
RUBCES : A RULE BASED COMPOSITE EVENT SYSTEM

Ozgur K. SAHINGOZ
Air Force Academy

Computer Engineering Department
Yesilyurt, Istanbul, TURKEY
e-mail: o.sahingoz@hho.edu.tr

Nadia ERDOGAN
Istanbul Technical University
Electrical-Electronics Faculty

Computer Engineering Department
Ayazaga, 80626, Istanbul, TURKEY

e-mail: erdogan@cs.itu.edu.tr

Abstract: An event is the occurrence of some state change in a component of a software system, made
visible to the external world. Usually an event is represented by a data structure called an event
notification, or simply a notification. Sometimes subscribers can express interest in being notified upon
the occurrence of specific combinations of events only. This type of an event is called a composite event.
RUBCES (Rule Based Composite Event System) is a centralized event system that allows the use of
composite events in publish/subscribe computational model. In this system, an event is represented as an
object and a rule is represented as an expression or a function that is evaluated or executed depending on
the occurrence of events. This paper presents the design details of RUBCES and the syntax and semantics
of Rule Definition Language (RDL) for describing composite events and event filters.

Keywords: event system, composite events, rule based events, event filters.

1. Introduction

In the traditional client/server computing model, which is used in RPC and RMI,
communication is typically synchronous, tightly coupled and point to point. As shown
in Figure 1.a, clients invoke a method on the remote server and wait for the response to
return. This type of communication requires clients and servers to have some prior
knowledge of each other.

a. Client/Server Communication b. Event-based Communication

Figure 1: Client/Server and Event-based Computing Models

With the use of mobile or large-scale systems, the need for asynchronous,
loosely coupled and point to multipoint communication pattern arises. Event models are
application independent infrastructures that satisfy communication requirements of such
systems. Event-based communication generally implements what is commonly known
as the publish/subscribe protocol. As shown in Figure 1.b, an event supplier
asynchronously communicates event data to a group of event consumers, ideally
without knowledge of the number and location of the event consumers.

To receive event data, consumers register to an event service with the definition
of the particular events they are interested in. This definition can include a simple
subscription message, a subscription message with filtering on events or a subscription

Client

Server

Request Response C2

C3

S

C1

Event

Service S : Suplier
C: Consumer
E.D.: Event
 Data

E.D.

E.D.

E.D.

E.D.

message for composite events. This study is on an event-based system that uses a new
language, Rule Definition Language (RDL), to define subscription criteria in the form
of a rule.

The rest of this paper is organized as follows. In the next section, we present a
classification of publish/subscribe systems, with references to related work. Section 3
introduces the computational model of RUBCES with RDL syntax and semantics.
Section 4 focuses on the event specification and event types. Our conclusions and plans
for future work are presented in Section 5.

2. Publish/Subscribe systems

Publish/subscribe programming paradigm is characterized by the complete
decoupling of producers (publishers) and consumers (subscribers). The event service
provides message transfers between publishers and subscribers can be decomposed
along the three following dimensions.
Time decoupling: the interacting parties do no t need to be up at the same time.
Space decoupling: the interacting parties do not need to know each other.
Flow decoupling: producers are not blocked while producing events and consumers can
get notified about the occurrence of some event while performing some concurrent
activity.

Publish/subscribe systems can be classified into four groups according to their
subscription mechanism. Each one is discussed in detail below, with references to
representative work.

2.1. Channel-based subscriptions

The simplest subscription mechanism is what is commonly referred to as a channel.
Subscribers subscribe or listen to a channel. Applications explicitly notify the
occurrence of events by posting notification to one or more channels. The part of an
event that is visible to the event service is the identifier of the channel to which the
event has been sent. Every notification posted to a channel is delivered by the event
service to all the subscribers that are listening to that channel.

The abstraction of the channel is equivalent to the one given by a mailing list. A
user sends an e-mail to an address, and message is forwarded to those who have
registered to that mailing list. CORBA Event Service [1] adopts a channel-based
architecture. Another widely used channel based model is the Java Delegation Event
Model [2], which encapsulates events from the platform's Graphical User Interface. It
consists of three main classes objects:

o Source Object - generates an Event Object in response to a (user) occurrence and
passes the event object to concerned listeners.

o Event Object - is passed from the Source Object to the listeners. The Event
Object contains information describing the occurrence.

o Listener Object - receives the Event Object via a message and performs
appropriate processing depending upon the details of the event object.

2.2. Subject-based subscription

Some systems extend the concept of a channel with a more flexible addressing
mechanism that is often referred to as subject-based addressing. In this case, an event

notification consists of two different parts: a well-known attribute, the subject, that
determines their address which is followed by the remaining information of the event
data. The main difference with respect to a channel is that subscriptions can express
interest in many subjects/channels by specifying some form of expression to be
evaluated against the subject of a notification. This implies that a subscription may
define a set of event notifications, and two subscriptions may specify two overlapping
sets of notifications. This, in turn, implies that one event may match any number of
subscriptions.

JEDI [3] adopts the subject-based subscription mechanism. In JEDI, an event is
given in the form of a function call; where the first string is the function/event name
followed by parameters, e.g., “print (tez.doc, myprinter)”. Each event is labeled with a
subject. Subscriptions are specified with an indication of the subject of interest. Notice
that the subject-based approach is a variation of the channel based concept, as the rest of
the event data except for the subject is content- free. The subject can be a list of strings
in a hierarchical form, over which it is possible to specify filters based on a limited form
of regular expressions. For example, the filter “economy.exchange.*.*HOL” will select
all the notifications whose subject contains economy in first position followed by
exchange in second position, any string in third position, and a fourth string that ends
with the string “HOL”.

2.3. Content-based subscription

By extending the domain of filters to the whole content of notifications, some
researchers obtain another class of subscriptions called content-based [5]. Content-based
subscriptions are conceptually very similar to subject-based ones. However, since they
can access the whole structured content of notifications, an event server gives more
freedom in encoding the data upon which filters can be applied and that the event
service can use for setting up routing information.

string event = accnt/bbb
time date = 15.11.2002
int num = 12345
float total = 215.31

a. SIENA Event Data

string event == accnt/*
time date >= 01.01.2000
float total > 100.000

b. SIENA Filter

string event > finance/*
string symbol = SAHOL
float change < 0
 and then
string event > finance/*
string symbol = DOHOL
float change > 0

c. SIENA Composite Event

Figure 2: SIENA Event and Filter Models

Examples of event systems that provide this kind of subscription are, Yeast
[4](this is also using centralized structure) and SIENA[5]. In SIENA, an event
notification is a set of attributes, as shown in Figure 2.a, in which each attribute is a
triple, as in “attribute = (name; type; value)”. Attributes are uniquely identified by their
name. An event filter, as shown in Figure 2.b, defines a class of event notifications by
specifying a set of attribute names and types and some constraints on their values, e.g.,
“attr filter = (name; type; operator; value)”. A composite event is defined by combining
a set of event filters using filter combinators as shown in Figure 2.c.

2.4. Object-based subscription

Object-based subscription is a new model of subscription that has been
developed to access event data in a more structured manner. Type-based
publish/subscribe mechanism [6], proposed by Eugster, uses object events, which are
called obvents. Events are often viewed as low-level messages, and a predefined set of
such message types are offered by most systems, providing very little flexibility. To
overcome this deficiency, type-based publish/subscribe mechanism manipulates events
as objects. The core idea underlying this integration consists in viewing events as first
class citizens, and subscribing to these events by explicitly specifying their type. So an
application defined event data can be used in the event system.

publish o;

Subscription s = subscribe (StockQuote q)
 // First Block
{ return (q.getPrice() < 100 &&
 q.getCompany().indexOf("Telco") != -1); }
 // Second Block
{ System.out.print("Got offer: ");
 Sytem.out.println(q.getPrice()); };

Figure 3: Primitives of Obvent System

Obvent system uses two basic primitives as shown in Figure 3. An obvent “o” is
published through a primitive publish, and a subscriber registers to the event system by
using the subscribe syntax which contains filter constraints in the first block, and
declare triggering events in the second block.

3. RUBCES Computational Model

RUBCES is an event-based publish/subscribe system that uses rules for
subscribing to an event service. Many of the event systems described in literature, as
referenced in the previous section, use predefined events. RUBCES implements a
content based subscription mechanism, similar to that proposed by Carzaniga [5], which
allows handling of application-defined events. Our event system also provides mobility
for subscribers. By using an “id” and “password” pair, a subscriber can connect to the
Event Server from different machines.

Figure 4: RUBCES Architecture

RUBCES, being implemented in Java, makes use of the Java RMI facilities
extensively to access remote objects. To create a uniform structure, the components of
the system are designed to be accessed over well-defined interfaces and, are expected to

Event Server

Storage and
management of
subscriptions

publish()

subscribe()

unsubscribe()

Subscriber
notify()

Subscriber
notify()

Subscriber
notify()

1 2

3

4

1. Publisher publishes
an Event Data

2. Subscriber subscribes
to Event Server

3. Subscriber unsubscribes to
Event Server

4. Event Server notifies
Subscriber

Publisher

Publisher

Publisher

Publisher

implement the methods included in those interfaces. Figure 4. depicts the general
architecture of RUBCES. The system consists of three main components: an Event
Server, subscribers, and publishers.

3.1 Event Server

The main function of the Event Server is dispatching incoming event notifications
from publishers to (possibly multiple) subscribers. The event server implements the
EventServer interface, shown in Figure 5, which also extends the Remote class to
enable RMI. The EventServer interface consists of three main methods:

public interface EventServer extends Remote
{
public void subscribe(String codebase, String rule, String sub_name,

 String subs_pass, String Store_type) throws RemoteException;
public void unsubscribe(String codebase, String rule String sub_name,

String subs_pass) throws RemoteException;
public void publish(Event e, String class_address) throws RemoteException;
}

Figure 5: Java definition of the EventServer Interface

 subscribe: A subscriber registers interest in a particular event by invoking the
subscribe method of the event server. It supplies its RMI contact address and a rule
that describes the events it is interested in as parameters to the call. The system supports
mobile subscribers by allowing them to join the system from different locations, after
establishing a connection through a name/password pair.
 unsubscribe: A subscriber can cancel its registration through a call to the
unsubscribe method, supplying parameters needed to identify the subscription
previously made. For security reasons subscriber has to provide its subscriber name and
password for the unsubscribe operation to proceed successfully.
 publish: Publishers call the publish method to announce an event.

Figure 6: The Architecture of the Event Server

Event
Queue Event

Manager

RuleBase

Subscription
List

CleanUp
Manager

Filter
Manager

Notification
Queue Notification

Manager

Security
Manager

Subscription
Base

Waiting
Notification

Queue
Waiting

Notification
Manager

notify

notify

subscribe

unsubscribe

publish publish

subscribe

unsubscribe

Event
Server

Class
Loader

The Event Server consists of manager modules that handle the basic
functionalities of the system and several structures to hold various data. The internal
architecture of the Event Server and message flow between its components are shown in
Figure 6. In the following, we first describe the main data structures of the Event
Server, and then focus on the manager modules.

Event Queue: Event Queue, where an incoming event data is initially stored,
is a vector which has the fields of (Event_type, Serialized_data, Class_addr,
dowloaded).

Subscription List: When a subscriber registers to the event system, its
registering information is stored in the Subscription List in the format (Event_type,
Subscriber_adress, Subscription_type, Triggering_SQL, Store_type).

Subscription_type: A subscription may be of three types, depending on the type
of event it involves, either a simple event, a filtered event, or a composite event.
Store_type: This information specifies whether a subscriber wishes notification
data be stored or not in the system while it is in unconnected state. A subscriber
may require either all or only the last notification data to be stored or it may not
be interested in such data at all.
Triggering_SQL: defines SQL commands which are to be triggered when an
incoming event is related to a composite event.
RuleBase: Some subscribers may want to detect a specific pattern of event

occurrences from different publishers (composite events). To catch a specified sequence
of events, the system stores events which have previously occurred in the RuleBase.
Naturally, not all events, but only those that are part of a composite event are stored in
the RuleBase. RuleBase is designed as a database that includes tables representing the
incoming events. For each different event type, a new table is created by the Event
Manager. Connection to the RuleBase is established through Java Database
Connectivity (JDBC) and data is exchanged by dynamically produced SQL commands..

Subscriber Base: This is where subscriber names and passwords are stored. The
security manager prevents unauthorized access using the data. Subscriber Base is
designed as a vector which has the fields (Subscriber_name, Subscriber_password).

Notification Queue: An outgoing event data is stored in the Notification
Queue before it is used by the Notification Manager. The queue is implemented as a
vector which has the fields of (Event-type, Subscriber_name, Subscribers_address,
Serialized_data).

Waiting Notification Queue: If the Notification Manager cannot get in
contact with a subscriber, it stores the unsent notification data in Waiting
Notification Queue, if required so by the store-type parameter of subscription. The
Waiting Notification Queue is similar in structure to the Notification Queue.

Several modules use data in the three queue structures listed above, as depicted
in Figure 6. To prevent any inconsistency, mutually exclusive access is provided
through synchronized methods.

Class Loader: Downloads classes related to incoming events to the Event
Server’s codebase.

CleanUp Manager: When subscribers unsubscribe from the Event Server,
CleanUp Manager deletes their registration information from the RuleBase.

Security Manager: Two functionalities of the security manager are the following.
1. Monitors entrance of subscribers and prevents unauthorized access.
2. A subscriber can connect to the event server from different locations (addresses).

If a subscriber reconnects after losing contact, the Security Manager recognizes
this condition and activates the Waiting Notification Manager to send event
data in the Waiting Notification Queue, if there is any.

Event Manager: This is the main processing module of the Event Server. When a
new event (EventX) arrives, the Events Manager follows the following algorithm to
process it:

1. It controls the Subscription List to detect any subscription that contains
EventX

2. If it finds such a subscription, then it determines whether it is a composite event
subscription or not.

3. If it is not a composite event subscription, it forwards the event data and
subscription record to the Filter Manager.

4. If EventX takes part in a composite event,
a. Event Manager runs the Triggering_SQL in the Subscription List,

gets the query results and forwards these results together with event data
and the subscription record to the Filter Manager.

b. If (SQL) table of EventX has been created beforehand, then Event
Manager adds event data to that table. Otherwise, it first creates a new
table for EventX, and then adds event data to that table.

Filter Manager: Carries out actions to see if incoming events, or those stored in
the RuleBase satisfy the filtering conditions of any subscription. If one is found, then
the related event data is entered the Notification Queue.

Notification Manager: Sends notifications that are placed into the
Notification Queue to the target subscriber. If it cannot get in contact with the
subscriber, it stores that particular notification data in the Waiting Notification
Queue, if later notification is required so by the subscriber.

Waiting Notification Manager: If a subscriber reconnects to the system and
requests its waiting notification messages, this manager sends the stored notifications to
the subscriber.

3.2 Subscriber

Subscribers of events determine what types of information they are interested in
and describe them in a form usable by the Event Server. Subscribers have to implement
the Subscriber interface, shown in Figure 7, which consists of single method, notify
that extends the Remote class to enable RMI. The event server issues a remote call to
the notify method of the subscriber to deliver an event. The subscriber is expected to
process the event in the context of this method.

public interface Subscriber extends Remote
{
 public void notify(Event event[]) throws RemoteException;
}

Figure 7: Java definition of the Subscriber Interface

3.3 Publisher
Publishers of information decide on what events are observable, how to name or

describe those events, how to actually observe the event, and then how to represent the
event as a discrete entity. A publisher process is not required to implement a particular
interface. The Event Server address has to be known by the publisher so that it can issue
a remote call to the publish method of the Event Server.

3.4. Rule Definition Language (RDL)

A rule is an expression or function that is evaluated or executed depending on
the occurrence of events. We have developed a language, Rule Definition Language
(RDL), to state rules to aid the specification of a single or a pattern of events in
distributed systems. The grammar of the language is presented in Figure 8, in BNF
notation, with highlighted keywords.

<Rule_def> ::= <rule>| <rule> where <Condition>;
<rule> ::= rule identifier; onEvent <Events>;
<Events> ::= class/interface_type identifier |

 class/interface_type identifier , <Events> ;
<Condition>::= Condition <Boolean_Operator> Condition |

 (Condition) |! Condition | <Exp> <Relation_Operator> Exp>
 | true | false

<Exp> ::= (<Exp>) | <Exp> Arith_Operator <Exp> | identifier
<Arith_Operator> ::= + | - | * | /
<Relation_Operator>::= > | < | >= | <= | == |!=
<Boolean_Operator> ::= and | or

Figure 8: RDL Grammar

4. Event Specification and Event Types
The class Event is the base class of all event classes. It defines common

attributes for all types of events. Figure 9 presents the Java definition of the class Event.

public abstract class Event implements Serializable{

/******* Event attributes *********/
 protected long time; // production time
 protected String eventType; // name of the event
 protected int sequenceNo; // sequence number of the event

/******* Event methods *********/
 public Event() //constructor of the event without parameter
 public Event(long time_, String eventType_, int sequenceNo_)

// constructor of the event with parameter
 public long getTime() //return the production time
 public void setTime(long time_) //set the production time
 public String getEventType() //return the event name
 public void setEventType(String eventType_) //set the event name
 public int getSequenceNo() //return sequence number
 public void setSequenceNo(int sequenceNo_){} //set sequence number

 public String toString() //convert to string expression
}

Figure 9: Java definition of the Event Class

The attribute eventType represents a unique identifier for each event object,
while the time attribute defines the time, relative to the day, when the event is
produced. The sequenceNo attribute is used to control repeating event messages.

 A subscriber specifies the type of event that describes which event it wishes to
be notified of. The class definition of the event extends the base class Event and may
contain additional structures. Figure 10 shows the specification of a sample event type
class named HeatEvent. In addition to the attributed inherited from the Event class, this
class defines a new attribute loc to identify the location of the event produced and value
to represent a measure of some type, for example, temperature reading of a
thermometer.

public class HeatEvent extends Event implements Serializable
{

int loc; // location of the event
double value; // measurement of the temperature

}

Figure 10: An Example of an Event Class

A rule definition is composed of three main parts: the first part sets a unique
identifier for the rule, in the second part the type of event is specified, and in the third
part the requested criteria is declared, in case a filtered or a composite event is being
defined. In RUBCES, it is possible to use rules to define three different event types:
simple events, events with filtering and composite events. In simple events, shown in
Figure 11, subscribers are interested with only one event type.

rule rule1
onEvent HeatEvent h1;

rule rule2
onEvent StockExchangeEvent s1;

Figure 11: Simple Events in RDL

An event-based system may consist of a number of publishers, all of which
produce events that may contain different information. Thus, the number of events
propagated in an event-based system may be quite large. However, a particular
consumer may only be interested in a subset of the events propagated in the system.
Event filters are a means to control the propagation of events. Filters enable a particular
consumer to subscribe to the exact set of events it is interested in receiving. An event
that is delivered uses network bandwidth and CPU processing power on the consumer
side. It is therefore desirable to prevent the delivery of unwanted events. In RUBCES
filtered events are used as shown in Figure 12.

rule rule3
onEvent HeatEvent h1;
where h1.value > 25;

rule rule4
onEvent HeatEvent h1;
where (h1.value > 25 and

 h1.value < 37);

Figure 12: Filtered Events in RDL

Clients may require to be notified on events from multiple sources and may want
to detect a specific pattern of event occurrences from these different publishers. Such a
combination of event occurrences, where a client is interested in a sequence of event
occurrences but not in any of the events alone, is called an event composition.

Intuitively, while a filter selects one event notification at a time, a pattern can select
several notifications that together match an algebraic combination of filters. Composite
events are used in RUBCES as shown in Figure 13.

rule rule5
onEvent Temperature t1,
 Humidity h1
where (t1.value < 27 and
 h1.value < 70)

rule rule6
onEvent HeatEvent h1, HeatEvent h2,
 LightEvent l1;
where
 (h1.value > h2.value + 5)
 and (h1.time > h2.time+5000)
 and l1.lightvalue> 3000);

Figure 13: Composite Event Subscription in RDL

5. Conclusions
In this paper, we have presented RUBCES, an event-based publish/subscribe

system that uses rules to specify events. RUBCES uses a content-based subscription
mechanism that allows user defined event types and allows for subscriber mobility. A
new Rule Definition Language (RDL) is developed and used to specify different types
of events (simple subscription, subscription with filtering and subscription for
composite events). Currently, a prototype system in Java is being implemented. As
future work, we have plans to apply the system in different application domains and
focus on new design decisions to improve its scalability.

References
1. Object Management Group, “CORBAservices: Common Object Service
Specification”, Technical Report, Object Management Group, July 1998.
2. “Java AWT: Delegation Event Model”. Available online at http://java.sun.com/j2se/
1.4.1/docs/guide/awt/1.3/designspec/events.html
3. G. Cugola, E. Di Nitto, and A. Fuggetta, “The JEDI event-based infrastructure and its
application to the development of the OPSS WFMS”, Technical Report, CEFRIEL -
Politecnico di Milano, Italy, August 1998.
4. B. Krishnamurthy and D. S. Rosenblum, “Yeast: A General Purpose Event-Action
System”, IEEE Transactions on Software Engineering, 21(10):845–857, Oct. 1995.
5. A. Carzaniga, “Architectures for an Event Notification Service Scalable to Wide-area
Networks”, PhD Thesis, Politecnico di Milano, Italy, December 1998.
6. P.T.Eusgter, “TypeBased Publish/Subscribe”, PhD Thesis. Ecole Polytechnique
Federale De Lausanne, France, 2001

