
SpecC System-Level Design Methodology Applied to the Design of a

GSM Vocoder

A. Gerstlauer, S. Zhao, D. Gajski A. Horak

Center for Embedded Computer Systems Architecture and System Platforms
University of California, Irvine Motorola Semiconductor Products Sector
Irvine, CA 92697-3425, USA Austin, TX 78729, USA

fgerstl,szhao,gajskig@ics.uci.edu Arkady.Horak@motorola.com

Abstract| In this paper we describe the steps

and transformations of the SpecC system-level design

methodology applied to the example of designing and

implementing a voice encoding/decoding system with

the purpose of demonstrating this design methodol-

ogy on an industrial size example. Starting with the

system speci�cation, the design is gradually re�ned

down to an optimal hardware/software implementa-

tion. The results show that the well-de�ned models,

steps and transformations of the SpecC methodology

lead to a signi�cant productivity gain.

I. Introduction

It is a well-known fact that we are currently facing
an increasing gap between the productivity of design
teams and the possibilities o�ered by technological ad-
vances. Together with growing time-to-market pressures,
this drives the need for innovative measures to increase
design productivity by orders of magnitude.
The two commonly accepted solutions for this prob-

lem are raising the design abstraction to the system level
and reusing intellectual property (IP) components. With
this background in mind, we developed our IP-centric
system-level design methodology which is based on the
SpecC system-level design language. The methodology
was speci�cally geared towards support by a set of system-
level design automation tools.
This paper describes the SpecC system-level design

methodology. We will show the di�erent steps and trans-
formations taking a speci�cation down to an implementa-
tion using the example of a voice encoding/decoding sys-
tem. The example was chosen to demonstrate the SpecC
methodology on an industrial size design. For detailed
information about this project the reader is referred to
[1].
The voice encoder/decoder (vocoder) application used

is part of the European GSM standard for cellular tele-
phone networks. The lossy codec scheme was originally
developed by Nokia and the University of Sherbrooke [2]
and is based on widely used algorithms for speech encod-
ing [3]. The so called Enhanced Full Rate (EFR) speech

transcoding is standardized by the European Telecommu-
nication Standards Institute (ETSI) as GSM 06.60 [4].
The rest of the paper is organized as follows: Section II

brie
y lists related work in the area of system-level design.
Section III then gives an overview of the models and steps
that comprise the SpecC methodology. In Section IV the
speci�cation of the vocoder in the SpecC language is de-
scribed. Architectural exploration is shown in Section VI.
Section VII then deals with the re�nement during com-
munication synthesis. The results after �nal simulation
are presented in Section VIII. Finally, Section IX draws
some conclusions and summarizes the paper.

II. Related Work

In the past, research in the area of hardware/software
codesign has produced a number of codesign environments
with focus on the hardware/software partitioning problem
given a speci�cation in an input language. Cosyma [5]
and Vulcan [6] are early examples which use extensions
of C (called Cx and HardwareC, respectively) for system
speci�cation. Other examples of codesign environments
are Cosmos [7], Polis [8] and SpecSyn [9] (based on input
languages SDL, Esterel and an extension of VHDL called
SpecCharts, respectively), to name just a few. In general,
those environments are limited in their design complexity
to a target architecture template of a processor and an
ASIC.
More recent work has extended the scope to distributed,

heterogeneous multiprocessors with general target archi-
tectures consisting of an arbitrary network of processing
elements. Prakash and Parker [10], Yen andWolf [11], and
Kalavade and Lee [12] developed algorithms for automatic
partitioning into such general target architectures.
Interface and communication synthesis is targeted by

the Chinook [13] and CoWare [14] systems. These envi-
ronments focus on the automatic generation of the inter-
face between hardware and software from a speci�cation.
Recently, a couple of e�orts have emerged that pro-

pose new languages for system-level speci�cation and de-
sign. Both SystemC, which evolved from the Scenic [15]
project into an open initiative, and CynLib, which was



developed by CynApps, Inc., are C++ class libraries that
add features to model hardware in C++. While both
libraries turn C/C++ into a hardware description lan-
guage and therefore, similar to SpecC, enable a shift from
RTL to programming language based system-level design,
the SpecC approach is di�erent. SpecC extends ANSI-
C by a set of carefully devised constructs required for
system-level design. For simulation, these constructs are
automatically translated into a C++ model that is very
similar to a SystemC or CynLib description. Instead of
writing the C++ model manually, the user is presented
with a more abstract and powerful interface. In addition,
it is much easier for synthesis tools to \understand" the
explicit SpecC speci�cation compared to the simulation-
oriented C++ models.

III. SpecC Methodology

A methodology is a set of models and transformations
that re�ne an initial, functional system speci�cation into a
detailed implementation. The SpecC system-level design
methodology is depicted in Fig. 1 [16, 17]. It is based
on four well-de�ned models: a speci�cation model, an
architecture model, a communication model, and an im-
plementation model. The methodology is complemented
by the SpecC system-level design language [16, 18] which
is used to describe the models at each step. The SpecC
language is a superset of ANSI C with explicit support
for required features like concurrency, hierarchy, timing,
communication, synchronization, etc.
The methodology starts with an executable speci�-

cation written in SpecC. This speci�cation model de-
scribes the desired functionality along with the require-
ments and constraints in an abstract and implementation-
independent way.
The system-level synthesis 
ow consists of two ma-

jor tasks: architecture exploration and communica-
tion synthesis. During architecture exploration the
system architecture|a set of components and their
connectivity|is allocated and the speci�cation is parti-
tioned onto the components and busses of the architec-
ture. Scheduling determines the order of execution of the
parts assigned to the inherently sequential components.
Communication synthesis re�nes the abstract communi-
cation between components into a detailed implementa-
tion over the selected bus protocols, synthesizes interfaces
and protocol transducers as necessary, and inlines proto-
cols into synthesizable components.
The resulting communication model is then handed o�

to the backend tools for compilation of the software parts
and behavioral synthesis of the custom hardware compo-
nents.
At each step of the methodology, the current design is

represented by a model in SpecC. After each re�nement
step a corresponding SpecC model of the design is auto-
matically generated which re
ects the decisions made by

Manufacturing

Communication synthesis

Synthesis flow

Architecture exploration

Validation flow

Communication

model
Specification

Architecture
model

model

Simulation
model

Estimation

Validation
Analysis

Compilation

Library
Comp.

Simulation
model

Estimation

Validation
Analysis

Compilation

Simulation
model

Estimation

Validation
Analysis

Compilation

Simulation
model

Estimation

Validation
Analysis

Compilation

Interface synthesis

Implementation

Hardware

synthesis

Software

compilation Library

Back end

Capture

model
Implementation

Library

Library
Alg.

RTL

Allocation

Partitioning

Scheduling

Protocol insertion

Protocol inlining

Proto.

Fig. 1. SpecC methodology.

the designer through an interactive interface or with the
help of automation algorithms.
In the validation 
ow that is orthogonal to the synthe-

sis 
ow, simulation, analysis, estimation and veri�cation
of the SpecC models generated after each task are per-
formed. Models are analyzed to estimate design metrics
like performance, cost or power consumption. Each model
is executable and can be simulated to validate design cor-
rectness using one testbench. Finally, the well-de�ned
nature of the models and transformations enables formal
methods for veri�cation of design properties, for exam-
ple.

IV. Specification

The �rst step in any design process is the speci�cation
of the system requirements, including both functionality
and design constraints like performance, power consump-
tion, etc.
As mentioned in the introduction, in the SpecC

methodology the speci�cation is formally captured and
written in the SpecC system-level design language. In
contrast to informal speci�cations (e.g. plain English), a
formal speci�cation unambiguously describes the system
requirements, and can be executed for simulation or for-
mally veri�ed in order to validate the requirements. In



Search
codebook

Prefilter
response

Update
target

Prefilter
code vector

Calculate
codebook gain

Codebook

pitch delay
Find

Compute
code vector

pitch gain
Calculate

Impulse
response

Target
signal

Closed_loop

Synthesize
speech

Update filter
memories

Quantize
codebook gain

Update

Interpolation &
LSP -> A(z)

Quantization
LSP

Interpolation &
LSP -> Aq(z)

Windowing &
Autocorrelation

Windowing &
Autocorrelation

Levinson-
Durbin

Levinson-
Durbin

LP_analysis

A(z) -> LSP

speech
Weighted

Find open loop
pitch delay

Open_loop

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

prm[57]

speech[160]

bits

pre_process

code_12k2

prm2bits_12k2

sample coder

2 subframes

code_12k2

2x per frame

Fig. 2. Encoding.

addition, it serves as the input to the synthesis and ex-
ploration stages without the need for tedious rewrites.
The initial system speci�cation written in SpecC should

be as abstract as possible and free of any implementation
details. Capturing the speci�cation in a natural, clear and
concise manner signi�cantly eases understanding for both
the human designer and the automation tools. Supported
by the SpecC language, essential features of the speci�ca-
tion, like parallelism, structural and behavioral hierarchy,
or encapsulation and separation of communication and
computation, should be expressed explicitly.

A. Vocoder Functionality

The GSM 06.60 standard for the EFR vocoder is ac-
companied by a bit-exact reference implementation of the
vocoder functionality consisting of 13; 000 lines of C code.
Together with the standard document, this code de�nes
the required functionality and was therefore used as the
basis for the SpecC speci�cation.
At the top level, the vocoder consists of independent

coding and decoding behaviors running in parallel. En-
coding and decoding transform a stream of speech sam-
ples at a rate of 104 kbit/s into an encoded bit stream
with a rate of 12:2 kbit/s, and vice versa. Coding is based
on a segmentation of the incoming speech into frames of
160 samples corresponding to 20ms of speech. For each
speech frame the coder produces 244 encoded bits.
The SpecC block diagram of the encoding part is shown

in Fig. 2. Note that for simplicity only the �rst levels of
the behavior hierarchy of the encoding part are shown. All
together, the SpecC description of the vocoder contains
43 leaf behaviors. See [1] for a detailed description and
discussion of the SpecC speci�cation model.

At the top level, pre-�ltering and framing, speech cod-
ing, and bit serialization run in a pipelined fashion. At
the next level, the �rst step in the coding process is an ex-
traction of linear-prediction �lter parameters. Each frame
is then further subdivided into subframes of 40 samples
(5ms). In two nested loops, open- and closed-loop analy-
ses of pitch �lter parameters and an exhaustive search of
a prede�ned codebook are performed, followed by a �lter
memory update step.

In contrast to the reference implementation, the SpecC
speci�cation describes the vocoder functionality in a clear
and precise manner. For example, available parallelism or
behavior dependencies are explicitly shown. This greatly
eases understanding and therefore supports quick explo-
ration of di�erent design alternatives at the system level
in the �rst place. At each level, the SpecC speci�cation
hides unnecessary details but explicitly depicts the ma-
jor aspects, focusing the view of the user and the tools
onto the important decisions. On the other hand, SpecC
being build on top of ANSI-C made it possible to resuse
the C code of the reference implementation for each basic
algorithm at the leaves of the SpecC behavior hierarchy.



B. Vocoder Constraints

In addition to the constraint of 20ms for encoding and
decoding a complete frame, the GSM vocoder standard
speci�es a constraint of 30ms for the total transcoder de-
lay when operating coder and decoder in back-to-back
mode. According to the standard, back-to-back mode is
de�ned as passing the parameters produced by the en-
coder directly into the decoder as soon as they are pro-
duced. The transcoder delay is de�ned as the time from
receiving a complete speech frame to synthesizing the last
speech sample of the reconstructed frame. Hence, the
transcoder delay constraint translates into a maximum
delay of 10ms for encoding and decoding the �rst sub-
frame.

V. Analysis and Estimation

Accurate estimates of a wealth of design metrics like
performance, power consumption, area/cost, etc. are cru-
cial for e�ective architecture exploration, i.e. for alloca-
tion of and mapping on a system architecture. Explo-
ration decisions made by the user or automated tools are
based on an accurate assessment of the estimated design
quality. On the other hand, in order to be able to explore
a large part of the design space in a short amount of time,
quick feedback is required. The evaluation of design met-
rics is performed at di�erent stages of the design process
with di�erent trade o�s of accuracy versus runtime.

A. Pro�ling

During functional simulation of the speci�cation, the
code is pro�led to extract information about the dy-
namic and static behavior of the application. The target-
independent speci�cation characteristics are used for anal-
ysis of target architecture requirements. In addition, pro-
�ling data is back-annotated onto the design for user feed-
back and as input to other tools.
Initially, the vocoder speci�cation was analyzed to ob-

tain pro�les about the relative complexity of the di�erent
parts. In terms of performance, for example, a weighted
sum of the worst-case operation counts per behavior com-
bined with a timing constraint gives the relative computa-
tional complexity in terms of weighted million operations
per second (WMOPS).
Fig. 3 shows the WMOPS data for the di�erent parts

of the speech encoding based on a 20ms constraint per
frame. For each of the major parts the total WMOPS
per frame and the WMOPS for the contributing subparts
are shown. In all cases, the diagram includes the data for
a single execution of the behavior and the sum over one
complete frame. The decoding task which is not shown
here has a total complexity of appr. 1:3WMOPS. There-
fore, it's complexity can be neglected compared to the
encoding task.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Total per frame Single execution

Pre
d_

lt_
6

Le
vin

so
n

Az_
lsp

Q_p
lsf

_5

Aut
oc

or
r

W
eig

ht
_A

i

Syn
_f

ilt

Res
idu

Pitc
h_

ol

Res
idu

Con
vo

lve

Syn
_f

ilt

Pitc
h_

fr_
6

Syn
_f

ilt

co
r_

h_
x

co
r_

h

se
ar

ch
_1

0i4
0

W
ei

g
h

te
d

 M
O

P
S

 (
W

M
O

P
S

)

C
o

d
eb

o
o

k

C
lo

se
d

_l
o

o
p

O
p

en
_l

o
o

p

L
P

_a
n

al
ys

is

Fig. 3. Computational complexity of coder parts.

0

200000

400000

600000

800000

1000000

1200000

First subframe Remaining frame Single execution

C
o

d
eb

o
o

k

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�����

C
lo

se
d

_l
o

o
p

�
�
�
�

���� �
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
��

�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Aut
oc

or
r

����������������������������������������������������������������

Q_p
lsf

_5
��

Az_
lsp

W
eig

ht
_A

i

O
p

en
_l

o
o

p

Le
vin

so
n

��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

C
yc

le
s

Syn
_f

ilt

se
ar

ch
_1

0i4
0

co
r_

h

co
r_

h_
x

Syn
_f

ilt

Pitc
h_

fr_
6

Res
idu

Pitc
h_

ol

Pre
d_

lt_
6

Con
vo

lve

Res
idu

Syn
_f

ilt
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

L
P

_a
n

al
ys

is

Fig. 4. Estimates of performance of coder parts.

B. Estimation

Using the pro�ling data, estimation of design metric
values on a given target is performed. Retargetable esti-
mators compute design metric values for a wide range of
hardware and software implementations based on models
of the target components in the IP library. Values are
estimated statically without the need for time-consuming
simulations.

After allocation of the vocoder target architecture, esti-
mates of the vocoder performance running on the chosen
target processor (DSP56600, see Section A) were com-
puted by compiling and statically simulating the code on
the target processor. The resulting number of cycles for
each behavior of the encoding task are shown in Fig. 4
with a maximal processor clock frequency of 60MHz.



VI. Architecture Exploration

A. Allocation

The �rst task of the architectural exploration process is
the allocation of a system target architecture consisting of
a set of components and their connectivity. Allocation se-
lects the number and types of processing elements (PEs),
memories and busses in the architecture, and it de�nes
the way PEs and memories are connected over the sys-
tem busses. Components and protocols are taken out of
a library and can range from full-custom designs to �xed
IPs.
For the vocoder, allocation initially started out with

a least-cost solution based on a pure software imple-
mentation using a single, low-cost standard processor.
The speci�cation pro�les showed that the standard is
based on a 16-bit �xed-point implementation with an
operation mix typical of signal-processing applications
(e.g. multiply-accumulate, array accesses, tight loops with
�xed bounds). For the vocoder, we selected the Motorola
DSP56600 processor [19] out of the DSPs available from
Motorola as the one satisfying those criteria.
However, execution time estimation determined that a

pure software solution would not satisfy the timing con-
straints (20ms per frame, 10ms per subframe) even with
the DSP running at theoretical peak performance. Hence,
reallocation became necessary. Since the speci�cation is
inherently sequential in nature, a speedup through paral-
lel execution of tasks on multiple components could not
be expected. Therefore, it was decided to add a custom
hardware component in order to reduce execution time by
implementing parts of the speci�cation in hardware.

B. Behavior Partitioning

After an architecture has been allocated, the �rst step
in implementing the speci�cation on the given architec-
ture is to map the SpecC behaviors onto the architecture's
processing elements. In the re�ned model after behavior
partitioning an additional level of hierarchy is inserted
with top-level behaviors representing the components of
the architecture. Formerly local variables used for com-
munication between behaviors mapped to di�erent com-
ponents now become global, system-level variables. Be-
haviors and channels are added for synchronization be-
tween behaviors mapped to di�erent components in order
to preserve the execution semantics of the original speci-
�cation.
In case of the vocoder, a least-cost partition was ob-

tained by gradually moving tightly coupled groups (mini-
mizing communication overhead) into hardware until the
constraints were satis�ed. Mapping the codebook search,
the most critical part of the speci�cation, into hardware
was su�cient to obtain a valid solution. The codebook
search is sped up by an estimated factor of 10 in a hard-
ware vs. software implementation.

���
���
���

���
���
���

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

Bits2PrmSpeech_In

��
��
��
��

���
���
���
���

��
��
��
��

���
���
���
���

���
���
���
���

Speech_outPrm2Bits

prm

prm

speech

speech

bits_out synth_out

Pre_process

LP_analysis

Open_loop

Closed_loop

Update

D_lsp

Decode_12k2

Post_Filter

speech_in bits_in

Codebook

ASIC

DSP

Start_Codebook

Wait_Codebook

Fig. 5. Vocoder model after behavior partitioning.

The SpecC model after behavior partitioning for the
vocoder is shown in Fig. 5. The DSP core running en-
coding and decoding tasks is supported by a custom
coprocessor for the codebook search and four custom
hardware I/O components. Synchronization behaviors
(Start Codebook and Wait Codebook) have been added
as part of the encoding task to coordinate execution be-
tween the DSP and the custom hardware.

C. Variable Partitioning

After behavior partitiong, communication between be-
haviors mapped to di�erent PEs is performed via global,
shared variables. Global variables have to be assigned to
local memory in the PEs or to a dedicated shared memory
component. In the re�ned model after variable partition-
ing, global variables are replaced with abstract channels
and code is inserted into the behaviors to communicate
variable values over those channels.

Due to the high variable access frequencies in the
vocoder, local copies of the data arrays communicated
between hardware and software components were kept
in each PE. Code was inserted to exchange modi�ed ar-
ray contents over a corresponding global message-passing
channel at synchronization points between hardware and
software.



ASIC

Channel

data

data

data

DSP

Fig. 6. Vocoder model after channel partitioning.

D. Channel Partitioning

Channel partitioning is the process of mapping and
grouping the abstract, global communication channels be-
tween components onto the busses of the target architec-
ture. In the re�ned model, system busses are represented
by additional top-level channels and channel partitioning
is re
ected by hierarchically grouping and encapsulating
the abstract, global channels under the top-level bus chan-
nels.
In case of the vocoder, there exists only one bus in the

system architecture which connects the DSP to the cus-
tom hardware components. Therefore, all communication
is mapped to that bus. In the resulting SpecC description
of the re�ned vocoder, a single channel representing the
system bus is inserted at the top level. All components
are connected to the bus channel and all abstract channels
for communication between behaviors are grouped under
the top-level channel (Fig. 6).

E. Scheduling

Scheduling determines the order of execution of behav-
iors that execute on inherently sequential PEs. Schedul-
ing may be done statically or dynamically. In static
scheduling, each behavior is executed according to a �xed
schedule. In the re�ned model after scheduling, behav-
iors inside each component are exectued sequentially ac-
cording to the computed schedule. Redundant synchro-
nization between the behaviors is removed during opti-
mization. In dynamic scheduling, the execution of behav-
iors on each component is determined at run-time. An
application-speci�c run-time scheduler is created during
re�nement.
Fig. 7 shows the scheduling of the parallel coding and

decoding tasks running on the DSP core. Due to the
dynamic timing relation between encoding and decoding
tasks, a dynamic scheduling scheme is implemented. The
coding task represents the main program which executes
in synchronization with the arrival of new speech input
frames. Whenever a new packet of encoded bits arrives
for decoding, the encoding task is interrupted in order to
execute the corresponding part in the decoding sequence,
and encoding resumes after the decoding step is �nished.

VII. Communication Synthesis

The purpose of communication synthesis is to re�ne the
abstract communication in the architecture model into an

D_lsp

ASIC

Codebook

Pre_process

LP_analysis

Open_loop

Closed_loop

Start_codebook

Wait_codebook Decode_12k2

Post_FilterUpdate

LSP in

prm in

prm out

LSP out

res

data

Speech frame in

speech subframe out

DSP

Fig. 7. Dynamic scheduling of vocoder tasks.

actual implementationover the wires of the system busses.
This requires insertion of communication protocols for the
busses, synthesis of protocol transducers to translate be-
tween incompatible protocols, and inlining of protocols
into hardware and software.

A. Protocol Insertion

Fig. 8 shows the vocoder model after insertion of the
DSP56600 bus protocol for the system bus. The bus pro-
tocol is modeled as a SpecC channel in the protocol li-
brary. The protocol channel is inserted into the top-level
bus channel and all communication over the system bus
is implemented using the primitives provided by the pro-
tocol.

The processor IP is replaced with a bus-functional
model of the processor taken out of the IP library. The IP
model in the library is encapsulated in a SpecC wrapper
which encloses the �xed IP protocol and provides an ab-
stract, canonical interface to the IP. A protocol transducer
component is inserted which bridges the gap between the
wrapped IP component and the bus. Note that in this
case the transducer will be optimized away during proto-
col inlining since IP and bus protocol are equivalent.

The clear separation between communication and com-
putation enables replacement of a general component with
an IP model plus wrapper and transducer at any stage of
the design process. The wrapper speci�es how to interface
the IP model with the rest of the design. For simulation
purposes, any model of the IP component that provides
a suitable programming interface can be hooked into the
SpecC simulator through the wrapper.



E
nc

od
in

g

speech
decoded

input

D
ec

od
in

g

encoded

bit stream

bit stream

speech

received

HW

�
�
�

�
�
�

Bits in

Bits out

Speech out

56600

B
u

s
56

60
0

P
ro

to
co

l

Speech in

Fig. 8. Vocoder model after protocol insertion.

B. Protocol Inlining

Protocol inlining is the process of inlining the channel
functionality into the connected components and exposing
the actual wires of the busses. The communication code
is moved into the components where it is implemented in
software or hardware. On the hardware side, FSMDs that
implement the communication and bus protocol function-
ality are synthesized. On the software side, bus drivers
and interrupt handlers that perform the communication
using the processor's I/O instructions are generated or
customized.
The communication model of the vocoder as the re-

sult of protocol inlining is shown in Fig. 9. In case of
the vocoder, all data transfers on the processor bus are
initiated by the DSP. High-level handshaking and syn-
chronization between hardware and software is realized
using interrupt-based handshaking. For details about the
implementation of the hardware/software interface and
communication see [16, 1].

VIII. Results

The communication model is a bus-functional model in
which bus transactions are modeled bit-exactly and with
accurate timing, but components internally are still mod-
eled at a functional level and annotated with estimated
delays only. The communication model is handed o� to
the traditional backend tools for further re�nement of the
components.
For the software parts of the vocoder, C code was gen-

erated which was then compiled into assembly code for
the Motorola DSP. For the hardware part behavioral syn-
thesis was performed to create an RTL description of the
custom hardware. Details about the backend process, the
vocoder design and the methodology in general can be
found in [16, 1].
In the �nal implementation model, both communica-

tion and computation is timing-accurate. Components
are replaced with their cycle-accurate models as the re-
sult of the backend process or as stored in the library in
case of hard IPs. For the vocoder, the processor was re-
placed with a model that integrates an DSP56600 instruc-
tion set simulator (ISS) executing the compiled code into

SpeechSpeech
In Out

Bits
Out In

ASIC

56600 Bus

56600

Bits

Fig. 9. Vocoder communication model.

the SpecC simulation. For custom hardware, the compo-
nents were replaced with behavioral and structural RTL
models, i.e. FSMD descriptions and RTL netlists.
In order to validate performance, a simulation of the

�nal system model is needed. To avoid costly and
time-consuming cosimulation of the whole implemenation
model, a mixed communication/implementation model
was used for simulations. For example, the cycle-accurate
ISS model of the processor was simulated together with
bus-functional models for the custom hardware. Similar-
ily, hardware implementation models are validated using
a bus-functional model of the processor for simulation.
Table I lists the simulation results in relation to the con-

straints as given by the vocoder standard, based on a max-
imal processor clock frequency of 60MHz. All constraints
are satis�ed, leaving room for additional optimization by
lowering the clock frequency in order to reduce power con-
sumption, for example.

TABLE I
Worst-case delays for vocoder in back-to-back operation.

Cycles ms Constraint

First subframe 366809 6.11 10ms
Total frame 642351 10.71 20ms

IX. Conclusions

In this paper we demonstrated the SpecC methodology
on a vocoder example. Starting with the speci�cation,
the design was taken down to an actual implementation
through a series of well-de�ned steps and transformations.
The SpecC source code of the speci�cation, architecture
and communication models can be downloaded from the
SpecC web page [20].
The well-de�ned nature of the models and transforma-

tions based on the SpecC language helps focusing design



e�orts on central issues, provides the basis for design au-
tomation tools, and enables application of formal meth-
ods, e.g. formal veri�cation or equivalence checking.
The �nal implementation of the vocoder consists of

70; 500 lines of compiled assembly code and 45; 000 lines
of synthesized RTL code. The design of the vocoder was
accomplished by two people working on the project part-
time over the course of six months. Simply following the
well-de�ned steps of the SpecC methodology helped to
reduce the design e�ort signi�cantly.
Since the corresponding tools are not available yet, the

implementation was done mostly manually at this point.
Our current research is aimed at providing the envisioned
tool support. With the availability of automated tools
that will cover a large part of the tedious and error-prone
synthesis tasks the time-to-silicon will be reduced even
further. The time spent on the actual design tasks of the
vocoder project was about 12 weeks only.

Acknowledgments

The authors would like to thank Motorola for support-
ing this project. Also we would like to thank Lukai Cai,
Hongxing Li from UCI and Justin Denison, Mike Oli-
varez from Motorola for help in synthesis of the codebook
search.

References

[1] A. Gerstlauer, S. Zhao, D. Gajski, A. Horak, Design of a
GSM Vocoder using SpecC Methodology, University of Califor-
nia, Irvine, Technical Report ICS-TR-99-11, February 1999.

[2] K. J�arvinen et. al., \GSM enhanced full rate speech codec,"
Proceedings ICASSP, pp. 771-774, 1997.

[3] R. Salambi et. al., \Design and descriptionof CS-ACELP: a toll
quality 8 kb/s speech coder," IEEE Transactions on Speech and
Audio Processing, Vol. 6, No. 2, pp. 116-130, March 1998.

[4] European Telecommunication Standards Institute (ETSI), Dig-
ital cellular telecommunications system; Enhanced Full Rate
(EFR) speech transcoding (GSM 06.60), Final Draft, Novem-
ber 1996.

[5] A. Osterling, T. Benner, R. Ernst, D. Herrmann, T. Scholz,
W. Ye, \The Cosyma system," in J. Staunstrup, W. Wolf
(ed.), Hardware/Software Co-Design: Principles and Practice.
Kluwer Academic Publishers, 1997.

[6] R. Gupta, G. De Michelli, \Hardware-software cosynthesis for
digital systems," IEEE Design and Test of Computers, Septem-
ber 1993.

[7] C. Valderrama, M. Romdhani, J. Daveau, G. Marchioro,
A. Changuel, A. Jerraya, \Cosmos: a transformational co-
design tool for multiprocessor architectures," in J. Staunstrup,
W. Wolf (ed.), Hardware/Software Co-Design: Principles and
Practice, Kluwer Academic Publishers, 1997.

[8] F. Balarin et al. , Hardware-Software Co-Design of Embedded
Systems, The POLIS Approach, Kluwer Academic Publishers,
1997.

[9] D. Gajski, F. Vahid, S. Narayan, J. Gong, Speci�cation and
Design of Embedded Systems, Prentice Hall, 1994.

[10] S. Prakash, A. Parker, \SOS: synthesis of application-speci�c
heterogeneousmultiprocessor systems," Journal of Parallel and
Distributed Computing, vol. 16, pp. 338-351, 1992.

[11] Y. Li, W. Wolf, \Hardware/software co-synthesis with memory
hierarchies," Proceedings ICCAD, pp. 430-436, 1998.

[12] A. Kalavade, E. Lee, \A global criticality/local phase driven
algorithm for the constrained hardware/software partition-
ing problem," Proceedings of the International Workshop on
Hardware-Software Codesign, 1994.

[13] P. Chou, R. Ortega, G. Borriello, \The Chinook hard-
ware/software co-synthesis system," Proceedings ISSS, 1995.

[14] K. Rompaey, D. Verkest, I. Bolsens, H. De Man, \CoWare|a
design environment for heterogeneous hardware/software sys-
tems," Proceedings EuroDAC, 1996.

[15] R. Gupta, S. Liao, \Using a programming language for digital
system design," IEEE Design & Test of Computers, April 1997.

[16] D. Gajski, J. Zhu, R. D�omer, A. Gerstlauer, S. Zhao, SpecC:
Speci�cation Language and Methodology, Kluwer Academic
Publishers, 2000.

[17] D. Gajski et al., Methodology for Design of Embedded Systems,
University of California, Irvine, Technical Report ICS-TR-98-
07, March 1998.

[18] R. D�omer, J. Zhu, D. Gajski, The SpecC Language Reference
Manual, University of California, Irvine, Technical Report ICS-
TR-98-13, March 1998.

[19] Motorola, Inc., Semiconductor Products Sector, DSP Divi-
sion,DSP56600 16-bit Digital Signal Processor Family Manual,
DSP56600FM/AD, 1996.

[20] SpecC home page, http://www.cecs.uci.edu/~specc/.


