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INTRODUCTION
The 2400-km-long Bitlis-Zagros thrust zone 

between Arabia and Eurasia is one of the larg-
est Tertiary continent-continent collision zones 
(Fig. 1). The Arabia-Eurasia collision closed 
the Neotethyan oceanic gateway by isolating 
the Mediterranean and Indian Oceans; this has 
been related to mid-Cenozoic global cooling 
(Allen and Armstrong, 2008). The collision 
created a wide zone of diffuse deformation on 
the southern margin of Eurasia (Fig. 1) and has 
also been linked to the rifting of the Red Sea, 
extension in the Aegean, and the formation of 
the North and East Anatolian fault systems (e.g., 
Jolivet and Faccenna, 2000). Despite its impor-
tance, the age of the initial collision between 
Arabia and Eurasia is poorly constrained, and  
estimates range from Late Cretaceous (Hall, 
1976; Berberian and King, 1981; Alavi, 1994), 
to late Eocene–Oligocene (35–25 Ma; Jolivet 
and Faccenna, 2000; Agard et al., 2005; Allen 
and Armstrong, 2008), to Miocene (Şengör et 
al., 1985; Dewey et al., 1986; Yılmaz, 1993; 
Robertson et al., 2007). These estimates are 
generally based on the stratigraphy and age of 
deformation of the facing margins of the Ara-
bian and Eurasian plates. A complexity in this 
context is that both the Arabian and Eurasian 
margins have been affected by incremental 
deformation through time. An ophiolite nappe 
was thrust over the Arabian plate during the Late 
Cretaceous (ca. 85 Ma), leading to deformation 
and metamorphism of the passive margin (e.g., 
Ricou, 1971). The remnants of the ophiolite can 
be traced from Oman to southeast Turkey over 
a distance in excess of 2500 km. The opposite 
Eurasian continental margin was deformed by 

the late Paleocene–early Eocene (ca. 55 Ma) 
closure of the more northerly Izmir-Ankara-
Erzincan Ocean (Fig. 1; Okay and Tüysüz, 
1999) and by the opening and closure of a short-
lived Eocene basin that developed on the active 
margin of Eurasia (Maden-Hakkari basins; e.g., 
Yılmaz, 1993; Robertson et al., 2007). These 
deformation events make the dating of the Ara-
bia-Eurasia collision solely on the basis of stra-
tigraphy equivocal.

Collision between two large continental 
plates is a prolonged process, as exemplifi ed by 
the ongoing India-Asia collision, which started 
in the Eocene (e.g., Rowley, 1996). Inception 
of continental collision is defi ned by the con-

sumption of the oceanic lithosphere between the 
continents. This is followed by increased sub-
sidence in the lower plate through thrust load-
ing and a change from shelf to foredeep sedi-
mentation in the associated peripheral foreland 
basin. Foreland basin successions are expected 
to evolve from marine sandstone-shale to fl uvial 
coarse clastics as the thrust front moves toward 
the foreland. Increasing continental shortening 
will lead to an increase in the crustal thickness, 
uplift, and erosion, which can be dated by ther-
mochronology.

GEOLOGICAL SETTING
At present, deformation associated with the 

collision between the Eurasia plate and the 
Arabia plate is distributed over the Turkish-
Iranian Plateau (Reilinger et al., 2006; Copley 
and Jackson, 2006). The Bitlis-Zagros thrust 
zone forms the southern boundary of this wide 
region of deformation. It can be subdivided into 
the east-west–trending Bitlis and northwest-
southeast–trending Zagros thrust zones (Fig. 1). 
Plate reconstructions indicate that convergence 
between the Arabian and Eurasian plates was 
more orthogonal along the Bitlis segment com-
pared to the Zagros segment, which was affected 
by a considerable degree of dextral strike-slip 
faulting (McQuarrie et al., 2003; Allen et al., 
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ABSTRACT
The collision between the Eurasian and Arabian plates along the 2400-km-long Bitlis-

Zagros thrust zone isolated the Mediterranean from the Indian Ocean and has been linked 
to extension of the Aegean, rifting of the Red Sea, and the formation of the North and East 
Anatolian fault systems. However, the timing of the collision is poorly constrained, and esti-
mates range from Late Cretaceous to late Miocene. Here, we report the fi rst apatite fi ssion-
track (AFT) ages from the Bitlis-Zagros thrust zone. The AFT samples are distributed over 
the 450 km length of the Bitlis thrust zone in southeast Turkey and include metamorphic 
rocks and Eocene sandstones. Despite the disparate lithology and large distance, the AFT ages 
point consistently to exhumation between 18 and 13 Ma. The AFT ages, along with a critical 
appraisal of regional stratigraphy, indicate that the last oceanic lithosphere between the Ara-
bian and Eurasian plates was consumed by the early Miocene (ca. 20 Ma). The results imply 
that Aegean extension predated the Arabia-Eurasia collision.
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Figure 1. Tectonic map of eastern Mediterranean and Middle East. Arrows and numbers in-
dicate global positioning system (GPS)–derived velocities with respect to Eurasia (modi-
fi ed from Reilinger et al., 2006; Copley and Jackson, 2006). EAF—East Anatolian fault; EF—
Eskişehir fault; IAES—I⋅zmir-Ankara-Erzincan suture.
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2004). However, at present, the Zagros segment 
is characterized by shortening, and the Bitlis 
segment is characterized by strike-slip faulting 
(Reilinger et al., 2006).

The 800-km-long Bitlis thrust zone essen-
tially consists of three superimposed tectonic 
units: (1) the sedimentary succession of the 
Arabian Platform is overlain by (2) a com-
plex tectonic zone made of ophiolitic mélange 
and Eocene fl ysch, and (3) by a metamorphic 
complex made up of the Bitlis Massif in the 
east and the Pütürge Massif in the west (Fig. 2; 
Hall, 1976; Yılmaz, 1993). These massifs con-
sist of south-verging, tectonically imbricated 
metamorphic rocks forming part of the crustal 
succession at the leading edge of Eurasia. 
The metamorphic rocks are subdivided into 
a Neoproterozoic basement of gneiss, schist, 

amphibolite and metagranitoid, and a Paleo-
zoic-Mesozoic cover of metaclastic rocks and 
marble (e.g., Göncüoğlu and Turhan, 1984; 
Oberhänsli et al., 2009). Remnants of an ophi-
olite nappe, emplaced during the Late Creta-
ceous from the north, are locally preserved on 
top of the Mesozoic metasediments. The Bitlis 
and Pütürge Massifs underwent metamorphism 
during the Late Cretaceous under the obducted 
ophiolite. In the Bitlis Massif, the pressure 
and temperature during peak metamorphism 
are estimated at ca. 1 GPa (~33 km depth) and 
350–400 °C (Oberhänsli et al., 2009). Ar-Ar 
and K-Ar white mica ages are ca. 74 Ma in the 
Bitlis Massif (Göncüoğlu and Turhan, 1984; 
Oberhänsli et al., 2009), and K/Ar whole-rock 
ages are 71.2 ± 3.6 Ma in the Pütürge Massif 
(Hempton, 1985).

APATITE FISSION-TRACK DATA
We collected metamorphic rock and Eocene 

sandstone samples for apatite fi ssion-track 
(AFT) analysis along four traverses across the 
Bitlis and Pütürge Massifs and the collision zone 
(Fig. 2; Table 1). Spot samples were also taken 
from the Paleozoic sandstones in the collision-
induced anticlines on the Arabian plate and from 
the allochthonous Eocene sandstones around 
Hakkari. Procedures for sample preparation 
and analysis are those described in Zattin et al. 
(2005). Apatite grains from 23 samples were 
sent for irradiation; however, uranium content in 
most samples was too low to generate enough 
tracks for a reliable age. Only seven samples 
yielded apatites suitable for fi ssion-track analy-
sis. These samples are distributed over a 450-km-
wide region and come from two tectonic units 
(Fig. 2; Table 1): (1) the metagranitoids and the 
overlying metasediments of the Bitlis and Püt-
ürge Massifs, and (2) Eocene sandstones from 
the Maden and Hakkari complexes in the colli-
sion zone. The Eocene sandstones show a low-
grade metamorphism in the Hakkari region but 
are unmetamorphosed elsewhere (Perinçek, 
1990; Oberhänsli et al., 2009).

Despite the lithological diversity and the 
wide geographic distribution, AFT results 
range consistently between 18 and 13 Ma 
(Burdigalian-Langhian) (Table 1; Fig. 3). The 
Miocene AFT ages from the Eocene sand-
stones indicate that they were buried below 
the apatite zone of partial annealing (~110 °C). 
The AFT ages do not show any correlation with 
elevation (Table 1). Given the small number of 
tracks, their lengths could be measured only in 
three samples, and only one gave a signifi cant 
number. Data related to this sample were mod-
eled using the HeFTy program (Ehlers et al., 
2005). Results show a rapid increase in exhu-
mation at ca. 12 Ma (Fig. 4).Figure 2. Tectonic map of Bitlis thrust zone with apatite fi ssion-track sample localities and ages. 

TABLE 1. APATITE FISSION-TRACK DATA FROM THE BITLIS THRUST ZONE

Sample 
number

Coordinates 
(UTM)

Elevation 
(m)

Rock type No. of 
crystals

Spontaneous Induced P(χ)2 Dosimeter Age
(Ma ± 1σ)

Mean confi ned 
track length

(µm) 

Std. 
dev. 

No. of 
tracks 

measuredρs Ns ρi Ni ρd Nd

TU136 38S0251160 
4260508

1642 Metasandstone 20 0.72 40 0.89 496 100.0 0.90 4293 13.4 ± 2.2 13.98 ± 0.21 0.92 19

TU138 38S0241967 
4249698

1285 Gneiss 16 0.46 22 0.55 264 100.0 0.90 4281 13.8 ± 3.1 – – –

TU140 37S0753971 
4234870

871 Eocene sandstone 4 5.14 43 4.84 405 91.1 0.90 4256 17.5 ± 2.8 – – –

TU145 37S0630748 
4277901

1175 Metagranite 20 0.55 38 0.62 425 82.5 0.89 4219 14.6 ± 2.5 – – –

TU149 37S0476619 
4240707

1395 Gneiss 20 1.60 112 1.44 1006 87.0 0.88 4181 18.0 ± 1.8 13.00 ± 0.23 1.99 72

TU155 38S0321648 
4195176

1607 Eocene sandstone 20 0.88 53 1.18 711 65.1 1.01 4818 13.9 ± 2.1 14.51 ± 0.29 1.41 24

TU159 38S0396240 
4162747

1342 Eocene sandstone 6 0.53 14 0.39 102 75.4 1.00 4771 25.2 ± 7.2 – – –

Note: Central ages were calculated using dosimeter glass CN5 and ζ-CN5 = 367.45 ± 4.35 (analyst MZ). ρs—spontaneous track densities (×105 cm–2) measured in internal 
mineral surfaces; Ns—total number of spontaneous tracks; ρi and ρd—induced and dosimeter track densities (×106 cm–2) on external mica detectors (g = 0.5); Ni and 
Nd—total numbers of tracks; P(χ2)—probability of obtaining χ2 value for degrees of freedom (where ν = number of crystals – 1); a probability >5% is indicative of a 
homogeneous population. Samples with a probability <5% were analyzed with the binomial peak-fi tting method.
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REGIONAL STRATIGRAPHY
Tectonostratigraphic analysis of sedimen-

tary successions along the facing converging 
margins of the Arabian and Eurasian plates can 
provide additional constraints on the timing of 
collision (cf. Rowley, 1996). Along the north-
ern margin of the Arabian plate in southeast 
Anatolia, widespread shallow-marine carbonate 
deposition during the Eocene was followed by 
an Oligocene regression, and Oligocene depos-
its are missing over much of the region (Duran 
et al., 1988; Perinçek et al., 1993). A marine 
transgression at the beginning of the Miocene 
led to the deposition of Lower Miocene (Aquita-
nian-Burdigalian) reefal carbonates, which crop 

out close to the Bitlis thrust zone (Fig. 2). Such 
carbonates pass upward and northward to silici-
clastic marine turbidites, again of Lower Mio-
cene age (Fig. 3; Duran et al., 1988; Yılmaz and 
Duran, 1997). This Lice Formation, which is 
800 m thick, was deposited in a peripheral fore-
land basin during its phase of underfi lling and is 
at present partly overthrust by the Bitlis Massif 
and the Eocene series (Fig. 2). It represents the 
last marine sequence on the northern margin of 
the Arabian plate and is followed by the depo-
sition of continental conglomerate, sandstone, 
and evaporites of late Miocene–Pliocene age.

North of the suture on the Eurasian plate, a 
thick succession of Oligocene turbidites crops 
out north of Muş; these are overlain by shal-
low marine sandstone, shale, and limestone of 
early Miocene (Aquitanian-Burdigalian) age 
(Fig. 2; Sancay et al., 2006). The Oligocene-
Miocene succession was deposited in a retroarc 
foreland basin associated with northward sub-
duction of the Arabian plate. Lower Miocene 
(Lower Burdigalian) shallow-marine limestones 
also crop out widely west of Lake Van (Özcan 
and Less, 2009), where they are unconform-
ably overlain by Pliocene to Holocene volcanic 
rocks. Widespread volcanism in eastern Turkey, 
associated with postcollisional slab breakup or 
mantle delamination, started in the late Miocene 
(ca. 11 Ma) in the north and migrated southward, 
reaching the region of Lake Van in the latest 
Miocene to Pliocene (6–3 Ma; Keskin, 2007).

DISCUSSION
The early to mid-Miocene AFT ages are 

interpreted as refl ecting exhumation along the 
Bitlis thrust zone due to Arabia-Eurasia colli-
sion. This is based on the coherent age spectrum 
from across the 450-km-long Bitlis thrust zone, 
similar AFT ages from the Neoproterozoic base-
ment and the Eocene sandstones, and confi ned 

track lengths that point to fast rock cooling at 
ca. 12 Ma. This inference is supported by the 
regional stratigraphy, which shows increased 
subsidence in the peripheral foreland basin over 
the Arabian plate in the early Miocene (Aquita-
nian-Burdigalian). The Eurasia-derived detritus 
within the peripheral foreland basin fi ll indi-
cates that the oceanic lithosphere between the 
Arabian and Eurasian plates was consumed by 
the early Miocene (ca. 20 Ma). The stratigraphic 
record indicates that Eastern Anatolia became a 
land area only after the early Burdigalian. The 
fi rst extensive mammal exchange between 
Arabia and Eurasia was during the late Burdi-
galian (ca. 18 Ma; Rögl, 1999; Harzhauser et 
al., 2007), and the Black Sea–Caspian region 
became isolated from the global marine envi-
ronment in the Serravallian (ca. 13 Ma) as the 
result of uplift of the Turkish-Iranian Plateau 
(e.g., Van Couvering and Miller, 1971).

Thermal paths obtained from modeling show 
a cooling rate of ~16 °C/m.y. during the period 
of highest exhumation between 12 and 8 Ma. 
Taking a geothermal gradient of 25–30 °C/km, 
based on heat fl ow (Tezcan, 1995) and the depth 
of the Curie point in Eastern Anatolia (Aydın et 
al., 2005), this cooling rate translates into an 
exhumation rate of 0.5–0.6 km/m.y. Since the 
Miocene, the average exhumation rate in the 
Bitlis thrust zone has been 0.1–0.2 km/m.y., 
which can be compared with the much faster 
exhumation rates (>1.5 km/m.y.) in the Hima-
laya (e.g., Blythe et al., 2007).

Present crustal movements along the Bitlis 
thrust zone change from predominantly strike-
slip in the west to orthogonal shortening in the 
east (Reilinger et al., 2006). However, the AFT 
ages do not show any systematic change across 
the Bitlis thrust zone, implying that the present 
crustal movements did not lead to signifi cant 
differential exhumation.

CONCLUSIONS
Interpretation of the new apatite fi ssion-track 

data and appraisal of the regional stratigraphy 
indicate that, following the elimination of the 
last oceanic lithosphere, the Arabia and Eur-
asia plates started to collide along the Bitlis 
thrust zone in the early Miocene (ca. 20 Ma); 
the stratigraphic record indicates that the thrust 
zone was above sea level by the end of the early 
Miocene (ca. 16 Ma). AFT data do not show 
any systematic change along the 450-km-long 
segment of the Bitlis thrust zone, but they do 
indicate a period of increased exhumation in the 
mid- to late Miocene. Exhumation of the Bitlis 
thrust zone since the early Miocene has been 
modest (3–4 km), with average exhumation 
rates of 0.2–0.3 km/m.y.

The early to mid-Miocene Arabia-Eurasia 
collision supports a temporal link between col-
lision and the formation of the late  Miocene 
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Figure 4. Time-temperature paths for sample 
TU149 obtained from inverse modeling. Pre-
dicted apatite fi ssion-track (AFT) data were 
calculated according to annealing model 
of Ketcham et al. (1999) and c-axis projec-
tion of Donelick et al. (1999). Shaded areas 
mark envelopes of statistically acceptable 
fi t, and thick line corresponds to most prob-
able thermal history. Goodness of fi t (GOF) 
gives an indication about fi t between ob-
served and predicted data (values close to 
1 are best).
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North Anatolian fault (e.g., Şengör et al., 2005). 
However, extension in the Aegean domain, 
related to the slab retreat, dates back to the Oli-
gocene (e.g., Jolivet and Faccenna, 2000). This 
and the recent recognition of major Oligocene 
dextral strike-slip faults in Anatolia (Zattin et 
al., 2005; Okay et al., 2008) suggest that the 
westward translation of Anatolia started in the 
Oligocene and predated the Miocene Arabia-
Eurasia collision.
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