
AGVENT: AGENT BASED DISTRIBUTED EVENT SYSTEM  

Ozgur Koray SAHINGOZ1, Nadia ERDOGAN2 

1 Air Force Academy, Computer Engineering Department, Yesilyurt, Istanbul, TURKEY, 
o.sahingoz@hho.edu.tr  

2 Istanbul Technical University, Electrical-Electronics Engineering Faculty,  
Computer Engineering Department, Ayazaga, 80626, Istanbul, TURKEY 

erdogan@cs.itu.edu.tr  

Abstract. In recent years, a growing attention has been paid to the 
publish/subscribe communication paradigm as a means for disseminating 
information, also called events, through distributed systems on wide-area 
networks. As it allows events to be propagated in a way that is completely 
hidden to the component that has generated them as well as to its receivers, it is 
particularly interesting when easy reconfiguration and decoupling among 
components in a distributed system is required. The historical development of 
publish/subscribe systems has followed a line which has evolved from channel-
based systems, to subject-based systems, next content-based systems and finally 
object-based systems. In this paper, we propose a new model for agent based 
distributed events systems, the Agvent System, which combines the advantages 
of publish/subscribe communication and mobile agents into a flexible and 
extensible distributed execution environment. The Agvent system exploits 
mobile agents as mediators between participants of an event based distributed 
system. 

1   Introduction 

In the traditional client/server computing model, which is used in RPC and RMI, 
communication is typically synchronous, tightly coupled and point-to-point. Clients 
invoke a method on the remote server and wait for the response to return. This type of 
communication requires clients and servers to have some prior knowledge of each 
other. With the use of mobile and/or large-scale systems, the need for asynchronous, 
loosely coupled and point to multipoint communication pattern arises. The 
publish/subscribe paradigm serves these needs. Event models are application 
independent infrastructures that satisfy communication requirements of such systems. 
Event-based communication generally implements the publish/subscribe model. A 
publish/ subscribe system consists of a set of clients that asynchronously exchange 
notifications, decoupled by a dispatch service, which is interposed between them. 
Clients can be characterized as producers or consumers. Producers (publisher) publish 
notifications, such as current stock quotes, and consumers (subscribers) subscribe to 
notifications by issuing subscriptions, which are essentially stateless message filters. 

To receive event data, subscribers register to an event service with the definitions 
of the events they are particularly interested in. A definition can include a simple 



 

subscription message, a subscription message with filtering on events or a 
subscription message for composite events [1]. 

In this paper, we present an agent based distributed event system, the Agvent 
(Agent event) system, which exploits mobile agents as mediators between publishers 
and subscribers of events. The Agvent system implements the publish/subscribe 
protocol, thus enabling many-to-many interaction of loosely coupled entities. It also 
allows publishers and subscribers to dynamically connect and disconnect from the 
system, a capability that extends the flexibility of the working environment.  

The rest of this paper is organized as follows. In the next section, we present a 
classification of publish/subscribe systems with references to related work. Section 3 
introduces the design decisions and framework of Agvent system. Our conclusions 
are presented in Section 4. 

2   Publish/Subscribe systems 

Publish/subscribe programming paradigm is characterized by the complete 
decoupling of producers (publishers) and consumers (subscribers). The event service 
that provides message transfers between publishers and subscribers can be 
decomposed along three dimensions, time decoupling, space decoupling, flow 
decoupling. Publish/subscribe systems can be classified into four groups according to 
their subscription mechanism. Each one is discussed in detail below, with references 
to representative work. 

Channel-based subscriptions: The simplest subscription mechanism is what is 
commonly referred to as a channel. Subscribers subscribe or listen to a channel. 
Applications explicitly notify the occurrence of events by posting notification to one 
or more channels. The part of an event that is visible to the event service is the 
identifier of the channel to which the event has been sent. Every notification posted to 
a channel is delivered by the event service to all the subscribers that are listening to 
that channel. The abstraction of the channel resembles to the one given by a mailing 
list. A user sends an e-mail to an address, and the message is forwarded to those who 
have registered to that mailing list. CORBA Event Service [2] adopts a channel-based 
architecture. Another widely used channel based model is the Java Delegation Event 
Model [3], which encapsulates events from the platform's Graphical User Interface.  

Subject-based subscription: Some systems extend the concept of a channel with a 
more flexible addressing mechanism that is often referred to as subject-based 
addressing. In this case, an event notification consists of two different parts: a well-
known attribute, the subject that determines the address, which is followed by the 
remaining information of the event data. The main difference with respect to a 
channel is that subscriptions can express interest in many subjects/channels by 
specifying some form of expression to be evaluated against the subject of a 
notification. This implies that a subscription may define a set of event notifications, 
and two subscriptions may specify two overlapping sets of notifications. This, in turn, 
implies that one event may match any number of subscriptions. 

JEDI [4] adopts the subject-based subscription mechanism. In JEDI, an event is 
given in the form of a function call, where the first string is the function/event name 



 

followed by parameters, e.g., “print (tez.doc, myprinter)”. Each event is labeled with a 
subject. Subscriptions are specified with an indication of the subject of interest 

Content-based subscription: By extending the domain of filters to the whole 
content of notifications, some researchers obtain another class of subscriptions called 
content-based [6]. Content-based subscriptions are conceptually very similar to 
subject-based ones. However, since they can access the whole structured content of 
notifications, an event server gets more freedom in encoding the data upon which 
filters can be applied and that the event service can use for setting up routing 
information. Examples of event systems that provide this kind of subscription are 
Yeast [5] (uses a centralized structure) and SIENA [6]. In SIENA, an event 
notification is a set of attributes in which each attribute is a triple, as in “attribute = 
(name; type; value)”. Attributes are uniquely identified by their names. An event filter 
defines a class of event notifications by specifying a set of attribute names and types 
and some constraints on their values, e.g., “attr filter = (name; type; operator; value)”. 

Type-based subscription: Type based publish/subscribe model [7], proposed by 
Eugster, is a new model of subscription that has been developed to access event data 
in a more structured manner. Events are often viewed as low-level messages, and a 
predefined set of such message types are offered by most systems, providing very 
little flexibility. To overcome this deficiency, type-based publish/subscribe 
mechanism manipulates events as objects, called obvents. The core idea underlying 
this integration consists in viewing events as first class citizens, and subscribing to 
these events by explicitly specifying their type. So an application-defined event data 
can be used in the event system. 

The main problem in large-scale publish/subscribe systems is routing notifications 
from producers to interested consumers. In [8], Gero Mühl tests different routing 
algorithms, such as flooding, simple routing, identity based routing, covering-based 
routing and merging-based routing, in its large scale publish-subscribe system. Both 
in this and previously described publish/subscribe systems, events are designed as 
simple event messages and dispatching these messages is the duty of event servers. A 
novel feature of the new model we propose for a distributed event system is that, it 
defines an event as a first class citizen of the system and gives it the autonomy and 
mobility to select and travel between system components. 

3. AGVENT SYSTEM  

The Agvent System is an agent based distributed event system whose framework is 
shown in Figure 1. The system consists of three main components: publishers that 
submit information to the system, subscribers that express their interest in specific 
types of information and a dispatch service, which is responsible for dispatching the 
incoming agvents. Our goal is to combine two developing technologies, mobile agents 
and the publish/subscribe communication paradigm, in order to benefit the advantages 
of both. The advantages derived from the general characteristics of the 
publish/subscribe paradigm are the following [9].  

• Space Decoupling: producers do not need to address consumers and vice versa. 
Instead, consumers simply specify the notifications they are interested in. This 



 

loosely coupled approach facilitates flexibility and extensibility because new 
consumers and producers can be added, moved, or removed easily.  

• Flow Decoupling: communication is asynchronous, thereby removing the 
disadvantages and inflexibility of synchronous communication described above.  

• Time Decoupling: producers and consumers do not need to be available at the 
same time. This means that a subscription causes notifications to be delivered 
even if producers join after the subscription was issued.  

 

 

Fig. 1. Framework of the Agvent System 

We want to add the general properties of software agents to this system [10]. 
• Autonomy: Agents should be able to perform the majority of their problem 

solving tasks without the direct intervention of humans or other agents, and they 
should have a degree of control over their own actions and their own internal 
state  

• Social Ability: Agents should be able to interact, when they deem appropriate, 
with other artificial agents and humans in order to complete their own problem 
solving and to help others with their activities. This requires that agents have, as 
a minimum, a means by which they can communicate their requirements to 
others and an internal mechanism for deciding when social interactions are 
appropriate (both in terms of generating appropriate requests and judging 
incoming requests). 

• Reactivity: Agents should perceive their environment (which may be the 
physical world, a user via a graphical user interface, a collection of other agents, 
the INTERNET, or perhaps all of these combined) and respond in a timely 
fashion to changes, which occur in it. 

• Proactiveness: Agents should not simply act in response to their environment; 
they should be able to exhibit opportunistic, goal-directed behavior and take the 
initiative where it is appropriate. 

The system applies the capabilities of agents stated above to real-world “entities” 
on whose behalf they operate, whether that entity is a person, a place, or even a less 
concrete notion like an organizational group. 

 The Agvent system integrates mobile agent technology with publish/subscribe 
communication to reach a new model for agent based distributed system. It differs 
from other distributed event systems with its distinct characteristics that are described 
below. 

Dispatch Service Event 
Server 

agvent 

Event 
Server 

Event 
Server 

Event 
Server 

Event 
Server 

Event 
Server 

S1 

S3 

S2 

S4 

P1 

P2 

Pi: Publisher 
Si: Subscriber 



 

a) Autonomous Events. Events are not viewed as simple messages. In most event 
systems, events are defined as low-level messages, which consist of record-like 
structures, list of strings, tuple-based structures, etc. In type-based systems, 
events are defined as objects and viewed as first class citizens. Nevertheless, 
they are not autonomous. 

    In the Agvent System, events are represented by mobile agents that have their 
own goals, beliefs and behaviors that are loaded to agvents when they are 
created. When an agvent reaches to an event server, it examines the routing table 
of the server and selects its targets autonomously. This approach reduces the 
load and complexity of event servers a great deal. 

b) Agvent Based Subscription: In most distributed event systems, Subscribers 
register on a channel or on a specific topic.  

 In the Agvent System, subscribers register on agvent types. For example, a 
subscriber can register on an agvent, which is an instance of “Agv_type1” class.  

c) Information Hiding. In previously developed event systems, an event server can, 
actually has to, access the content of the published event data before it can 
dispatch the data to the registered targets.  

 In the Agvent System, the published agvent itself searches the knowledge base 
of the event server, selects the registered subscribers, clones itself and sends 
each agent clone to a subscriber on the selected list. Therefore, the event server 
has no access to the content of the published event data, which simplifies its role 
and consequently facilitates the server development process. Information hiding 
also meets requirements of certain applications where confidentiality of event 
data is essential. 

d) User/Application defined event (agvent) types: Distributed event systems 
generally use predefined event types. Therefore, to add a new event type you 
have to make programmatic changes in dispatch service, publisher, and 
subscriber sites. 

 In the Agvent system, a publisher creates its own agvent type and registers it on 
the dispatch service. Once an agvent type is defined, subscribers can subscribe 
on agvents of that type.  

 
Participants of the Agvent System follow two different models: the publication 

model and the subscription model.  

3.1. Publication model:  

The publication model defines data model for publishable event data. In most 
distributed event systems, this model should classify services according to the 
following parameters: 

• structure: characterizes the structure of notifications. Typical publications can be 
classified as unstructured, lists of strings, record-like structures with positional 
or name-based identification of attributes, recursive structures, such as LISP 
expressions or XML documents, and composite publications, made of digests of 
other publications 



 

• types: predefined domains of values. Typical type classifications would be 
binary or string, simple atomic types (such as integers, dates, booleans), and 
typed structures, that is, structures whose combination of fields constitute a type 
in itself. 

• limits: total byte size, number of attributes, limits for types (string length, integer 
sizes or ranges of values), and number and depth of sub-structures. 

The Agvent System uses mobile agents [11, 12] for searching, retrieving and 
dispatching event data. There are at least seven main benefits of using mobile agents. 

a) They reduce the network load. Mobile agents allow users to package a 
conversation and dispatch it to a destination host where interactions take place 
locally. 

b) They overcome network latency. Mobile agents offer a solution, because they 
can be dispatched from a central controller to act locally and execute the 
controller’s directions directly. 

c) They encapsulate protocols. Mobile agents, on the other hand, can move to 
remote hosts to establish channels based on proprietary protocols. 

d) They execute asynchronously and autonomously. Mobile devices often rely on 
expensive or fragile network connections. Tasks requiring a continuously open 
connection between a mobile device and a fixed network are probably not 
economically or technically feasible. To solve this problem, tasks can be 
embedded into mobile agents, which can then be dispatched into the network. 
After being dispatched, the agents become independent of the process that 
created them and can operate asynchronously and autonomously. The mobile 
device can reconnect at a later time to collect the agent. 

e) They adapt dynamically. Mobile agents can sense their execution environment 
and react autonomously to changes.  

f) They are naturally heterogeneous. Mobile agents are generally computer- and 
transport- layer-independent (dependent on only their execution environments), 
they provide optimal conditions for seamless system integration. 

g) They are robust and fault-tolerant. Mobile agents’ ability to react dynamically to 
unfavorable situations and events makes it easier to build robust and fault-
tolerant distributed systems.  

Publishers are responsible of creating agvents. When a publisher decides to create 
a new agvent, it defines the agvent’s goals, beliefs and behaviors. After that, it sends 
this agvent to the Dispatch Service over an Event Server to which it is connected (as 
depicted in Figure 1). Event Servers and publishers provide a platform for incoming 
agvents to run autonomously.  

3.2. Subscription model:  

Subscription model defines the selection capabilities of the publish/subscribe service. 
In designing a subscription model, the following properties should be considered in 
detail.  

• scope: defines what parts of a publication can be evaluated and selected within 
subscriptions.  



 

• language power: characterizes the language that defines subscription in terms of 
its expressive power.  

• language style: either declarative or imperative 
• other features: extensibility (for example, by means of plug-ins), useful special 

operators such as a “certificate-based authentication” predicate that would select 
all the publication that a client can successfully authenticate. 

The expressiveness of the subscription model is crucial for both the flexibility and 
the scalability of a notification service. Insufficient expressiveness can lead to 
unnecessary broad subscriptions stressing the network and raising the need for 
additional consumer-side filtering. On the other hand, scalable implementations of 
more expressive description models require complex delivery strategies [14]. 

In the Agvent System, we follow the rule based subscription model [1, 13], which 
uses the Rule Definition Language (RDL), whose grammar is shown in Figure 2.a. In 
this model, a rule is an expression or function that is evaluated or executed depending 
on the arrival of an agvent. It also defines necessary subscription information and the 
filtering conditions of the subscribers. 

 
rule rule_1 
onAgvent Agv1  
 
 
 
b. Simple Subscription 
 
 

<Rule_def> ::=  <Rule>| <Rule> where <Condition>  
<Rule>        ::=  rule identifier  
  onAgvent <Agvents> 
<Agvents>   ::= class/interface_type identifier |  
  class/interface_type identifier, <Events>  
<Condition>::=Condition <Boolean_Operator> Condition  
  | (Condition) |! Condition  
  | <Exp> <Relation_Operator> <Exp>  
  | true |  false 
<Exp>      ::=  ( <Exp> ) | identifier  
  |  <Exp> Arith_Operator <Exp>  
<Arith_Operator>     ::= + | - | * | /  
<Relation_Operator>::= > | < | >= | <= | == |!= 
<Boolean_Operator>::=  and | or 
 

a. The grammar of RDL in BNF notation 

rule rule_2 
onAgvent Agv2  
where (price > 250 and  
            price < 370 ) 
 
c. Filtered Subscription 

Fig. 2. Rule Based Subscription Model 

A rule definition is composed of three parts, each introduced by the keywords rule, 
onAgvent and where, respectively. The first part sets a unique identifier for the rule, 
the second part specifies the type of the target agvent and the last part describes the 
conditions on which a filtered agvent should be caught. Some samples of subscription 
messages are shown in Figure 2.b and Figure 2.c. 

Subscriptions can be classified into two groups: 
• Simple Subscription is used to subscribe on an agvent type (as shown in Fig.2.a). 
• Filtered Subscription is used to define a subscription with different criteria 

related to its attributes (as shown in Fig 2.b). 
Subscribers are likely to select very specific information out of a varied 

information space. The increase in expressiveness through filters reduces the delivery 
of uninteresting notifications or even avoids totally. 



 

3.3 Message/Agent flow in Agvent System 

Communication between participants of the system (event servers, publishers and 
subscribers) is carried out using Java RMI. Due to architecture neutrality, Java and 
RMI handle geographically distributed heterogeneous machines and provide a 
transparent view to the participants. Figure 3 depicts the message/agent flow between 
components of the system, and the details of the transfer are described below. Firstly, 
a publisher advertises its agvent type to the system. This advertisement is dispatched 
to all event servers in the dispatch service via a broadcast message. 

 

Fig. 3. Message/agent flow in Agvent System 

1. If a subscriber is connected to an event server, it can obtain the advertisement 
list which includes a list of agvent types currently available on the system. All 
event servers hold the same advertisement list. 

2. If a subscriber decides to subscribe on an agvent type, it sends a rule based 
subscription message to the event server it is connected to in order to have itself 
registered. Next, this message is broadcast to all event servers in the dispatch 
service. The details of the subscription are stored in subscription tables of 
knowledge bases in each event server. 

3. Whenever a publisher observes an event, it creates and sends an agvent to the 
event server. When the agvent arrives on the event server, it starts to execute its 
pre-specified code to select its targets (neighbor event servers and/or registered 
subscribers) according to the information present in the subscription table and 
routing table.  

4. Next, the agvent creates its clones and sends each one to a different target on the 
list, and after completing this task, it disposes itself. 

5. A subscriber continues to receive published agvents until it issues an 
unsubscribe request for that particular agvent type. When an agvent arrives on a 
subscriber, it starts to communicate with the subscriber agent that is responsible 
for all subscriber operations, via an agent communication language (ACL). It 

 
 
 
 

Agvent  
 

System 

Publisher 
Site 

Advertise Agvent1 

Notify Agvent1 

Subscribe on Agvent1 

Publish Agvent1 

* 
* 
* 

Publish Agvent1 

* 
* 
* 

NotifyAgvent1 

Unsubscribe 
from Agvent1 

Unadvertise 

T 
i 
m 
e 

Get Advertisement 
List 

Subscriber
Site

Inform 
Unadvertisement 



 

delivers the subscriber agent a message, which could either contain a complex 
event data, such as a secret password, a negotiation for an e-commerce or etc., or 
a request for an action to be carried out, such as updating its database according 
to incoming data carried by the agvent, running an update routine for its 
software, or etc., according to the execution logic of the current application. 

6. When a publisher stops publishing a certain type of agvent, it informs the system 
through an unadvertise message. In this case, if no other publishers of that 
agvent are present, the system sends out a message to subscribers registered on 
that agvent type, informing them of the new situation, and adds these subscribers 
to a waiting advertisement list (WAL) created for that agvent.  If, later, an 
advertisement message is received for that particular type of agvent, subscribers 
on its waiting advertisement list are alerted to subscribe in again, if they are still 
interested in that type of agvent. 

4. CONCLUSIONS  

This paper presents a new model for agent based distributed events systems, the 
Agvent System, which combines the advantages of publish/subscribe communication 
and mobile agents into a flexible and extensible distributed execution environment. 
The major novelty of the model is that an event is represented by a mobile agent, an 
agvent, which is treated as a first class citizen of the system and given autonomy and 
mobility features to select and travel between system components. The proposed 
model supports a rule-based subscription mechanism using a new language, RDL. 
The benefits of the proposed model are reduced network load, higher adaptability by 
allowing dynamic changes in system configuration, information hiding, asynchronous 
communication and flexibility of agent based execution. We think the new model will 
serve as an effective choice for several information-oriented applications, such as e-
commerce or information retrieval, for its benefits stated above. Currently a prototype 
of system is being implemented in Java. 

References 

1. O. K. Sahingoz, N. Erdogan, “RUBCES: Rule Based Composite Event System”, in 
proceedings of XII. Turkish Artificial Intelligence and Neural Network Symposium 
(TAINN), Turkey, 2003 

2. Object Management Group, “CORBAservices: Common Object Service Specification”, 
Technical Report, Object Management Group, 1998. 

3. “Java AWT: Delegation Event Model”. Available online at 
http://java.sun.com/j2se/1.4.1/docs/guide/awt/ 1.3/designspec/events.html, 2003  

4. G. Cugola, E. Di Nitto, and A. Fuggetta, “The JEDI event-based infrastructure and its 
application to the development of the OPSS WFMS”, Technical Report, CEFRIEL - 
Politecnico di Milano, Italy, 1998.  

5. B. Krishnamurthy and D. S. Rosenblum, “Yeast: A General Purpose Event-Action System”, 
IEEE Transactions on Software Engineering, 21(10):845–857, 1995. 



 

6. A. Carzaniga, “Architectures for an Event Notification Service Scalable to Wide-area 
Networks”, PhD Thesis, Politecnico di Milano, Italy, 1998. 

7. P.T.Eusgter, “TypeBased Publish/Subscribe”, PhD Thesis. Ecole Polytechnique Federale De 
Lausanne, France, 2001 

8. Gero Mühl, “Large-scale content-based publish/subscribe systems”, PhD Thesis, Darmstadt 
University of Technology, 2002. 

9. Th. Eugster Felber. The many faces of publish/subscribe. Technical report, Swiss Federal 
Institute of Technology in Lausanne (EPFL), 2001. 

10. M. Wooldridge and N. R. Jennings. “Intelligent agents: Theory and practice”, The 
Knowledge Engineering Review, 10(2):115–152, 1995. 

11. Jennings, N. R., “An agent-based approach for building complex software-systems”, 
Communication of the ACM, 44(4), ACM Press, New York (2001) 

12. D. B. Lange and M. Oshima. Seven Good Reasons for Mobile Agents. Communications of 
the ACM, 42(3):88-91, 1999.  

13. O. K. Sahingoz, N. Erdogan, “RUBDES: Rule Based Distributed Event System”, ISCIS 
XVIII - Eighteenth International Symposium on Computer and Information Sciences, 
LNCS, Springer-Verlag: 282-289, 2003. 

14. A.Carzaniga, D.S.Rosenblum,and A.L.Wolf. “Design and evaluation of a wide-area event 
notification service”, ACM Transactions on Computer Systems, 19(3):332 –383, 2001. 


