•Energy consumption is split into the different components Clock, Interconnect, Local 

Interconnect, Controller, Functional Units, Register and 

Memories. 

•The left and right columns per block indicate the best and worst case energy 

consumptions within the defined constraint space. They represent different target micro-

architectures. 



Impact of Clock Gating 

•From SystemC simulation it is possible to derive in which cycles each register 

is active to determine when to apply clock gating.  

•The saving per module on the left and the new resulting overall energy 

distribution on the right. 



Memory Optimization (1/2) 



Memory Optimization (2/2) 

 The left side the actual impact of the different memories used in the 
design. 

 The graph on the right side represents an access trace for one of the key 
memories, RAM3, which contributes the majority of the energy 
consumption. 

 This access trace is caused by the code for matrix multiplication. 

 It shows the timeline on the horizontal axis and the individual memory 
cells on the vertical axis. 

 The experienced user will recognize a suspicious sequence of memory 
accesses following each other closely, always to the same address. 

 A more detailed analysis of the code reveals that the matrix 
multiplication has been implemented in an n-optimized fashion. 

 The access to a temporary storage array at temp[i*8+j] is done 8 times 
even though the surrounding loop does change neither i nor j. 

 This behavior causes unnecessary memory accesses. 



Modified source code 

•Avoids this behavior by using a temporary variable instead of writing back to the 

memory in each cycle of the loop. 

•The resulting saving in energy consumption is 60% in this example. 

 





Data Dependent Optimization of 

Resources (1/2) 



Data Dependent Optimization of 

Resources (2/2) 
 Using SystemC simulation one can create activity traces representing typical use 

cases for the design under optimization. 

 These activity traces represent the switching at the inputs of the arithmetic 
components – how many bits of an 8x8 multiplier change from 0 to1 or 1 to 0 
per cycle. 

 The influence of additional multipliers in the JPEG Design on the energy 
consumption. 

 When comparing the options to implement a part of the decoder with 1, 2, 3 
or 4 multipliers a reduction in energy consumption of more that 60% can be 
achieved! 

 Even though 3 or 4 multipliers technically reduce the energy consumption even 
further for a small amount, it is probably not practical to do so as the saving has 
to be paid with by additional area being used. 



Mechanisms for Shutting Down a 

Resource 

 Disabling registers or by gating the clock:  data propagation 

through combinational logic is halted. 

 Scale down supply voltage or turn power off: usually involves a 

non-negligible time to restore operation. 



Shut Down At Different Levels 
 A hard-disk drive’s operational states: idle, low-power idle,  

standby, sleep 

 Idle: disk is spinning, but some of the electronic components of 
the drive are turned off. The transition from idle to active is 
extremely fast. 50-70% saved. 

 Standby and sleep: disk is spun down, 90-95% saved. The 
transition to the active state is slow. It causes additional power 
consumption, because of the acceleration of the disk motor. 

 The lower the power associated with a system state, the longer the 
delay in restoring an operational state. 



Industrial Design Standards 
 Facilitate the development of operating system-based 

power management. 

 ACPI: Advanced Configuration and Power Interface standard. 

 ACPI recognizes dynamic power management as the key 
to reducing overall system power consumption, and it 
focuses on making the implementation of dynamic power 
management schemes in personal computers as 
straightforward as possible. 



ACPI (1/3) 
 Attempts to integrate power management features in the low-level routines that 

directly interact with hardware devices (firmware and BIOS). 

 Open standard: for adoption by hardware vendors and operating system 
developers. 

 Defines interfaces between OS software and hardware. 

 Applications interact with the OS kernel through application programming 
interfaces (APIs). 

 A module of the OS implements the power management policies. 

 The power management module interacts with the hardware through kernel 
services (system calls). 

 The kernel interacts with the hardware through device drivers. 

 



ACPI (2/3) 
 Describes the behavior of a PC with an abstract, hierarchical finite-

state model. 

 Transitions between states are controlled by the OS-based power 

manager. 



ACPI (3/3) 
 working (G0) and the sleeping (G1) states 

 G0: the system appears fully operational, but the power manager can put idle devices to 
sleep (states D1 to D4, C0 to C3). 

 When the entire system is idle or the user has pressed the power-off button, the OS will 
drive the computer into one of the global sleep states. 

 The sleeping sub-states (S1 to S4) differ in which wake events can force a transition into a 
working state, how long the transition should take and how much power is dissipated in 
the state.  

 User turn-on button: a latency of a few minutes can be tolerated, the OS could save the 
entire system context into non-volatile storage and transition the hardware into a soft-off 
state (G2). 

 G2: power dissipation is almost null and context is retained in non-volatile memory for 
an arbitrary period of time. 

 G3: Mechanical off state is entered in the case of power failure or mechanical 
disconnection of power supply. Complete OS boot is required to exit the mechanical off 
state. 

 legacy state: entered in case the hardware does not support OSPM. 



System-level Power Management 

1. The entire chip can be put in one of several sleep states 

through external signals or software control. 

2. Chip units can be shut down by stopping their local clock 

distribution. 

 



System Modeling 
 The hardware part of the system is a set of resources. 

 Resources: Units that perform or request specific services and that 
communicate by requesting and acknowledging such services. 

 The hardware behavior: finite-state system 

 Power and service levels are associated with the different states and transitions 
among states. 

 It is difficult to have precise information about power and performance levels of 
each resource. 

 This uncertainty can be modeled by using random variables for the observable 
quantities of interest, and by considering average values as well as their 
statistical distributions. 

 Computing optimum dynamic power management policies: a stochastic optimum 
control problem 

 The problem solution, and its accuracy in modeling reality, depend highly on 
the assumptions we use in modeling. 



Assumptions 
 Resources: providers and requesters of services to other 

resources. 

 System structure: resources are vertices of a directed graph and 
resource interactions are edges. 

 The interaction is the request of a service and/or its delivery. 

 Queues: accumulation of requests waiting for services. 

 



Example Of A CPU Requesting Data 

•CPU interacting with a LAN interface, a HDD, a display, a keyboard and a 

mouse. 

•Requests to the CPU can be originated from the keyboard, mouse and LAN 

interface. 

•The CPU can request services to the display, the HDD and LAN. 

•The keyboard and mouse models can express also the behavior of the 

human user who hits their keys and buttons. 

 



Statistical Properties Of The 

Components Of A System 
 Stationarity of a stochastic process: its statistical properties are invariant to a shift of the 

time origin. 

 When resources are viewed as providers of services in response to input stimuli, their 
behavior is stationary. 

 Conversely,when resources act asworkload sources,andwhen wemodel users’ requests 

 as such, the stationarity assumption may not hold in general. For example, patterns 

 of human behavior may change with time, especially when considering the fact that 

 an electronic system may have different users. On the other hand, observations of 

 workload sources over a wide time interval may lead to stationary models that are 

 adequately accurate. An advantage of using stationary models is the relative ease of 

 solving the corresponding stochastic optimization problems. 

 


