
ABSTRACT

In the last years, event-based communication paradigm
has been extensively studied and it is considered a promising
approach to develop the communication infrastructure of
distributed systems. In most of the event systems developed
previously, events are defined as simple messages such as
records, tuples or simple objects. Our work involves a new
agent based distributed event system (Agvent System), in
which events are represented by mobile and intelligent
agents that are called agvents (agent event). In this paper, we
present the framework of the Agvent System, and describe
the communication protocol between system participants and
the message/ agvent flow between system components.

Keywords : Distributed Event System, Mobile Agent, Publish-

subscribe paradigm.

1. Introduction

In Internet-wide and ubiquitous systems, scalability is vital
and must be ensured at all layers. In these systems, a
messaging middleware may potentially have millions of
dynamic clients and, therefore, must itself be implemented in
a distributed fashion [1]. Event-based communication has
become a new paradigm for building large-scale distributed
systems of this type [2]. It has the advantages of loosely
coupling communication partners, being extremely scalable,
and providing a simple application programming model. In
event-based systems, events are the basic communication
mechanism and an event can be considered as a notification
that something of interest has occurred within the system.
Event-based communication generally implements what is
commonly known as the publish/subscribe protocol.

The publish-subscribe communication paradigm has been

recognized as a functional model particularly for distributed
information systems, as it supports distributed and
anonymous communication among several processes [3].
Participants have no explicit knowledge of each other and are
only required to agree on the format of the data being
exchanged. Participants can be classified in two categories:
publishers, which produce data as a sequence of packet
notifications, and subscribers, which inform about relevant
notifications by either expressing a data subject or a condition
on its content. It is the responsibility of publish-subscribe
middleware to ensure delivery of published information to all
interested subscribers.

The benefits of publish/subscribe protocol make it

preferable for implementing information-driven applications.
For example, publish/subscribe is well suited for information
dissemination applications like news delivery, stock quoting,
electronic commerce [4], air traffic control [5], and
dissemination of auction bids [6]. Implementation of
publish/subscribe techniques has also been described in the
areas of mobile agents [7], software systems [1], and process
control systems [2].

Clearly, a publish/subscribe system that relies on a

centralized broker cannot be scalable. It may match an
incoming event message against a large set of subscriptions
very fast, but it will not be able to communicate with millions
of clients. Moreover, a centralized broker is a single point of
failure. In consequence, an implementation is needed that
distributes the functionality of the service. The key for a
scalable publish/subscribe system is using a dispatch service,

An Agent Based Distributed Event System Framework

 Ozgur Koray SAHINGOZ*, Nadia ERDOGAN **

* Department of Computer Science, Air Force Academy,

Yesilyurt, Istanbul, Turkey.

** Electrical-Electronics Faculty, Computer Engineering Department,

Istanbul Technical University, Ayazaga, 34469, Istanbul, Turkey.

��������	���
��
��� � � ��������	��
��
��
���

��������	
�������������	
�������������	
�������������	
�����		
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

���

���

���

���

���

���

�����������	
��������

���� � �����������

��� � ������������

Figure 1. Framework of the Agvent System

which consists of cooperative event servers in a distributed
topology.

Its data/filter model plays an important role in the design

of a distributed event system. The data model defines how
the content of notifications is structured, while the filter
model defines how subscriptions are specified, i.e., how
notifications are selected by applying filters that evaluate
predicates over the content of notifications. Consequently, the
filter model always depends on the underlying data model
and there can be more than one filter model for a given data
model.

In early distributed event systems, event data is

represented by unstructured lists of strings, record-like
structures with positional or name-based identification of
attributes, recursive structures, such as LISP expressions or
XML documents, and serializable event objects. Rebeca [3],
Siena [8], Gryphon [9], JMS [10], and the Corba Notification
Service [11] are representative systems which define events
as low level messages. Only type based publish/subscribe
[12] system defines events as objects but it also doesn’t
provide them with autonomy. Our work proposes a new
approach for distributed event systems through a model in
which events are represented by mobile intelligent agents.

In this paper, we present an agent based distributed event

system framework, the Agvent System framework, which
exploits mobile agents as mediators between publishers and
subscribers of events. The Agvent system implements the
publish/subscribe protocol, thus enabling many-to-many
interaction of loosely coupled entities. It also allows
publishers and subscribers to dynamically connect and
disconnect from the system, a capability that extends the
flexibility of the working environment.

The rest of the paper is organized as follows. In the next
section, we present the characteristics of the Agvent System.
Section 3 is described in detail the system framework.
Section 4 explains the message/agvent flow and finally our
conclusions and directions for future work are presented in
Section 5.

2. Agvent System

The Agvent System is an agent based distributed event
system which is implemented through a framework shown
in Figure 1. It combines two developing technologies,
mobile agents and the publish/subscribe communication
paradigm, in order to benefit the advantages of both.

The main problem in large-scale publish/subscribe

systems is routing notifications from producers to interested
consumers. In [3], different routing algorithms are tested and
compared. In previously described publish/subscribe systems,
events are represented as simple event messages and
dispatching these messages is the duty of event servers. A
novel feature of the new model we propose is that, it allows
events to be represented by mobile and intelligent agents,
namely, agvents.

Subscribers determine agvent types they are interested in
and describe them in a rule form as defined in [13] to be
processed by the system.

Publishers publish agvents of pre-specified type that
search the knowledge bases of agvent servers to select lists of
subscribers, clone themselves and direct a clone to each
selected target subscriber.

The Agvent System differs from other distributed event
systems with its distinct characteristics that are described
below.
• Autonomous Events. In most event systems, events

are defined as low-level messages, which consist of

record-like structures, list of strings, tuple-based
structures, etc. In type-based systems, events are
defined as objects and viewed as main component of
the system. Nevertheless, they are not autonomous.

 In the Agvent System, events are not viewed as simple
messages. On the contrary, they are represented as
mobile agents that have their own goals, beliefs and
behaviors that they acquire at creation. When an
agvent reaches to an agvent server, it examines the
routing table of the server and selects its targets
autonomously after certain processing. This approach
reduces the load and complexity of agvent servers as
well.

• Agvent Based Subscription: In most distributed event
systems, subscribers register on a channel, on a
specific topic or a specific content of an event message.
In the Agvent System, subscribers register on agvent
types. For example, a subscriber can register on an
agvent, which is an instance of “Agv_type1” class,
specifying certain constraints based on its advertised
attributes and behaviors.

• Information Hiding: In previously developed event
systems, an event server can, actually has to, access the
content of the published event data before it can
dispatch the data to the registered targets. In the Agvent
System, the published agvent itself searches the
knowledge base of the agvent server1, selects the
registered subscribers, clones itself and sends each
agent clone to a subscriber on the selected list.
Therefore, the agvent server has no access to the
content of the published event data, which simplifies
its role and consequently facilitates the server
development process. Information hiding also meets
requirements of certain applications where
confidentiality of event data is essential.

• User/Application defined agvent types: Distributed
event systems generally use predefined event types.
Therefore, to add a new event type you have to make
programmatic changes in the dispatch service and also
at publisher and subscriber sites.

 In the Agvent System, a publisher creates its own
agvent type and declares its properties and behaviors
through an advertisement message sent to the Dispatch

���
�
�����gvent cannot reach the knowledge base of the server directly.

It gets necessary information over Server Manager.�

Service Once an agvent type is announced on the
Dispatch Service, subscribers can register on agvents
of that type.

3. Agvent System Framework

Within the Agvent System, as in all push-based publish-
subscribe systems, information flows from publishers to
subscribers according to the specific selection criteria
expressed by individual subscribers. Subscribers express
their interests by means of subscriptions, while publishers
simply advertise and publish agvents. The dispatch service
accepts subscriptions and publications, and relays
publications to subscribers that declared matching
subscriptions. A network of distributed agvent servers
constitutes the dispatch service of the system framework (see
Figure 1). Each instance of the other two main components
of the framework, publishers and subscribers, is directly
connected to an agvent server, to which it sends its
subscriptions, advertisements or publications. Every agvent
server processes incoming subscriptions and advertisements
according to some protocol, possibly redistributing them to
other adjacent/neighbor agvent servers. Publications, actually
agvents, move themselves to adjacent agvent servers and/or
subscribers in a similar manner.

3.1. Publisher Subsystem

Publishers decide on what events are observable, how to
name or describe those events, how to actually observe the
event, and then how to represent the event as a discrete entity
that is an agvent. To publish an agvent to the system, a
publisher has to initialize a Publisher Subsystem on its
machine. Publishers previously acquire the address (URL) of
the agvent server that they will communicate with.

Figure 2. Publisher Subsystem Architecture

The Publisher Subsystem consists of three main components
as shown in Figure 2.

�

Publisher
GUI �

Publisher
Agent

Publish
Agvent

Knowledge
Base

end
Adver-

tisement

1. A Knowledge Base: a database which contains
information about past processes.

2. A Graphical User Interface (GUI): an interface used for
human interaction.

3. A Publisher Agent: an agent which acts on behalf of the
user.

Agvents may be created by two different sources:

• An agvent is either created automatically by the
Publisher Agvent and sent to Dispatch Service, or

• The Graphical User Interface creates an agvent that
meets the specifications of a predefined agvent type and
sends it to Dispatch Service via the Publisher Agent.

Publisher Agent is the main processing unit of the Publisher
Subsystem. It is a stationary agent that is created during the
initialization step of the subsystem. It is responsible for
advertisement and publication of agvents to the Dispatch
Service.

3.2. Subscriber Subsystem

Subscribers determine agvent types they are interested in and
describe them in a rule form which is processed by the
Dispatch Service. A subscriber has to initialize a Subscriber
Subsystem on its machine to join the system. In a manner
similar to publishers, subscribers previously acquire the
address (URL) of the agvent server that they will
communicate with.
A subscriber registers itself to the system via a message that
contains address and password information, and later
subscribes on agvent types it is interested in, providing
criteria to specify conditions on which it requests notification.

Figure 3. Subscriber Subsystem Architecture

The Subscriber Subsystem consists of four main components
as shown in Figure 3.

1. A Knowledge Base: a database which contains
information about past processes.

2. A Graphical User Interface (GUI): an interface used
for human interaction.

3. Subscriber Agent: An agent that acts on behalf of the
user.

4. Agvent Operation Platform: an execution platform
that enables incoming agvents to run individually to
reach their goals, such as carrying out update
operations or delivering an important information.

The Subscriber Agent is a stationary agent, which is
responsible for offering an interface to end users to enter
information, control operations, or send subscription
messages. The Subscriber Agent implements the
Int_Subscriber interface depicted in Figure 4, which contains
of two main methods which are used for receiving agvents
(notify) and receiving Unadvertisement information from
Dispatch Service.

public interface Int_Subscriber Remote

{
 public void notify(Agvent agv);

 public void inform (Advertisement adv);
}

Figure 4. Int_Subscriber Interface

3.3. Dispatch Service

A network of distributed Agvent Servers constitutes the
Dispatch Service. The inner structure of an Agvent Server is
depicted in Figure 5. It consists of six manager modules,
which run concurrently in the system: Knowledge Base
Manager, Subscription Manager, Publish Manager,
Advertisement Manager, Agvent Dispatcher, and Server
Manager. The task of each is explained below.

Knowledge Base Manager: This module coordinates the
access and manipulation of four important tables which store
data essential to system functioning. These are the following:

a. Neighbor Table keeps information (address,
name…etc) of the adjacent agvent servers. This table is
used especially for routing of subscription and
advertisement messages.

b. Advertisement Table keeps information about the
publishable agvents. It keeps not only public attributes,
but also public behaviors of agvents with the
information required as parameter. All agvent types

notify Subscriber
Agent

Knowledge
Base

Subscriber
GUI

�

Agvent
Operating
Platform

�

� � �

� � �

Publish
Manager

Subscription
Manager

����������������������������

����	������	������	������	������

Agvent
Operation
Platform

�
������

������

Agvent
Dispatcher

unsubscribe

subscribe

Sends Agvents
To Subscribers

Queue Manager

Outgoing
Agvent
Queue

Incoming
Agvent
Queue

KnowledgeBase Manager

publish

Figure 5. Inner structure of the Agvent Server

�������
������

��������������

������

����������
������

���������
������

Advertisement
Manager

Advertisement
Queue

unadvertise

advertise

have to be advertised before they are published.
c. Subscription Table keeps subscriber related information,

such as name, password and communication address,
provided during system registration.

d. Routing Table is the most frequently accessed data store
of the system. It keeps the subscription criteria of
subscribers and used for routing of agvents.

The Queue Manager: This module coordinates the access
and manipulation of three queues which are used to allow
concurrent execution of manager modules.

a. Advertisement Queue keeps the incoming
advertisement messages in a specific format.

b. Incoming Agvent Queue contains the serialized form of
incoming agvents from publishers.

c. Outgoing Agvent Queue contains the serialized form of
outgoing agvents from Agvent Servers.

Subscription Manager: This module receives subscription
messages from subscribers via subscribe and unsubscribe
methods, verifies the id and password information with the
Subscriber Table, and proceeds with the necessary actions.

Publish Manager: This module receives the serialized forms
of incoming Agvents from publishers via publish method
and adds them to the Incoming Agvent Queue.

Advertisement Manager: This module receives the
advertisements (also unadvertisements) via advertise method

(or unadvertise method) and adds them to the Advertisement
Queue.

Agvent Dispatcher: This module checks the Outgoing
Agvent Queue and sends the serialized forms of the agvents
to their target host.

Server Manager: This module is the main component of the
Agvent Server as it has control over all operations in the
system. It evaluates incoming advertisement requests. It is
also responsible of the Agvent Operation Platform, which
enables incoming agvents to execute individually and
process data to fulfill their goals. Server Manager also
mediates between agvents and Knowledgebase of the server
for getting results of necessary inquiry operations.
�

public interface Int_AgventServer extends Remote
{
 public void publish(Agvent agv);

 public void subscribe(Subscription sub);

 public void unsubscribe(Subscription sub);

 public void advertise(Advertisement adv);

 public void unadvertise(Advertisement adv);

 public Advertisement[] getAdvertisementList()
}

�

Figure 6. Int_AgventServer Interface

4. Message/Agvent Flow

The message and agvent flow in the dispatch service is
shown in Figure 7. and is described below:
a. Firstly, a publisher announces its agvent type to the system.

This advertisement is dispatched to all agvent servers in
the dispatch service.

b. If a subscriber is connected to an agvent server, it can

obtain the advertisement list/table which includes a list of
agvent types currently available on the system. All agvent
servers hold the same advertisement list/table.

c. If a subscriber decides to subscribe on an agvent type, it

sends a rule based subscription message to the agvent
server it is connected to in order to have itself registered.
Next, this message is broadcast to all agvent servers in the
dispatch service. The details of the subscription are stored
in subscription tables in each agvent server.

d. Whenever a publisher observes an event, it creates and

sends an agvent to the agvent server. When the agvent
arrives on the agvent server, it starts to execute its pre-
specified code to select its targets (neighbor agvent servers
and/or registered subscribers) according to the information
present in the subscription table and routing table.

e. Next, the agvent creates its clones and sending each to a

different target, after which it disposes itself.

f. A subscriber continues to receive published agvents until it

issues an unsubscribe request for that particular agvent
type. When an agvent arrives on a subscriber, it starts to
communicate with the subscriber agent that is responsible

for all subscriber operations, via an agent communication
language (ACL). It delivers the subscriber agent a
message, which could either contain a complex event data,
such as a secret password, a negotiation for an e-
commerce or etc., or a request for an action to be carried
out, such as updating its database according to incoming
data carried by the agvent, running an update routine for its
software, or etc., according to the execution logic of the
current application.

g. When a publisher stops publishing a certain type of agvent,

it informs the system through an unadvertise message. In
this case, if no other publishers of that agvent are present,
the system sends out a message to subscribers registered
on that agvent type, informing them of the new situation.

5. Conclusions

This paper presents a new model for agent based distributed
events systems, the Agvent System, which combines the
advantages of publish/subscribe communication and mobile
agents into a flexible and extensible distributed execution
environment. The major novelty of the model is that an event
is represented by a mobile agent, an agvent, which is treated
as a first class citizen of the system and given autonomy and
mobility features to select and travel between system
components. The benefits of the proposed model are reduced
network load, higher adaptability by allowing dynamic
changes in system configuration, information hiding,
asynchronous communication and flexibility of agent based
execution. We think the new model will serve as an effective
choice for several information-oriented applications, such as
e-commerce or information retrieval, for its benefits stated
above. Currently a prototype is being implemented in Java.

References

[1] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-
based infrastructure and its application to the development of
the OPSS WFMS. IEEE Transactions on Software
Engineering, 27(9), 2001.
[2] M. Langheinrich, F. Mattern, K. Römer, and H. Vogt.
First steps towards an event-based infrastructure for smart
things. In Ubiquitous Computing Workshop (PACT 2000)
[3] G. Mühl, “Large-scale content-based publish/subscribe
systems”, PhD Thesis, Darmstadt University of Technology,
2002.
[4] O.K. Sahingoz, and N. Erdogan, (2003). "A Two-Leveled

�

�

���������������������������� ����

����

�	
����	
����	
����	
�������

��������	
����
���������	
����

��

��

��

��

������������ �

������	
����
����
�������

�	
����

S
��������

��������

����
�

��

�

��������

��������

��������

��

��

��

��

������
�����������

�����

�������

����
�����������
��������

Publisher Site

��
������� �

�	
����

Subscriber Site

�������������

�	
����

Figure 7. Execution Flow in the Agvent System

Mobile Agent System for Electronic Commerce", the journal
of Aeronautics and Space Technologies Institute (ASTIN),
21-32.
[5] C. Liebig, B. Boesling, and A. Buchmann. A notification
service for next-generation it systems in air traffic control.
GI-Workshop: Multicast-Protokolle und Anwendungen,
Germany, May 1999.
[6] C. Bornhövd, M. Cilia, C. Liebig, and A. Buchmann. An
infrastructure for meta-auctions. In Second International
Workshop on Advance Issues of E-Commerce and Web-
based Information Systems (WECWIS'00), San Jose,
California, June 2000.
[7] N. Skarmeas and K. Clark. Content-based routing as the
basis for intra-agent communication. In J. Müller, M. P.
Singh, and A. S. Rao, editors, Proceedings of the 5th
International Workshop on Intelligent Agents V: Agent
Theories, Architectures, and Languages (ATAL-98), volume
1555 of LNAI, pages 345-362, Berlin, July 1999. Springer.
[8] A. Carzaniga., Architect.for Event Notification Service
Scalable to WAN. PhD thesis, Politec. di Milano, Italy, Dec.
1998.
[9] M. Aguilera, R. Strom, D. Sturman, M. Astley, and T.
Chandra. Matching events in a content-based subscription
system. In Proceedings of the 18th ACM Symposium on
Principles of Distributed Computing (PODC 1999), pages
53-61, USA, 1999.
[10] Sun Microsystems, Inc. Java Message Service Spec. 1.1,
2002.
[11] Object Management Group. Corba notification service.
OMG Document telecom/99-07-01, 1999.
[12] P.T. Eusgter, “Type Based Publish/Subscribe”, PhD
Thesis. Ecole Polytechnique Federale De Lausanne, France,
2001.
[13] O. K. Sahingoz, N. Erdogan, “RUBDES: Rule Based
Distributed Event System”, ISCIS XVIII - Eighteenth
International Symposium on Computer and Information
Sciences, LNCS Vol. 2869, Springer-Verlag: 282-289, 2003.

