
An Overview of SECMAP
Secure Mobile Agent Platform

Suat Ugurlu1, Nadia Erdogan1

1Istanbul Technical University, Computer Engineering Department,
Ayazaga, 34390 Istanbul, Turkey

suat@suatugurlu.com, erdogan@cs.itu.edu.tr

Abstract. Mobile agent technology presents an attractive alternative to the
client-server paradigm; however, the lack of a feasible agent security model
seriously hinders the adoption of the agent paradigm. This paper describes a
mobile agent platform, Secure Mobile Agent Platform (SECMAP) and its
security infrastructure. SECMAP presents abstractions which ensure the
protection of agents and system components through a shielded agent model. It
provides secure agent communication and migration facilities, and maintains
security policy information to examine agent actions and to prevent
undesired/unauthorized activity.

1 Introduction

There exists a wide range of security issues in using mobile agents and, in spite of its
several advantages; the lack of a feasible agent security model seriously hinders a
wider adoption of mobile code based applications. When compared to traditional
systems, mobile agents face several security risks. Both mobile agents during their
life times and hosts executing mobile agents are under security threats [1], [2], [3].

A secure mobile agent system should not only support basic agent requirements
such as facilities for agent communication and agent mobility, but also must provide
a security model to protect agents and hosts without causing any overhead to the
programmer.

This paper describes a new mobile agent platform, Secure Mobile Agent Platform
(SECMAP) and its security infrastructure. Unlike other agent systems, SECMAP
proposes a new agent model named as the shielded agent model for security
purposes. A shielded agent is a highly encapsulated software component that ensures
complete isolation against unauthorized access of any type. SECMAP provides secure
agent communication and migration facilities as well, and maintains security policy
information to examine agent actions and to prevent undesired/unauthorized activity.
The system ensures protection of different agents and system components by
enforcing security policies for various agent activities and continuously monitors and
reports on the execution of an agent from its creation to its completion. SECMAP is
written in Java and is therefore platform independent.

2 Security Model of SECMAP

In a mobile agent system, agents cannot be reliably associated with end users without
taking certain precautions. The approach taken by SECMAP is to treat every agent as
a distinct principal and to provide protection mechanisms that isolate agents.
SECMAP differs from other mobile agents systems in the abstractions it provides to
address issues of agent isolation.

SECMAP provides a light-weight implementation of agents; they are implemented
as threads instead of processes. Each agent is an autonomous object with a unique
identification and agents communicate via asynchronous message passing.

A Secure Mobile Agent Server (SMAS) resident on each node presents a secure
execution environment on which new agents may be created or to which agents may
be dispatched. A SMAS may operate in three modes according to the functionality it
exhibits: standard mode(SM-SMAS), master browser mode (MB-SMAS), or security
manager mode(SM-SMAS). SMAS working in standard mode provides basic agent
services such as agent creation, activation, inactivation, destruction, communication,
and migration. It also includes a policy engine that checks agent activity and resource
utilization according to the rules that are present in a policy file, which has been
received from a Security Manager. MB-SMAS an SM-SMAS are also both capable of
supporting all functionalities of standard SMAS. However, they have additional
responsibilities. MB-SMAS maintains the name-location directory of all currently
active agents in the system. SM-SMAS, on the other hand, performs authentication of
all SMAS engines and is in charge of the distribution of SMAS certificates.

 SMAS provides functionalities that meet security requirements and allow the
implementation of the shielded agent model. A shielded agent is a highly
encapsulated software component that ensures complete isolation against
unauthorized access of any type. On a request to create a new agent, SMAS
instantiates a private object of its own, which is an instance of predefined object
AgentShield, and uses it as a wrapper around the newly created agent by declaring the
agent to be a private object of AgentShield object. This type of encapsulation ensures
complete isolation, preventing other agents to access the agent state directly. An agent
is only allowed to communicate with its environment over the SMAS engine through
the methods defined in a predefined interface object, AgentInterface, which is made
the private object of the agent during the creation process. The interface provides
limited yet sufficient functions for the agent to communicate with SMAS. All
variables of agents are declared to be private and they have corresponding accessor
methods. Agents issue or receive method invocation requests through asynchronous
messages over the secure communication facility of SMAS. Thus, a source that is
qualified for a particular request, for example, that has received the rights to
communicate with a target agent, is granted to pass its message.

SECMAP allows the concurrent execution of several agents on the same host and
each agent runs as a separate thread in the same memory area of the host. In this
mode of operation, the shielded agent model suffices to guarantee inter agent
isolation and protection.

SECMAP employs cryptographic techniques to meet security constraints. Each
SMAS owns a certificate which is used to identify its identity and to encrypt and
decrypt data. A request from a SMAS is not processed before the validity of the
SMAS identity is verified. A SECMAP agent’s code and state information are kept
encrypted during its life time using Data Encryption Standard (DES) algorithm. They
are decrypted only when the agent is in running state on the host’s memory. Thus, an
agent is identified as a black box on a host, except while in memory. To protect
agents during migration over the network, agent code and state data are encrypted as
well while in transfer and can only be decrypted on the target host after retrieving the
appropriate DES key from the security manager.

SECMAP monitors, time stamps and logs all agent activity in a file, in order to be
later analyzed to determine the actions an agent has carried out on the host. In case an
unexpected result is recognized, the route of the agent can be traced and how the
agent has executed on each host can be detected. In addition, in case of a threat,
SMAS has the privilege to end the execution of an agent.

2.1 Security Policies

SECMAP employs a policy based authorization mechanism to permit or restrict
agents to carry out certain classes of actions. Agent communication, migration, disk
I/O, access to system resources are some of the events that require enforcement of
security policies. SECMAP allows for policies to be dynamically defined and be
enforced by intercepting agent service requests. Two types of policies are defined:
agent policies and host policies. Agent policies are specified by the agent owner when
he is deploying the agent and are carried together with the agent while migrating over
the network. An agent policy simply defines the rights an agent possesses, such as
disk access rights or the right to create network connections. A user may modify
agent policies after deployment. Host policies, on the other hand, determine
restrictions on access to the host resources by the agents. Policies are kept as
encrypted XML files by each SMAS.

2.2 Agent Communication

SECMAP agents communicate via messages. The platform supports asynchronous
message exchange primitives through methods of AgentInterface. Agent
communication is secured by transferring encrypted message content through SSL.
Agents are provided with a flexible communication environment where they can
question the results of a message send request, wait for a response for a specified
period of time, and receive messages or replies when it is convenient for them.

2.3 Location Transparence

The system is managed with a decentralized control; several MB-SMAS and SM-
SMAS may concurrently be active and they cooperate for a smooth execution. They
share their data and communicate messages to keep them coherent. When initializing
an S-SMAS on a node, the programmer specifies the addresses of the MB-SMAS and
the SM-SMAS it should register itself to. Next, S-SMAS sends its agent list to MB-
SMAS and, in return, receives the identities of all other agents active on the system.
We call those S-SMAS that a MB-SMAS or a SM-SMAS cooperates with as its
partners. When a MB-SMAS gets a request to return an agent identity, it cooperates
with its partners to obtain the current agent identities. A similar mode of processing is
true for SM-SMAS. If an SM-SMAS can not authenticate a request, it directs it to its
partners for possible authentication. Additionally, when an S-SMAS communicates
with its MB-SMAS and SM-SMAS, it obtains the addresses of their partners and
saves them as well, in order to use as a contact address in case its communication to
its MB-SMAS or SM-SMAS fails. This approach adds robustness against network or
node failures.

2.4 Agent Migration

SECMAP supports weak migration of agents between remote hosts on a call to the
Move method of AgentInterface. The agent that wants to migrate should specify the
address of the remote host where it wants to be transferred. When agent transfer
completes, its new location information is updated on MB-SMAS automatically so
that any new message destined to this agent is redirected to the correct SMAS. An
agent can not receive any messages while it is being transferred. Therefore, the agent
programmer needs to question the result of the send operation and re-send the
message if the operation has failed. All communication that is carried out between
SMAS engines to complete the transfer of the agent is encrypted through SSL.

3 Related Work

Developers and researchers have taken a variety of approaches to provide security of
mobile agent environments. Hohl [4] proposes what he refers to as Blackbox security
to scramble an agent's code in such a way that no one is able to gain a complete
understanding of its function. Proof carrying code [5] requires the author of an agent
to formally prove that the agent conforms to a certain security policy. By digitally
signing an agent, its authenticity, origin, and integrity can be verified by the recipient.
The idea behind path histories [6] is to let a host know where a mobile agent has been
executed previously. State appraisal [7] attempts to ensure that an agent's state has not
been tampered with and that the agent will not carry out any illegal actions through a
state appraisal function which becomes part of the agent code. There does not seem to
be a single solution to the security problems introduced and most of the solutions are

inadequate in protecting agent and host data, while others that provide adequate
protection cause an unacceptable overhead to the programmer. No DOS protection is
available in any system because of the difficulty of its detection and prevention.
However, a system should at least have a monitoring and logging mechanism to
analyze agent activities and use these data to later prevent DOS attacks. A dynamic
policy based security management is also absent in most systems.

4 Conclusions and Future Work

This paper describes a mobile agent platform, SECMAP, and its security
infrastructure. The system has been especially developed against security threats that
both agents and hosts may be exposed to. Security features are inserted into the
system core at design time. The system has an open and flexible architecture that can
further be enhanced in the future to meet additional requirements.

SECMAP allows for completely isolated lightweight agents with flexible and
efficient communication facilities. Sources of requests are authenticated before they
are processed to verify that they really come from their stated sources. SECMAP
introduces trusted nodes into the infrastructure; to which mobile agents can migrate
when required, so that sensitive information can be prevented from being sent to
untrusted hosts. This approach does not appear to be fully explored elsewhere.
Currently, work is in progress on detection and resolution of policy conflicts and
enforcement of security policies. Our future work also includes the addition of
dynamic policy creation capability to the architecture with the help of log analysis.

References

1. Christian F. Tschudin “Mobile Agent Security” Department of Computer Systems, Uppsala
University, Sweden

2. Karnik, N.M., Tripathi, A.R., 1998. Design issues in mobile-agent programming systems.
IEEE Concurrency 6 (3), 52–61

3. V.Varadharan and D.Foster ,”A Security Architecture for Mobile Agent Based
Applications” World Wide Web: Internet and Web Information System, 6,93-122,2003

4. F. Hohl, “Protecting mobile agents with black box security” Proc. 1997 Wksp. Mobile
Agents and Security , Univ. of Maryland , Oct 1997

5. F. Sander, “On cryptographic protection of mobile agents” Proc. 1997 Wksp. Mobile
Agents and Security , Oct 1997

6. Uwe G. Wilhelm and Sebastian Staaman “Protecting the itinerary of Mobile Agents”
Laboratoire de Systemes d’Exploitation, Switzerland,1998

7. Vipin Swarup “Trust Appraisal and Secure Routing of Mobile Agents” The Mitre
Corporation 1997

