
IEEE MEIECON 2002, May 7-9,2002, cairn , EGYPT.

An Extendible Persistent System For Programmers

Erdal Kemikli and Nadia Erdogan

Electrical and Electronics Faculty
Computer Engineering Department

Istanbul Technical University
Ayazaga, Istanbul, 80626, Turkey

Email erdalk@otokoc. com.tr
Tel. +90 (212) 229 9555 Fax. +90 (212) 229 9549

Abstract
A different approach to define a system, persistent
object abstraction offers programmers new
opportunities. Persistent systems are the next logical
step in the higher-level abstraction of electronic
information systems. This paper summarizes a
research prototype; Extendible Persistent System
(EPS) and explains the programmer facilities on this
system.

Keywords Persistent system, operating
system, pr0IY-g

1. INTRODUCTION

In a conventional system, programming languages
provide very good support for transient data. Data
with longer life spans can be supported by a
conventional file system or by a Database
Management System (DBMS). The concept of
persistency [l] on the other hand suggests that data
in a systd-m should be able to persist (survive) for as
long as b a t data is required. AS a result, persistent
systems provide a uniform abstrktion for data
management, and save pro&nuners from
considerable amount of program development task.
In many cases, support for persistency is provided at
the programming language level such as PS-Algol
[2] and X programming language [3j. The
persistency support at the programming language
level has two drawbacks; operating system may not
provide necessary support for the implementation
[4], and efforts are duplicated for every new
persistent language implementation. These reasons
motivate the implementation of persistency at the
system level [51.

0-7803-7527-0/0u$17.00 @2002 IEEE.

The primary goal of this paper is to explain a
persistent, extensible and tailorable computing
system model, which attacks the programmer
productivity issue from the technical side. The
resulting Extendible Persistent System (EPS) is
suitable to be used as a base for an extendible system
with the required semer functionality.

2. EPS DESIGN PHILOSOPHY

EPS will supplies facities that wil l ease developers
to extend the functionality of a system with better
modeling and simpler prokgamning. Moreaver, the
resulting extended system simplifies system
administration tasks and configuration management.

EPS is built on five principles:
Despite of its revolutionaty nature, EPS is
designed to be easy to learn and adapt since it
inherits and resembles to common computing
environments of today.
A uniform system, program and data
abstraction is developed that is easy to
understand and extend.
Programmer productivity is addressed on the
design, and fieedom of choice and programmer
control is aimed.
A modular and user level services approach is
chosen for the system design to enable
programmers to extend the system easily.

547

Figure 2.1 EPS System Layers

3. EPSCOMPONENTS

Eps multi-tier architecture (figure 2.1) is designed
to extend oaturauy based on the needs. The EPS
model is composed U€ several a" in
diEima layers. On the hi- level, a new
p m g " i n g language, Eps-c which is an
extension of thc existiug ANSI C pmgrarnming
laupage isdefiaed The programs4 written in EPS
c are compiled with the help of an Eps-c
p q " . During the linking phase, a "e
library (Client object Library- COL) which is
responsible of conducting pnocess level operations
and hiding the system complexity from the users by
supplying a well defined interbee wmposed of
system primitives is linked to the program. Naming
and Protection Server (NPS) is a m e r process
nrnning just above the operating system k e d . It
resolves persistent object names into persistent ids,
protects objects against Unmlthorized access, and
manages the synchroMn of access to the
objects. Object server (OBS) is another servef

component of the system mpomile of the
movement of objects between long and short-term
storage devices. The last system component is the
inter-object communication (Ioc), which supports
the whole model through a high he1 object

'on interhx based on the well-known
IPC paradigm of UNM. Commanication primitives

.

are designed for both synchronous and
asynchronous communication. This fimctionality is
implemented as a m-time library and linked to
eVeryprocesSWiththeneedof'co"unicati 0a

The basic system is annplos8d d three basic
components; Naming and Pn&ction Server (NP§),
Object Server (OBS), Client Object Library (COL),
and W e Object Library (AOL). h underlying
messaging Edi ty , interdbject communication
(IOC) interconnects these three modules. While
these modules consfitnk the base system, fiuther
user needs can be satisfied by extending the system
via active objects (AOB).

3.1 Client Object Library

Client Object Library (COL), which is used by every
EPS user program, and active: Object has facilities to
hide the underlying complexity of the system. It is
linked to every program- some of the system
primitives are i m p l d f i y or partiauy in the
COL. The seryices &COL also include the local
(in-pnocess) ixnpl"htI 'on rsf synchronization and
address translation hcilities, which are transparent
to the application programmx The remote parts of
the services are quested from other EPS sewers
and active objects throllgh the inter-objed
c0"Uaication subsystem-

548

Theodcally, COL is the part of EPS, which needs
to be ported to be used for the support of different
programming languages. Persistent objects loaded
into the primary memory by OBS, and transferred to
local memory via inter-object communication
subsystem needs one more crucial operation to be
useful; conversion of persistent pointer addresses
into local memory addresses. While data section of
persistent variables does not need any specific post-
load operation, pointers in the variables are
converted into local pointer addresses. This
conversion is conducted by COL and based upon the
persistent object type. Once replaced, the pointer
values are valid to be used in the proccss, and necd
to be converted back into persistent pointers only
when they are written back to the disk saving the
system from conversion overhead for every acoess to
the persistent object.

3.2 Naming and Protection Server

Naming and Protection Server (NPS) is
implemented in the form ofa server process. NPS is
responsible of the security and synchronization of
object access. Each request for object acoess is
received and handled by NPS. Persistent object
names consist of two parts: creator object name and
persistent object name. This two level naming
scheme help to distinguish the persistent objects
created by a particular active object, and reduces the
probability of collision in persistent object names.
Long life span and very wide scope of persistent
objects increase the probability of using the same
name for different objects.

Every request for loading a static object or an
operation from an active object is first converted to
Persistent Identification (PII?) by matching the
requested object name with the existing capabilities,
and then evaluated by Nps. If a request is validated
then a record is inserted to the i n k table for the
persistent object. The result is sent to the client. A
client process can access multiple persistent
databases simultaneously.

Synchronization has a Merent context for passive
(data only) and active (m e r) objects. An active
object can answer only one request at a time, so the
synchronization problem is naturally solved. A
passive object can be shared among processes,
therefore synchronization issue has to be explicitly
managed. Client object tells back when it is done
with the requested object, so the access level is
reset. This approach has one major dridwback,
deadlocks. When two objects request objects already
accessed by each other, this scheme will cause a
deadlock. Instead of deadlock resolution, we chose
to implement an extra feature to prevent deadlocks.
When client accesses a new passive object, it tells

the expeded completion time of the quest, and it
is recorded and used for deadlock prevention.

3.3 Object Server

Object Sewer (OBS) is the persistent object store of .
EPS. Object stom [6,7], which are storage d c e s
for persistent data, are cummon component in
persistent environments. Physically it is
implemented as a separate module and linked to the
kernel. The Object Server handles active and
passive objects. while active objects consist of data
and methods, a passive object contains data but does
not have methods to modify it. Sincc OBS accepts
requests only from N f S , it needs not to worry abou
the synchronization and Security issues.

shadow files technique is used to reduce the risk of
creating an inconsislent database. In shadowing, the
modified database file is written back to the disk
into a different file first. After the file write is
complete it is copied into the original file.

Persistent objects are stored on the disk for long-
term storage, and loaded into the memory by OBS.
A passive object loaded into the process " o w is
represented by its root object. Root object is the one
variable accessible directly from the program
instructions. Other related objects are linked to the
root object via pointers. Client processes wil l get the
physical address of the root persistent object, and
then reach the other objects using pointers.
Each persistent object group is kept in merent files
and demonstrates a homogeneous structure inside
its file. These groups will be called as persistent
databases. The type information of the persistent
objects will be kept inside the persistent root. While
simple object types are defined directly in the
persistent root headex, complex, user defined types
are referenced in the header and will be kept as type.
deftnition include files separately.

3.4 Active Object

Active Objects (AOB) are not part of the core EPS.
However we expect to see a considerable number of
AOB to be developed in the hture, which will
benefit from advantages of EPS. In short, active
objects are persistent server processes which
themselves can act as client objects to other active
objects and EPS.

An important aspect of active objects is their
support by the EPS. EPS loads active objccts
whenever they are needed, transparently. The access
control for active ob- is handled by NPS, similar
to passive objects. Active objects also use the COL
library and the inter-object messaging system. An

549

interface, ww a
is a natural pt+rt o r a c t i v e object.

ts requests from other objects,

4. PROGRAMMING IN EPS

Programming in EPS is quite similar to
programing in a UNIX system with some
exceptions. The first difference is the support for
persistent data. Another important aspect is the
transparent loading of server processes (active
objects) as required. The third major difference is
the support of an inter-object communicalion, which
is easy to use yet powerful and flexible.

The primary programming language is the C
programming language with some extensions. This
extended syntax is called as EPS-C to distinguish it
from the standard C programming language. Main
enhancement to C language is the addition of
reserved words to declare the persistent nature of
variables and some standard EPS functions as a
library. This implementation will allow application
developers to use the C p r o g “ i n g language
alone ifthey prefer. An EPS-C program is compiled
by EPS-C preprocessor and the C compiler. Object
code is linked to COL in addition to other required
libraries.

Every EPS-C program shall start with the call of
EpsInit function. This function will first load the
program table. Program table is a predefined type of
persistent object used by every EPS program. This
persistent object is used to store state data of a
program. It can also be used to store small-grained
simple type data. EpsInit function also loads the
persistent objects if this option was chosen at
compile time.

4.1 Persistent Variable Management

Since we do not assume all variables to be persistent
in EPS, some extra notation was necessary for the
declaration of pemktent variables. We chose to use
a single character “ $ at the start of a line of code to
declare the persistency property of a data object as
seen in the example below.
$int testvar,

Persistent variable types can be any simple C
variable type or stnrctures d&ed as types. As a
part of EF’S design philosophy there is no specific
types of files or formats used. Instead, already
available type declaration capability is used for the
type checking facility of passive persistent objects.

For a complex data structure such as a linked list or
linked tree, declaration of the root pointer variable
as a persistent object is sufEicient. In the loading or

saving phases J1 me objtzts reachable by the
persistent root will be’procesxd.

4.2 Compilation and Lialkiag

EPS-C is implemented through a p q w y s o r used
together with a standard C language wmpiler and a
COB library that will be linked to every EPS
program. Preprocessor parses! fie program code and
while replacing the persistent declar;ltions with
normal C variable declarations, the persistent
variables are inserted into the program table. After
EPS-C preprocessor phasey the C compiler runs to
process the program code. In the linking phase, a

program. This library not only includes the
application programming i~~terface functions but
also contains functions to handle persistent
variables.

The EPS-C preprocessor accepts an option to control
the loading time of persistent data. By default, all
persistent objects are loaded automatically at the
startupphaseofaprogram Ontheotherhand,a
compiler option disables the automatic persistent
object loading and lets the p~~gmmmer take control
on the object loading time at run time through
explicit function calls.

standard COB library is linked to e ~ e r y EPS-C

5. CONCLUSION

EPS is one of the efforts in the scientific community
for the design and develolpment of a computer
system with a Werent philosophy. Main concerns
in EPS design are, the sof€vvare crisis and solution
of this problem through an innovative technology.
We believe that, perskkncy and object paradigms,
when used together ease the burden on system
architects and programmers in development of
complex information systems.

Currently explained design is implemented as a
prototype system on Linux. The next phase of the
research will include experimental studies for the
determination of the effectiveness of the system in
reducing system complexity and improving
programmer productivity.

References

[l] Atkinson, M. P. et al, (1983), “An Approach
to Persistent Programming”, The Computer

Atkinson, M.P., Chish~lm, J., and Cockshott,
W.P., (1982), “PS-al,gol:and algol with a
persistent heap”, ACM Sigplan Notices, Vol.

J o ~ , Vol. 26, NO. 4, pp.360-365.
[2]

17, NO 7, pp. 24-3 1.

Sajeev A. S. M., and Hurst, A.J., (1992),
“Programming Persistence in X”, IEEE
Computer, Vol. 25, No. 9 , pp. 57-66.
Dearle, A, Rosenberg, F.A., Henskens, J.,
Vaughn, F., and Maciunas, K.J., (1992), “An
Examination of Operating System Support for
Persistent Object Systems”, Proceedings of the
25th Hawaii International Confcrcncc on
System Sciences, Vol. 1. Editors V.
Milulinovic and B. D. Shiver, IEEE Compuler
Socicty Prcss. Hawaii, USA, pp. 779-789.
Kemikli, E., Erdogan, N., (1997), “Persistent
Operating Systems”, Proceedings of the 12th
International Svniposiuni on Cornputer and
In formation Sciences, Ant&%, Turkey, pp.76-
84.
Shekita, E., and Zwilling, M., (1990),
“Cricket: A Mapped, Persistent Object Store”,
Proceedings of the 4th International
Workshop on Persistent Object Systems
Design, Implementation and Use, pp. 89-102.
Vaugban, F., and Dearle, A., (1992),
“Supporting large persistent storcs using
conventional hardware”, Proceedings of the
5th International Workshop on Persistent
Object Systems, San Miniato, Italy, pp. 185-
192.

55 1

