
A Flexible Policy Architecture
for Mobile Agents

Suat Ugurlu and Nadia Erdogan

Istanbul Technical University, Computer Engineering Department,
Ayazaga, 34390 Istanbul, Turkey

suat@suatugurlu.com, erdogan@cs.itu.edu.tr

Abstract. Recent advances in distributed computing has lead software
agents to be mobile and/or composed of distributed resources. In order
to perform certain tasks, mobile agents may require access to resources
available on remote systems. Although appealing in terms of system de-
sign and extensibility, mobile agents are a security risk and require strong
access control. Further, the mobile code environment is fluid where re-
sources located on a host may change rapidly, necessitating an extensible
security model. This makes difficult to dynamically change agent ability
and host security strategies in order to adapt to evolving conditions of
the execution environment. In this paper, we present the design and im-
plementation of a policy-based secure mobile agent platform (SECMAP).
The platform makes use of agent and host policies for security and flexi-
bility concerns. Its main strength is that it allows security policies to be
specified or modified dynamically at runtime, resulting in high adapt-
ability of agents and hosts to varying system state and requirements.

1 Introduction

Intelligent agents and multi-agent systems bring in a new approach to the de-
sign and implementation of complex distributed systems. Several multi-agent
systems have been implemented either as commercial products or in various
research projects, with varying success [1]-[7]. Reasons for the growing recog-
nition of agent technology are the innovative solutions it provides to problems
of more traditionally designed distributed systems through mobility of code,
machine based intelligence, and improved network and data-management possi-
bilities. Using mobile agent technologies provides potential benefits to applica-
tions, however, an agent’s ability to move introduces significant security risks.
Both mobile agents during their life times and hosts executing mobile agents are
under security threats [8], [9].

Mobile code environments, however, have two important characteristics. They
are dynamic - mobile programs come and go rapidly, and the resources present
on a host may change. They are also unpredictable - administrators might not
know ahead of time the source, behavior, or requirements of the programs that
migrate to their host. There is no fixed set of resources that a host administers.
Further, because the different components of resources and mobile programs may

J. Wiedermann et al. (Eds.): SOFSEM 2006, LNCS 3831, pp. 538–547, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Flexible Policy Architecture for Mobile Agents 539

require different levels of protection, security models must support fine-grained
access control. This paper describes a new mobile agent platform, Secure Mo-
bile Agent Platform (SECMAP) and its policy architecture. Unlike other agent
systems, SECMAP proposes a new agent model, the shielded agent model, for
security purposes. A shielded agent is a highly encapsulated software compo-
nent that ensures complete isolation against unauthorized access of any type.
SECMAP presents a policy-driven framework to support adaptive and dynamic
behavior of agents, providing a secure environment through host and agent poli-
cies. SECMAP allows dynamic manipulation of policy content, which results in
an adaptive and flexible framework that eliminates the reprogramming of the
agents on changing conditions.

2 SECMAP Architecture

A brief overview of SECMAP architecture[8] is necessary before the description
of the policy architecture. We have used Java for the implementation of the exe-
cution environment because it offers several features that ease the development
process. The main component of the architecture is a Secure Mobile Agent Server
(SMAS) that is responsible of all agent related tasks such as creation, activa-
tion, communication, migration and execution of policies. The system comprises
of several SMAS executing on each node which acts as a host for agents. A SMAS
may operate in three modes according to the functionality it exhibits. It can be
configured to execute in any of the three modes on a host through a user inter-
face. A SMAS on a node can also operate in all three modes at the same time.

Standard Mode(S-SMAS): S-SMAS provides standard agent services such
as agent creation, activation, inactivation, destruction, communication, and
migration. It also includes a policy engine that checks agent activity and
resource utilization according to the rules that are present in host and agent
policy file. In addition, S-SMAS maintains a list of all active agents resident
on the host and notifies the Master Browser SMAS anytime an agent changes
state. Keeping logs of all agent activities is another important task S-SMAS
carries out.

Master Browser Mode (MB-SMAS): When agents are mobile, location
mappings change over time, therefore agent communication first requires
a reference to the recipient agent to be obtained. In addition to supporting
all functionalities of S-SMAS, MB-SMAS also maintains a name-location
directory of all currently active agents in the system. This list consists of
information that identifies the host where an agent runs and is kept up to
date as information on the identities and status (active/inactive) of agents
from other SMAS is received.

Security Manager Mode (SM-SMAS): In addition to supporting all func-
tionalities of S-SMAS, SM-SMAS performs authentication of all SMAS en-
gines and maintains security information such as DES keys and certificates.
Any SMAS engine in the system has to be authenticated before it can start
up as a trusted server. SM-SMAS holds an IP address and key pair for each



540 S. Ugurlu and N. Erdogan

of SMAS engine that wants to be authenticated. If the supplied key and the
IP address of the requesting SMAS engine is correct then it is authenticated.
The authenticated SMAS engine gets a ticket from the SM-SMAS and uses
this ticket when communicating with other SMAS engines. A SMAS that re-
ceives a request from another SMAS refers to SM-SMAS to verify the validity
of its ticket before proceeding with the necessary actions to fulfill the request.

SECMAP provides a secure communication framework for mobile agents [9].
Agent communication is secured by transferring encrypted message content by
SSL protocol and is managed in a location transparent way. SECMAP also sup-
ports weak migration of agents between remote hosts.

2.1 SECMAP Agents

SECMAP requires agents to conform to a software architectural style, which
is identified by a basic agent template given below. The agent programmer is
provided a flexible development environment with an interface for writing mo-
bile agent applications. He determines agent behavior according to the agent
template given and is expected to write code that reflects the agent’s behavior
for each of the public methods. For example, code for the OnCreate() method
should specify initial actions to be carried out while the agent is being created, or
code for the OnMessageArrive() method should define agent reaction to message
arrival.

public class Main extends Agent{
public void OnMessageArrive(){...}
public void OnCreate(){ ... }
public void OnActivate(){...}
public void OnInactivate(){... }
public void OnTransfer(){... }
public void OnEnd(){... }}

An instance of class AgentIdentity is defined for the agent on an initial creation.
All agents in the system are referenced through their unique identities, which
consist of three parts. The first part, a random string of 128 bytes length, is
the unique identification number and, once assigned, never changes throughout
the life time of the agent. The second part is the name which the agent has
announced for itself and wishes to be recognized with. While the first two parts
are static, the third part of the identity has a dynamic nature: it carries location
information, that is, the address of the SMAS on which the agent is currently
resident, and varies as the agent moves among different nodes. This dynamic
approach to agent identity facilitates efficient message passing.

3 Security Policies

SECMAP provides a highly configurable security environment by supporting
policy-driven integration of mobile agent activity with system level services and



A Flexible Policy Architecture for Mobile Agents 541

resources. Policies define how allocation of resources is to be carried out and
how security should be ensured. A policy is represented by a number of rules,
where each rule is triggered by an event and consists of an action if a condition
is evaluated to true. Thus, a security policy specifies the conditions under which
a request is to be granted. If a request does not violate a policy rule, it is allowed
to proceed; if it does violate a policy rule, it is blocked. The system-wide security
policies are defined by agent developers as well as by system administrators.

A mobile agent is expected to adapt itself to environmental changes immedi-
ately. Such dynamic behavior in mobile agent systems requires mechanism where
agent reprogramming is not needed. Hosts also need to easily reconfigure their
resources in order to provide more flexible environments for the mobile agents.
SECMAP’s approach to achieve such flexibility is by means of dynamic policies
that allow the agent programmer to change his agent’s abilities without repro-
gramming the agent and the system administrator to reconfigure the execution
environment on changing conditions. Thus, SECMAP employs policies mainly
for two reasons: security and dynamism. The platform supports the specification
of two kinds of security policies.

Host Policy: Host policies are concerned with the security of the host and
its execution environment. They ensure that the local resources of the host
are protected from unauthorized actions by the agent, by either granting or
denying agent requests according to local policies.

Agent Policy: Agent policies are specified by the creator of the agent and
define the capabilities of the agent to carry out requests on remote hosts.
Those access privileges may be dynamically updated on changes in policy
content. Agent policies also serve to protect the agent against malicious hosts
or other agents through restrictions on communication, migration, etc.

Java has a default Security Manager which is initially disabled for applica-
tions. The Security Manager is a single Java object that performs runtime checks
on potentially unsafe method calls. Code in the Java library consults the Security
Manager whenever an operation of this nature is attempted. Decisions made by
the Security Manager take into account the origin of the requesting class. The
Security Manager makes the final decision as to whether a particular opera-
tion is to be permitted or rejected. In case of a reject decision, the operation is
prevented to proceed by generating a Security Exception.

SECMAP agent servers utilize a strong custom policy engine that is derived
from Java’s default security manager. It replaces Java’s default policy manager
with an infrastructure that presents a flexible configuration interface for poli-
cies to be defined and assigned to agents and hosts. Opposite to Java’s static
policy definitions, the infrastructure allows policy rules to be inspected and man-
ually modified at runtime so that policies can be dynamically adjusted to new,
changing requirements and circumstances.

A SECMAP agent can issue two kinds of calls; SMAS calls or JAVA API calls,
as shown in Figure 1. Through SMAS calls, the agent announces its requests to
migrate, to communicate (send or receive messages), or to publish itself through
the agent interface. Both kinds of calls are intercepted by the Policy Engine to



542 S. Ugurlu and N. Erdogan

Fig. 1. The operation of the Policy Engine

check policy violations, and they are either allowed to proceed, or are blocked,
according to agent and host policy definitions. Even though we are not able to
catch every Java API call, we do intercept every call that Java’s default security
manager supports. These are;

– File system functions (read, write, delete)
– Networking functions (socket creation for listening and opening connection)
– Class loader functions
– Functions accessing system resources (print queues, clipboards, event queues,

system properties, and windows)

The operation of the Policy Engine is as follows:

– An agent or the SECMAP platform itself makes a call to a potentially unsafe
operation in the Java API, or an agent makes a communication or migration
call.

– The call is intercepted by the Policy Engine to be checked for any policy
violations.

– The Policy Engine determines the source of the call, if the call is issued
by SECMAP, the operation is permitted to proceed, if the call is issued by
an agent, the Policy Engine finds out its agent identity in order to refer
to its specific policy definitions. In case the operation is permitted by the
agent policy, the Policy Engine next refers to the host policy. If host policy
permits the operation as well, then the Policy Engine allows the call to
continue with a no-error return. On the other hand, if either agent policy
or host policy, or both, do not permit the operation, Policy Engine returns
a SecurityException, thus blocking the call.

3.1 Agent Policies

Each SECMAP agent is assigned an agent policy which includes ”creator granted
capabilities”, when the agent is first deployed into the system by the agent



A Flexible Policy Architecture for Mobile Agents 543

programmer. The agent policy simply defines the types of actions that the agent
can perform in its execution environment (Migration, messaging, writing to disk,
reading from disk, etc.) Agent policies are maintained as encrypted XML files
and carried with the agent itself as it moves between nodes. SECMAP keeps
all of agent class files in a single zipped encrypted file and stores it together
with the agent policy and data file in a secure place in the host disk. When an
agent is to be activated, SMAS first loads the agent’s classes and its final state
information from its code and state files. Next, it creates an ”Agent Policy”
object for the agent. The AgentShield object that isolates the agent from its
environment associates this policy object with the agent and updates the policy
values from the agent’s policy file before activating the agent. If agent policy is
modified at runtime by the agent programmer, SMAS updates the agent policy
file on host disk as well.

The platform presents a flexible graphical interface window for the agent
owner to monitor his agents on the network and to manually change their policies
if necessary to adapt to changing conditions at any time during execution. An
agent policy can only be changed by the agent owner.

3.2 Host Policies

Host policies mainly serve security reasons by denying unauthorized agent access
to host resources. Security and flexibility generally are not tolerant to each other;
however, SECMAP policy architecture presents a flexible environment for mobile
agents while it can still protect the host from intrusted agents that come from
unknown sources. Host policy rules are defined considering two criteria: the agent
owner and the agent source.

Agent Owner: Agent owner is the location where the agent is created and
deployed into the system. It simply consists of the IP address of the host
where the agent was created. The agent owner information is carried with
the agent and does not change throughout its life time.

Agent Source: Agent source is the location from where the agent has migrated.
It consists of the IP address of the host where the agent was running previ-
ously. This information is not carried with the agent since, on a migration
request; the target agent server is provided with the information where agent
is coming from and where it wants to move. The host administrator can de-
fine different host policy rules for different agent owners and agent sources.

As can be seen in the Figure 2, the administrator can assign different policies
for different agent owners so that some agents whose owners are trusted will
possess more rights than others whose owners are not trusted as much. It is pos-
sible to restrict all or particular actions of agents whose owners are not trusted.
It is also possible to define rules that will enable the host to reject migration
requests of agents from a specific agent owner or source. Sending to and receiving
messages from intrusted agent sources can also be similarly restricted.



544 S. Ugurlu and N. Erdogan

Fig. 2. A snap shot of agents and host policy rules at runtime

The platform provides the host administrator a flexible graphical window
interface to specify host policies. Rules for both agent owners and for agent
sources are checked for inconsistencies. For example if there is a rule stating
that agents can not send messages to Agent Server B, then a new rule stating
agents can send messages to Agent Server B will not be allowed to be defined.

Since there may be a large number of agent owners and agent sources in a net-
work, it is not convenient for the administrator or agent programmer to define
policy rules for each one of them separately. For example, the administrator may
wish to grant certain rights to particular agent owners or sources while deny-
ing the rest, or he may wish to deny particular agent owners or sources while
permitting the others. To ease rule specification in such conditions, there is a
default policy rule at the end of the host policy that determines the course of
action in case there is not a matching rule for a specific owner or source. This
default rule is represented by the symbol ”*” in Figure 2.

3.3 Performance Evaluation

While policies provide both security and execution time flexibility, one drawback
may be a performance overhead being introduced. We have carried out tests in
order to analyze the performance affect of policy usage in SECMAP. We’ve
chosen ”disk write” action of an agent as a sample operation. In terms of policy
execution, the type of operation has no influence on the results obtained as the



A Flexible Policy Architecture for Mobile Agents 545

agent server’s policy engine proceeds in exactly the same way for each type
of operation. The tests are carried out on a PC with celeron 2.4 GHz CPU,
512 MB RAM.

We first carried out the test with all policy features disabled and computed the
time required when access requests are not checked against policy rules. Next,
we enabled the policy features and repeated the test with different numbers of
policy rules, to see the influence of varying numbers of policy rules in the host
policy on performance. Table 1 shows the result, the elapsed time measured for
each test. The agent code executed for the tests is also given below.

1- byte[] text = "Hello I am the helloworld agent".getBytes();
2- FileOutputStream fo = null;
3- for (int j = 1; j <= 10; j++) {
4- long startTime = System.currentTimeMillis();
5- for (int i = 1; i <= 50000; i++) {
6- File a = new File("agentdata.txt");
7- a.createNewFile(); //Policy engine interruption
8- fo = new FileOutputStream(a);
9- fo.write(text);

10- fo.close(); }
11- long endTime = System.currentTimeMillis();
12- System.out.println("Elapsed Time = ");
13- System.out.println(endTime - startTime);}
14- }

When we analyze the results, we see that the use of policies brings a performance
overhead of about %13 ((35823-31691)/31691) for operations which require a se-
curity check. This decrease in performance may be overlooked when the benefits
of policy usage is considered. We also see that the number of rules in host pol-
icy has no effect on the performance attained. This is because policy rules are
kept in a hash table in the memory and are searched for in a very time-effective
manner.

Table 1. The elapsed time measured for each test

Test Policy Disabled Policy Enabled Policy Enabled Policy Enabled
Number of Rules:1 #Rules:10 #Rules:30

1 31875ms 35562ms 35828ms 35032ms
2 30735ms 35735ms 33906ms 35500ms
3 29891ms 35781ms 36219ms 37171ms
4 34579ms 35469ms 37640ms 35110ms
5 29985ms 35813ms 34485ms 35937ms
6 28750ms 36531ms 36578ms 36500ms
7 36421ms 35281ms 35203ms 33625ms
8 32829ms 35250ms 37500ms 37906ms
9 31047ms 36672ms 35687ms 35016ms
10 30797ms 36140ms 35969ms 36781ms

Avg 31691ms 35823ms 35902ms 35858ms



546 S. Ugurlu and N. Erdogan

4 Related Work

Several mobile agent systems have been proposed and developed up to now. They
all have their software agent specific features. Although most of them have enough
features for mobile agents to communicate with each other and migrate to remote
hosts, a flexible policy-based management is not available in any. Because mobile
agents require a dynamic environment where conditions and requirements may
change rapidly, necessary changes should be done without reprogramming agents.
SECMAP’s policy architecture gives this opportunity to agent programmers and
administrators.Gallery [10] introduces a framework to authorizemobile agents and
determines whether or not a mobile agent should be executed on a particular plat-
form. SECMAP includes both authentication and authorization mechanism while
it is possible to give an agent detailed access rights. The work in[11] implements a
policy-based solution to control only mobile agent mobility. In [12], the researchers
have developed an authorization platform that supports definition and enforce-
ment of history-based security policies, allowing hosts to decide on the authoriza-
tion of an agent’s action upon its past behaviour. As a whole, we see that work has
focused onpolicy-based solutions for the problems inmobile environmentswithdif-
ferent approaches. A contribution of SECMAP is that, it not only supports mobile
agent services in a secure way, but it also presents a policy-based management.

5 Conclusions and Future Work

This paper describes the policy architecure of a secure mobile agent platform.
SECMAP provides an isolated, secure execution environment for mobile agents.
It also presents a policy based management framework to protect system-level re-
sources and agents against unauthorized access, as well. The policy architecture
allows for dynamic manipulation of policy content, which results in an adap-
tive and flexible framework that eliminates the reprogramming of the agents on
changing conditions.

Future work will concentrate on definition of policy rules that specify further
details on rights granted, possibly narrowing the scope of rules. For example,
it will be possible to restrict disk access rights to specific files. The only unsafe
action for the host that an agent may perform and which we do not control
with security policies is memory and CPU utilization functions. An agent may
consume host memory and CPU time, running in an endless loop, and currently
SECMAP doesn’t have the capability to realize and stop this kind of action. We
have already worked on some methods to measure the amount of memory that
an agent is using and have obtained some good results. However, this kind of low
level checks ended with different results in different JVM. After completing our
work successfully, we plan to restrict the memory usage of agents using policies.

References

1. Voyager, http://www.recursionsw.com/products/voyager/voyager.asp
2. Aglets, http://www.trl.ibm.com/aglets/



A Flexible Policy Architecture for Mobile Agents 547

3. http://www.genmagic.com/technology/odyssey.html
4. Stanford Univ., JATLite,

http://www-cdr.stanford.edu /ProcessLink/ papers/ jat
5. http://www.cs.dartmouth.edu/ dfk/papers/gray:security-book.ps.gz
6. Bryce, C., and Vitek, J.: The JavaSeal Mobile Agent Kernel. Autonomous Agents

and Multi-Agent Systems 4 (2001) 359–384
7. Concordia, http://www.merl.com/projects/concordia
8. Ugurlu, S., and Erdogan N.: An Overview of the SECMAP Secure Mobile Agent

Platform. AAMAS05 – 2nd International Workshop on Safety and Security in
Multiagent Systems (SASEMAS ’05), Utrecht, The Netherlands (July 2005)

9. Ugurlu, S., and Erdogan, N.: A Secure Messaging Architecture for Mobile Agents.
To appear in the LNCS proceedings of The 20th International Symposium on
Computer and Information Sciences, Istanbul, Turkey (October 2005)

10. Gallery, E.: Towards a Policy Based Framework for Mobile Agent Authorisation
in Mobile Systems. Mobile VCE Research Group, Royal Holloway, University of
London (2003)

11. Montanari, R., Lupu, E., Stefanelli, C.: Policy-Based Dynamic Reconfiguration of
Mobile-Code Applications. ISSN: 0018-9162, Computer 37 7 (July 2004) 73

12. Dias, P., Riberio, C., Ferreira, P.: Enforcing History-Based Security Policies in
Mobile Agent Systems. Fourth IEEE International Workshop on Policies for Dis-
tributed Systems and Networks (POLICY’03) (2003) 231


	Introduction
	SECMAP Architecture
	SECMAP Agents

	Security Policies
	Agent Policies
	Host Policies
	Performance Evaluation

	Related Work
	Conclusions and Future Work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


