
Using Roles with JAWIRO

Yunus Emre Selcuk and Nadia Erdogan

Istanbul Technical University, Faculty of Electrical and Electronic Engineering, Computer Engineering Department,
Maslak, TR-34469, Istanbul, Turkey

selcukyu@itu.edu.tr, erdogan@cs.itu.edu.tr

Abstract
This paper introduces a role model named JAWIRO, which
enhances Java with role support. JAWIRO implements
features expected of roles and adds extended features,
without hampering the performance of method calls. As the
result, JAWIRO provides a better and feasible means to
model dynamically evolving systems.

Introduction
Object oriented programming (OOP) requires that the
relationship between an object and its respective class is
persistent, static and exclusive. This property of OOP
makes it efficient at modeling real world objects that can
be divided into distinct classes where objects never change
their classes. However, the objects within the real world
can display dynamic behavior as they constantly change
and evolve by gaining or loosing some abilities and
responsibilities. An ability or responsibility of a real world
object can be called as a role. In such cases, OOP requires
programmers to define classes that determine the behavior
of each separate role in the modeled system. After these
classes are built, one can use multiple inheritance to create
combination classes which represent the roles that can be
acquired in parallel. Alternatively, one can somehow glue
either the separate classes or the instances of these classes.
All of these choices described above are tedious, if
possible. For example:
• Some OOP languages such as Java do not support

multiple inheritance.
• The combination classes grow exponentially every time

a new role is introduced.
• Gluing entities in class level is restrictive and can require

modifications to the chosen programming language.
 The need of a better way for modeling dynamically
evolving entities has led many researchers to come up with
different paradigms such as prototype-based languages
(Ungar, 1987), dynamic reclassification (Drossopoulou,
2002), subject oriented programming (Wong, 1997),
design patterns (Fowler), etc. A more detailed review of
the problem and proposed approaches for modeling

Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

dynamically evolving entities can be found in (Selcuk,
2003).
 This paper presents a role model implementation,
JAWIRO, which enhances Java with role support for better
modeling of dynamically evolving real world systems.
JAWIRO implements all features expected of roles and
adds extended features, with no or small overhead on the
performance of the application.

Roles and Role Models
The role concept comes from the theoretical definition
where it is the part of a play that is played by an actor on
stage. From the modeling perspective, roles are different
types of behavior that different types of entities can
perform. Kristensen (Kristensen, 1996) defines a role as
follows: A role of an object is a set of properties which are
important for an object to be able to behave in a certain
way expected by a set of other objects.
 Specialization at the instance level is a better approach
than specialization at the class level when modeling
evolving entities. In this case, an entity is represented by
multiple objects, each executing a different role that the
real-world entity is required to perform. When class level
specialization is used, all instances of that particular class
are expected to have the same set of roles. On the other
hand, different entities of the same type can have different
set of roles in instance level specialization. Such
specialization of an object at the instance level by
acquiring new roles or loosing some roles is called object
level inheritance. Role based programming (RBP) is a
paradigm which utilizes roles in this manner and a role
model specifies a style of designing and implementing
roles. Role models provide a mechanism for object level
inheritance while preserving the fact that multiple objects
are used to model a real world entity.
 RBP extends the concepts of OOP naturally and
elegantly. While the class level inheritance elegantly
models the IsA relation, object level inheritance
successfully models the IsPartOf relation (Zendler, 1998).
An entity is modeled with multiple role objects in RBP;
therefore each role object is a part of the real world object.
The role objects can access each other by the means of the
role model, i.e. role switching. As both types of
relationship are required when modeling of real world
systems, both types of inheritance should coexist in an

object-oriented environment. Therefore, many role models
are implemented by extending an object-oriented language
of choice. Some examples for such works are INADA
extending C++ (Aritsugi, 2000), DEC-JAVA extending
Java (Bettini, 2003) and the works of Gottlob et al.
extending Smalltalk (Gottlob, 1996).

An Advanced Role Model for Java: Jawiro
The aim of this work is to implement a powerful role
model which support all features expected of roles without
introducing any restrictions or a significant overhead on
performance. Our role model is named after its purpose:
Extending Java with role support. Java has been chosen as
the base language because even though it has advanced
capabilities that help to its widespread use, it lacks features
to design and implement roles in order to model dynamic
object behaviors.

Role Model of JAWIRO
JAWIRO role model uses a tree representation for
modeling relational hierarchies of roles. A hierarchical
representation enables better modeling of role ownership
relations, while allowing for an elegant and robust
implementation of roles’ characteristics.

Figure 1: The UML schema of JAWIRO API

 The UML schema of JAWIRO API is given in Figure 1.
The Actor class models the real world objects which can
be the root of a role hierarchy. The Role class models the
role objects. The Actor and Role classes implement the
RoleInterface as these two classes share some
characteristics of roles. The aggregate roles, which an
owner can play multiple instances of this type, are
implemented by deriving a namesake class via class-level
inheritance from Role class. The backbone of the role
model is implemented in the RoleHierarchy class,
where each Actor object has one member of this type.
More details on the JAWIRO API can be found in (Selcuk,
2004).

Features of Roles
Definition of the basic features of roles varies slightly
among different researchers such as (Kristensen, 1996) and

(Schrefl, 2004). According to our experience, the basic
features of a role model should contain the following:
• Roles can be gained and abandoned dynamically and

independently of each other.
• Roles can be organized in various hierarchical

relationships. A role can play other roles, too.
• The notion that a real world object is defined by all its

roles is preserved, e.g. each role object is aware of its
owner and the root of the hierarchy.

• An entity can switch between its roles any time it
wishes. This means that any of the roles of an object can
be accessed from a reference to any other role.

• A role can access member variables and methods of
other roles by means of the two previously described
features.

• Class level inheritance can be used together with object
level inheritance.

• Entities can be queried whether they are currently
playing a certain type of role or a particular role object.

• An entity can have more than one instance of the same
role type. Such roles are called aggregate roles and
distinguished from each other with an identifier.

• Different roles are allowed to have member variables
and methods with same names without conflicts.

 These basic features do not cover all that can be done
with roles. JAWIRO implements the following extended
features of roles as well:
• Roles can be suspended and then resumed.
• A role can be transferred to another owner without

dropping its sub roles, e.g. the child roles of this
particular role object in the tree shaped role hierarchy.

• Multiple object level inheritance is supported.
• Any public member variable or method of any

participant of a role hierarchy can be accessed solely by
its name, without a direct reference to its owner. In case
of identical names, the most evolved member is
returned.

• Previously mentioned behavior can be overridden by
setting dominant nodes in a role hierarchy.

• Both consultation and delegation mechanisms are
supported.

• Abnormal role bindings are prevented.
• Persistence is supported, so that users are able to save

entire role hierarchies to secondary storage devices for
later use.

Using JAWIRO
This section illustrates how the roles are used with
JAWIRO in order to demonstrate the capabilities of our
role model. The basic features of roles are covered in the
first subsection and the extended features are covered in
separate subsections.

Using the Basic Features of Roles
To show role usage and the capabilities of JAWIRO, an
example containing two hierarchies is given in Figure 2 is
used by the partial code shown in Figure 3. The first
hierarchy is introduced in (Gottlob, 1996) and the second
hierarchy will be used in the discussion of an extended
feature in the next subsection.

Figure 2: A sample role model containing two intersected
hierarchies. A stereotype shows a superclass from the
JAWIRO API in Figure 1.

The first six lines of the code in Figure 3 declare the
objects to be used. A Person instance and one of its roles
are created in lines 7 and 8, respectively. Then this person
gains the newly created Teacher role in line 9. Line 10
demonstrates the run-time role checking feature. The fully
qualified class name of the role to be searched is required
for the RoleInterface.canSwitch method. If this
check is successful, and it really is in this example, the role
switching is performed and the switched role is executed as
shown in line 11. Note that a type casting is required
before role execution as Java is a strongly typed language.
It is a wise move to check for the role existence first and
then performing the role switching. This does not introduce
a performance penalty as JAWIRO remembers the last
found role with the canSwitch command and returns
directly this particular role if an as command requesting
this role is executed. Another way of role checking and
execution is given in the next subsection.
 The ProfEmeritus class of Figure 2 shows how class
level and instance level inheritances are supported together
in JAWIRO. This class is created via class level
inheritance from the Teacher role, yet it can be a part of
an instance level inheritance relationship by participating
in the first role hierarchy of Figure 2. Lines 13 and 14 of
Figure 3 give such an example. After the person looses the
teacher role in line 12, he is given a ProfEmeritus role
so that he can still teach.

 The association between the Employer and
Employee classes of Figure 2 is demonstrated in lines 15-
20 of Figure 3. The root of the second hierarchy is created
and gained an employer role in the same fashion as a
person gains a teacher role in lines 15-17. A second person,
Tom, is created in line 18, its employee role associated
with the employer instance is created in line 19 and Tom
becomes an employee in the company in line 20.

01: Company coMTCX, coBML; Employer erMTCX;
02: Supplier suBML; Customer cuMTCX, cuTom;
03: Person peTom, peGordon;
04: Teacher teGordon; ProfEmeritus prGordon;
05: ProjectManager pm1, pm2;
06: Employee eeTom, eeGordon;
07: peGordon = new Person("Gordon Freeman",

"637-252"); //Name and home phone
08: teGordon = new Teacher("Physics");
09: peGordon.addRole(teGordon); //Gordon

becomes a physics teacher.
10: if(peGordon.canSwitch (

"examples.Teacher")) { //Run-time role
checking, 1st way.

11: ((Teacher)peGordon.as(
"examples.Teacher")).advice(); }
//Role switching: Person->Teacher.

12: teGordon.resign(); //Gordon retires,...
13: prGordon = new ProfEmeritus(teGordon);
14: peGordon.addRole(prGordon); //... but

becomes a Professor Emeritus.
15: coMTCX = new Company("Metacortex");
16: erMTCX = new Employer();
17: coMTCX.addRole(erMTCX); //Metacortex is

ready to enlist.
18: peTom = new Person("Thomas Anderson",

"843-663");
19: eeTom = new Employee(erMTCX,"628-749");
20: peTom.addRole(eeTom); //Tom is enlisted.
21: pm1 = new ProjectManager("Virtual

Reality","VR");
22: eeTom.addRole(pm1); //Tom leads the VR

project.
23: pm2 = new ProjectManager("Artifical

Intelligence","AI");
24: eeTom.addRole(pm2); //Tom leads the AI

project, too.

Figure 3: Sample code for using the basic features of roles.

package examples;
import jawiropf.AggregateRole;
public class ProjectManager extends
AggregateRole {
String projectName;
public ProjectManager(String p,String id)
{ super(id); projectName = p; }

 //code for the rest of the class
}

Figure 4: Partial code of the ProjectManager class.

Lines 21 through 24 demonstrate the aggregate roles.
When an aggregate role is coded, the coder must write a
constructor with a parameter for the identifier of this
instance and call the superclass’ constructor. Figure 4
demonstrates this process

Using the Extended Features of Roles
The sample code in Figure 5 demonstrates the use of the
extended features in JAWIRO. This code follows the code
in Figure 3 as it can be understood from the line numbers.

25: eeGordon = new Employee(erMTCX,"628-

749"); //Gordon is enlisted.
26: eeGordon.suspend(); //Gordon is on

vacation.
27: eeGordon.resume(); //Gordon is back.
28: pm2.transfer(eeGordon); //Lead of AI

team is now Gordon.
29: coBML = new Company("Black Mesa Labs",

"BML");
30: suBML = new Supplier();
31: coBML.addRole(suBML);
32: cuMTCX = new Customer(suBML);
33: coMTCX.addRole(cuMTCX); //MTCX becomes a

corporate customer of BML.
34: cuTom = new Customer(suBML);
35: peTom.addRole(cuTom); //Tom becomes a

personal customer of BML.
36: if(coMTCX.canSwitch(

"examples.Customer")) {
37: ((Customer)erMTCX.as(

"examples.Customer")).buy(3); }
 /* Role switching: Employer->Customer
 * MTCX buys 3 goods */
39: if(peTom.canDelegate(cuTom)) { //Run-

time role checking, 2nd way.
40: cuTom.buy(4); } //Direct execution of

role,no need for switching as we saw
peTom plays cuTom.

41: peTom.enableDelegation(true);
42: peTom.useConsultation();
43: ((ProfEmeritus)eeTom.as(

"examples.ProfEmeritus")).advice();
44: peTom.useDelegation();
45: ((Person)eeTom.as(

"examples.person")).reportIncident();
46: System.out.println(prTom.bringMember(

"projectLog"));
47: peTom.executeMethod("advice",null);
48: PersistenceManager pm;
49: pm = new PersistenceManager(

"C:\\Temp\\","test05");
50: pm.register(peTom,"key_tom");
51: pm.upload(peTom,"key_tom");

Figure 5: Using the extended features of roles with Jawiro.

 Some of the extended features of roles are quite straight-
forward to use. Lines 25 through 28 of Figure 5 give

examples to such features. The vacation leave of an
employee could be coded by letting this person loose this
role and then regaining it. However, this coding means that
this person is actually fired in the real world. Moreover,
resigning from a role also means that its subroles are lost.
A suspended role does not loose its subroles and it can
easily be suspended. Just like the same fashion, a role can
be transferred to another owner with just one command
without loosing its subroles. Other extended features of
roles need be examined in more detail.
Member Variable and Method Access by Name. This
feature makes it possible to access a member variable or
method of an object which participates in a role hierarchy,
without explicitly referencing the actual object. In this
case, referencing any participant of the role hierarchy is
sufficient. This feature is implemented in JAWIRO with
the Object bringMember(String name) method,
as seen in line 46 of Figure 5. Although the String
projectLog member belongs to ProjectManager
class, it is accessed from a Person instance without ever
mentioning either the class or the instance which owns the
member we need.
 If multiple member variables have the same name, the
most evolved participant’s member is returned. However,
dominant participants override this behavior, as examined
in the next section. Member variable is returned by value
and primitive types are supported only via their respective
wrappers. The method bringLocalMember(String
name) proceeds in the same manner as well, except that it
searches for the desired member only within the participant
it belongs to.
 Member methods are accessed in the same fashion. Line
47 of Figure 5 gives an example for this feature. Unlike
member variables, member methods are accessed by
reference in JAWIRO and these methods change the
internal state of the object they belong to. These rules are
dictated by the reflection API of Java, which is used in the
Object executeMethod(String name, Object[]
parameters) and executeLocalMethod methods of the
RoleInterface. The result returned by the executed
member method is forwarded via the object returned from
these calls.
Dominant Participants in a Role Hierarchy. The
methods bringMember and executeMethod described
above search the entire role hierarchy and find the most
evolved member. However, this behavior can be
overridden by setting some participants as dominant via
their dominateSearch(boolean dominate) method.
When an Actor object is dominant, it searches the
requested member firstly in itself and returns immediately
if the search succeeds. Otherwise, the rest of the role
hierarchy is searched. A dominant Role object acts
likewise, but only when the root of its role hierarchy is not
also dominant. Otherwise the search order is first the root,
then itself, and finally the rest of the role hierarchy. Neither
the delegation nor the consultation mechanism, which will
be discussed later, affects this procedure.

Multiple Object Level Inheritance. JAWIRO supports
multiple object-level inheritance, where owners from
different classes are allowed to play the same type of role
object. This will not cause any logical ambiguities since
only one owner can play a particular role instance at the
same time. Moreover, the ability of accessing member
methods and variables presented above removes the typing
ambiguities. The Customer role of Figure 2 is an
example as both Person and Company instances can
have a role of this type. Lines 29 through 35 of Figure 5 set
up a scene for demonstrating this feature. A second
company, BML, is created and given the supplier role in
lines 29-31. Lines 32 and 33 make the previous company,
MTCX, a customer of BML. A person, Tom, also becomes
a customer of BML in lines 34 and 35. Afterwards, both
the person and the company can buy from their common
supplier. However, the buying operations are done
differently in lines 37 and 40 in order to show the reader
the different ways of role checking and role execution.
 Implementation of the Customer class is given in
Figure 6 in order to show how the typing ambiguity is
removed by the ‘member method access by name’ feature.

public class Customer extends Role {
Supplier supplier;
Object[] params;
public Customer(Supplier s) {
 supplier = s; }
public void changeCustomer(Supplier s) {
 supplier = s; }
public void buy(int s) {
 params = new Object[1];
 params[0] = new Int(s);
 supplier.sell(s);
((RoleInterface)playedBy())

.executeLocalMethod
("buy",params);

 }}
Figure 6: Implementation of a class that uses multiple
object level inheritance.

Prevention of Role Binding Anomalies. The following
precautions are hard-coded into the role model in order to
prevent abnormal role bindings:
• A role instance is not added to a hierarchy where that

instance already exists.
• A suspended role cannot be used with commands of

JAWIRO API, e.g. it cannot be transferred or switched.
• A role instance can participate in only one hierarchy at

the same time.
 JAWIRO also allows users to take additional
precautions by defining a constraint manager. The role
model implements this mechanism via the strategy design
pattern (Gamma, 1994). If a constraint manager is assigned
via Actor.setConstraintStrategy method, it will be
invoked before each addRole, resign, suspend and
resume command to approve the operation. If the manager
implemented by the user doesn’t approve the operation, the

operation is cancelled. The interface that a constraint
manager should implement is given in Figure 7.

public interface ConstraintStrategy {
public boolean approveAddRole(String

parentClassName,String childClassName);
public boolean approveResign(String

parentClassName,String childClassName);
public boolean approveSuspend(String

parentClassName,String childClassName);
public boolean approveResume(String

parentClassName,String childClassName);
}
Figure 7: The interface for constraint managers.

Delegation or Consultation? By default, JAWIRO works
with the consultation mechanism (Bettini, 2003) shown in
Figure 8a, where the implicit this parameter points to the
object that the method call has been forwarded to.
JAWIRO supports the alternative mechanism as well,
where the implicit this parameter points to the original
receiver of the message. This is called the delegation
mechanism and shown in Figure 8b.

Figure 8: Delegation (a) and consultation (b) mechanisms.

 JAWIRO allows switching between consultation and
delegation mechanisms at will. Both Actor and Role
classes have an Object member named self. The as role
switching command assigns either the former receiver of
the message or the latter to the self member variable of the
final recipient of the message, according to the current
mode of operation.
 Enabling the delegation mechanism creates a small
overhead to the role switching operations of JAWIRO,
even if the consultation mechanism is used. Therefore,
delegation mechanism is disabled by default. Additionally,
execution time of a command is longer with delegation and
shorter with consultation. Therefore, users need to
explicitly state that they will use delegation instead of
consultation in a given time. This is done by first calling
the Actor.enableDelegation(true) method. Then
one can switch to either the delegation mode by the
Actor.useDelegation() call or to the consultation
mode by the Actor.useConsultation() call.
 Delegation and consultation mechanisms should not be
mutually exclusive, as both mechanisms may be needed for
better modeling of a real-world system. Lines 41 through
46 of Figure 5 give two examples. The role switching
operation in line 43 uses consultation. Both Employee
and ProfEmeritus classes of Figure 2 have a skill
variable and an increaseSkill method. The advice
method of both classes calls the increaseSkill

method, which in turn increases the skill variable.
Remember from the code in Figure 3 that our professor,
Tom, is also an employee of the company MTCX. Current
scenario suggests that Tom is in the company at the time
being but he is required to give an academic advice to a
student. This means that we need switching from the
employee role to the professor role. The consultation
mechanism should be used in this case in order to have
Tom’s academic skill increased, which is
ProfEmeritus.skill. On the other hand, the role
operation in line 45 of Figure 5 uses delegation. The
Person class of Figure 2 has the reportIncident
method, which reports an incident to authorities. This
method requires the person to give his/her phone number.
If this person is in the office when the incident happens,
one needs to switch to Person role from Employee role,
to use delegation to report the incident and give the number
of the office. Otherwise, home phone would be stated.
Persistency in JAWIRO. Persistence capability is added
to JAWIRO, so that users are able to save entire role
hierarchies to secondary storage devices for later use. The
PersistenceManager (PM) class is responsible from
secure storage and retrieval of role hierarchies. A PM
instance has a persistency table where an entry for Actor
each instance that needs to be persistent is kept. The
persistency table is stored in an encrypted file. The
following information is automatically generated and kept
in the table:
• The class name of the Actor object,
• The name of the file where the Actor object is (to be)

serialized.
• The name of the file where the information about the

role hierarchy is kept. This file is called the information
file and it is encrypted as well.

 If persistency is needed in an application, the first task to
do is to create a PM instance by using the
PersistenceManager(String path, String name)
constructor, as seen in line 49 of Figure 5. If the given
persistency file does not exist, PM creates a new file. The
second task is to register the root of the hierarchy with the
PersistenceManager.register (Object anActor,
String key) method, as seen in line 50 of Figure 5. The
PM instance saves the persistency table after each
registration. The final task for the programmer is to upload
the root of the hierarchy to the PM instance with the
correct key, given in the previous step. This is
demonstrated in line 51 of Figure 5. JAWIRO handles the
rest of the procedure as follows:
• The PM instance serializes the Actor object to disk and

encrypts the file.
• The Actor.hierarchy member serializes the rest of

the hierarchy and encrypts all files. It creates the
encrypted information file, too.

• The PM instance encrypts all created files with the 64-
bit DES algorithm.

 If a role hierarchy is no longer needed to be persistent,
the public void PersistenceManager.unregister

(String key) method is used. This method removes the
Actor object with the given key from the persistence
table and deletes all associated files from the disk.
 When a persistent role hierarchy is needed later, the user
creates a PM instance and a new instance of the root class
and then uploads the entire hierarchy by using the public
Object PersistenceManager.download (String
key) method, provided that the correct key is given.
Figure 8 gives an example of how this is done. JAWIRO
handles the rest of the procedure as follows:
• The root instance is deserialized from the secondary

storage.
• The PM instantiates and deserializes the role objects

belonging to the rest of the hierarchy.
• The PM instance adds the role objects to the role

hierarchy in correct order.

PersistenceManager pm;
Person peTom = new Person();
pm = new PersistenceManager(

"C:\\Temp\\","test05");
peTom = (Person) pm.download("key_tom");

Figure 8: Sample code for loading a role hierarchy.

Performance of JAWIRO
Although JAWIRO enables better modeling of dynamic
systems by implementing all basic and extended features of
roles, the performance issues should not be omitted. The
extended features of roles are not required by every real
world system. Therefore we should investigate whether
using the basic features of roles JAWIRO is feasible or not
from a performance perspective.
 The benchmarking code first creates a role hierarchy
with a given depth and degree. The tree representing the
hierarchy is a balanced one. The benchmarking code then
executes commands representing the basic features of
roles. In order to see how changes in the size of a role
hierarchy affect performance, we should be able to create
hierarchies with arbitrary depth and degree. This need
leads to arbitrary number of role objects as well. Even trees
with small values of depth and degree can lead to
thousands of role objects. It is practically impossible to
create such great numbers of different role classes.
Therefore, we’ve used aggregate roles. The results of our
benchmarks are given in Table 1. They are obtained by
using an Intel platform with 2.8GHz Pentium 4 CPU, i865
chipset, 512MB RAM and JDK 1.5.0.

The first stage of the benchmark code is to create the
necessary role objects. This is a regular object creation
process and not closely related to the performance of
JAWIRO.

The second stage is the building phase of the role
hierarchy where the role objects created in the first stage
are added to appropriate owners so that the resulting tree is
balanced. Regardless of the hierarchy depth, JAWIRO
introduces virtually zero overhead in this stage.

Overhead of a role checking operation is measured in
the third stage. This overhead grows exponentially as the
hierarchy depth grows. However, the overhead introduced
by JAWIRO is still neglible as it is only 0.055
milliseconds. The results of the fourth stage are similar as
well, where the overhead of a role switching command is
measured.

The fifth stage of the benchmark measures the overhead
introduced by JAWIRO when executing roles. The roles
are lightweight for eliminating the execution overhead of
the JVM itself. The roles only add a character to the end of
a String member variable of theirs. The results show
that the method execution overhead introduced by
JAWIRO is virtually zero and it is independent from the
size of the role hierarchy.

Degree=3
(constant)

Average Execution Time
(msec.)

Depth 4 5 6 7

ops.

Create
members 0.040 0.037 0.045 0.044 n

Add
roles 0.000 0.013 0.013 0.011 n

Role
checking 0.003 0.006 0.018 0.055 n2

Role
switching 0.004 0.006 0.018 0.055 n2

Role
execution 0.000 0.003 0.009 0.002 n

Switching
execution 0.002 0.007 0.023 0.075 n2

B
en

ch
m

ar
k

St
ag

es

Checking
switching
execution

0.003 0.008 0.038 0.099 n2

n = 39 120 363 1092
n2 = 1521 14400 131769 1.2x106

Table 1: Benchmark results. n represents the number of the
role objects in the hierarchy and #ops represents how many
times the command is executed.

Overhead of role switching and execution is measured in

the sixth stage. This means the execution time of a role
with an as command, similar to line 11 in Figure 3. The
results of this stage are exponential like the third stage and
it is still a neglible value.

The latest stage of the benchmark measures the overhead
of role checking, switching and execution, similar to lines
10 and 11 in Figure 3. Even with more than one million
operations in a role hierarchy that contains 1092 role
objects, the overhead introduced by JAWIRO is less than
one percent of a millisecond.

Related Work
As role models proved themselves valuable in modeling
dynamic systems, there is a considerable amount of work
in the literature. This section gives a brief overview of
recent role models.
 INADA (Aritsugi, 2000) is an extension of C++ with
role support in a persistent environment where every type
is equal to a role. The limitations of INADA are its
inability to support aggregate roles and the non-existence
of methods for run-time type control. Moreover, Roles are
presented in a set based fashion, which is a weaker
representation than the relational hierarchy of roles. Other
basic features of roles are supported by INADA.
 DEC-JAVA (Bettini, 2003) bears inspirations from the
decorator design pattern (Gamma, 1994) and adds its own
syntax for declaring roles. DEC-JAVA relies on dynamic
specialization of methods and it is still in prototype stage.
 The role model proposed by Schrefl and Thalhammer
(Schrefl, 2004) is an elegant and flexible one that supports
all primary characteristics of roles. Using the basic features
of roles in JAWIRO is similar with Schrefl’s model.
However, the extended features discussed in previous
section are not available in Schrefl’s role package. This
role model is based on a previous work in Smalltalk
(Gottlob, 1996).
 The focus of Lee and Bae’s work (Lee, 2002) is
preventing the violation of structural constraints and
abnormal role bindings. When a core (actor) object has
multiple roles, individual role objects are grouped into one
big, composite role. This prevents a hierarchical relation
between roles. Moreover, supporting aggregate roles in
Lee and Bae’s model is impossible. The final drawback of
that model is the missing Select composition rule. When
there are name conflicts (a primary feature of roles)
between two roles that form a composite role, this rule
enables selection of the necessary attributes and methods
according to the role state at run-time.

 JAWIRO (Schrefl, 2004) (Aritsugi, 2000) (Bettini, 2003) (Lee, 2002)
Base language Java Java C++ Java Java
Aggregate roles + + – + –
Hierarchy support + + – + –
Run-time role checking + + – – –
Object level multiple inheritance + – – – –
Member/method access without
referring its owner. + – – – –

Preventing role binding anomalies + – – – +
Persistency + – + – –

Table 2: Feature based comparison of recent role models.

Results and Future Work
JAWIRO is currently, to the best of our knowledge, the
only role model which has complete support for both the
basic and the extended features of roles. Table 2 gives a
feature comparison of the current role models introduced in
the previous section. On the performance side, the
execution overhead introduced by JAWIRO is virtually
zero. JAWIRO role model is available for download from
http://www.yunusemreselcuk.com/jawiro/index.html. The
API documentation and some examples are also available
at this URL.
 Future work will be determined mostly by the needs
which will arise when JAWIRO is incorporated in current
and future software projects. One particular feature of
JAWIRO which is open for future enhancements is the
persistency feature. Currently JAWIRO uses unorthogonal
persistency; using orthogonal persistency will introduce
benefits such as simpler semantics and incremental
evolution (Atkinson, 1995).

References
Aritsugi, M., and Makinouchi, A. 2000. Multiple-Type
Objects in an Enhanced C++ Persistent Programming
Language. Software - Practice and Experience. 30/2: 151–
174
Atkinson, M., and Morrison, R. 1995. Orthogonally
Persistent Object Systems. VLDB Journal. 4: 319–401
Bettini, L., Capecchi, S., and Venneri, B. 2003. Extending
Java to Dynamic Object Behaviours. Electronic Notes in
Theoretical Computer Science. 82/8
Drossopoulou, S., Damiani, F., and Dezani-C., M. 2002.
More dynamic object reclassification: Fickle. ACM Trans.
Programming Languages and Systems, 2:153-191.
Fowler, M. Dealing with Roles. Unpublished paper. In
http://martinfowler.com/apsupp/roles.pdf
Gamma, E. et al. 1994. Design patterns elements of
reusable object oriented software. AddisonWesley.
Gottlob, G., Schrefl, M., and Röck, B. 1996. Extending
object-oriented systems with roles. ACM Trans. on
Information Systems. 14/3:268–296
Kristensen, B.B. 1996. Conceptual Abstraction Theory and
Practical Language Issues. Theory and Practice of Object
Systems. (2)3
Lee, J-S., and Bae, D-H. 2002. An enhanced role model for
alleviating the role-binding anomaly. Software - Practice
and Experience, 32:1317–1344.
Schrefl, M., and Thalhammer, T. 2004. Using roles in Java.
Software-Practice & Experience. (34): 449–464.
Selcuk, Y.E., and Erdogan, N. 2003. How to solve the
inefficiencies of object oriented programming: A survey
biased on role-based programming. In 7th World
Multiconf. on Systemics, Cybernetics and Informatics.

Selcuk, Y.E., and Erdogan, N. 2004. JAWIRO: An
Extended Role Model for Java. In Int'l. Conf. on
Computational Intelligences.
Ungar, D., and Smith, R.B. 1987. Self: The power of
simplicity. In Proc. ACM Conf. on Object Oriented
Programming Systems, Languages and Applications.
Wong, R.K., et. al. 1997. A Data Model and Semantics of
Objects with Dynamic Roles. In IEEE Int’l Conf. On Data
Engineering.
Zendler, A.M. 1998. Foundation of the Taxonomic Object
System. Information and Software Technology. 40:475-
492.

