
Virmon: A Virtualization-Based Automated Dynamic Malware Analysis System

1

Abstract— Nowadays, security companies are faced tens of

thousands new malware samples every single day. Analysis of

these malicious threats in an automated fashion and in a

controlled environment are still the valid choice. Even though

there are highly skilled dynamic analysis systems, they are weak

against malwares targeting new operating systems.

In this work, we present Virmon (Virus Monitor), a powerful

system for dynamic analysis of Windows malwares. It is designed

as an automated and virtualization based system. Virmon collects

the behavior activities of analyzed samples in low kernel level. It

can also use all Windows operating systems as an analysis

environment and successfully analyze malwares targeting latest

versions. We implement the system to be adaptable to the new

operating systems. To demonstrate our effectiveness, we test the

system with a real malware sample observed in June, 2013 and

obtained results encourage us.

Index Terms— behavior analysis, dynamic analysis, malware

detection, virtualization

I. INTRODUCTION

alicous software (malware), an executable used or

created by an attacker to attain access to or steal

sensitive information from a computer system, has become a

major threat against computer systems and even for smart

phones. According to [1], Kaspersky claims that they faced

with nearly 200,000 new malware samples during the first half

of 2013.

The malwares and 0-day exploits (exploits for unpatched

vulnerabilities) are becoming a commercial industry.

Previously, one could write malware for fun and prominence,

now for money, espionage and ideological purposes.

Furthermore, some states develop malwares in order to achieve

their objectives. For example, Stuxnet, one of the most known

sophisticated malware (used for advanced persistent treat –

APT attacks) is developed to attack Iran’s nuclear facilities

and cost an estimated US$1 million to create [2]. These

information help us to understand how big and vast the

malware development research is.

Manuscript received July 15, 2013.

H. T. is with TÜBİTAK BİLGEM Cyber Security Institute, 41470

Gebze/Kocaeli TURKEY (e-mail: huseyin.tirli@ tubitak.gov.tr).

A. P. is with TÜBİTAK BİLGEM Cyber Security Institute, 41470

Gebze/Kocaeli TURKEY (e-mail: abdurrahman.pektas@ tubitak.gov.tr).

Y. F. is with University of Grenoble I LIG, 38400 Saint Martin d’Hères

FRANCE (e-mail: ylies.falcone@ujf-grenoble.fr).

N. E. is with Istanbul Technical University Faculty of Computer and

Informatics 34469 Maslak/İstanbul TURKEY (e-mail: nerdogan@itu.edu.tr).

 Due to the ineffectiveness of anti-viruses on previously

unknown malwares (whose signature have not been created

yet), many researchers have introduced several techniques to

overcome limitation of anti-virus solutions [3] [4] [5] [6] [7].

These techniques can be divided into two categories:

 Static analysis means examining a file without running

on the system. Because of the obfuscation techniques

such as polymorphism, metamorphism, compression

and encryption, it can be difficult and time consuming

to statically analyze malwares.

 Dynamic analysis means observing activities of a

suspicious file by executing it in a controlled

environment so as to understand its purpose.

To successfully detect and take appropriate measures, one

must be able to analyze them in a reproducible and controlled

environment. There are highly skilled dynamic analysis

systems revealed by malware researchers. For instance, Anubis

formerly TTAnalyze [8], is an emulation based dynamic

malware analysis system. It performs analysis operations on

Windows XP OS running on Qemu emulator. During analysis,

it monitors Win32 and native API functions with their

parameters through Qemu. Since the system runs on an

emulator, analysis time may be longer and this situation can be

realized by malwares.

Another tool, Capture-BAT [9] can monitor system changes

at kernel level. It can be considered that Capture-BAT has a

big disadvantage, since it is not an automated malware analysis

system. Cuckoo [10], an open source analysis system, uses

virtualization technology like Virmon. The user space API

hooking technique stands behind its methodology. It can track

some Win32 API functions with their parameters. Owing to

the fact that Cuckoo runs at user level, it can easily be detected

by malwares.

To the best of our knowledge, today’s dynamic analysis

systems generally employ old versions of windows OS as their

analysis environment. Nevertheless, the majority of the

computer end users prefer to use the latest ones. It seems that

they cannot analyze malwares targeting latest windows OS

appropriately. Therefore, it is a necessity that next generation

malware analysis solutions should cover latest 64-bit OSs and

be adapted easily to future OS versions.

With the increase of dynamic malware analysis popularities,

malware authors try to collect private information about

analysis systems in order to prevent them detect their

malwares. One of the most important private information is

Virmon: A Virtualization-Based Automated

Dynamic Malware Analysis System

Hüseyin Tirli, Abdurrahman Pektaş, Yliès Falcone, Nadia Erdoğan

M

Virmon: A Virtualization-Based Automated Dynamic Malware Analysis System

2

public IP addresses of malware analysis systems. If the public

IP address of the environment in which malware executed is a

known address by malware authors, malwares change their

behaviors or refuse to run on these systems. For instance, AV

Tracker [11] is a web platform publishing public IP addresses

of well-known analysis systems. By using these technique,

analysis systems can be evaded easily by malwares.

In this work, we propose Virmon, a scalable automated anti-

malware system designed to address the above challenges. Our

contributions can be described as follows:

 Portability: Our system can use all versions of

windows OS including windows 8 64-bit. When a

new windows version is released, it can be simply

adjusted to use new versions.

 Scalable & distributed analysis environment: The

system capacity can be easily increased by adding

new hardware. By using sensor – analysis machine

matching mechanism, the network traffic of

analysis machines is distributed to different

network locations. Thus, it gives an opportunity

that, our analysis system is not easily detectable.

The rest of the paper is organized as follows: We start by

discussing our proposed dynamic malware analysis system.

Then, we follow that with implementation details of the system

components. In section 4, we evaluate our system with a real-

world malware sample thereby showing the effectiveness of

the system. Finally, we conclude the paper with a discussion of

the limitations and future works in section 5.

II. SYSTEM OVERVIEW

One of the most preferred methods for behavior based

dynamic malware analysis is API hooking. With API hooking,

the call made by an application to a function can be redirected

to a custom defined function. When the parameters of this

function are analyzed, the intention of call (behavior) can be

understood.

There are two types of API hooking: user and kernel space

API hooking. Generally in user space API hooking, the Win32

API and Windows native API functions are targeted. However,

malware authors try to find new methods to evade API

hooking. Since the applied processes are not transparent to

malware, the obtained results can be misleading.

Kernel space API hooking, can be implemented with

injection of codes to the kernel. As it is known, malware

authors misuse the modifiable property of Windows kernel.

Additionally, kernel changes can cause fatal errors and prevent

proper working of some applications. Therefore, Microsoft

created a kernel protection mechanism (patchguard) with

Vista 64 bit OS to prevent this type of misusage [12]. This

mechanism provides code integrity of kernel and causes a blue

screen of death (BSOD) when a change attempt occurs.

Microsoft encourages the user of Windows to use callback

mechanism supplied by OS.

Windows callback mechanism provides the delivery of

necessary information needed by drivers when the certain

conditions are met [13]. In order to be notified of events

(process, registry and file), kernel space component registers

itself to OS. When the desired events occur, OS calls the

function of the driver determined at registration time. Owing to

the fact that patching the kernel of new OS’s is too hard, it is

unreasonable to try to patch kernel code for behavior

monitoring. Thus, we prefer to use callback mechanism

presented by the OS.

Our approach to construct a dynamic analysis environment

consists of two main components:

i. Analysis machine components: It is responsible of

reporting host-based activities such as process,

registry and file system activities created by

analyzed file.

ii. Network components: Network components of Virmon

is responsible of reporting network activities of an

analyzed file and consists of the following

modules:

• The sensors at different locations that forward network

traffic of analysis machines to the command and control

(C&C) servers.

• Virtualization environment which contains the analysis

machines.

• An application server managing whole analysis processes.

• IDS that generates alarms, extracts files and HTTP

requests from network traffic.

• A DNS server replying and logging DNS requests.

• An NTP server that used to synchronize all machines in

the system.

• A database storing all events captured during analysis.

III. SYSTEM ARCHITECTURE

In this section, we provide the details of Virmon dynamic

analysis system. Firstly, we give information about how we

collect behavior activities of analyzed suspicious files from

operating system (OS). Next, we discuss the network topology

of the system where we automatically analyze files to gather

their network activities.

A. Analysis Machine Components

On each machine that analyzes malicious software, there are

two main components are activated: application working in

user space and managing analysis process, and drivers working

in kernel space. The application running in user space can be

considered as a bridge between OS and application server. The

file taken from application server is executed by user space

component. The process id information that is obtained by

executing the file is sent to the kernel space component.

Kernel space component watches three main activities:

1. Process activity

2. Registry activity

3. File system activity

Activities of the process owned by that executable and (if

any) processes created by this process are monitored by kernel

space component. In the following part, we describe what and

how to monitor each type of activities listed above.

Virmon: A Virtualization-Based Automated Dynamic Malware Analysis System

3

1) Process Monitoring

One of the activities needed by malware researchers is

process activity of analyzed malware samples. Process

monitoring part of the kernel space component observes

process creation/deletion and remote thread creation events.

When an application tries to create a new process, OS delivers

the information about the process starting the create operation

(parent process) and the process to be created to the process

monitor. In a similar manner, before a new thread created, OS

notifies thread information to the process monitor. If currently

working process is one of the processes that is tracked by

process monitor and created thread does not belong to current

process, this event also recorded as a remote thread creation.

In these event types, notification operation happens in the

context of the thread creating the new process or thread [14]

[15]. On the other hand, in delete process event, notification

routine runs in the context of the last thread to exit from the

process [14]. Therefore, it is too hard to understand who killed

the process. Due to this reason, we only record the deletion

events of processes tracked by the process monitor.

2) Registry Monitoring

Windows Registry is a hierarchical database used to store

configuration information of applications, hardwares and users

[16]. In order to understand what changes are made by the

analyzed file on the system, monitoring the registry can be a

useful method. Majority of the malwares use windows registry

so as to be persistent. They register themselves to the registry

to be executed automatically at startup. Also some of them

uses the registry to prevent users from calling the task

manager, defender etc.

Windows callback mechanism can notify the drivers when

events such as read, write and delete on the registry occurs.

There are two types of registry notifications: preoperation and

postoperation. By monitoring each types of events, it can be

determined whether the operation is successfull or not.

OpenKey, CreateKey, DeleteKey, SetValueKey,

DeleteValueKey, QueryValueKey and EnumerateKey registry

operations are watched by registry monitor.

3) File System Monitoring

File system monitor is used to track all file system events

(read/write/delete) on the system. Monitoring the file system is

extremely crucial, since lots of malwares copy themselves to a

known location in the OS. Also some of them downloads new

payloads or updates itself periodically. Like registry monitor,

pre and post IO operation notifications delivered by file

system filter manager. The read, write and delete events

caused by all tracked processes are recorded by the file

monitor.

B. Network Components

Malwares often need to connect C&C servers to send

confidential information collected from compromised

machines or to take commands from them. That is why

analysis of the network activities of malwares is an inevitable

requirement for malware analysts. In the proposed system we

use different network solutions, such as VLAN, VPN, IPS, and

firewall to monitor network activities of suspicious files. We

are inspired by our previous work [17] and performed to

collect malware samples via high interaction honeypots [18].

The sensor, a kind of mini-PC, is placed at any location on

the internet in a plug-and-play fashion and is used to match its

public IP address to private IP address of an analysis machine.

C&C Server

C&C Server

C&C Server

Sensor

VPN Endpoint

INTERNET

Location A

Location C

IPS/IDS

Internal FW

DNS
Server

NetFlow
Server

Application
Server

Ntp
Server

Database
ServerSensor

Sensor

Location B

C&C Server

Sensor

Location D

Fig. 1. The topology of Virmon including all the local and remote components of malware analysis system.

Virmon: A Virtualization-Based Automated Dynamic Malware Analysis System

4

Its main objective is to forward traffic of analysis machines to

the Internet. To do this end, each sensor creates a secure

channel (VPN) to our data center (as depicted in Figure-1).

With the use of VPN connection, each analysis machine

seems to be directly connected to the Internet. Therefore, IP

layer information (e.g. source, destination IP and TTL) of all

network packets originating from analysis machine are updated

on the sensors to make them appear as if those packets were

sent by sensors. Figure-2 illustrates logical network topology

of analysis machines.

We assign statically separate C class networks to each

analysis machines on the VPN Endpoint. When a suspicious

file analyzed in our system tries to make a connection to

remote host, VPN endpoint identifies the related sensor and

forwards its network traffic to that sensor.

In addition, to improve transparency of the system, we

define separate VLANs for each analysis machines on the

internal firewall and virtualization server. So, we reduce the

size of broadcast domain, as well as prevent analysis machines

from seeing each other.

1) DNS-Server

The Domain Name System is a dynamic database service

that translates internet domains and host names to IP

addresses. It is a critical service for internet access since

internet relies on IP addresses and without the DNS service it

would be an obligation for users to know all IP addresses of

servers accessed. Similarly, malwares often use domain names

to access C&C servers which are changed frequently by

attackers to be undetected (fast flux) [19].

To monitor DNS requests made by analysis machines we

manually set the DNS server of each machine to our DNS

server located in the data center. Meanwhile, in order to

prevent malwares to resolve domain name by using public

DNS server, (e.g. 8.8.8.8 is Google's well-known public DNS

server) we redirect all DNS queries to internal DNS server by

using our internal firewall. In this way, all DNS requests made

by malwares can be answered and logged by our DNS server.

DNS server logs requested domain, time and IP of analysis

machine. DNS log file is parsed and the extracted information

is sent to database at runtime.

2) IPS/IDS (IPDS):

Intrusion prevention system (IPS) is a network security

solution monitoring network traffic and system activities. We

need an IPS to prevent likely networks attacks caused by

suspicious files analyzed in the system.

Due to the following reasons, analysis of web pages

requested and files downloaded by malware has become a

necessity for the malware analyzer:

1. Nowadays great deal of companies allow their personnel

to make only HTTP/HTTPS, FTP etc. connections because of

security reasons. Malwares have adapted themselves to use

HTTP/HTTPS protocols to communicate with their C&C

servers.

2. As it is known, a special type of malware named dropper

downloads another malware. Thus, if an analyzed file

downloads extra contents via internet, these contents also

should be examined.

Suricata [20], an open source IPS solution, can prevent

malicious attacks such as distributed denial of service (DDoS),

port scanning and shellcodes; it can also extracts files and

HTTP requests from live network traffic. Therefore, we have

decided to use Suricata as the IPS component of our dynamic

analysis system.

Suricata writes HTTP requests to a log file. HTTP log file is

parsed at predefined regular intervals and the extracted

information is stored to a database. Meanwhile, if the files

extracted by Suricata have not already been dissected

beforehand, they are enqueued into application server’s

priority queue.

3) Netflow Server

Netflow server operates to obtain summary information

about network traffic of the analysis machines. It records

source and destination hosts, the protocol used, ports, flow

duration and number of the bytes transferred. To extract these

information, all network traffic made by analysis machines is

duplicated by internal Firewall and sent to the netflow server.

When the server obtains brief information about the flow, it

stores them to a database at regular time intervals similar to

other servers.

4) NTP-Server

Network Time Protocol (NTP) is a networking protocol for

clock synchronization between computer systems. During

analysis, we collect information from different analysis

servers. The time information of each type of data must be the

same on all servers. To do this end, we deploy NTP server so

as to synchronize the time of each server in the system.

5) Application Server

It is responsible of the management of the total malware

analysis processes. Application server determines the analysis

machine on which a submitted file will be analyzed. It collects

the activities from all analysis system components. Then, it

reformats the collected data and stores them in a database.

Furthermore, application server returns the analysis machines

to the clean state after the analysis operations are completed.

IV. EVALUATION

In this section, we demonstrate how our dynamic malware

analysis system works. Firstly, we explain the communication

mechanism between the application server and analysis

machines. Then, we show results of a recently observed

malware’s analysis.

Analysis Machine

C&C Server

Location – A
Firewall

Fig. 2. The logical topology of the system. Each analysis machine is seen by

C&C servers as if it is working behind the firewall of network that includes

our corresponding sensors.

Virmon: A Virtualization-Based Automated Dynamic Malware Analysis System

5

Figure-3 visualizes the communication process between

application server and an analysis machine. The process can be

described as follows:

1. Analysis application sends a request that specifies the

start of new analysis process to the application server.

2. Application server pops a file from its priority queue

and sends it to the analysis machine which initiates a

new analysis request.

3. Analysis application injects codes to the running

explorer.exe process. This process executes the file

coming from application server in suspend mode. If

the file is executable, explorer.exe writes id (PID) of

newly created process to a shared memory. Analysis

application reads PID info from shared memory.

Then it sends a message that includes this info to the

driver and asks it to record events initiated by this

process.

4. Analysis application waits until the analyzed process

exits or a timeout (3 minutes). Then it sends a

message to the driver to stop the recording events.

5. Driver stops the recording and writes events to the

event file.

6. Analysis application sends the event file to the

application server for parse operation.

7. Application server parses the event file and stores them

in the database. Than it returns the analysis machine

to the clean state.

In order to show the capabilities of our dynamic malware

analysis system, we analyze a dropper which was detected on

July, 2013 [21]. Dropper is a type of malware created by

malware authors to download and install new malwares (e.g.

virus, backdoor) on the compromised systems. It can also

include the malwares in itself.

The analysis operation is done automatically on a Windows

8 Ultimate 64-bit OS. The steps described above is completed

and the activities of malware sample are examined. The

important events that have happened on the system is

displayed in Table-1.

TABLE I

IMPORTANT ACTIVITIES OF ANALYZED SAMPLE

Time Event Process Detail

2013-07-09 09:50:42.048 Process Create C:\Windows\explorer.exe C:\Users\virmon\Desktop\file.exe (Analyzed File)

2013-07-09 09:50:45.018 Process Create
C:\Users\virmon\Desktop\file.exe

(Analyzed File)
C:\Users\virmon\Desktop\file.exe

2013-07-09 09:50:45.172 Process Terminate
C:\Users\virmon\Desktop\file.exe

(Analyzed File)
 -

2013-07-09 09:50:47.906 DNS Query C:\Users\virmon\Desktop\file.exe sunelec-kk.com

2013-07-09 09:50:50.393 HTTP Request C:\Users\virmon\Desktop\file.exe
/tmp/r1.php on sunelec-kk.com

(5 times in 24 seconds)

2013-07-09 09:51:15.324 DNS Query C:\Users\virmon\Desktop\file.exe japmotors.net

2013-07-09 09:51.15.686 HTTP Request C:\Users\virmon\Desktop\file.exe /tmp/r1.php on japmotors.net

2013-07-09 09:51:16.664 DNS Query C:\Users\virmon\Desktop\file.exe www.piazzabrothers.com

2013-07-09 09:51:16.876 HTTP Request C:\Users\virmon\Desktop\file.exe /tmp/file1.exe on www.piazzabrothers.com

2013-07-09 09:51:17.246 HTTP Request C:\Users\virmon\Desktop\file.exe /tmp/file2.exe on www.piazzabrothers.com

2013-07-09 09:51:17.936 DNS Query C:\Users\virmon\Desktop\file.exe fondear.es

2013-07-09 09:51:18.776 HTTP Request C:\Users\virmon\Desktop\file.exe /tmp/file1.exe on fondear.es

2013-07-09 09:51:18.991 HTTP Request C:\Users\virmon\Desktop\file.exe /tmp/file2.exe on fondear.es

2013-07-09 09:51:19.677 File Write C:\Users\virmon\Desktop\file.exe C:\Users\virmon\AppData\Local\Temp\990203.bat

2013-07-09 09:51:20.443 Process Create C:\Users\virmon\Desktop\file.exe C:\Windows\SysWOW64\cmd.exe

2013-07-09 09:51:20.490 Process Create

C:\Windows\SysWOW64\cmd.exe

(cmd /c

C:\Users\virmon\AppData\Local

\Temp\990203.bat

C:\Users\virmon\Desktop\file.exe)

C:\Windows\System32\conhost.exe

2013-07-09 09:51:20.490 Process Terminate C:\Users\virmon\Desktop\file.exe -

2013-07-09 09:51:22.115 File Delete C:\Windows\SysWOW64\cmd.exe C:\Users\virmon\Desktop\file.exe

2013-07-09 09:51:22.568 File Delete C:\Windows\SysWOW64\cmd.exe C:\Users\virmon\AppData\Local\Temp\990203.bat

2013-07-09 09:51:22.662 Process Terminate C:\Windows\SysWOW64\cmd.exe -

2013-07-09 09:51:22.678 Process Terminate C:\Windows\System32\conhost.exe -

Application Server

Analysis Machine

Analysis
Application

Driver

getFile

1

start

2
Target

File

record3 stop 4

write Event
File

5

finish

6
Event
File

restore 7

Fig. 3. The communication mechanism between application server and an

analysis machine. It demonstrates the main information flow of analysis.

http://www.piazzabrothers.com/
http://www.piazzabrothers.com/

Virmon: A Virtualization-Based Automated Dynamic Malware Analysis System

6

Since the number of events gathered from analysis system

for this malware is too high (10000+), only the important

events selected manually are included in the table. The

majority of the activities are system dll files and registry

accesses. If the table is examined, the intention of malware

sample can be understood easily.

When the sample is executed, firstly the process created by

explorer.exe creates a new process having the same name in its

directory. This technique, named as process hollowing [22], is

often used by malwares recently to hide themselves. Then, the

process created by explorer.exe terminates itself. The file.exe

process created by using hollowing technique sends HTTP

requests to predefined four distinct compromised servers

respectively to download new malwares. Since the malwares

targeted by file.exe are deleted from servers before the

analysis operation, it cannot access to malwares and changes

its behavior. The dropper creates a script named as 990203.bat

and executes this script. By this execution, malware terminates

itself and the script removes malware’s footprints. As it is seen

on Table-1, our dynamic malware analysis system successfully

collects the behavior activities of the analyzed sample.

V. CONCLUSION

In this paper, we present a virtualization-based automated

dynamic malware analysis system. We have developed a

kernel driver which can monitor state changes during the

malware analysis. Virmon currently supports all Windows OSs

and we can easily adapt the system to use new OSs. The

distributed architecture of the system can be extended easily.

Sensor – analysis machine matching mechanism can help us to

hide the analysis system against the malwares using IP based

detection techniques.

Currently, we are not fully capable to analyze malwares

which are sensitive to virtualized environments because of the

fact that our system based on virtualization technology. Also

the system can only analyze executable files. Additionally, the

network activities of the analysis machines are gathered

system-wide. Therefore, we are planning to improve our

system to be capable of analyzing virtualized environment

sensitive malwares, collect network events on low kernel level

and also increase the number of file types that can be analyzed

on Virmon. Meanwhile we are working on automated

classification of malwares and encouraging ourselves to

integrate the classification system into Virmon.

REFERENCES

[1] “Kaspersky Lab Press Release 2012”, Internet:

http://newsroom.kaspersky.eu/fileadmin/user_upload/en/Downloads/PD

Fs/101212_Press_Release_2012_by_numbers.pdf, [Jul 10, 2013].

[2] “Estimated Cost of Stuxnet”, Internet:

http://www.thenational.ae/business/industry-insights/technology/former-

cia-chief-speaks-out-on-iran-stuxnet-attack, [Jul 14, 2013].

[3] A. Moser, C. Kruegel, and E. Kırda, "Exploring multiple execution

paths for malware analysis," in Proceedings of the IEEE Symposium on

Security and Privacy, 2007, pp. 231-245.

[4] H. Agrawal, L. Bahler, J. Micallef, S. Snyder, and A. Virodov,

"Detection of global, metamorphic malware variants using control and

data flow analysis," in Military Communications Conference

(MILCOM), 2012, pp. 1-6.

[5] H. Huang, G. Acampora, V. Loia, C. Lee, and H. Kao, "Applying FML

and Fuzzy Ontologies to Malware Behavioral Analysis," in Proceedings

of the IEEE Symposium on Fuzzy Systems (FUZZ), 2011, pp. 2018-

2025.

[6] G. Tahan, L. Rokach, and Y. Shahar, "Mal-ID: Automatic Malware

Detection Using Common Segment Analysis and Meta-Features," in

The Journal of Machine Learning Research, vol. 13, 2012, pp. 949-979.

[7] R. Rolles, "Unpacking Virtualization Obfuscators," in Proceedings of

the 3rd USENIX conference on Offensive technologies, 2009, pp.1-10.

[8] U. Bayer, C. Kruegel, E. Kirda, "TTAnalyze: A tool for analyzing

malware," Internet: http://www.iseclab.org/papers/ttanalyze.pdf, [Jun.

21, 2013].

[9] C. Seiferta, R. Steensona, I. Welcha, and P. Komisarczuka, B. Endicott-

Popovskyb, "Capture – A behavioral analysis tool for applications and

documents," Digital Investigation: The International Journal of Digital

Forensics & Incident Response, vol. 4, 2007, pp. 23-30.

[10] "Cuckoo Sandbox", Internet: http://www.cuckoosandbox.org/, [Jun. 20,

2013].

[11] "AV Tracker", Internet: http://www.avtracker.info/, [Jul. 5, 2013].

[12] “Kernel Patch Protection: Frequently Asked Questions.” Internet:

http://msdn.microsoft.com/en-

us/library/windows/hardware/gg487353.aspx, Jan. 22, 2007 [Jun. 18,

2013].

[13] “Callback Objects.” Internet: http://msdn.microsoft.com/en-

us/library/windows/hardware/ff540718(v=vs.85).aspx, [Jun. 18, 2013].

[14] “PsSetCreateProcessNotifyRoutineEx routine.” Internet:

http://msdn.microsoft.com/en-

us/library/windows/hardware/ff559953(v=vs.85).aspx, [Jun. 20, 2013].

[15] “PsSetCreateThreadNotifyRoutine routine.” Internet:

http://msdn.microsoft.com/en-

us/library/windows/hardware/ff559954(v=vs.85).aspx, [Jun. 20, 2013].

[16] “What is the registry?” Internet: http://windows.microsoft.com/en-

id/windows-vista/what-is-the-registry, [Jun. 21, 2013].

[17] N. E. Siseci, B. Emre, and H. Tirli, "Case Study: Malicious Activity in

the Turkish Network," Internet: http://www.syssec-

project.eu/media/page-media/3/syssec-d5.3-

TurkishNetworkCaseStudy.pdf [Jun. 23, 2013]

[18] A. Caglayan, M. Toothaker, D. Drapaeau, D. Burke, and G. Eaton,

"Behavioral Patterns of Fast Flux Service Networks," in in Proceedings

of 43rd Hawaii International Conference on System Sciences (HICSS),

2010, pp. 1-9.

[19] J. Nazario, and T. Holz, "As the Net Churns: Fast-Flux Botnet

Observations," in Proceedings of 3rd International Conference on

Malicious and Unwanted Software, 2008, pp. 24-31.

[20] "Suricata", Internet: http://suricata-ids.org/, [Jul. 1, 2013].

[21] “Antivirus scan for b0d36b9d9a6866a70b13b71772a0de84 at 2013-06-

26 16:01:34 UTC - VirusTotal” Internet:

https://www.virustotal.com/tr/file/c3833351f751eedcd13e23cff488d66d

c9e45aab0b86a4c4b6e3481389bf5e29/analysis/, [Jul. 10, 2013].

[22] M. H. Ligh, S. Adair, B. Hartstein, and M. Richard. Malware Analyst's

Cookbook and DVD: Tools and Techniques for Fighting Malicious

Code. Indianapolis, USA: Wiley Publishing, Inc, 2011, pp. 596-599.

http://newsroom.kaspersky.eu/fileadmin/user_upload/en/Downloads/PDFs/101212_Press_Release_2012_by_numbers.pdf
http://newsroom.kaspersky.eu/fileadmin/user_upload/en/Downloads/PDFs/101212_Press_Release_2012_by_numbers.pdf
http://www.thenational.ae/business/industry-insights/technology/former-cia-chief-speaks-out-on-iran-stuxnet-attack
http://www.thenational.ae/business/industry-insights/technology/former-cia-chief-speaks-out-on-iran-stuxnet-attack
http://www.iseclab.org/papers/ttanalyze.pdf
http://www.cuckoosandbox.org/
:%20http:/www.avtracker.info/
http://msdn.microsoft.com/en-us/library/windows/hardware/gg487353.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/gg487353.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff540718(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff540718(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff559953(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff559953(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff559954(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff559954(v=vs.85).aspx
http://windows.microsoft.com/en-id/windows-vista/what-is-the-registry
http://windows.microsoft.com/en-id/windows-vista/what-is-the-registry
http://www.syssec-project.eu/media/page-media/3/syssec-d5.3-TurkishNetworkCaseStudy.pdf
http://www.syssec-project.eu/media/page-media/3/syssec-d5.3-TurkishNetworkCaseStudy.pdf
http://www.syssec-project.eu/media/page-media/3/syssec-d5.3-TurkishNetworkCaseStudy.pdf
http://suricata-ids.org/
https://www.virustotal.com/tr/file/c3833351f751eedcd13e23cff488d66dc9e45aab0b86a4c4b6e3481389bf5e29/analysis/
https://www.virustotal.com/tr/file/c3833351f751eedcd13e23cff488d66dc9e45aab0b86a4c4b6e3481389bf5e29/analysis/

