AGRID - Agent Based Grid System

Uygar GUumus
Institute of Science and Technology
Istanbul Techical University
Maslak, istanbul, Turkey
gumusuy@itu.edu.tr

ABSTRACT

This paper presents the design and implementation of an
agent-based grid system (AGrid) that provides clients with
a distributed execution environment for sharing of process-
ing power resources. AGrid combines favorable aspects of
two different areas of distributed computing, namely grid
computing and agent technology. During the design phase,
system stability and robustness has been a primary concern.
The framework builds on various types of agents that are
defined and implemented to handle different issues of grid
computing. Each type of agent acts according to protocols
that define the interaction and coordination between agents
and describe actions required for the management of the
grid. This paper describes in detail the procedures followed
for connection and disconnection of clients and workers, task
assignment, task execution and result delivery.

Categories and Subject Descriptors

D.1.3 [Concurrent Programming): Distributed program-
ming; 1.2.11 [Distributed Artificial Intelligence]: Mul-
tiagent systems

General Terms
Algorithms, Design

Keywords

Agent systems, mobile agents, grid computing, computa-
tional grids, JADE.

1. INTRODUCTION

Distributed computing has become one of the popular
research topics in computer science. Especially, very high
speed Internet connections and new networking structures
enable promising research to be conducted in this field. This
paper, presents a new agent-based grid system, which com-
bines two different areas of distributed computing, namely
grid computing and agent technology.

Grid computing is a model for wide-area distributed and
parallel computing across heterogeneous networks, aiming to
reach breakthrough computing power at low cost [3]. Grids
are hardware and software infrastructures that enable the
sharing, distribution and collective use of heterogeneous re-
sources [8]. These resources may be secondary storage, pro-
cessing power or output data of any specific input output
device. The grid system we present focuses on sharing of

Prof. Dr. Nadia Erdogan
Computer Eng. Department
Electrical-Electronics Faculty
Istanbul Techical University
Maslak, Istanbul, Turkey
nerdogan@itu.edu.tr

processing power resources. Reliability and stability are im-
portant specifications of grids systems. Data security and
trustworthiness of calculation results are very important.
Grid systems need mechanisms to manage the grid infras-
tructure as to ensure these issues.

Agents are encapsulated and autonomous software and
hardware systems, which execute an assigned task by com-
municating and collaborating with other actors at the same
or different physical environments [6]. Main attributes of
agent systems are flexibility and autonomy. In traditional
agent systems, generally no single agent controls the sys-
tem. Each agent has limited information about the problem
and limited capability to solve the problem. Agents build a
virtual organization using their communication capabilities
and solve the problem by combining the insufficient capabil-
ity of each agent through intensive cooperation. In the con-
text of grid computing, mobile agents are usually employed
in resource discovery, job scheduling, job deployment, task
execution and result collection [7].

This paper presents an agent-based grid system (AGrid)
for sharing of processing power resources. In AGrid, the
framework builds on various types of agents that are defined
and implemented to handle different issues of grid comput-
ing. Some agents handle job scheduling and job deployment,
while others execute jobs assigned to them and produce re-
sults. In the design phase, we determined the actors of the
system, specifying their tasks and responsibilities. After as-
sociating each actor with an agent type, protocols were de-
veloped for each role of agents. These protocols define in
detail the interaction and coordination between agents and
describe actions required for the management of the grid.
Methods of connection, disconnection, task assignment, task
executing and result delivery are declared. In addition,
an efficient and fast messaging infrastructure is developed
for effective agent communication. This paper presents the
agent types, their responsibilities in the grid systems and the
communication protocols between agents during the life cy-
cle of the grid. Protocols on task assignment, job scheduling
and result collection as handled by agents are also described
in detail. The grid was developed in a systematical man-
ner and up to the final version, three prior versions were
implemented, detecting and making design decisions to fix
problems of the prior version each time. Figure 1 depicts
the final grid architecture.

AGrid is compatible with the Foundation for Intelligent
Physical Agents (FIPA) standards [5]. The use of auton-
omy and flexibility features of agents in the grid design has
resulted in a stable and robust grid structure.



Worker2
! Worker2
9
Worker3
delegate Wrkerd

Client3
delegate

Client3

Worker1 Workery
delegate

Manager

Client1
delegate

Client2
delegate

Client2

Client1 ‘

Figure 1: Final grid architecture.

The rest of the paper continues with Section 2, which
briefly summarizes recent work in agent based grid comput-
ing. Next, Section 3 focuses on design and implementation
issues of the system, describing the system components and
runtime protocols. In Section 4, system performance is eval-
uated and, finally, Section 5 concludes the paper.

2. RELATED WORK

Agent based grid system has been a popular area in com-
puter science in recent years. Athanaileas et al. argued
about adding mobility support to grid systems using mo-
bile agents [1]. This system, named GridSBAP, is build
on OSGA platform and mainly focused on adding mobil-
ity feature to the grid systems. GridSBAP uses FIPA ACL
standards for agent communication.

AgentScape, an agent supported Internet based grid, is de-
veloped by B. J. Overeinder et al.[10] It supports large scale
agent system. This system defines its own communication
protocols for agents and a resource management system for
the grid. AgentScape can adapt to other communication
standards using an extra layer which transforms messages
in to the native format of AgentScape.

Fukuda and Smith introduced UWAgent, a grid system
middleware for Java based on mobile agents [7]. Just like
AGrid, UWAgent is not only an agent based grid system
but also a middleware that meets management needs of
distributed computing. However,UWAgent defines its own
communication standards for mobile agents, which is not
fully compliant with FIPA standards.

Also Poggi, Michele and Turci, worked on extending JADE
framework in order to support grid computing [9].

3. AGENT BASED GRID SYSTEM

AGrid is an agent based infrastructure for distributed and
parallel computing. Currently AGrid can be used to create
a grid system to share processing power and task executing
on remote platforms. The system is implemented on JADE
(Java Agent Development Framework) which is developed
by Telecom Italia SpA. JADE is a distributed runtime en-
vironment on which mobile agents can live, communicate
and run parallel tasks via behaviours. JADE also supports
graphical user interfaces that can be used for debugging,
monitoring, logging and management of the agent system.
In addition, JADE is compliant with FIPA specifications,
which enables the agents to communicate and cooperate
with other agent systems which are also compliant with the
FIPA standards.[4].

As stated in the introduction section, multi agent systems
and grid systems are two different branches of distributed

systems with different perspectives on distributed comput-
ing. In this work, a hybrid of these two different approaches
is implemented. In this section, we will present the com-
ponents of the system and describe in detail the protocols
between the agents.

3.1 System Participants

In AGrid, four different types of agents cooperate to pro-
vide a distributed computing environment:

e Manager agent which is in charge of general grid man-
agement,

e Worker agents which execute jobs assigned to them
and produce results,

e Client agents which use the grid to run their tasks,

e Delegate agents which help the manager agent via
coordinating the interaction and the communication
between client or worker agents and the manager agent.

Figure 2 depicts the hierarchical relation between agent
constituents of the grid.

jadecoreAgent

| clientClientAgent|

grid. Agent 4‘5/_/
— 4 _h""hw_,_
grid.ManagerAgent I". —
\
\ workerWorkerAgent
legate.DelegateAgent

delegate.ClientDelegateAgent delegate WorkerDelegateAgent

Figure 2: Hierarchical relation between agents.

The following sections give detailed information for each
type of agent.

3.1.1 Manager Agent

AGrid has a central management system. There exists a
manager agent which controls communication channels, task
assignment and result collection issues. Classical agent sys-
tems generally do not contain a central management organi-
zation [11]. However, a computational grid system usually
needs a management structure to control the entire grid [2].
Central management usually becomes a bottleneck; there-
fore the manager agent in AGrid conveys some of its tasks
to delegate agents as to decrease its work load. The manager
agent has the following responsibilities:



e Keeps the record of each connected client and worker
agent.

e Creates a delegate for each worker and client agent
that connects to the system.

e Ensures safely disconnection of participant agents.

e Coordinates reassignment of a task in the case of im-
proper termination/exit of worker agents.

e Terminates task execution in the case of corresponding
client agent exits the system.

3.1.2 Client Agents

Client agents are users of AGrid that connect to the grid
system to receive service. They connect to the system in
order to have their local tasks be executed on remote hosts
which can lend their processing power. After a client con-
nects to the grid, it sends the required task information to
the delegate agent with which it is associated and waits for
the result. It may disconnect while the computation is going
on and may later collect the results

3.1.3 Worker Agents

These agents connect to the system to share any of their
resources. Currently, AGrid only supports computing power
based resources. When a worker agent connects to the sys-
tem, it provides the manager agent information about its
resources that are available and it is willing to share. If the
participation request to the grid is accepted, the manager
agent creates a delegate agent for the worker, which handles
all further communication/ interaction of the worker agent
with the grid system.

3.1.4 Delegate Agents

Delegate agents reside on the node where the manager
agent is present and handle all communication and protocol
implementation between the agents they are representative
of and the manager agent. Over the life time of a compu-
tation, each agent that participates in the process needs to
communicate frequently with grid management. Delegate
agents are representatives of those agents and they act as
addressees and coordinate the interaction, in order to min-
imize the heavy work load of the manager agent. As the
manager and the delegates communicate locally, communi-
cation overhead of the manager is reduced significantly. Two
types of delegate agents are created:

Client delegates: One is created for each connected client
agent to handle the coordination between grid management
and the client.

Worker delegates: One is created for each connected
worker agent. Delegate agents plan and organize task as-
signment, task result collection and handle monitoring issues
for their associated worker agent.

3.1.5 Tasks

In AGrid, a task is a set of computations designed to
solve a certain problem. Tasks can be highly specialized
and may require the target platform where they will be ex-
ecuted to carry certain attributes. During initial system
registration, each worker agent provides information about
its attributes, in the form of a description of its the compu-
tational features, to its delegate. The manager and delegate
agent cooperate to select the proper worker agent for the

task, according to the attributes requested. Actually, the
manager agent consults worker delegates not only to match
the requested features of a task with those of worker agents,
but also to locate capable worker agents whose schedule is
suitable to accept the task. The task runs its abstract “exe-
cute” method at the worker platform to which it is deployed.
AGrid supports every kind of computational task which can
be employed using the Java language. Tasks indicate the
attributes they require by an abstract “properties” method.
When the manager agent receives a task assignment request
through a client delegate agent, it checks the requested at-
tributes and matches the task with a suitable worker agent.
After a worker agent is assigned a task/group of tasks, it
executes each task via the execute method.

3.2 Protocols

Each agent in AGrid system must execute certain proto-
cols during its lifetime in the grid. These protocols define
the behaviour of the agent according to the role it carries in
the system. This section introduces these protocols.

3.2.1 Agent Connection Protocols

JADE framework assigns an identifier number (AID -
Agent Identifier) to each connected agent. Since the man-
ager agent needs to keep the record of all the agents in the
distributed environment, AID is inadequate for AGrid. The
manager agent needs to know the type and the properties of
each connected agent. Also, the manager agent has to de-
cide whether to allow an agent to connect to the system or
not. Therefore, a connection protocol for worker and client
agents is defined. There is no need to for a connection proto-
col for delegate agents, since they are automatically created
by the manager agent when any client or worker is connected
to system.

There are some minor differences between the connection
protocols of client and worker agents. Thus the protocols
will be presented separately for each.

3.2.2 Connection Protocol for Client Agents

Client agents connect to the system through the following
procedure:

e Client agent sends a “register message” to the manager
agent.

e Manager checks if the client has already connected to
the grid before. If the client is requesting to connect
for the first time, the manager creates a client delegate
agent for the client and pairs them. Otherwise, it runs
the reconnection protocol.

e The client delegate agent sends an “accepted message”
to the client agent which it represents.

e Client agent sends back an “info message” to its dele-
gate agent. The body of this message contains client
information.

e Consequently, the client agent is connected to system
and is ready to issue tasks.

Client agents can temporally disconnect after transmit-
ting a task execution request. The system allows clients to
reconnect later and receive the results.



3.2.3 Connection Protocol for Worker Agents

Worker agents connect to the system with a very similar
protocol to the client agents’ protocol. However, the grid
system does not allow the workers to reconnect. The details
of the protocol are as follows:

e Worker sends a “register message” to the manager agent.

e Manager checks if the worker agent has connected to
the grid before. If the worker is trying to connect for
the first time, the manager creates a worker delegate
agent for the worker and pairs them. Otherwise, a dele-
gate already exists. Delegate sends “accepted message”
to the worker.

o Worker sends an “info message” to the delegate agent.

e Thus, the worker agent connects to the grid system
and is ready for task assignment and execution.

3.2.4 Task Assignment Protocol

Task assignment procedure and recovery from probable
errors are vital issues for grid systems. During the design
phase of AGrid, special care has been taken to develop an
effective and flexible task assignment protocol in order to
minimize runtime errors as much as possible. The details of
the protocol are as the following.

e A client agent reports its identification information
during the connection protocol. The “info message”
which it sends to its delegate contains tasks which are
to be processed in the grid.

e Each client delegate keeps track of tasks issued by its
client agent. It maintains two task lists: a list that
contains pending tasks and another that contains pre-
viously assigned and running tasks. Initially, all tasks
requested to be executed in the info message are added
to pending task list. Afterwards, tasks are moved to
the running tasks list after they are assigned to worker
agents.

e Client delegate agent checks the pending tasks list pe-
riodically and sends task assignment requests to the
manager agent.

e The manager agent consults worker delegates in or-
der to locate a free and suitable worker agent that
meets the requirements of the task. Worker delegate
accepts the request if the worker agent satisfies the
task requirements and is currently available, as it is
constantly informed about the status of the worker.
Otherwise, the request is rejected.

e If the manager can locate an appropriate worker, it
sends a “task execute request” message to the worker’s
delegate agent.

e The delegate agent forwards the request message to its
worker agent.

e Worker agent accepts the task and begins to execute
it.

e Worker delegate sends “confirm message” to the man-
ager agent.

e Worker delegate moves the task from pending tasks
list to running tasks list.

3.2.5 Monitoring Work Load of the Worker

One of the important parts of the task assignment is mon-
itoring the work load of the machines where worker agents
are located. Manager agent should assign tasks to non-busy
workers. Each worker agent measures its work load period-
ically. If the state of the worker changes, it informs its del-
egate agent. In the initial versions of the system, the man-
ager agent kept two separate lists for free and busy workers.
However, as this approach caused too many synchronization
problems, we decided to have each worker delegate to keep
track of the workload state of its worker agent, in the final
version.

3.2.6 Agent Disconnection Protocols

During the lifetime of the grid, client and worker agents
may be in either connected or disconnected state. For a
robust, stable grid system, the manager agent needs to be
aware of the states in which client and worker agents are.
It is clear that not noticing the disconnection of an agent
has a negative effect on the stability of the grid system. It
may result in the loss of some tasks or in the assignment of
tasks to worker agents that no longer exist. Consequently,
the grid system will have to run error recovery protocols.
Therefore, one of the responsibilities of the manager agent is
to detect disconnected agents. Hence, a flexible protocol for
disconnection is defined on account of increasing the stability
of the system.

As delegate agents are created and destroyed by the man-
ager agent itself, there is no need for a disconnection pro-
tocol for them. Disconnection protocols for the worker and
client agents are different. As stated in the connection proto-
col, while client agents can temporarily disconnect, a worker
agent’s disconnection is permanent. Agents periodically send
an “alive message” to their delegates in order to indicate
that they are still connected to the grid system. If a dele-
gate agent does not receive this type of a message from its
pair agent for a certain period of time, it decides that the
participant agent has quit the system. In the normal case,
a participant agent is expected to inform its delegate agent
about its disconnection by sending an “ disconnect message”.

3.2.7 Disconnection Protocol for Client Agents

Two disconnection protocols are defined for client agents;
one for temporary disconnection and one for permanent dis-
connection.

Temporary disconnection protocol is the following:

e A client delegate decides that the client agent has quit
the system because either the client has sent an “dis-
connect message” or an “alive message” has not been
received from the client for a certain period of time.

e Client delegate stops checking alive messages and waits
for a “reconnect message from the client agent.

A client agent may decide to permanently leave the system
before the computation it has requested completes. In this
case the following protocol is executed:

e A client agent sends a “quit message” to its delegate
agent.

e The delegate agent informs the manager agent about
the disconnection of the client agent.



e The manager agent locates the delegate agents of the
workers which are running tasks on behalf of the quit-
ting client and informs them of the situation.

e Fach worker delegate sends a message to its worker
agent, requesting it to stop task execution.

e Each worker agent terminates its task execution thread
and sends a “worker stopped” message to its delegate
agent.

e After receiving “worker stopped” messages from every
worker delegate, the manager agent destroys the client
delegate agent and deletes information records about
the client agent.

3.2.8 Reconnection Protocol for Client Agents

As stated before, a client agent may disconnect after sub-
mitting its tasks and, after a while, it may reconnect to
the system in order to receive the results. Even though
the reconnection protocol is very similar to the initial con-
nection protocol, there are some major differences between
them. In the reconnection protocol, the client agent does
not send identification information as this information is al-
ready present in the system. The corresponding protocol is
the following:

e Client agent sends “register message” to the manager
agent

e The manager agent checks if this agent has connected
to the system before.

e If the client has connected before, manager sends “ac-
cept reconnect message” to the delegate agent of the
client.

e Client delegate agent sends a message to the client
which indicates that its reconnection request has been
accepted.

e Client delegate sends the results of the completed tasks.

Client delegate starts to wait for “alive messages”, that
are periodically sent by the client agent in order to
show that it is still connected to the system

e The client agent starts to wait for the result of its tasks.

4. TESTSAND ASSESSMENT

We have not yet carried out extensive experiments to ob-
serve and assess the performance of AGrid under various
workloads and with varying number of participating work-
ers. However, for a preliminary assessment, we have im-
plemented a parallel matrix multiplication algorithm. Since
multiplying an mXn matrix with an nXp matrix results in
an mXp matrix, mXp tasks are created to compute the re-
sultant matrix. We used 5X6 and 6X7 matrices for the test,
which required a total number of 35 tasks. We ran several
instances to observe the effect of the increasing number of
clients and workers. The minimum, maximum and average
calculation time were evaluated.

In the first test run, only one client was introduced and the
number of the workers were varied between 1 to 100. As seen
in the Figure 3, the working time decreases as the number of

40.00
35.00 |~
30.00 |—
25.00 |—
2000 f—
15.00 p—
10.00

5.00

0.00

Working Time (s}

Figure 3: Results of first test.

workers increases. After the number of the workers reaches
nearly 40, working time stays constant, as expected.

In the second test run, the number of workers were kept
constant while the number of the clients were increased. The
test results for 15 workers is given in the Figure 4. As the
number of clients increases, the number of the tasks also
increases. As seen in the figure, total working time for the
calculation increases as the number of independent tasks
increases.

45
40 -
35 -
30 —
25 —
20 ——— ==Minimum
15 == Average
10 iy
5 T =
0

Working Time (s)

Maximum

ents
ents
ents
ents
ents
ents
ents
ents
ents
ents
ents
ents
ents

1Client
2C
3C
ad
5C
6Cl
7C
8C|
9C|
10C
15C
20 Cli
25C
50C

Figure 4: Results of second test.

5. CONCLUSIONS

AGrid is an agent based infrastructure for distributed and
parallel computing. It combines the favorable aspects of
grid computing and agent technology, producing a robust
yet flexible execution environment. The system is imple-
mented on JADE and is fully FIPA compliant. Agents with
dedicated roles make up the framework. Client agents are
users of AGrid that connect to the grid system to receive
service. Worker agents connect to the system to share any
of their resources. AGrid has a centralized control, with a
manager agent in charge of general grid management. Dele-
gate agents cooperate with the manager agent, reducing its
workload significantly. Agent coordination and cooperation
through well designed protocols has resulted in a robust,
stable grid execution environment.

Even though experiments we have carried out to evaluate
the performance of the system are not yet adequate, the re-
sults are promising. We have observed that system response
time is within acceptable borders and the system is scalable,
capable of serving large numbers of clients.

Currently, work is going on to enhance the system, to spot
bottlenecks to optimize execution time. Our future work will



be on new protocols for dynamic load balancing to adapt to
changing computation needs and changing computing re-
source environments. It is a fact that large amounts of data
that accumulate on the manager agent may overload it, re-
sulting in inefficient scheduling of tasks. Currently, work is
continuing on a new version of task assignment policy, where
market based algorithms are employed. Auctions are held to
determine worker agents which can provide a requested ser-
vice. These algorithms are carried out by specialized agents,
thus decreasing the workload of the manager agent.

6.
(1]

2]

8]

[4]

[5]

(6]

[7]

8]

[9]

(10]

(11]

REFERENCES

T. E. Athanaileas, N. D. Tselikas, G. V. Tsoulos, and
D. I. Kaklamani. An agent-based framework for
integrating mobility into grid services. In
MOBILWARE ’08: Proceedings of the 1st
international conference on MOBILe Wireless
MiddleWARE, Operating Systems, and Applications,
pages 1-6, ICST, Brussels, Belgium, Belgium, 2007.
ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications
Engineering).

K. F. N. T. Bart Jacob, Michael Brown. Introduction
to Grid Computing. IBM Corp., Riverton, NJ, USA,
2005.

F. R. L. Cicerre, E. R. M. Madeira, and L. E. Buzato.
Structured process execution middleware for grid
computing: Research articles. Concurr. Comput. :
Pract. Ezper., 18(6):581-594, 2006.

T. T. G. R. Fabio Bellifemine, Giovanni Caire. JADE
Programmer’s Guide. Telecom Italia S.p.A., 2007.
FIPA. FIPA ACL Message Structure Specification.
Foundation for Intelligent Physical Agents, 2002.

I. Foster, N. R. Jennings, and C. Kesselman. Brain
meets brawn: Why grid and agents need each other.
In AAMAS ’04: Proceedings of the Third International
Joint Conference on Autonomous Agents and
Multiagent Systems, pages 815, Washington, DC,
USA, 2004. IEEE Computer Society.

M. Fukuda and D. Smith. Uwagents: A mobile agent
system optimized for grid computing. In GCA, pages
107-113, 2006.

M. Li and M. Baker. The grid core technologies. John
Wiley & Sons, 2005.

A. Poggi, M. Tomaiuolo, and P. Turci. Extending jade
for agent grid applications. In WETICE °0/:
Proceedings of the 15th IEEE International Workshops
on Enabling Technologies: Infrastructure for
Collaborative Enterprises, pages 352-357, Washington,
DC, USA, 2004. IEEE Computer Society.

O. W. Van, B. J. Overeinder, N. J. E. Wijngaards,

M. V. Steen, and F. M. T. Brazier. Multi-agent
support for internet-scale grid management. In
AISB’02 Symposium on Al and Grid Computing,
pages 18-22; 2002.

M. Wooldridge. Agent-based software engineering.
Software Engineering. IEE Proceedings- [see also
Software, IEE Proceedings], 144(1):26-37, 1997.



