
A Secure Communication Framework
for Mobile Agents

Suat Ugurlu and Nadia Erdogan

Istanbul Technical University, Computer Engineering Department,
Ayazaga, 34390 Istanbul, Turkey

suat@suatugurlu.com, erdogan@cs.itu.edu.tr

Abstract. Communication, a fundamental concept in computing, al-
lows two pieces of software to interact and to exchange information. It is
an important aspect of mobile agent systems because mobile agents gen-
erally need to coordinate their activities through some type of commu-
nication. Using mobile agent technologies provides potential benefits to
distributed applications; however, an agent’s ability to move introduces
significant security risks. Consequently, a mobile agent system should
provide a safe and secure communication infrastructure along with other
security management and maintenance activities. This paper describes
the communication framework of a new mobile agent platform, Secure
Mobile Agent Platform (SECMAP) that provides mobile agents a flexi-
ble and secure communication environment with both synchronous and
asynchronous messaging facilities.

1 Introduction

Intelligent agents and multi-agent systems bring in a new approach to the de-
sign and implementation of complex distributed systems. Several multi-agent
systems have been implemented either as commercial products or in various re-
search projects, with varying success [1] [2] [3] [4] [5] [6] [7]. Reasons for the grow-
ing recognition of agent technology are the innovative solutions it provides to
problems of more traditionally designed distributed systems through mobility of
code, machine based intelligence, and improved network and data-management
possibilities.

Using mobile agent technologies provides potential benefits to applications,
however, an agent’s ability to move introduces significant security risks. Both
mobile agents during their life times and hosts executing mobile agents are un-
der security threats [8], [9]. The attacks against mobile agent security can be
divided into three categories: attacks by hosts against agents, attacks by agents
against hosts and attacks between agents. There may also be more complex at-
tacks that agents and hosts may be exposed to. Consequently, a secure mobile
agent system is a firm requirement especially when designing and implementing
industrial or e-business applications. Mobile agents generally need to coordi-
nate their activities, and do so by passing messages between them in a location
transparent manner. Therefore, a mobile agent system should provide a safe and

P. Yolum et al.(Eds.): ISCIS 2005, LNCS 3733, pp. 412–421, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Secure Communication Framework for Mobile Agents 413

secure communication infrastructure along with other security management and
maintenance activities.

This paper describes the secure communication framework of a new mobile
agent platform, Secure Mobile Agent Platform (SECMAP). Unlike other agent
systems, SECMAP proposes a new agent model, the shielded agent model, for
security purposes. A shielded agent is a highly encapsulated software compo-
nent that ensures complete isolation against unauthorized access of any type.
SECMAP provides mobile agents a flexible, location transparent communica-
tion environment with both synchronous and asynchronous secured messaging
facilities.

2 SECMAP Approach to Security

SECMAP treats every agent as a distinct principal and provides protection mech-
anisms that isolate agents. The system differs from other mobile agents systems
in the abstractions it provides to address issues of agent isolation.

SECMAP agents are light-weight implementations as threads instead of pro-
cesses. Each agent is an autonomous object with a unique identification and
agents communicate via asynchronous message passing. A Secure Mobile Agent
Server (SMAS) resident on each node presents a secure execution environment on
which new agents may be created or to which agents may be dispatched. SMAS
provides functionalities that meet security requirements and allow the imple-
mentation of the shielded agent model. A shielded agent is a highly encapsulated
software component that ensures complete isolation against unauthorized access
of any type. On a request to create a new agent, SMAS instantiates a private
object of its own, an instance of predefined object AgentShield, and uses it as
a wrapper around the newly created agent by declaring the agent to be a pri-
vate object of AgentShield object. This type of encapsulation ensures complete
isolation, preventing other agents to access the agent state directly. An agent
is only allowed to communicate with its environment over the SMAS engine
through the methods defined in a predefined interface object, AgentInterface,
which is also made the private object of the agent during the creation process.
The interface provides limited yet sufficient functions for the agent to commu-
nicate with SMAS. All variables of agents are declared as private and they have
corresponding accessor methods. Agents issue or receive method invocation re-
quests through asynchronous messages over the secure communication facility
of SMAS. Thus, a source that is qualified for a particular request, for example,
that has received the rights to communicate with a target agent, is granted to
pass its message.

SECMAP employs cryptographic techniques to meet security constraints.
Each SMAS owns a certificate which is used to identify its identity and to encrypt
and decrypt data. A requests from a SMAS is not processed until the validity of
the SMAS identitiy is verified. A SECMAP agent’s code and state information
are kept encrypted during its life time using Data Encryption Standard (DES)
algorithm. They are decrypted only when the agent is in running state on the

414 S. Ugurlu and N. Erdogan

host’s memory. To protect agents during migration over the network, agent code
and state data are encrypted as well while in transfer and can only be decrypted
on the target host after retrieving the appropriate DES key from the security
manager. SECMAP employs a policy based authorization mechanism to permit
or restrict agents to carry out certain classes of actions. SECMAP also monitors,
time stamps and logs all agent activity in a file, in order to be later analyzed to
determine the actions an agent carried out on the host.

2.1 SECMAP Architecture

A brief overview of SECMAP architecture is necessary before the description
of the secure communication framework. We have used Java for the implemen-
tation of the execution environment because it offers several features that ease
the development process. Figure 1 shows the SECMAP architecture. The main
component of the architecture is a Secure Mobile Agent Server (SMAS) that is
responsible of all agent related tasks such as creation, activation, communica-
tion, and migration. The system comprises of several SMAS executing on each
node which acts as a host for agents. A SMAS may operate in three modes ac-
cording to the functionality it exhibits. It can be configured to execute in any
of the three modes on a host through a user interface. A SMAS on a node can
also operate in all three modes at the same time.

Standard Mode (S-SMAS): S-SMAS provides standard agent services such
as agent creation, activation, inactivation, destruction, communication, and mi-
gration. It also includes a policy engine that checks agent activity and resource
utilization according to the rules that are present in a policy file, which has
been received from a Security Manager SMAS. In addition, S-SMAS maintains
a list of all active agents resident on the host and notifies the Master Browser
SMAS anytime an agent changes state. Keeping logs of all agent activities is
another important task S-SMAS carries out. Log content may be very useful in
the detection of certain kinds of attacks which are difficult to catch instantly.

Master Browser Mode (MB-SMAS): When agents are mobile, location
mappings change over time, therefore agent communication first requires a ref-
erence to the recipient agent to be obtained. In addition to supporting all func-
tionalities of S-SMAS, MB-SMAS also maintains a name-location directory of
all currently active agents in the system. This list consists of information that
identifes the host where an agent runs and is kept up to date as information on
the identities and status (active/inactive) of agents from other SMAS is received.

Security Manager Mode(SM-SMAS): In addition to supporting all func-
tionalities of S-SMAS, SM-SMAS performs authentication of all SMAS engines,
handles policy management, and maintains security information such as DES
keys and certificates. Any SMAS engine in the system has to be authenticated
before it can start up as a trusted server. SM-SMAS holds an IP address and
key pair for each of SMAS engine that wants to be authenticated. If the sup-
plied key and the IP address of the requesting SMAS engine is correct then
it is authenticated. The authenticated SMAS engine gets a ticket from the

A Secure Communication Framework for Mobile Agents 415

Fig. 1. SECMAP Architecture

SM-SMAS and uses this ticket when communicating with other SMAS engines.
A SMAS that receives a request from another SMAS refers to SM-SMAS to
verify the validity of its ticket before proceeding with the necessary actions to
fulfill the request. Every SMAS, regardless of its mode, creates a private-public
key pair once. Next, it creates its certificate and sends it to the SM-SMAS. Any
SMAS can receive the certificate list from SM-SMAS before authentication and
store it in its key store in order to use SSL communication with other SMAS
engines in the system. From then on, all agent-to-agent and SMAS-to-SMAS
communication is established through SSL.

2.2 SECMAP Agents

SECMAP requires agents to conform to a software architectural style, which
is identified by a basic agent template. The agent programmer is provided a
flexible development environment with an interface for writing mobile agent
applications. He determines agent behavior according to the agent template given
and is expected to write code that reflects the agent’s behavior for each of the
public methods. For example, code for the OnCreate() method should specify
initial actions to be carried out while the agent is being created, or code for the
OnMessageArrive() method should define agent reaction to message arrival.

public class Main extends Agent{
public void OnMessageArrive(){...}
public void OnCreate(){ ... }
public void OnActivate(){...}
public void OnInactivate(){... }
public void OnTransfer(){... }
public void OnEnd(){... }}

416 S. Ugurlu and N. Erdogan

An instance of class AgentIdentity is defined for the agent on an initial creation.
All agents in the system are referenced through their unique identities, which
consist of three parts. The first part, a random string of 128 bytes length, is
the unique identification number and, once assigned, never changes throughout
the life time of the agent. The second part is the name which the agent has
announced for itself and wishes to be recognized with. While the first two parts
are static, the third part of the identity has a dynamic nature: it carries location
information, that is, the address of the SMAS on which the agent is currently
resident, and varies as the agent moves among different nodes. This dynamic
approach to agent identity facilitates efficient message passing.

3 Communication Security

Communication security is an important aspect of mobile agent systems. The
messages exchanged between agents or between an agent and its owner may be
confidential, or can contain sensitive information. It should be possible to detect
if messages are tampered with. Also, it should be possible to verify the target
entity to which a message is being directed and to verify if a message received
really originates from a given entity. Therefore, the communication framework
of an agent system should provide facilities for the fulfillment of the following
security requirements [10]:

– Confidentiality
– Data integrity
– Authentication of origin
– Non-repudiation of origin
– Non-repudiation of receipt

SECMAP meets the first three requirements through application of the SSL
protocol and cryptographic techniques. All SMAS engines are authenticated be-
fore their requests are processed. The implementation relies on Java RMI and
it is enhanced to support SSL communication. Non-repudiation of origin and
receipt ensures that agents can not deny their actions. SECMAP keeps logs of
all agent activity, which can later be analyzed for execution tracing if need arises
on conflicts or denial of certain actions.

4 SECMAP Secure Communication Framework

SECMAP agents communicate via messages. SMAS supports asynchronous mes-
sage exchange primitives through methods of AgentInterface. Agent communica-
tion is secured by transferring encrypted message content through SSL. Agents
are provided with a flexible communication environment where they can ques-
tion the results of send message requests, wait for responses for a specified period
of time, and receive messages or replies when it is convenient for them. Figure 2
shows the communication framework and how a request to send a message pro-
ceeds. During agent creation, SMAS, while instantiating a shield object for the

A Secure Communication Framework for Mobile Agents 417

Fig. 2. SECMAP Communication Framework

agent, also creates three queues: one for outgoing messages, one for incoming
messages and one for reply messages. The input and output queues are moni-
tored by two threads which are spawned on agent activation. The thread mon-
itoring the input queue alerts the agent if a message arrives, while the thread
monitoring the output queue alerts the SMAS engine to route messages to their
destination.

When an agent issues a send message call through the AgentInterface, the
message is placed into the output queue by the agent shield and the call returns.
From then on, the agent may continue with its operations. It may question the
result of the send request, or, if it expects a response, it may retrieve the reply
message at any point suitable in its execution path. The thread monitoring the
output queue alerts the SMAS engine to route the message. After the SMAS on
the recipient host places the message into the input queue of the target agent,
the input queue thread alerts the agent of the arrival of a new message via a call
to its OnMessageArrive() method,using Java Reflection feature. Subsequent to
being alerted, the receiver agent can issue a call to receive the message at any
time. Reply messages are also routed as regular messages are. The only difference
is that the SMAS engine sending the reply sets the acknowledgement field at the
end of the message packet object to true so that the message can be placed in
the reply queue of the agent to which the call returns a result. The reply can be
retrieved at any time.

Fig. 3. Message Packet

418 S. Ugurlu and N. Erdogan

Figure 3 shows the format of a message packet. Each message is assigned
an id which is later used to query the result of a request. Before an agent can
send a message to another agent, it needs to learn the name of the receiver
agent. An agent learns the identity of the target agent via a call to the SMAS,
which cooperates with MB-SMAS to return the required information, an object
of type is AgentIdentity. Messages are created as instances of the Message class
and consist of two parts. The first part is the name of the message, while the
second part consists of a parameter list. Parameters can be of any type that can
be serialized.

4.1 Agent Communication Interface

SECMAP provides communication security transparently at a lower level and
agents are not aware of it. An agent is only allowed to communicate with its
environment over the SMAS engine through the methods defined in a predefined
interface object, AgentInterface. The methods of AgentInterface related to agent
communication are listed below.

sendMessage(String strAgentHostName, AgentIdentity agentiden-
tity, Message message): Send a message to an agent whose identity is known.
The call returns the identifier of the message packet, which the agent can later
use to query the result of the send operation.

sendBroadcastMessage(Message message): Send a broadcast message
to all agents running on the same host. receive() : Read and then remove a
message packet from the input queue.

sendReply(Packet packet, Object reply): Send the reply of a message
which has been received before.

Sent(PIdentifier id): Returns true if a message send request has been
carried out successfully, that is the message has been placed into the input queue
of the receiver.

ReplyReady(PIdentifier id): Query to learn if the reply of the message
has arrived. An agent may not always expect a reply. As communication is
asynchronous, in case a reply is expected, the agent queries its arrival at a time
convenient for it.

waitForMessage(long ms): Make a blocking call to listen on the input
message queue for a specifed period of time.

waitForReply(PIdentifier id, long ms): Make a blocking call to listen
on the reply message queue for a specifed period of time and returns true if the
reply is ready. If issued right after a send, it leads to synchronous messaging.

getVisibleAgentIdentity(String strIdentifier): Learn the identity of the
agent with a specific name running on the same host.

getAllVisibleAgentIdentities(String strIdentifier): Receive a list of
the identities of all agents with a specific name running on the whole of the
system.

Below are the code fragments of two agents. One of the agents has announced
itself with the name ”calculator” and, on receiving a message with the name ”cal-

A Secure Communication Framework for Mobile Agents 419

culate” and a parameter list in the form of an arithmetic expression, computes
the result and sends it as the reply message. The second agent, a client, wishes
to have the result of an arithmetic expression to be computed. In its OnActivate
method, it constructs a request message, inquires if any ”calculator” agents are
currently active on the system and, if it receives identities of ”calculator” agents,
scans the list to send its request until a result is obtained.

”calculator” agent:

public void OnMessageArrive(){
Packet packet =getAgentInterface().receive();
Message message=(Message)packet.getObject();
if (message.getMessageName().equals("Calculate")) {
Object[]parameters = message.getParameters();
String par1 =(String)parameters[0];
Calc calculator = new Calc(); String result = "";
try\\
{result = calculator.calculate(par1);}
//details of calculator class not included here.
catch (Exception ex){ }
getAgentInterface().sendReply(packet, result);}}
public void OnActivate(){
getAgentInterface().setVisibleOn("calculator");}

”client” agent:

Enumeration calcagentlist=
agentinterface.getAllVisibleAgentIdentities ("calculator");
//acquire identities of all agents on the system
//who have announced themselves with the name "calculator"
while (calcagentlist.hasMoreElements()){
AgentIdentity agentidentity = (AgentIdentity)

calcagentlist.nextElement();
Message message = new Message

("Calculate",CalculateInput.getText());
PIdentifier id = agentinterface.sendMessage
(agentidentity.getAgentHostName(),agentidentity,message);

if (!agentinterface.waitForReply(id,5000))
System.out.Println("Timed out.."+"\n");

else{ String result = (String) agentinterface.getReply(id);
System.out.println(CalculateInput.getText()+" = "+result+"\n");
break();}}

4.2 Location Transparence

The system is managed with a decentralized control; several MB-SMAS and
SM-SMAS may currently be active and they cooperate for a smooth execution.

420 S. Ugurlu and N. Erdogan

They share their data and communicate messages to keep it coherent. When
initializing an S-SMAS on a node, the programmer specifies the addresses of the
MB-SMAS and the SM-SMAS it should register itself to. Next, S-SMAS sends its
agent list to MB-SMAS and, in return, receives the identities of all other agents
active on the system. All MB-SMAS and SM-SMAS in the system share their
data. We call those S-SMAS that a MB-SMAS or a SM-SMAS cooperates with
as its partners. When a MB-SMAS gets a request to return an agent identity,
it cooperates with its partners to obtain the current agent identities. A similar
mode of processing is true for SM-SMAS. If an SM-SMAS can not authenticate
a request, it directs it to its partners for possible authentication. Additionally,
when an S-SMAS communicates with its MB-SMAS and SM-SMAS, it obtains
the addresses of their partners and saves them, in order to use as a contact
address in case its communication to its MB-SMAS or SM-SMAS fails. This
approach adds robustness against network or node failures. Figure 4 shows MB-
SMAS integration to allow location transparent agent messaging.

Fig. 4. MB-SMAS integration

5 Related Work

Several mobile agent systems have been proposed and developed up to now.
They all have their software agent specific features. These agent systems allow
agents to communicate with each other and some have better and more flexible
features over the others. SECMAP has the advantage of having a scalable, secure
and location transparent messaging architecture. SSL provides message privacy
while origion of the message are provided to be safe by authenticating SMAS
servers installed on each agent server on the network. Using queues and managing
agent queues with agent shields also provides a scalable messaging architecture.
Alerting the agent when a message arrives for the agent gives the programmer
to write the agent code in an easier way.

A Secure Communication Framework for Mobile Agents 421

6 Conclusions and Future Work

This paper describes the secure communication infrastructure of SECMAP. Mo-
bile agents are provided with a flexible and secure communication environment
where they can benefit both synchronous and asynchronous messaging facili-
ties. Confidentiality, integrity, authentication of origin and non-repudiation of
messages are assured through security techniques. SMAS are authenticated by
several SM-SMAS through certificates, thus introducing trusted nodes to which
mobile agents can migrate when required, or send sensitive information. Loca-
tion tranparency is provided by integrating more than one MB-SMAS into the
system, which, at the same time, adds to the robustness of the system. SECMAP
keeps logs of all agent activity, such as creation, activation, migration, and mes-
sage exchange, which can later be used for execution tracing, either for debugging
purposes or analysing agent behaviour. Currently, the system does not possess a
message buffering feature. Our future work includes adding such a feature into
the system so that while an agent is in transit from one host to another, all
messages sent to the agent can be kept in the system and the agent be alerted
immediately when it is activated on the destination host. Additionally, remote
broadcasting support is another feature we plan to add into the system. At its
present state, SECMAP supports local broadcasting, that is, a message can only
be broadcast to all agents running on the same host as the sender.

References

1. Voyager, http://www.recursionsw.com/products/voyager/voyager.asp
2. Aglets, http://www.trl.ibm.com/aglets/
3. http://www.genmagic.com/technology/odyssey.html
4. JATLite, http://www-cdr.stanford.edu/ProcessLink/papers/JATL.html
5. http://www.cs.dartmouth.edu/ dfk/papers/gray:security-book.ps.gz
6. Bryce C., Vitek J.: The JavaSeal Mobile Agent Kernel, Autonomous Agents and

Multi-Agent Systems, 4, 359-384, (2001)
7. Concordia, http://www.merl.com/projects/concordia
8. Sander T., Tschudin C.: Protecting Mobile Agents Against Malicious Hosts, in:

Giovanni Vigna (Ed.), Mobile Agent Security, LNCS 1419, (1998), Springer, 44–60
9. Varadharan V., Foster D.: A Security Architecture for Mobile Agent Based Appli-

cations, World Wide Web:Internet and Web Information System, 6, (2003), 93–122
10. Borselius N.: Mobile Agent Security, Electronics & Communication Engineering

Journal, October (2002), Volume 14, no 5, IEE, London, UK, 211

	Introduction
	SECMAP Approach to Security
	SECMAP Architecture
	SECMAP Agents

	Communication Security
	SECMAP Secure Communication Framework
	Agent Communication Interface
	Location Transparence

	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

