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Abstract

With complexities of Systems -on-Chip rising almost daily, the design community has been 
searching for new methodology that can handle given complexities with increased productivity 
and decreased times-to-market. The obvious solution that comes to mind is increasing levels of 
abstraction, or in other words, increasing the size of the basic building blocks. However, it is not 
clear what these basic blocks should be beyond the obvious processors and memories. 
Furthermore, with multitude of processors and variety of IPs on the chip the difference between 
SW and HW design becomes indistinguishable. However, the industry infrastructure which is 
also supported by separate SW and HW programs being offered at our universities created the 
system gap in which non-compatible SW and HW methodologies are preventing the progress in 
design of electronic systems. 
In this talk we will present the basic principles of system methodologies and describe the 
methodology based on SER paradigm. In order to prove the SER concept we developed the SCE 
system design environment and demonstrated in practice more then 1000X productivity gain.
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Outline

• System gap
• Design flow
• Model algebra
• System environment
• Vision
• Conclusion

Outline

In order to find the solution for system-level design flow, we will look first at the system gap 
between SW and HW designs and then try to bridge this gap by looking at different levels of 
abstraction, define different models on each level and propose model refinements that will bring 
the specification to a cycle-accurate implementation. In order to achieve this design flow  we 
will define the models in the flow by using the concepts of model algebra similar to concepts of  
arithmetic algebras that are defined on a set of numbers. Then, we will exemplify these concepts 
by looking into the implementation of the System-on-Chip Environment and the lessons learned 
from several experiments. We will finish with a prediction and a roadmap to achieve the 
ultimate goal of increasing system-design productivity by more then 1000X and reducing 
expertise level needed for such design to the basic principles of design science only.
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Design Flow
Design methodology has been changing through history with the increase in design complexity.
(a) Capture-and-Simulate Methodology (approximately from 1960s to 1980s)
In this methodology software and hardware design was separated by a system gap. SW 
designers tested some algorithms and possibly wrote the requirements document and an initial 
specification. This specification was given to HW designers who read it and started system 
design with a block diagram. They did not know whether their des ign will satisfy the 
specification until the gate level design was captured and simulated. 
(b) Describe-and-Synthesize methodology (late 1980s to late 1990s)
1980’s brought us logic synthesis, which has significantly altered the design flow, since 
designers first specify what they want in terms of Boolean equations or FSM descriptions and 
the synthesis tools generate the implementation in terms of a gate netlist. Therefore, the 
behavior or the function comes first and the structure or implementation next. Also, there are 
two models to simulate: behavior (function) and gate-level structure (netlist). Thus, in this 
methodology specification comes before implementation and they are both simulatable. Also, it 
is possible to verify their equivalence since they can be both reduced to a canonical form in 
principle.  Unfortunately, today’s designs are too large for this kind of equivalence checking. By 
late 1990s the logic level has been abstracted to cycle-accurate (RTL) description and synthesis. 
Therefore, we have two abstraction levels (RTL and gate levels) and two different models on 
each level (behavioral and structural). However, the system gap still persists.
(c) Specify, Explore-and-Refine Methodology (from early 2000s )
In order to close the gap we must increase level of abstraction from RTL to SL. On SL level we 
have executable specification that represents the system behavio r (function) and structural 
models with emphasis on connectivity (communication). Each model is used to prove some 
system property such as functionality, connectivity, communication and so on. In any case we 
have to deal with several models in order to close the gap. Each model can be considered to be a 
specification for the next level model in which more detail in implementation is added. 
Therefore specify-explore-refine (SER) methodology represents a sequence of models in which 
each model is an refinement of the previous one. Thus, SER methodology follows the natural 
design process where designers specify the intent first, explore possibilities and then refine the 
model according to their decisions. In general, SER flow can be viewed as several iterations of 
the basic describe-and-synthesize methodology.
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Missing Semantics:
Simulation Dominated Design Flow

case X is

when X1 =>

when X2 =>

3.415
2.715

Table Lookup

Memory

• Simulatable but not synthesizable/verifiable

Finite State Machine

Controller

(VHDL, Verilog, C, SystemC, …)

Missing Semantics

With introduction of SL abstraction, designers have to generate even more models. One obvious 
solution is to automatically refine one model into another. However, that requires well defined 
model semantics, or , in other words, good understanding what is meant by the given model.  
This is not as simple as it sounds, since design methodologies and EDA industry have been 
dominated by simulation based methodologies in the past. For exa mple, all HDL (such as 
Verilog, VHDL, SystemC, and others) are simulatable but not synthetizable or verifiable.

As an example of this problem, we can look at a simple case statement in any of the languages.  
It can be used to model a FSM or a look-up table, for example. However, FSMs and look-up 
tables require different implementations: a FSM can be implemented with a controller while a 
look-up table is implemented with a memory. On the other hand, using memory to implement a 
FSM or control logic to implement a table is not very efficient and not acceptable by any 
designer. Therefore, the model which uses case statement to model FSMs and tables is good for 
simulation but not good for implementation since a designer does not know what was really 
described  by the case statement. 

Thus, clean and unambigues semantics is needed for refinement, synthesis and verification.
Such a clean semantics is missing from most of the simulation-oriented languages.
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Principles of Design Methodology

• Well defined specification
• Specification is just a model without 

implementation details
• Complete, but it can be changed later

• Well defined system models
• Several possible models
• Well defined semantics 
• Formal representation

• Design synthesis
• Design decisions => transformations
• Automatic model generation

• Model verification
• Formally defined transformations
• Provable equivalence

System Specification 
model

Intermediate models

Cycle accurate 
implementation model

SER

Methodology Principles

In any design flow we need several models with emphasis on different design aspects and design details. 
A system level methodology starts with a well defined executable specification model that serves as the 
golden reference. The specification is gradually refined to a cycle accurate model that can be fed to 
traditional simulation and synthesis tools. The gradual refinement produces some intermediate models 
depending on the choice of methodology. It is important that these models are well defined with well 
defined semantics for each model.

The details that are added to models during refinement depend on the designer decisions. Each decision 
corresponds to one or more model transformations. If all the transformations are formally defined, the 
refinement process can be automated.

Furthermore, such a formalism leads to automatic verification . Since models  and transformations are 
formally defined and transformations preserve equivalence then the equivalence of the original and 
refined models are easily established. 
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Modeling as Algebra

• Algebra = < {objects}, {operations} >
Set of all possible expressions  [ex: a * (b + c)]

• Model Algebra = < {objects}, {compositions} >
Set of all possible models [ex:                         ]

• Model Transformation t is a change in objects or composition

• Model refinement is an ordered set of transformations

• Methodology is a sequence of models and corresponding 
refinements

Model Algebra

Model algebras are based on similar concepts used in number algebras. An algebra is a set of objects and 
a set of operations. Objects can be a set of integers and operations can be + and *. Then  the algebra 
defines the set of all possible expressions connected by + and *. Such an expression is a*(b + c).

Model algebra is a set of objects and a set of composition rules to combine those objects into larger 
objects. In case of well known FSM model, objects are  states and composition rules are conditional arcs 
indicating the next state. For example FSM algebra represents all possible FSM models.

Model transformation is a change in objects or composition of a particular model. A sequence of 
transformations is called a refinement. While transformations are small and not significant changes in a 
model, a refinement, on the other hand, modifies the model dramatically by exposing a different aspect or 
characteristic of the design.
Each design flow can be represented by a particular methodology which can be defined by a sequence of 
models and the sequence of corresponding refinements that transform one model in the sequence into 
another.
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Model Definition

• Model Algebra = < {objects}, {composition rules} >
• Set of all possible models

• Objects
• Behaviors (representing tasks / computations / functions)
• Channels (representing communication between behaviors)
• Components (processors, memories, buses, IPs)

• Composition rules
• Sequential, parallel, pipelined, FSM
• Functional or structural hierarchy
• Operations (arithmetic, register transfers)

• Relations
• Relations define a specific model [a*((b+c)*(b-c))] 
• Relations define the model structure (composition and connectivity)

• Relation (cr n) ? {objects} x {objects}

Model Definition

Formally, a model is a set of objects and a set of composition rules defined on those objects. A 
specification level model would have objects like behaviors for computation and channels for 
communication, while an architecture model would have components such as processors, memories, IPs
for computation and buses for communication. 

Composition rules combine objects into larger objects and create hierarchical structures.

Such a model algebra represents the set of all possible models that use the same set of objects and 
composition rules. Obviously, such a set of all possible models is infinite. A specific model is defined by 
a set of relations (one relation per each composition rule) which define which objects are related by the 
particular composition rule in the given model.
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Model Transformations 
(Rearrange and Replace)

• Rearrange composition of 
objects
• Distribute execution across components

• Replace objects
• Import library components

• Add / Remove synchronization
• Transform a sequential composition to 

parallel and vice-versa

• Decompose abstract data 
structures for communication
• Execute data transaction over a bus

• Other transformations …

Source: Gajski,Abdi; Verify2003 Keynote

a*(b+c) = a*b + a*c
Distributivity of multiplication 

over addition

B2 B3

B1 B1

B2
B3=

Distribution of behaviors (tasks)
over components

analogous to……

PE1 PE2

Model Transformations

A transformation of a model can be viewed as a rearrangement or replacement of objects. For instance, in 
order to distribute the behaviors in a specification model  across components in the system architecture 
model, we need to rearrange the behaviors into groups. Similarly, in order to refine communication over 
abstract channels to communication over system buses, we need to replace abstract channels with 
protocol channels. Another example of a transformation  is a replacement of sequential with concurrent 
execution and adding synchronization to insure that the proper data values are used every time. Yet 
another example is decomposition of data for transmission over a limited capacity bus on the sender side 
and data assembly on the receiver side.

Intuitively, we can draw an analogy between distributive law for natural numbers and on the sender side 
distribution of behaviors over processing elements (PEs) as shown in the figure. Just as the expression on 
LHS of the equation is equal to that on RHS by rule of distributivity, the model on the LHS is equal to the 
model on the RHS by law of concurrent distribution. The equality of two models is determined by the 
same values of all variables after the execution. The same values are guaranteed by the same data 
dependencies in both models.



9

Copyright 2003 Daniel D. Gajski 9

Model Refinement

• Definition
• Ordered set of transformations < tm, … , t2, t1 > is a refinement

if and only if   model B = tm( … ( t2( t1( model A ) ) ) … )

• Refinement derives a more detailed model from an 
abstract one
• Specific sequence for each model refinement
• Not all sequences are relevant

• Automatic model generation
• Each transformation can be automated
• Each refined model can be automatically generated

• Equivalence verification
• Each transformation maintains functional equivalence
• Refinement is thus correct by construction

Model Refinement

A model refinement can be defined as a specific sequence of transformations. Usually, the refined model 
has more detail or a new feature. On the other hand, not every sequence of transformations is a relevant 
transformation.

If each transformation is well defined as an rearrangement or replacement, then model transformations 
can be automated. Similarly, refinements can be generated automatically. Furthermore, if each 
transformation is shown to be correct, the refinement will  also produce a model equivalent to the original 
model.
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Refinement based Methodology

• Refinement based system level methodology
• Methodology := < {models}, {refinements} >

• Each refinement is uniquely defined
• Each refinement can be automated
• No need for designer to write models
• No need for different modeling languages
• Designers only make design decisions

Refinement- based methodology

Any design flow or design methodology can be described by a set of models and the corresponding set of 
refinements of one model into another. Since each model refinement is well defined sequence of 
transformations, each refinement can be automated. If each refinement is automated, then each model can 
be automatically generated. If models are automatically generated then designers do not need to write 
different design models except the original specification model. If designers do not write models then 
there is no need for different modeling languages. In other words , designers only make design decisions, 
while every design decision is automatically applied through corresponding model transformation.
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System Synthesis through Refinement

• Set of models
• Each design decisions => one model transformation

• Select components / connections/ IPs
• Map behaviors / channels
• Schedule behaviors/channels
• Add new objects ( IF, IC, Arbiters, …)
• Synchronize to preserve equivalence

• Design is a sequence of decisions 
• Refinement is a sequence of model transformations
• Synthesis = design + refinement
• Challenge: define the design and refinement 

sequences for each application

System Synthesis

Synthesis is the process of converting the functional description of a black box into a structure of the 
black box that consists of connected components from a given library.  During this process we must make 
several different design decisions such as selecting components and their connectivity, mapping 
computation and communication constructs to components, ordering or scheduling computations or 
communications of different messages, adding new objects, insert ing synchronization to preserve 
dependences to name the few.  The design process is a sequence o f such design decisions. Since for every 
design decision there is a model transformation, a sequence of design decisions will result in a sequence 
of transformations or model refinement. Therefore, synthesis is design plus refinement.

The main challenge for every application today is to define the appropriate set of models and 
corresponding refinements, and , furthermore, for every refinement, the sequence of design decisions and 
corresponding model transformations.



12

Copyright 2003 Daniel D. Gajski 12

System Verification through Refinement

• Set of models
• Transformations preserve equivalence

• Same partial order of tasks
• Same input/output data for each task
• Same partial order of data transactions
• Equivalent replacements

• All refined models will be “equivalent” 
to input model

Still need to verify
First specification model
Correctness of replacements

Source: Gajski,Abdi; Verify2003 Keynote

Refinement
Tool

t1
t2
…
tm

Model A

Model B

Designer
Decisions

Library of
objects

System Verification

In a refinement based system-level methodology, each model produced by an automatic refinement is 
equivalent to the input model. As shown in the figure, designer decisions are used to add details to a 
model to refine it to the next lower level of abstraction. Each designer decision corresponds to a 
transformation in the model and each transformation preserves the equivalence of the model. 

The notion of model equivalence comes from the simulation semantics of the model. Two models are 
equivalent is they have the same simulation results. This translates to the same (or equivalent) objects in 
both models, the same partial order of execution of tasks, same input and output data for each task and 
same partial order of data transactions. In other words, all data dependences must be preserved.
Correct refinement, however, does not mean that the output model is bug free. We also need to use 
traditional verification techniques on the starting specification model and prove equivalence of objects 
that can be replaced with each other.
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Y-Chart

In order to demonstrate the refinement-based methodology on the system level, we will start with 
the Y-Chart. It makes the assumption that each design, no matter how complex, can be modeled 
in three basic ways that emphasize different properties of the same design. Therefore, Y-Chart 
has three axes that represent design behavior (function, specification), design structure (netlist, 
block diagram), and physical design (layout, boards, packages). Behavior represents a design as a 
black box and describes its outputs in terms of its inputs and time. The black-box behavior does 
not indicate in anyway how to implement the black box or what its structure is. That is given on 
the structure axis, where black box is represented as a set of components and connections.  
Although, behavior of the black box can be derived from its component behaviors such behavior 
may be difficult to understand. Physical design adds dimensionality to the structure. It specifies 
size (height and width) of each component, the position of each component, each port and each 
connection on the silicon substrate or board or any other container.  
Y-Chart can also represent design on different abstraction levels identified by concentric circles 
around the origin. Each abstraction level uses different time granularity.  Usually, four levels are 
identified: Circuit, Logic, Processor and System levels. The abstraction level can be also 
identified by the main component used in the structure. Thus, the main components on Circuit 
level are N or P-type transistors, while on Logic level they are gates and flip-flops. On the 
Processor level the main components are storage units such as register files and functional units 
such as ALUs, while on the System level they are processors, memories and buses. Converting 
behavior into structure on each abstraction level is called synthesis, and the structure into layout 
is called physical design. Every design methodology uses the bas ic models on the Y-Chart in 
addition to some intermediate models on  the abstraction circles. 
Each abstraction level needs also a database of components on this level. Each component in the 
database has tree models representing three different axes in the Y-Chart: behavior or function 
(sometimes called Model of Computation (MoC)), structure of components from the lower level 
of abstraction and the physical layout or implementation of the structure. These components are 
IPs for each abstraction level.
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Processor (RTL) Behavioral Model

• Finite State Machine with Data (FSMD)
• Combined model for control and computation

– FSMD = FSM + DFG

• Implementation: controller plus datapath

FSMD model (SFSMD model)

S1 S2

S3

Op2 Op3

Op4

Op6

Op1

Op5
Op1 Op2

Op3

Op1 Op2

Processor Behavioral Model

The Processor behavioral or functional model is given by a Finite-state-machine with Data 
(FSMD). It combines finite-state-machine (FSM) model for control and data-flow-graph (DFG) 
for computation. FSM has a set of states and a set of transitions from one state into other 
depending on the value of some of the input. In each state FSMD executes a set of expressions 
represented by a DFG. FSMD model is clock-accurate if each state takes a single clock-cycle. 
On the other  hand, if each DFG takes several clock cycles then the model is called Super 
FSMD (SFSMD). SFSMD and FSMD models can be used to represent any processor type 
including CISC, RISC, NISC and RTL processors.

It should be noted that FSMD model encapsulates the definition o f the state-based (Moore -type) 
FSM in which the output is stable during duration of each state. It also encapsulates the 
definition of the input-based (Mealy-type) FSM with the following interpretation: Input-based 
FSM transitions to a new state and outputs data conditionally on the value of some of FSM 
inputs. Similarly,  FSMD executes set of expressions depending on the value of some FSMD 
inputs. However, if the inputs change just before the clock edge there may be not enough time to 
execute the expressions associated with that particular state. Therefore, designers should avoid 
this situation by making sure the input values change only early in the clock period or they must 
insert a state that waits for the input value change. In this case if the input changes too late in the 
clock cycle, FSMD will stay in the waiting state and proceed with a normal operation in the next 
clock cycle.
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• Multi-pipelined data path
• Hardwired or programmable controller
• RISC, NISC, or RTL style

Processor Structural Model
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Processor Structural Model

The  Processor  structural model consists of a Datapath and a Controller.

The Datapath executes the DFG attached to each state in the FSMD model. The Datapath has storage 
units such as registers, register files, caches and memories, function units such as ALUs, multipliers, 
shifters,  and connection units such as buses. Each unit may take one or several clock cycles to  produce 
output. Furthermore, each unit can be pipelined through several stages. Furthermore each unit may have 
input and output latches or registers. Also each unit can be connected to any of the buses. The above 
flexibility can be used to pipeline the entire Datapath which comes useful when processing instruction 
streams in RISC/CISC processors or control streams in NISC/RTL processors.

The Controller  keeps track of the presents state, defines the next state and controls the execution of the 
Datapath in each state. Its implementation defines the type of the processor. In case of a RTL processor 
(custom HW, IP), we have State register that stores the present state, Next -state logic (implemented with 
gates) that determines the next state, and output logic (implemented with gates) that defines the control 
signals for the simple Datapath (usually several registers and possibly an ALU).  If FSMD is used to 
model NISC processor then Datapath is complex with multitude of storage units, functional units, and 
busses and heavily pipelined. In that case the controller has a PC instead of State register, Address 
generator instead on Next -state logic, and Programmable memory instead of Output-logic. This memory 
stores the control words for the Datapath, and  Address generator generates  memory address for the next 
control word in case of a NISC processor. In case of a RISC processor the memory stores instructions. If 
instructions are stored in the Programmable memory then we usually insert a Instruction register (IR) to 
temporary store instructions before they are decoded into contro l words. In case of a CISC processor 
decoding is performed by a second level  memory whose addresses are supplied by IR. 

Similarly, we can introduce a Status register (SR) to temporary store the conditions for computing the 
next state/address. In this case we have standard processor pipeline: PC, IR, Datapath pipe, SR, and back 
to PC.
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Processor (RTL) Synthesis

RTL
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RTL/NISC structural model

D

Q

D

Q

D

Q

Control
inputs

Next-
state
logic

or
Address

generator

Output
logic

or
Program
memory

State
register

or
PC

Control
outputs

Control
signals

B u s1

B u s2

Selector

Register

Datapath
outputs

ALU ∗ / ÷

B u s3

Datapath

Signal
status

Controller

Register Memory

RF

SR

IR

Latch

Data
memory

Processor /RTL Synthesis

Processor (RTL) synthesis consists in converting a SFSMD/FSMD mo del into a 
RTL/NISC/RISC/CISC processor that generates the same result as the model. It consists of 
several tasks;

(a) Allocation of components from the RT library and definition of the Datapath,
(b) Rescheduling of computation in each state since some components may need more than one 
clock cycle,

(c) Binding of variables, operations and register transfers to  storage elements, functional units 
and busses in the Datapath,

(d) Synthesis of hardwired or programmable controller for RTL/ NISC/RISC/CISC.
(e) )Generation of refined model representing the Processor stru cture.

Any of the  tasks (a)-(d) can be done in parallel or in any order. If  the structure of Controller 
and Datapath are fixed as in case of RISC/CISC processors then the compiler converts a 
SFSMD model into an instruction stream. Those instructions are loaded into the Programmable 
memory.
If the above tasks are performed automatically, we call the above process RTL synthesis or 
Behavioral synthesis. In this case many register transfers can be performed in each state of the 
FSMD model. In this case  the RTL/NISC synthesizer generates the control words that can be 
loaded into programmable memory or implemented with logic gates.
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System Functional Model

• Program State Machine
– States described by procedures in a programming language

• Example: SpecC! (SystemC subset?!)

PSM model
Proc

Proc
Proc

Proc

Proc

System Behavioral (Functional) Model

Since  systems consists of many communicating components (processors, IPs) the FSMD model 
will not be able to model a system since it uses a single thread of execution.. The easiest way is 
to retain the concept of states and transitions as in a FSMD model but to extend the computation 
in each state to include one or more processes described in in a programming language such as 
C/C++. Furthermore, in order to represent an architecture with several processes running in 
parallel or in pipelined mode the system model should support concurrency  (several 
components running in parallel) and pipelining (several components running in parallel with 
data passed between them sequentially). Since components are running concurrently we need a 
synchronization mechanism for data exchange. Furthermore, we need a concept of channel to 
encapsulate data communication. Also, we need to support hierarchy to allow humans to write 
easily complex systems specifications. Such a model is called Program State Machine (PSM).
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System Structural Model

• Arbitrary components (Proc., IP, Memory)
• Arbitrary connectivity (buses, protocols)

System architecture

Bus

Memory

Memory

Interface

Comp.
IP

Interface

Interface

µProcessor

Interface

Custom HW

System Structural Model

System structural model consists of variety of system components such as processors, IPs, memories, 
arbiters and special application-specific custom hardware components (RTL processors). They can be 
connected through different connection components such as buses with specific bus protocols. In case 
that component and bus protocol do not match there must be specific Interface (IF) for connecting such 
components with incompatible protocols. In other words, system structural model a composition of 
system computation and connection  components; any system can be modeled with such a model. 
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System Synthesis

System

Profiling
Allocation IF Synthesis

Refinement

Behavior Binding Channel Binding
Variable Binding
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System Synthesis

PSM model can be synthesized into a arbitrary system structure by the following set of tasks:

(a) Profiling of code in each behavioral model and collecting statistics about computation, 
communication, storage,traffic, power consumption, etc.,
(b) Allocating components from the library of processors , memories , IPs and custom 
components/processors,

(c) Binding PSM processes to processing elements, variables to storage elements (local and 
global), and channels to busses,

(d) Synthesizing interfaces (IFs)  between components and busses with incompatible protocols, 
and inserting arbiters, interrupt controllers, memory controllers, timers,  and other special 
components.
(e) Refining the PSM model into a architecture model that reflect allocation and binding 
decisions.

The above tasks can be performed automatically or manually.  Tas ks (b)-(d) are usually 
performed by designers while tasks (a) and (e) are better done automatically since they require 
lots of mundane effort. Once the refinement is performed the structural model can be validated 
by simulation quite efficiently since all the component behaviors are described by high level 
functions.

In order to accomplish all the above tasks, we may use several intermediate models on the way 
to reach the system structural model from behavioral model.
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System Synthesis (continued)
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System Synthesis (continued)

In order to generate cycle –accurate model, we must replace each component functional model 
with a FSMD/SFSMD model for RTL, NISC , RISC or CISC processors. Once we have cycle-
accurate behavioral model, we can refine it further to cycle-accurate structural model by 
performing RTL synthesis for custom processors (custom IPs). On the other hand, behaviors 
assigned to standard processors we can compile into an instruction-set stream and combine it with 
a IS simulator (FSMD) to execute the compiled instruction stream. 
RTL synthesis can start from SFSMD that is obtained through two different mechanism. On one 
hand, we can replace a behavior assigned to an IP with a SFSMD model from IP library. On the 
other hand, we can perform RTL synthesis on any behavior assigned to a RTL processor after 
converting the behavior to a SFSMD by assigning each basic block to a super state. After RTL 
synthesis or behavior compilation for a standard processor we can easily generate a cycle-
accurate model of the entire system.
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System Level Models

• Models based on time granularity of computation and communication
• A system level design methodology is a path from model A to F

Computation

Communication

A B

C

D F

Un-
timed

Approximate-
timed

Cycle-
timed

Un-
timed

Approximate-
timed

A. System specification model
B. Component -architecture model

C. Bus-arbitration model
D. Bus-functional model
E. Cycle-accurate computation model

F. Cycle-accurate implementation model

E

Cycle-
timed

Source: Cai, Gajski. “Transaction level modeling: An overview”, ISSS 2003

System-level Models

In general, system level models can be distinguished by the accuracy of timing for their communication 
and computation. In the graph, the two axes represent the granularity of communication and computation. 
The functional specification at the origin is untimed, with only a causal ordering between tasks. On the 
other end of the spectrum  is the cycle accurate model represented by the FSMD model.

A system level methodology takes the untimed specification to its cycle accurate implementation. The 
path through the intermediate models determines different types of refinements that must  be performed.
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A: “Specification Model”

Objects
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- Transitions

-TI, TOC
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-Notify/Wait

Specification Model

Specification model is a untimed model consisting of objects and composition rules for building larger 
objects. The objects can be used for computation and communication. Computation objects are behaviors or 
processes in the PSM model while variables are used for communication of data between behaviors. 
Composition rules allow construction of larger objects by using hierarchical encapsulation, and ordering of 
objects in sequential, parallel , pipelined or state fashion. Transition are used to specify the condition for 
execution of different behaviors, while synchronizations are used to insure that data are available at proper 
times.

The example shows 4 behaviors combined in sequential and parallel fashion with variables used to 
communicate data between them.



23

Copyright 2003 Daniel D. Gajski 23

B: “Component-Architecture Model”
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Component-Architecture Model

This model has same composition rules but several new objects representing different components. 
Additional computation objects are Processing Elements (PEs) that include processors, IPs and memories 
while new communication objects are variable channels used for communication  between PEs. Inside the 
PEs we can still use behaviors and variables since execution is sequential and running on one processor. 
Since each behavior has been assigned to a PE, we can easily estimate the time for execution of each 
behavior. On the other hand, channels have not been assigned to busses and therefore we can not estimate 
the communication time.
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C: “Bus-Arbitration Model”
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Bus-Arbitration Model

In the Bus-Arbitration model a new component for communication is added: bus channel. Several 
variable channels are assigned to the bus channel. Since bus channel transfers data from a set of PEs to 
another set of PEs , we must insert a new arbiter PE to determine bus priority between several competing 
channels. Since bus has been selected we can also estimate the communication time for each channel.
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D: “Bus-Functional Model”
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Bus-Functional Model

In bus-functional model a real protocol is inserted into bus channel. Therefore, bus channel becomes 
cycle-accurate. The rest of the model stays the same. The communication traffic can be now accurately 
estimated.
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E: “Cycle-Accurate Computation Model”
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Cycle-Accurate Computation Model

In this model computation behaviors or processes are refined into SFSMD or FSMD models. 
Computation in each is therefore cycle-accurate while communication is still abstract with approximate 
timing. Since communication and computation do not have the same time granularity, each PE is 
encapsulated into a wrapper that abstracts its cycle-accurate time to approximate time of the 
communication model.
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F: “Implementation Model”
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Cycle-Accurate Implementation Model

This model has cycle-accurate time in both computation and communication.  Furthermore, the abstract 
bus channel is replaced with bus wires, while its functionality is unlined into PEs. In addition channel 
functionality is converted into FSMD model and combined with computational FSMD model.
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SoC Environment

Specification model

Architecture modelEstimation

Profiling

Profiling data

Design     decisions

Communication model

Profiling 
weights

Arch. synthesis

Arch. refinement

Comm. synthesis

Comm. refinement

Refinement
User Interface (RUI)

Estimation results

Design     decisions

Estimation

Impl. synthesis

Estimation results

Design     decisions CA refinement

CA model

Capture

RTL/RTOS
attributes

Validation
User Interface (VUI)

Protocol
models

Comp. / IP
attributes

Protocol
attributes

Comp. / IP
models

Compile

Test

Simulate

Verify

Simulate

Verify

Allocation

Beh. partitioning

Scheduling / RTOS

Protocol selection

Channel partitioning

Spec. optimization

Cycle scheduling 

Protocol scheduling

System structure

Arbitration

SW/HW synthesis

Algorithm selection

Lang. Translators

EstimationRTL/RTOS
models

Estimation results

Test

Simulate
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SoC Environment (SCE)

The SCE includes tools for specification (model A), architecture (model B), communication (model D) 
and implementation (model F) generation and synthesis. All or any number of synthesis tools can be 
included. For example, if the architecture is fixed, such as in a platform design, the architecture synthesis 
tool can be omitted. Similarly, if only a standard bus is used, the communication synthesis is not required. 
Furthermore, if no custom processors (RTL or NISC) are needed, the implementation synthesis can be 
substantially simplified.

SCE consists of several tool groups for different design tasks. Validation tools simulate, verify and test 
each model. Model generation tools generate automatically each model after designers make design 
decisions. Estimation tools estimate design metrics in order to help designers make decisions. Data bases 
contain characteristics and models of available components. User interface tools display the metrics, 
available components and captured or generated models as well as design task menu's. Synthesis tools 
replace designer decisions with automatically made decisions for design and model optimization and 
refinement.
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• Experiment on GSM Vocoder design (10K lines of code)

• Conclusion
• Productivity gain >2,000X for industrial strength designs
• Compare 9-12 months (manual refinement) vs. 50+4 minutes (user decisions + automatic 

refinement)
• Enables extensive design exploration (60/day)

Vocoder Results
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GSM Vocoder Example

Results for the different vocoder models are shown here, from system specification model to 
implementation model.  The tables list the time needed for the s imulation, the number of lines of code for 
each model and the refinement effort. 

To validate the models, we performed simulations at all levels. The simulation performance at different 
levels for the vocoder are shown in the graph. As we move down in the level of abstraction, more timing 
information is added, increasing the accuracy of the simulation results. However, simulation time 
increases exponentially with lower levels of abstraction. As the results show, moving to higher levels of 
abstraction enables more rapid design space exploration. Through the intermediate models, valuable 
feedback about critical computation synthesis aspects can be obtained early and quickly.

As the number of lines of code for different models suggests, mo re lines of code are added to the model 
with lower level of abstraction, resulting in additional complexity needed to model the implementation 
detail introduced with each step.
The refinement effort table demonstrates that by using the automated system level refinement process, 
large productivity gains of 2000x or more have been  achieved in the vocoderproject. 
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JPEG Results
• Simulation Speed & Code size
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• Refinement Effort

• Compare 5-7months (manual refinement) vs. 28 minutes (user decisions) + 
2 minutes (automatic refinement)

JPEG Example

Results for the JPEG encoder models are shown here from system specification model to implementation 
model. The graphs shows the time needed for the simulation and the number of lines of code for each 
model for encoding of a 116x96 black-and-white image. 

To validate the models, we performed simulations at all levels. As we move down in the level of 
abstraction, more timing information is added, increasing the accuracy of the simulation results. 
However, simulation time increases exponentially with lower levels of abstraction. As the results show, 
moving to higher levels of abstraction enables more rapid design space exploration. Through the 
intermediate multiprocessing model, valuable feedback about critical computation synthesis aspects can 
be obtained early and quickly.

As the number of lines of code suggests, refinement between models is minimal and is limited to the 
additional complexity needed to model the implementation detail introduced with each step.
The refinement effort table shows that automated system level refinement process can achieve 2000 times 
productivity gains comparing manual refinement process in JPEG project.
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Conclusion

• New design flow paradigm based on SER methodology
• Semantics before syntax (language does not matter)
• Model algebra before semantics
• System verification, synthesis, modeling simplified
• SW = HW = computation is the inevitable truth
• SCE offers more then 1000X productivity gain
• General problem: Define models, refinements, 

methodology for specific applications 

Conclusion

We have presented in this talk basic principles of SER paradigm system-level methodology 
based on this paradigm. It is based on a set of well defined models and automatic refinements 
from one model to the other. Since models are generated automatically, modeling languages do 
not matter. What matters is the semantics of each model. In order to establish adequate set of 
models we used the concept of model algebra which in turn simplifies the processes of 
simulation, synthesis and verification.  Such an approach removes the differentiation between 
SW and HW since models of SW and HW on the system levels are the same. SW and HW 
become just computation.

In order to verify our concepts we have built the prototype of System-on-Chip Environment 
(SCE) which demonstrated on several selected industrial examples that productivity gains of 
more than 1000X can be expected. Although the basic principles h ave been proven to be correct, 
the main challenge in the future is the definition of application specific methodologies. In other 
words, the set of appropriate models, design decisions, transformations and refinements must be 
determined that fir a specific application.
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