An Oligocene ductile strike-slip shear zone: The Uludağ Massif, northwest Turkey—Implications for the westward translation of Anatolia

A.I. Okay†
Avrasya Yerbilimleri Enstitüsü ve Jeoloji Mühendisliği Bölümü, Maden Fakültesi, Istanbul Teknik Üniversitesi, Maslak, 34469 İstanbul, Turkey

M. Satur
Institut für Geowissenschaften, Universität Tübingen, Wilhelmstrasse 56, D-72074 Tübingen, Germany

M. Zattin
W. Cavazza
Dipartimento di Scienze della Terra e Geologico-ambientali, Università di Bologna, 40126 Bologna, Italy

G. Topuz
Avrasya Yerbilimleri Enstitüsü, Istanbul Teknik Üniversitesi, Maslak, 34469 Istanbul, Turkey

ABSTRACT

The Uludağ Massif in northwest Turkey represents an exhumed segment of an Oligocene ductile strike-slip shear zone that is over 225 km long and has ~100 km of right-lateral strike-slip displacement. It forms a fault-bounded mountain of amphibolite-facies gneiss and intrusive Oligocene granites. A shear-zone origin for the Uludağ Massif is indicated by: (1) its location at the tip of the active Eskişehir oblique-slip fault, (2) pervasive subhorizontal mineral lineation in the gneisses with a right-lateral sense of slip, (3) foliation with a consistent strike, (4) the presence of a subvertical synkinematic intrusion, and (5) the alignment of the Eskişehir fault, synkinematic metagranite, and the strike of the foliation and mineral lineation. The shear zone nucleated in amphibolite-facies gneisses at peak pressure-temperature (P-T) conditions of 7.0 kbar and 670 °C, and it preserves Eocene (49 Ma) and Oligocene (36–30 Ma) Rb/Sr muscovite and biotite cooling ages. The shear zone was active during the latest Eocene and Oligocene (38–27 Ma), as shown by the crystallization and cooling ages from synkinematic granite. A 27 Ma postkinematic granite marks the termination of shear-zone activity. The 20–21 Ma apatite fission-track (AFT) ages indicate rapid exhumation during the early Miocene. A 14 Ma AFT age from an Uludağ gneiss clast deposited in a neighboring Neogene basin shows that the shear zone was on the surface by the late Miocene. Results of this study indicate that during the Oligocene, crustal-scale right-lateral strike-slip faults were transporting crustal fragments from Anatolia into the north-south–extending Aegean; this implies that the westward translation of Turkey, related to the Hellenic slab suction, started earlier than the Miocene Arabia-Eurasia collision.

Keywords: ductile shear zone, strike-slip faulting, Rb/Sr ages, apatite fission tracks, amphibolite-facies metamorphism, Turkey, Aegean Sea

INTRODUCTION

Active tectonics in the Eastern Mediterranean are dominated by the westward translation of the Anatolian plate into the north-south–extending Aegean region (Fig. 1). Extension in the Aegean region is caused by the southward migration of the Hellenic subduction zone and dates back at least to 30 Ma (late Oligocene; e.g., Jolivet and Faccenna, 2000). In contrast, the North Anatolian fault is regarded to have formed in the late Miocene (ca. 11 Ma) following the collision of the Arabian and Anatolian plates (e.g., Hubert-Ferrari et al., 2002; Şengör et al., 2005). The collision of the Arabian and Anatolian plates is widely considered to be Miocene in age based on the biostratigraphy of the foreland sequences and the transition from marine to continental deposition on the northern margin of the Arabian plate (e.g., Şengör et al., 1985; Dewey et al., 1986; Yılmaz, 1993; Robertson and Grasso, 1995). Global positioning system (GPS) velocities, with respect to the stable Eurasia, show an increase from the Anatolia (~21 mm/yr) toward the Hellenic subduction zone (~33 mm/yr; Reilinger et al., 2006), suggesting that it is not the push from Arabia but rather the pull from slab suction that is driving the present westward translation of the Anatolian plate. What was the tectonic regime in Anatolia during the Oligocene before the Arabia collision? Here, we document the presence of a major Oligocene strike-slip shear zone that has an estimated right-lateral offset of 100 ± 20 km in Anatolia. The Uludağ shear zone, located ~80 km south of the present North Anatolian fault, along with some other strike-slip faults recently shown to have been active in Oligocene times (Aksoy, 1998; Zattin et al., 2005; Uysal et al., 2006), allowed early westward translation of Anatolia. Apart from its regional significance, the shift of localized strain from one major strike-slip fault to another has implications for the rigid versus viscous behavior of the continental lithosphere over geological time scales.

A second aim of the paper is to describe the evolution and exhumation of a major ductile strike-slip shear zone by means of geological mapping combined with stratigraphic, structural, petrologic, and thermochronologic data. Although strike-slip faults are common structures in the continental crust, their roots, i.e., the ductile strike-slip shear zones, are rarely
exposed. The predominantly horizontal movement typical for strike-slip kinematics generally precludes exhumation of the shear zones, unlike the case of major normal faults, which are frequently associated with ductilely deformed extensional metamorphic core complexes. Some known examples of ductile strike-slip shear zones are the Alpine fault in New Zealand (e.g., Walcott, 1998), the Red River shear zone in southeast Asia (e.g., Tapponnier et al., 1990; Leloup et al., 1993; Anczkiewicz et al., 2007), and the Armorican shear zones in France (e.g., Gapais and Le Corre, 1980; Jégouzo, 1980).

TECTONIC SETTING

The Anatolian microplate is moving westward with respect to the Eurasian plate at a velocity of ~21 mm/yr (e.g., Reilinger et al., 2006). In central Anatolia, over 90% of this movement is concentrated on the North Anatolian fault, which forms a well-defined narrow plate boundary. However, in the Aegean region, the rigid westward translation of the Anatolian microplate gives way to distributed north-south extension along east-west–trending normal faults (Fig. 1). The Uludağ (Ulu Mountain) region is located at the transition zone between the internally rigid Anatolian block and the north-south–extending Aegean (e.g., Şengör et al., 1985; Bozkurt, 2001). The region is characterized by Neogene basins surrounded by mountainous uplands (Fig. 2). The Uludağ is the largest and highest of these uplifted areas; it forms an ESE-trending mountain range, the ancient Mount Olympus of Mysia, which rises to 2543 m above the alluvial Bursa Plain (located at less than 100 m elevation) (Fig. 3).

Uludağ consists of a single east-southeast–trending (~117°) mountain range surrounded by Neogene basins and mountainous uplands (Fig. 2). The region is characterized by Neogene basins surrounded by mountainous uplands (Fig. 2). The Uludağ is the largest and highest of these uplifted areas; it forms an ESE-trending mountain range, the ancient Mount Olympus of Mysia, which rises to 2543 m above the alluvial Bursa Plain (located at less than 100 m elevation) (Fig. 3).
Figure 2. Tectonic map of northwestern Turkey showing the major Neogene basins, alluvial plains, and post-Miocene faults. GPS—global positioning system.
Figure 3. Topography of the Uludağ range, major faults, and the location of geochronological samples. Global positioning system (GPS) velocities are shown with respect to the station ULUD using the data set of Straub (1996). CATA—Çataltepe; DTAS—Demirtaş; IGDI—Iğdır; ULUD—Uludağ.
The Uludağ range is bounded in the south by the subvertical Soğukpınar strike-slip fault, which forms a prominent morphological feature. However, there is little evidence for Quaternary fault activity south of Uludağ. The Soğukpınar fault constitutes the westernmost segment of the Eskişehir fault, a broad fault zone that is more than 225 km long and 15 km wide, consisting of 5–25-km-long en echelon faults; it extends east-southeast (109°) from Uludağ to the Sivrihisar region (Figs. 1 and 2; Şengör et al., 1985; Saroğlu et al., 1992; Altunel and Barka, 1998; Bozkurt, 2001; Yaltrak, 2002). Koçyiğit (2005) and Özsayın and Dirik (2007) extended the Eskişehir fault zone farther east to the Salt Lake in central Anatolia and joined it to the right-lateral strike-slip faults west of the lake (Çemen et al., 1999), giving a total length of 470 km. At least some segments of the Eskişehir fault are active, as shown by the 20 February 1956 Eskişehir earthquake (M = 6.4), which had an epicenter north of Eskişehir and a focal mechanism solution indicating normal faulting with minor right-lateral strike-slip (McKenzie, 1972). The sense of slip in the Eskişehir fault zone, as measured on exhumed fault planes, is also right-lateral transtensional (Ocakoğlu, 2007; Tokay and Altunel, 2005).

The Eskişehir fault marks approximately the northeastern limit of the Aegean extensional system (Barka et al., 1995; Koçyiğit, 2005). Along most of its length, it also corresponds to the Izmir-Ankara suture, a profound geological discontinuity between the Pontides to the north and the Anatolide-Taurides to the south (e.g., Okay and Tüysüz, 1999). A sharp change in the Bouguer gravity anomaly across the Eskişehir fault indicates a reduced crustal thickness north of the fault (Fig. 4; Ateş et al., 1999; see also http://www.mta.gov.tr/english/harita/bouger.html). The association of the Eskişehir fault with long-wavelength Bouguer gravity anomalies indicates a deep crustal discontinuity.

The Uludağ Massif is located on the Bursa syntaxis where the Eskişehir fault terminates and the İzmir-Ankara suture makes an ~80° counterclockwise bend (Fig. 1; Okay and Tüysüz, 1999). Pre-Miocene sequences on both sides of the Eskişehir fault (İzmir-Ankara suture) are different and cannot be correlated (Fig. 5). The high-grade metamorphic rocks of the Uludağ Group, pierced by Oligocene granite, constitute the lowermost tectonic unit north of the suture. The Uludağ Massif is made up of both the Uludağ Group and the Oligocene granites. The Uludağ Group is tectonically overlain by the Triassic Karakaya Complex, which is interpreted as Paleo-Tethyan subduction-accretion units, and which are in turn unconformably overlain by little-deformed Jurassic-Cretaceous sandstones and limestones (Figs. 5A and 6). The Taşvankı zone of the Anatolide-Taurides crops out south of the İzmir-Ankara suture. Here, the lowest exposed unit is a coherent blueschist sequence with Late Cretaceous (ca. 80 Ma) metamorphic ages (Okay et al., 1998; Sherlock et al., 1999). The blueschists are tectonically overlain by an accretionary complex and by large slabs of Cretaceous ophiolite (Figs. 5B and 6). Eocene granodiorites cut the blueschists as well as the overlying accretionary complex and ophiolite. Miocene terrigenous deposits make up the oldest formation, which extends across the suture indiscriminately.

THE MIDCRUSTAL SHEAR ZONE—THE ULUDAĞ MASSIF

The Uludağ Group forms a rhomb-shaped, fault-bounded elongate body of gneiss and marble, ~32 km long and ~12 km wide (Figs. 6; Ketin, 1947). It is bounded on the northeast and west by the brittle Bursa and Kirazlı faults, respectively. Locally, there are tectonic slivers of serpentinite along the Bursa fault (e.g., south of Alaçam in Fig. 6; Ketin, 1984). Although the Kirazlı fault is very poorly exposed, the orientation of foliation in its vicinity suggests that it dips steeply to the southwest. It is not active and is cut by the Bursa fault (Figs. 6 and 7A). Toward the northwest, the Uludağ Group gradually tapers off under the tectonic cover of the Karakaya Complex; in the southeast, it is downfaulted by a north-south-trending normal fault.

Stratigraphically, the age of the Uludağ Group is poorly constrained. Poorly preserved solitary corals in the marbles suggest a post-Ordovician...
protolith age (Imbach, 1992; Okay, personal observation at UTM 6′73″900/44′47″850); the age of the gneisses is not known. The oldest sediments, which lie unconformably over the metamorphic rocks, are Quaternary alluvium and scree. However, clasts derived from the Uludağ Group are found in the Miocene İnegöl Basin in the east. The Uludağ Group is also cut by the Central and South Uludağ granites, which have Oligocene ages. Preliminary single-zircon step-wise Pb-evaporation ages from the Uludağ gneisses range from 500 Ma to 180 Ma, with a cluster between 300 Ma and 200 Ma (M. Satır, 2006, personal commun.).

The gneisses of the Uludağ Group form an ~4-km-thick sequence made up predominantly of quartzo-feldspathic rocks. A pervasive millimeter-thick color banding defined by variations in the mineral modes, and an equally pervasive mineral stretching lineation are ubiquitous (Figs. 8A and 8B). A granitic origin for the quartzo-feldspathic gneiss is suggested by the homogeneous lithology and by the absence of metasedimentary interlayers. Syn-tectonic aplite to pegmatitic veins, millimeter to meter in thickness, are common and make up ~15% of the outcrops. The veins strike generally subparallel to the gneissic foliation and frequently exhibit ductile to semibrittle deformation (Figs. 8A and 8D). Hornblende-gneiss and amphibolite occur as rare bands or elongate lenses, a few to ten meters in width, intercalated with the quartzo-feldspathic gneiss. The finely banded marble unit, up to 400 m in thickness, forms two semicontinuous bands along the northern rim and in the center of the Uludağ Massif (Figs. 6 and 7C). Individual marble layers also occur within the gneisses close to the main marble contact.

Structure

The gneisses show a strong high-temperature foliation and compositional banding, which are variably overprinted by a subparallel low-temperature mylonitic fabric defined by quartz ribbon, oblique quartz fabric, strained and rotated feldspar porphyroblasts, and mica fish. The foliation in the gneisses and amphibolites strikes ESE (~114°), parallel to the mountain range, and dips north to northeast at an average angle of ~35° (Fig. 9A). The dips are subvertical south of the synkinematic South Uludağ granite. The strike of the banding is consistent except at the margins of the Central Uludağ pluton. A subhorizontal mineral stretching lineation defined by the subparallel alignment of hornblende, biotite, and felsic minerals is pervasive in the central part of the Uludağ Group (Fig. 8B). The lineation becomes weaker toward the margins of the Uludağ Massif, where it is overprinted by downdip lineation related to the later normal faulting. The gently dipping lineation in the gneisses trends ~114° (Fig. 9B). Folds are rare; a high concentration of close folds is observed only at a few localities in the gneisses. The fold axis trends parallel to the mineral lineation, which is typical for highly strained rocks. Boudinaged structures are commonly found in the aplite veins in gneiss and the dolomitic bands in marble. Low-temperature structures, such as brittle microfaults, are rare.

Macroscopic shear sense indicators are widespread in the gneisses and in the marbles, and they consistently indicate a right-lateral motion. The thin dolomite layers in the marbles and the synkinematic aplite veins in the gneisses especially are stretched and sheared parallel to the layering, producing asymmetric σ-type boudins and pinch-and-swell structures that indicate a right-lateral shear sense (Figs. 8C and 8D). Asymmetric tails of feldspar porphyroclasts in the gneisses and C′-type shear bands in the micaceous metamorphic rocks also consistently indicate right-lateral shear (Fig. 8D).

Petrology and Pressure-Temperature Conditions

The gneisses range from biotite gneiss to hornblende-biotite gneiss and grade locally into amphibolite, with a decrease in the quartz content. Biotite, muscovite, and chlorite occur
An Oligocene ductile strike-slip shear zone

Figure 6. Geological map of the Uludağ region (based on Ketin, 1947; Lisenbee, 1971; Okay et al., 1998; this study). For location, see Figure 2.
Figure 7. Cross sections from the Uludağ region. For locations of the sections, see Figure 6.
Figure 8. Field photographs from the Uludağ Group. (A) Banded quartzo-feldspathic gneiss cut by synkinematic pegmatitic veins. (B) Subhorizontal mylonitic mineral lineation on a foliation plane in gneiss. (C) Boudinaged and rotated dolomite layer in marble showing a right-lateral shear sense. (D) Synkinematic aplitic veins and weakly developed C′-type shear bands indicating a right-lateral shear sense.

Figure 9. Equal-area, lower-hemisphere projection of structural data from the Uludağ Group. Contours are at 2%, 4%, 6%, 8%, 10%, 12%, 14%, and 15% for one-percent area for the foliation, and at 2%, 3%, 4%, 5%, 6%, and 7% for one-percent area for the lineation.
in millimeter- to centimeter-thick bands alternating with more felsic layers. The Uludağ Group has undergone amphibolite-facies metamorphism, and there is no measurable change in the metamorphic grade across the area. The common mineral assemblage in the gneisses is quartz + plagioclase + biotite + hornblende + muscovite ± chlorite ± garnet ± K-feldspar ± ilmenite. Quartz, feldspar, biotite, hornblende, and muscovite are the major minerals that form the medium-sized grains, 0.2–0.5 mm across. Garnet is rare and occurs as a matrix mineral and/or as poikilitic porphyroblasts, up to 2 cm across. In amphibolites, garnet porphyroblasts are partly to completely replaced by hornblende and plagioclase. Dark bluish green hornblende forms prismatic grains, up to 2 mm long, and is associated with biotite. Plagioclase commonly forms microporphyroblasts with quartz and biotite inclusions.

Two samples of biotite-gneiss, two of hornblende-gneiss, and one amphibolite were analyzed with a Cameca SX-51 electron microprobe at the University of Heidelberg, Germany, to constrain the pressure-temperature (P-T) evolution. The estimated modes of the analyzed samples are given in Table 1, and the representative mineral compositions are given in Table 2. No previous petrologic data are available from the Uludağ Massif.

Mineral Chemistry
Garnets are almandine-pyrope-grossular-spessartine solid solutions, and they display a strong compositional variation from sample to sample, reflecting different initial bulk compositions (Fig. 10A; Table 2). They generally show growth zoning, with a decrease in the spessartine and almandine contents and increase in pyrope toward the rim, while the grossular content stays relatively constant (Table 2). Locally, there is a reversal in growth zoning in the outermost rim domain (<0.3 mm) ascribed to the retrograde net-transfer reactions and Fe-Mg exchange during temperature evolution. The estimated modes of the analyzed samples are given in Table 1, and the representative mineral compositions are given in Table 2.

Table 1. Modes of the Analyzed Uludağ Rocks

<table>
<thead>
<tr>
<th>Sample</th>
<th>Garnet-biotite gneiss</th>
<th>Hornblende gneiss</th>
<th>Amphibolite gneiss</th>
</tr>
</thead>
<tbody>
<tr>
<td>6555</td>
<td>40 35</td>
<td>13 11</td>
<td>4</td>
</tr>
<tr>
<td>6763</td>
<td>7 26</td>
<td>33 22</td>
<td>37</td>
</tr>
<tr>
<td>K-feldspar</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Al$_2$SiO$_5$</td>
<td>9</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Garnet</td>
<td>9</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Hornblende</td>
<td>-</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>Biotite</td>
<td>23</td>
<td>23</td>
<td>3</td>
</tr>
<tr>
<td>Muscovite</td>
<td>7</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Chlorite</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Epidote</td>
<td>-</td>
<td>tr</td>
<td>-</td>
</tr>
<tr>
<td>Rutile</td>
<td>tr</td>
<td>tr</td>
<td>tr</td>
</tr>
<tr>
<td>Ilmenite</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Magnetite</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Hematite</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Pyrite</td>
<td>-</td>
<td>-</td>
<td>tr</td>
</tr>
<tr>
<td>Apatite</td>
<td>tr</td>
<td>tr</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: tr—trace, less than 0.5%.

Table 2. Representative Mineral Compositions from the Uludağ Group

<table>
<thead>
<tr>
<th>Sample</th>
<th>Garnet-biotite gneiss</th>
<th>Hornblende gneiss</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>36.71</td>
<td>33.01</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.02</td>
<td>1.70</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>20.39</td>
<td>15.33</td>
</tr>
<tr>
<td>Cr$_2$O$_3$</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>FeO</td>
<td>27.35</td>
<td>23.48</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>10.66</td>
<td>0.63</td>
</tr>
<tr>
<td>MgO</td>
<td>1.96</td>
<td>1.51</td>
</tr>
<tr>
<td>MnO</td>
<td>2.81</td>
<td>0.00</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>0.07</td>
<td>9.45</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>92.54</td>
</tr>
</tbody>
</table>

Note: Mineral formula on the basis of 22 O.

Table 2. Representative Mineral Compositions from the Uludağ Group

<table>
<thead>
<tr>
<th>Sample</th>
<th>Garnet-biotite gneiss</th>
<th>Hornblende gneiss</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>36.71</td>
<td>33.01</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.02</td>
<td>1.70</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>20.39</td>
<td>15.33</td>
</tr>
<tr>
<td>Cr$_2$O$_3$</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>FeO</td>
<td>27.35</td>
<td>23.48</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>10.66</td>
<td>0.63</td>
</tr>
<tr>
<td>MnO</td>
<td>1.96</td>
<td>1.51</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>0.07</td>
<td>9.45</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>92.54</td>
</tr>
</tbody>
</table>

Note: Mineral formula on the basis of 22 O.
decrease. Calcic amphiboles from the gneisses and amphibolites are magnesiohornblende to tschermakite (Fig. 10B). The Mg numbers (Mg/[Mg + Fe²⁺]) of the analyzed biotites show a wide range between 0.30 and 0.60, but they correlate positively with the Mg numbers of the coexisting garnets (0.09–0.36) (Fig. 10C). Muscovite is characterized by Si cation values of 3.06–3.21 in the 11 oxygen formula unit. Muscovite inclusions in garnets display higher TiO₂ concentrations (up to 1.5 wt%). Plagioclase is mostly oligoclase to andesine and seldom labradorite (Fig. 10F). In some samples, the compositional variation is quite large (up to 40 mol%). Two of the samples (6806 and 6763) contain K-feldspar, which is essentially an end-member composition with minor albite (<8 mol%) and anorthite (<1 mol%) components. The wide range in the mineral compositions within single rock samples (Fig. 10) is compatible with continuous and incomplete reequilibration in a shear zone.

Geothermobarometry

The low-variance matrix assemblage during peak metamorphic conditions is inferred to be hornblende + garnet + plagioclase + biotite + muscovite + quartz + ilmenite in the hornblende-gneiss and amphibolite, and garnet + plagioclase + biotite + muscovite + quartz in the biotite-gneiss. The P-T conditions were estimated from these mineral assemblages using both conventional geothermobarometers and the THERMOCALC program of Powell and Holland (1988). For the THERMOCALC program, the thermodynamic data set of Holland and Powell (1998) was used. The mineral activities were determined using the AX program (www.esc.cam.ac.uk/astaff/holland) from the representative mineral compositions listed in Table 2. THERMOCALC gives relatively precise P-T estimates of 640 ± 30 °C and 6.2 ± 1.1 kbar for the garnet-biotite gneisses (6555 and 6763) based largely on equilibria between garnet, biotite, muscovite, plagioclase, and quartz (Fig. 11). The error bars are larger in the hornblende-gneiss and amphibolite samples, which yield temperature and pressure ranges of 625–750 °C and 6–9 kbar, respectively.

Hornblende-plagioclase thermometry (Holland and Blundy, 1994) together with garnet-hornblende-plagioclase-quartz barometry (Kohn and Spear, 1990) yields 690 ± 60 °C and 6.3 ± 1.3 kbar for the adjoining plagioclase, hornblende, and garnet assemblages (Fig. 11). Garnet-biotite thermometry of Ferry and Spear (1978) together with garnet-biotite-plagioclase-quartz barometry (Hoisch, 1990, 1991) yield 710 ± 35 °C and 6.5 ± 0.7 kbar, using garnet core and matrix biotite and plagioclase compositions from the garnet-biotite gneiss 6555. The presence of muscovite and quartz and absence of Al₂SiO₅ + K-feldspar indicate that the peak P-T conditions did not exceed muscovite + quartz stability (Fig. 11). The peak P-T estimates on the basis of conventional geothermometer and THERMOCALC are 670 ± 40 °C and 7.0 ± 1.0 kbar.

The growth zoning in garnet observed in the amphibolite and hornblende gneisses indicates that the inclusion assemblages together with the garnet composition can be used to place P-T constraints on the early evolution of the rocks. The inclusions in garnet include Al₂SiO₅, quartz, muscovite, chlorite, biotite, quartz, hornblende, rutile, and ilmenite. The very fine grain size of Al₂SiO₅ mineral does not allow optical identification. Temperatures can be obtained by the Fe-Mg partitioning between hornblende inclusions and garnet in contact with the inclusions, under the assumption that no Fe-Mg exchange
takes place between garnet and hornblende. Garnet-hornblende thermometry after the formulation of Graham and Powell (1984) yields temperatures of 575 ± 25 °C (Fig. 11).

Pressures can be estimated using the garnet-rutile-ilmenite-plagioclase-silica (GASP), garnet-rutile-aluminosilicate-ilmenite (GRAIL), and garnet-aluminosilicate-plagioclase (GASP) equilibria:

\[
\begin{align*}
2 \text{almandine} + \text{gроссular} + 6 \text{rutile} &= 6 \text{ilmenite} + 3 \text{anorthite} + 3 \text{quartz}; \\
\text{almandine} + 3 \text{rutile} &= 3 \text{ilmenite} + \text{Al}_2\text{SiO}_5 \\
3 \text{anorthite} &= \text{gроссular} + 2 \text{Al}_2\text{SiO}_5 + \text{quartz}.
\end{align*}
\]

These equilibria indicate pressures of 7.6 ± 0.6 kbar, 6.5 ± 0.5 kbar, and 6.7 ± 0.9 kbar, respectively (Bohlen and Liotta, 1986; Bohlen et al., 1983; Koziol and Newton, 1988). To summarize, garnet growth probably occurred at temperatures of 575 ± 25 °C and pressures of 6.9 ± 1.0 kbar, suggesting isobaric heating during the evolution of the Uludağ Group.

The retrograde assemblages are defined by biotite + plagioclase + quartz + chlorite + muscovite + epidote + ilmenite + magnetite. This assemblage is characteristic of epidote amphibolite-facies conditions. P-T conditions of the retrograde stage are not well constrained.

Syn- and Postkinematic Oligocene Granites

Two intrusive granitic bodies of similar age but with different textural features are present in the Uludağ Massif: the strongly anisotropic sheet-like South Uludağ metagranite and the undeformed dome-shaped Central Uludağ granite.

South Uludağ Metagranite—Synkinematic Intrusion

The South Uludağ metagranite is a subvertical, sheet-like intrusion with a length of 17 km and a thickness of only ~1.5 km. It strikes ESE (110°) and pinches out toward the southeast (Fig. 6). It is intrusive into the Uludağ Group along its northern and southern contacts and is intruded by the Central Uludağ Granite. Contact metamorphism is not observed, implying that the gneisses were still at elevated temperature conditions during the intrusion. The South Uludağ metagranite is a fine-grained, leucocratic intrusion, which consists chiefly of quartz and feldspar with minor muscovite and biotite. It shows a high-temperature solid-state foliation and lineation defined by biotite, muscovite, quartz, and subparallel alignment of feldspar porphyroclasts. Quartz has recrystallized to finer-grained aggregates that are 0.1–0.2 mm across and elongated subparallel to the foliation. Feldspar largely retains the igneous crystal form, forming 1–2-mm-long and 0.5-mm-wide coarse grains, without any cataclasis or recrystallization. Quartz and feldspar fabrics suggest deformation temperatures of ~400 °C (e.g., Passchier and Trouw, 1998, p. 48). The high-temperature foliation is cut discordantly by aplite veins. The sheet-like geometry of the South Uludağ metagranite, with its long axis parallel to the strike of the dominant foliation, its asymmetric tail, and the solid-state/crystal-plastic strain fabrics, indicates that it is a synkinematic pluton emplaced during the right-lateral shear-zone activity. contemporaneous high-temperature shear and acidic magmatic activity have also been described from other strike-slip shear zones (e.g., Schärer et al., 1994; Anczkiewicz et al., 2007).

Central Uludağ Granite—Postkinematic Pluton

The two-mica Central Uludağ granite crops out over an elliptical area of 11 km by 6.5 km (Fig. 6). It has outward-dipping intrusive contacts with the Uludağ Group and cuts the fabric in the gneisses (Fig. 7; Ketin, 1947). A skarn complex with economic wolframite deposits has formed along the granite-marble contact (van der Kaaden, 1958). The Central Uludağ granite is a homogeneous, fine- to medium-grained granite of quartz, plagioclase, K-feldspar, biotite, and muscovite (Ketin, 1947; Öztunali, 1973). Geochemically it is peraluminous and highly potassic.

The Uludağ granites are located at the north-eastern margin of the large Oligocene-Miocene magmatic province of northwest Turkey, which is characterized by more than ten granitoid intrusions and voluminous volcanic and volcaniclastic rocks (Fig. 2; e.g., Seyitoğlu and Scott, 1992; Delaloye and Bingöl, 2000; Aldanmaz et
With the exception of the Uludağ granites, all the other Oligocene-Miocene plutons are metaluminous and are generally represented by hornblende-biotite-bearing granodiorites (e.g., Karacik and Yılmaz, 1998; Yılmaz et al., 2001). The peraluminous geochemistry and the presence of muscovite in the Uludağ granites indicate an important crustal component in their genesis.

Thermochronology of the Uludağ Massif

We used U/Pb, Rb/Sr, and apatite fission-track (AFT) geochronological methods to constrain the Tertiary evolution of the Uludağ Massif. Sample preparation and analysis for the U/Pb and Rb/Sr methods followed the procedures outlined in Okay and Satır (2006) and those for AFT followed Zattin et al. (2000). The analytical results are given in Tables 3–5, and the locations of the samples are shown on the maps in Figures 3 and 6. For the geological time scale, we used Gradstein et al. (2004).

Rb/Sr and U/Pb Data

Published K-Ar biotite ages from the Central Uludağ granite are 26.8 and 24.7 Ma (Bingöl et al., 1982; Delaloye and Bingöl, 2000), whereas no previous isotopic ages are available for the South Uludağ metagranite. Our new Rb/Sr muscovite and biotite ages from the Central Uludağ granite are 27.5 ± 0.5 Ma and 27.2 ± 0.3 Ma, respectively (Table 3), similar to the K-Ar biotite ages. The coeval muscovite and biotite ages from the Central Uludağ granite indicate fast cooling of the magma and point to a late Oligocene intrusion age. A three-point isochron yields an intrusion age of 27.2 ± 0.2 Ma. Two samples from the South Uludağ metagranite yielded similar Rb/Sr biotite (27.4 Ma and 29.4 Ma) and slightly older muscovite (27.9 Ma and 34.7 Ma) ages (Table 3). Because the South Uludağ metagranite has undergone a high-temperature deformation, we carried out a U/Pb zircon analysis to establish its crystallization age. Four zircons from sample 5979A, which was also dated by Rb/Sr method, gave ages ranging from 30 to 39 Ma (Fig. 12; Table 4). We interpret this spread of ages as prolonged crystallization in a shear zone during the latest Eocene and early Oligocene, probably associated with Pb loss during the intrusion of the Central Uludağ granite. The isotopic ages indicate that the South Uludağ granite crystallized 7–11 m.y. earlier than the Central Uludağ granite; however, they cooled penecontemporaneously to temperatures of ~300 °C.

Four gneiss samples from the Uludağ Group were dated by the Rb/Sr method. Two samples come from the western side of the Uludağ Massif, and two came from the eastern side. They are quartzo-feldspathic gneisses with the mineral assemblage of quartz + plagioclase + biotite ± muscovite ± K-feldspar. The muscovite Rb/Sr age of one of the gneiss samples is 48.7 ± 2.2 Ma. A similar Eocene age of 51.04 ± 0.74 Ma was obtained from coarse muscovite, one centimeter across, in a pegmatite vein in the marble. Biotite Rb/Sr ages from the gneisses are latest Eocene to Oligocene, ranging from 36 to 24 Ma; those from the western part of the Uludağ Massif are older (30.5 ± 0.3 Ma and 35.7 ± 0.4 Ma) than those from the eastern part (24.4 ± 0.2 Ma and 24.5 ± 0.3 Ma) (Table 3).

The fast cooling of the Central Uludağ granite, shown by the similar Rb/Sr muscovite and biotite ages (ca. 27 Ma), suggests that ambient temperatures before its intrusion were less than ~300 °C, which is compatible with the early Oligocene (36–31 Ma) biotite Rb/Sr cooling ages. On the other hand, the Rb/Sr biotite ages from the eastern part of the Uludağ Group are difficult to interpret because they are younger than the intrusive Central Uludağ granite. These young ages may be due to shear heating or to the presence of intrusions at depth. Although shear heating is not considered to be a direct cause for metamorphism, nevertheless it can lead to a reopening of the Rb-Sr isotopic system and increases in temperatures of a few hundred degrees (e.g., Leloup et al., 1999).

The closure temperatures of muscovite and biotite for Sr are 500 ± 50 °C and 300 ± 50 °C, respectively (e.g., Jäger et al., 1967; Cliff, 1985). Hence, the Uludağ Group must have cooled from ~500 °C during the Eocene (ca. 50 Ma) to ~300 °C during the Oligocene (ca. 33 Ma), yielding a cooling rate of ~12 °C/m.y. (Fig. 13). The age of peak metamorphism in the Uludağ Group is not known. Extrapolation from the
TABLE 5. APATITE FISSION-TRACK DATA FROM THE BURSA REGION

<table>
<thead>
<tr>
<th>Sample number</th>
<th>Lithology</th>
<th>Rock unit</th>
<th>Height (m)</th>
<th>No. of crystals</th>
<th>Spontaneous ρ_s</th>
<th>Induced ρ_i</th>
<th>Dosimeter ρ_d</th>
<th>Age (Ma) ± 1σ</th>
<th>Mean confined track length (μm) ± std. err.</th>
<th>Std. dev.</th>
<th>No. of measured tracks</th>
</tr>
</thead>
<tbody>
<tr>
<td>TU22</td>
<td>granite</td>
<td>Central Uludag</td>
<td>2125</td>
<td>20</td>
<td>4.27 254 4.38 2607</td>
<td>85.45 0.96</td>
<td>4564</td>
<td>17.1 ± 1.2</td>
<td>14.66 ± 0.10</td>
<td>1.04</td>
<td>100</td>
</tr>
<tr>
<td>TU23</td>
<td>granite</td>
<td>Central Uludag</td>
<td>1780</td>
<td>20</td>
<td>2.99 187 2.18 1359</td>
<td>84.43 1.10</td>
<td>5214</td>
<td>27.7 ± 2.2</td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>TU25</td>
<td>gneiss</td>
<td>Uludag Group</td>
<td>1560</td>
<td>20</td>
<td>2.57 309 2.96 2841</td>
<td>86.49 1.04</td>
<td>4382</td>
<td>20.7 ± 1.3</td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>TU26</td>
<td>gneiss</td>
<td>Uludag Group</td>
<td>1255</td>
<td>20</td>
<td>0.64 70 0.45 492</td>
<td>99.98 1.11</td>
<td>5238</td>
<td>29.8 ± 3.7</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>TU27</td>
<td>gneiss</td>
<td>Uludag Group</td>
<td>1035</td>
<td>20</td>
<td>0.80 69 0.60 692</td>
<td>91.92 1.11</td>
<td>5253</td>
<td>20.2 ± 2.6</td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>TU28</td>
<td>gneiss</td>
<td>Uludag Group</td>
<td>800</td>
<td>20</td>
<td>2.67 289 2.48 2663</td>
<td>38.84 1.06</td>
<td>5040</td>
<td>21.0 ± 1.4</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>TU29</td>
<td>gneiss</td>
<td>Uludag Group</td>
<td>500</td>
<td>20</td>
<td>0.38 34 0.64 563</td>
<td>99.99 0.95</td>
<td>4534</td>
<td>10.5 ± 1.9</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>TU31</td>
<td>metagranite</td>
<td>S. Uludag metagranite</td>
<td>1440</td>
<td>20</td>
<td>0.41 28 0.77 528</td>
<td>97.73 0.95</td>
<td>4520</td>
<td>9.2 ± 1.8</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>TU105</td>
<td>gneiss</td>
<td>Uludag Group</td>
<td>1356</td>
<td>20</td>
<td>0.56 41 0.55 378</td>
<td>99.89 1.11</td>
<td>5272</td>
<td>22.0 ± 3.6</td>
<td></td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>TU103</td>
<td>gneiss</td>
<td>clast in the Neogene</td>
<td>-630</td>
<td>20</td>
<td>0.35 45 0.40 628</td>
<td>97.18 1.09</td>
<td>5156</td>
<td>14.3 ± 2.2</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>TU32</td>
<td>granodiorite</td>
<td>Topuk pluton</td>
<td>950</td>
<td>20</td>
<td>1.59 84 0.89 472</td>
<td>40.92 0.95</td>
<td>4490</td>
<td>30.4 ± 4.1</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>TU24</td>
<td>acidic tuff</td>
<td>Neogene</td>
<td>570</td>
<td>20</td>
<td>2.45 158 1.63 1050</td>
<td>49.97 0.96</td>
<td>4550</td>
<td>26.3 ± 2.3</td>
<td></td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>TU102</td>
<td>sandstone</td>
<td>Lower Jurassic</td>
<td>-850</td>
<td>8</td>
<td>-8.5 129 0.92 138</td>
<td>65.98 1.09</td>
<td>5175</td>
<td>184.1 ± 22.8</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>TU109</td>
<td>sandstone</td>
<td>Upper Triassic</td>
<td>-440</td>
<td>19</td>
<td>5.66 336 2.63 1562</td>
<td>0.00 1.12</td>
<td>5291</td>
<td>39.4 ± 4.8</td>
<td></td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Note: Central ages calculated using dosimeter glass CN5 and ζ-CN5 = 369.01 ± 3.3. ρ_s, spontaneous track densities ($\times 10^5$ cm$^{-2}$) measured in internal mineral surfaces; N_s, total number of spontaneous tracks; ρ_i and ρ_d, induced and dosimeter track densities ($\times 10^6$ cm$^{-2}$) on external mica detectors ($g = 0.5$); N_i and N_d, total numbers of tracks; $P(\chi^2)$, probability of obtaining χ^2 value for ν degrees of freedom (where ν = number of crystals - 1); a probability >5% is indicative of a homogeneous population.
Apatite Fission-Track Data

Apatite fission-track (AFT) ages indicate the time the rocks cooled down to ~120 °C. At these relatively low temperatures, the metamorphic rocks of the Uludağ Group and the Uludağ granites can be considered as a single unit. Our AFT ages from the Uludağ Massif are Oligocene and Miocene, ranging from 28.9 ± 3.7 Ma to 9.2 ± 1.8 Ma (Table 5). Although the samples were collected from a vertical section of more than 1600 m, the AFT ages do not show a clear correlation with elevation, and they exhibit abrupt variations. Despite these complexities, two broad AFT age groups can be recognized: (1) late Oligocene–early Miocene AFT ages with a cluster at 22–20 Ma, and (2) late Miocene AFT ages (10–9 Ma), which are restricted to the margins of the range. The older ages represent continuation of the moderately fast exhumation documented by the Rb/Sr mica ages (Fig. 13). Long track lengths (>14.5 µm) with low standard deviations (<1.3 µm) in the apatite indicate rapid cooling through the partial annealing zone from ~120 °C to ~60 °C. The younger ages may indicate a second phase of accelerated uplift in the late Miocene.

The Uludağ Massif as a Strike-Slip Shear Zone—Timing and Displacement

We propose that the Uludağ Group is an exhumed midcrustal portion of a right-lateral strike-slip shear zone. This is based on the following criteria: (1) its location at the tip of the Eskişehir fault zone, (2) the ubiquitous subhorizontal mineral lineations, (3) the presence of the synkinematic South Uludağ metagranite, (4) foliation with a consistent NNW strike, and (5) the subparallel alignment of the lineation (~114°), the strike of foliation (~114°), the long axis of the South Uludağ metagranite (110°), the Eskişehir fault zone (109°), and the mountain range (~117°). The spatial association between the Uludağ shear zone and the Eskişehir fault zone, and the Bouguer gravity anomaly changes along this lineament suggest that the Uludağ shear zone extends at depth southeastward underneath the Eskişehir fault. The Uludağ shear zone and the Eskişehir fault represent the same structure exposed at different crustal levels. This is also suggested by the observation that the Mesozoic to Eocene strata have been stripped off in an ~20-km-wide belt north of the Eskişehir fault (Konak, 2002; Turhan, 2002). We use the term Uludağ shear zone to describe a midcrustal right-lateral Oligocene shear zone that is inferred to exist underneath the Eskişehir fault. Although a spatial equivalence between these two structures is obvious, a temporal link cannot be demonstrated. The Uludağ shear zone was formed under strike slip; the present movement along the Eskişehir fault is, however, predominantly downdip.

The inception of the Uludağ shear zone is poorly constrained. The 48 Ma Topuk pluton and the Nahlarlarm intrusion are aligned with the Göktepe and Soğukpınar faults (Fig. 6), suggesting structural control during their intrusion. However, these plutons are not deformed, and there is no information on the nature of the shear-zone activity during the early and middle Eocene. The synkinematic South Uludağ metagranite, which was emplaced into and deformed by a right-lateral strike-slip shear zone, indicates that the shear zone was active in the latest Eocene and Oligocene between ca. 38 Ma and ca. 27 Ma. The 27 Ma Central Uludağ granite cuts the ductile fabrics in the Uludağ gneisses, indicating that the Uludağ shear zone had ceased its activity by that time. Another upper limit to the shear-zone activity is provided by the Upper Miocene İnegöl Basin, which lies along strike of the Uludağ shear zone.

The 9-km-thick Uludağ shear zone, with its intense foliation and subhorizontal lineation, suggests a major amount of cumulative displacement. Unfortunately, the pre-Eocene geology on both sides of the Eskişehir fault is different, which precludes estimation of the total offset on the basis of geological tie lines. Nevertheless, the total offset along the Uludağ shear zone can be estimated using the Bouguer gravity isomilligals, which are consistently offset in a right-lateral sense (Fig. 4). The offsets of the ~25 and ~50 mgal isomilligals are ~80 and ~140 km, respectively. The 400-km-long Eocene plutonic belt in northwest Turkey is also offset by ~100 km along the Uludağ shear zone (cf. Figure 3 in Okay and Satır, 2006). The İzmir-Ankara suture is offset by ~170 km along the Uludağ shear zone, although this is less reliable because the original early Paleocene structure could have followed a similar trend.

The interpretation of the structural, isotopic, and geophysical data suggest that the Uludağ shear zone was active in the latest Eocene and Oligocene (ca. 38 Ma to ca. 27 Ma) and accommodated a total right-lateral slip of 100 ± 20 km. The estimated offset has the right order of magnitude expected from a displacement-to-length relationship in faults (Cowie and Scholz, 1992).

EXHUMATION OF THE ULUDAĞ SHEAR ZONE

Here, we review the available stratigraphic, structural, and thermochronological evidence for the exhumation of the Uludağ shear zone, starting with the exhumation history of the Tavşanlı zone south of the İzmir-Ankara suture and that of the hanging wall of the Uludağ Massif.

The Tavşanlı Zone—South of the İzmir-Ankara Suture

The exhumation of the Eocene intrusions south of the İzmir-Ankara suture can be used as a proxy for that of the Tavşanlı zone. The Ar–Ar hornblende and AFT ages from the Topuk pluton are 47.8 ± 0.4 Ma (Harris et al., 1994) and 30.4 ± 4.1 Ma (Table 5), respectively. The depth of emplacement of the neighboring co-genetic and coeval Tepelce and Orhaneli intrusions, determined from their contact metamorphic assemblages and from the mineral chemistry of the granodiorites, is 7 ± 3 km (Harris et al., 1994; Okay and Satır, 2006). A similar depth of emplacement for the Topuk granodiorite would give total exhumation of 3–4 km and an average exhumation rate of 0.2–0.3 km/m.y. in the middle Eocene–early Oligocene interval (48 Ma to 30 Ma) for the Tavşanlı zone (Fig. 13). The Eocene granodiorites were on the surface by the early Miocene; biotites from the acidic tuffs, which lie unconformably over the Orhaneli pluton, have yielded a 17.6 ± 0.2 Ma (early Miocene) Ar–Ar age (Okay et al., 1998).

The Hanging Wall of the Uludağ Massif

The preservation of the Jurassic regional unconformity in the hanging wall west of the Uludağ Massif (Figs. 6 and 7A) indicates minimal amounts of bedrock erosion in this region. This is confirmed by the AFT age from a sample of Lower Jurassic sandstone, which yielded an Early Jurassic age (184.1 ± 22.8 Ma; Table 5), showing that the Jurassic sequence was never buried more than a few kilometers. Conversely, the northeastern hanging wall of the Uludağ Massif was more deeply buried and then exhumed, as indicated by a middle Eocene AFT age of 39.4 ± 4.8 Ma from the Triassic arkosic sandstones of the Karakaya Complex (Table 5). However, the presence of unmetamorphosed Permian limestone blocks, Triassic sandstones, and Cretaceous limestones in this part of the hanging wall (Ketin, 1947; Imbach, 1992) shows that the Triassic rocks
were buried not deeper than 4–5 km during the Mesozoic and Tertiary. Furthermore, the AFT age shows that the exhumation occurred during the middle Eocene and is unrelated to the Oligocene strike-slip activity.

Neogene Basins

Neogene basins along Tertiary shear zones can provide insights into the timing of strike-slip activity and the mechanism of exhumation (e.g., Schoenbohm et al., 2005). Several Neogene basins with terrigenous sediments occur along the Uludağ shear zone (Fig. 6).

The Deliler and Erenler Basins

These elongate and narrow basins, which have sedimentary fills <500 m thick, lie along the Soğukpınar and Göktepe faults (Fig. 6). The basin fill consists mainly of terrigenous conglomerates, pebbly sandstones, sandstones, and rare mud rocks. The dominant lithology is thick bedded to massive conglomerates; the poorly sorted clasts, up to 4 m across, are mainly peridotite, dolerite, and granodiorite with minor gneiss. Caliche horizons are common in the sandstones, and the succession includes several paleosols. In the stratigraphically upper parts of the Erenler Basin, there are also several-meter-thick acidic tuff beds. One of them yielded an AFT age of 26.3 ± 2.3 Ma (Table 5), indicating a late Oligocene age for the Erenler Basin and, by analogy, for the Deliler Basin. The Oligocene AFT age (30.4 ± 4.1 Ma) from the Topuk granodiorite, which forms part of the basement, provides a lower age limit for the basinal sediments. The Deliler and Erenler Basins are older than the other Neogene sequences in western Turkey, which have late early Miocene to Pliocene mammals, pollen, and ostracoda (e.g., Bernor and Tobien, 1990; Emre et al., 1998; Kaya et al., 2007) and early to middle Miocene isotopic ages (23–15 Ma; e.g., Seyitoğlu and Scott, 1992; Aldanmaz et al., 2000; Erkül et al., 2005; Purvis et al., 2005).

Poor sorting, dominance of the unstable peridotite clasts in the conglomerates, and the lensoid sandstone lenses in the sequence indicate deposition by streams and little long-distance transport. The stratigraphic similarity between the Erenler and Deliler Basins suggests the presence of a late Oligocene integrated fluvial drainage along the Uludağ fault zone (Fig. 14B). The Erenler and Deliler Basins are little deformed. No folds or thrusts are observed. The locally steep bedding is related to tilting by faulting. The Göktepe fault can be seen to cut and shear the conglomerates of the Erenler Basin in a steeply north-dipping fault zone that is several meters wide.

Figure 14. Block diagrams showing the exhumation of the Uludağ shear zone in the Oligocene-Miocene.
The İnegöl Basin

The İnegöl Basin extends in a WNW-ESE direction along the trend of the Uludağ shear zone (Fig. 2). The alluvial sediments in the center of the present-day basin, bounded by active normal faults (Şaroğlu et al., 1992), indicate that the basin is still active and subsid- ing. The İnegöl Basin is filled by lacustrine and fluvial deposits, about one kilometer thick, which lie unconformably over a heterogeneous basement that consists of the Lower Karakaya Complex, Cretaceous metamorphic and ophiolitic rocks, and Eocene granodiorite (Fig. 6). The contact with the Uludağ Group is covered by scree and landslides; however, ubiquitous gneiss boulders in the basal conglomerates suggest that the Neogene sediments may lie unconformably over the Uludağ shear zone.

The Neogene sequence in the İnegöl Basin starts with very poorly sorted, thickly bedded to massive conglomerates, several hundred meters thick, intercalated with thick sandstone beds. The clasts, up to 4 m across, include gneiss, mica schist, granodiorite, dacite, and marble, derived from the Uludağ Massif and the Eocene granodiorites. We dated a gneiss clast from the conglomerates using the AFT technique (Table 5). A middle Miocene AFT age of 14.3 ± 2.2 Ma provides a lower age limit for the İnegöl Basin and indicates that the Uludağ Massif was being eroded during the inception of the basin.

The conglomerates of the İnegöl Basin pass up into a lacustrine turbiditic sequence of medium- to thin-bedded sandstone, siltstone, and shale that is over 600 m thick (Kaymakçı, 1991). Thin, laterally discontinuous coal seams occur in the transition zone between the conglomerates and the lacustrine turbidites. Current bedding and slumps in the turbiditic sandstones indicate a westerly to southwesterly sediment source. Based on vertebrate fossils, mainly Hipparion sp., a late Miocene age is assigned to the sediments of the İnegöl Basin (Genç, 1986), which is compatible with the AFT age from the gneiss clast.

The sedimentary basin fill of the İnegöl Basin is deformed into a broad and complex syncline with an axis subparallel to the Eskişehir fault. The syncline was formed through basement uplift in the south and back-thrusting along a normal fault in the north. There are also local folds with short (meters to tens of meters) wavelengths in the thinly bedded lacustrine turbidites.

Uludağ Massif

As documented already, the hanging wall of the Uludağ shear zone has been stable with respect to Earth’s surface since the Eocene, and the Tavşanlı zone has been largely at the present erosion level since the late Oligocene. In contrast, the Uludağ Massif has been exhumed by ~10 km since the early Oligocene and by at least ~3.5 km since the early Miocene, as estimated from the ca. 33 Ma Rb/Sr biotite and ca. 21 Ma AFT ages from the gneisses using a 30 °C/m.y. average geotherm.

There is little evidence for exhumation of the Uludağ Massif during the Oligocene shear-zone activity. Mineral stretching lineations are subhorizontal, indicating no vertical motion during dextral shear. No major structures indicative of transpression or transtension are recognized in the late Oligocene basins south of Uludağ. The clasts in the conglomerates in these basins are predominantly composed of ultramafic and mafic rocks. The absence of dextral exhumation structures suggests that the Uludağ shear zone cooled isobarically below the dextral-brittle transition after the cessation of shear-zone activity and was then exhumed along the Bursa, Soğukpınar, and Kirazlı faults during the early Miocene (Fig. 13). The cluster of AFT ages around 22–20 Ma with long track lengths in apatite grains indicates fast cooling, accelerated uplift, and increased denudation in the early Miocene. The uniform metamorphic grade of the Uludağ shear zone also shows that exhumation occurred along the boundary faults. Several of the Neogene basins in northwest Anatolia date back to the early Miocene. The late Oligocene–early Miocene (25–21 Ma) was a period of major NNE-directed extension in dextral middle crust in western Anatolia, as documented in the Kazdağ and Simav core complexes (Figs. 1 and 2; Okay and Satır, 2000; İşık and Tekeli, 2001; İşık et al., 2004; Thomson and Ring, 2006). Exhumation was aided by the density and viscosity inversion between the warm quartzo-feldspathic Uludağ overlying cold mafic Lower Karakaya Complex. The Uludağ dextral shear zone was unroofed by the middle to late Miocene as shown by (1) the 14.3 ± 2.2 Ma AFT age from the gneiss clast in the İnegöl Basin, and (2) the late Miocene age of the basin itself, which lies along the eastward continuation of the shear zone (Fig. 6).

Thermochronological, stratigraphic, and structural arguments indicate that major exhumation of the Uludağ shear zones occurred during the early Miocene. The exhumation occurred through extrusion along a fault-bounded crustal channel, possibly aided by density and viscosity inversion.

CONCLUSIONS

The Uludağ Massif represents an exhumed segment of a dextral right-lateral shear zone that was active during the late Eocene and Oligocene (38–27 Ma) and that accommodated 100 ± 20 km of total slip. The amphibolite-facies regional metamorphism of the Uludağ Group predates the shear-zone activity, as shown by the Eocene Rb/Sr muscovite ages. Regional metamorphism occurred during the latest Cretaceous and early Paleocene, which was characterized by a period of crustal thickening along the suture following the continental collision between the Pontides and the Anatolide-Taurides. The metamorphism would have created a ductile middle crust, which would have facilitated the localization of the strike-slip activity along the suture, similar to the case of the Insubric line in the Western Alps (e.g., Schmid et al., 1989).

The Uludağ shear zone forms part of a set of pre–late Miocene strike-slip faults in northwest Turkey, including the Terzili fault in Thrace (Fig. 2; Perinçek, 1991) and the latest Eocene–Oligocene Kapdağlı shear zone (Aksoy, 1998). Recently, the Ganos segment of the North Anatolian fault in Thrace was shown to be active during the Oligocene (Zattin et al., 2005), and other segments may have been active even earlier (Uysal et al., 2006). Jolivet (2001) showed that the Oligocene-Miocene finite strain field is similar, in terms of direction and rates of extension, to the active strain pattern in the Aegean, as recorded by GPS data. The presence of major right-lateral strike-slip faults in Anatolia completes the picture and shows that during the Oligocene-Miocene, the tectonics in the Aegean-Anatolian region resembled that of the present day.

Westward translation of the Anatolian microplate into the north-south-extending Aegean region dominates the present tectonics of the Eastern Mediterranean (Fig. 1; McKenzie, 1972; Reilinger et al., 2006). Extension in the Aegean Sea and the surrounding region is caused by slab suction along the Aegean subduction zone. It dates back to the Oligocene, as shown by the age of the metamorphic core complexes in the Aegean islands and western Anatolia (e.g., Jolivet and Faccenna, 2000; Okay and Satır, 2000). The inception of the westward translation of the Anatolian plate was, on the other hand, related to the Miocene collision between Arabia and Eurasia (e.g., Sengör et al., 1985). However, the presence of major right-lateral strike-slip faults during the Oligocene indicates that slab suction from the Hellenic trench was and is the main mechanism for the westward translation of Anatolia.

Exhumation of the Uludağ shear zone occurred during the early Miocene. The high-grade gneisses of the Uludağ shear zone were exhumed for ~10 km vertical distance in a fault-bounded crustal-scale channel with little subsidence or uplift in the adjacent blocks (Fig. 14).

Oligocene-Miocene metamorphic core complexes are common in the Aegean and in western
Turkey. They were formed and exhumed under extension, as shown by their symmetamorphic downdpip stretching lineations and low-pressure–high-temperature metamorphism coeval with extension. The Uludağ Massif differs from the other Aegean core complexes because it was shaped under right-lateral strike slip and not under extension.

The Uludağ shear zone has a deformation history going back to 50 Ma, and it is still active as the oblique-slip Eskişehir fault; however, the main strike-slip activity occurred for 10 m.y. in the latest Eocene–Oligocene (38–27 Ma), when it accommodated 100 ± 20 km of right-lateral strike-slip motion. The collision of the Arabian and Anatolian plates in the Miocene might have created a new stress regime that resulted in a switch of the main strike-slip activity from the Uludağ shear zone to the North Anatolian fault. The case of the Uludağ shear zone illustrates that, although strain is localized over geological time scales, strike-slip fault activity can switch between faults on timescales of ~10 m.y.

ACKNOWLEDGMENTS

We thank the Istanbul Technical University Research Fund (project no. 31573), the Turkish Academy of Sciences, and MIUR (Italian Department of Public Education, University and Research) for partial support. Field work in the region in the years 2000 to 2004 was supported by TÜBİTAK projects. Vincenzo Picotti is thanked for help during field work in 2005. Thanks are also due to Rainer Altherr for the friendly access to the microprobe facility. We thank Giulio Viola, Chris Morley, and Stefano Mazzi for constructive and detailed reviews.

REFERENCES CITED

