


Abstract—Multi agent systems provide distributed

computation for decentralized software applications. Mobile
agents play an important role in realizing distributed systems.
Current mobile agent implementations force a tightly coupled
mechanism for migration by providing a mobile agent its
destination address in advance. This requirement is both
restricting and inflexible. In this paper, we propose a novel
agent migration scheme that eliminates destination address
information from the essential components of migration.
Basically, an agent migrates between platforms as a specific
type of a message over a communication system that
implements topic based publish/subscribe paradigm. This
approach allows for loosely coupled inter-platform mobility
due to the communication model, resulting in a flexible and
scalable execution environment. The paper also describes a
new service oriented architecture for decentralized,
peer-to-peer systems an information expert ecosystem, as an
application of the proposed scheme.

Index Terms—Multi agent systems; publish/subscribe
paradigm; agent migration; distributed systems; service
oriented architecture.

I. INTRODUCTION
 Developments in software technologies over time strongly
affect architectures of systems. Centralized structures turn
into decentralized structures, where software solutions are
built as distributed systems rather than localized systems.
Also, the distributed computation architecture is evolving
from the client server model to the peer to peer model. This
transformation is mainly due to scalability and performance
reqirements. Distributing computation from a single highly
capable entity to multiple relatively less capable entities has
proven to be much productive.
 Programming paradigm has also evolving from a function
centric model to an object centric one. Currently, we see the
object oriented programming further evolve to give rise to
agent oriented programming which enables the
implementation of multi agent systems, a very popular
research area.
 Software agents are autonomous, collaborative and
reactive software entities that act on their user’s or owner’s
behalf. Mobility is an optional property of a software agent in
multi agent systems; agent mobility is an important factor to
be considered because there are a lot of application models

Manuscript received November 25, 2012.
Mustafa Akif Karzan is with the Department of Computer Science,

Informatics Institute, Istanbul Technical University, Istanbul, TURKEY
(e-mail: karzan@ itu.edu.tr).

Nadia Erdogan is with the Department of Computer Engineering, Faculty of
Computer and Informatics, Istanbul Technical University, Istanbul, TURKEY
(e-mail: nerdogan@ itu.edu.tr).

which require autonomous and intelligent computational
power to run locally. Ametller, Robles and Borrel [1] indicate
the importance of agent mobility especially in e-commerce
applications. They point out the lack of mobility in agent
systems or the restricted and non standard way of
implementing mobility. They proposed to move agents
around via FIPA (Foundation of Intelligent Physical Agents)
ACL (Agent Communication Language) messages in a
standard way. In [2] Malik, et al. proposed another way to
achieve inter platform agent mobility. In their study they
mention about converting one form of agent belong to one
platform to another that is compatible with any other
platform to migrate to. Because there is not a single standard
way for agent migration, researchers continue to work on this
field to achieve an effective agent migration.
 All existing work for mobile agents tightly couples hosts
that take place in migration also mobile agents and target
hosts because existing migration process includes destination
address to be given in advance. If the address is not provided
migration cannot occur.
 In this paper we propose a decoupled, topic based agent
migration without informing host and mobile agent with the
destination address. Also inter platform mobility is achieved
in a standard way. What we propose here is another way of
service oriented architecture with mobile agents in a multi
agent system.
 Achieving decoupled communication for mobile agents
requires topic based migration without knowing the
destination host address in advance. This mechanism is very
familiar in publish/subscribe model. In this paper we get
mobile agent concept with publish/subscribe paradigm
converged to produce a scalable, peer-to-peer and
decentralized system with decoupled communication basis.
In literature there are studies [3, 4, and 5] using both
publish/subscribe model and mobile agents. They were
interested in building publish/subscribe mechanics with
middleware services. However in this study we are interested
in publishing mobile agents themselves to the destination
hosts with the help of a provider to achieve agent migration
from one host to another via publish/subscribe model. So this
is the first study to migrate agents between hosts and
platforms using publish/subscribe paradigm which offers a
new software architecture for decentralized, service oriented
systems.
 In this paper we propose an ecosystem called information
expert agents ecosystem that includes information expert
mobile agents, source and target hosts communicating over
publish/subscribe model. In this ecosystem there are service
producing hosts with mobile agents and service consuming
hosts. Service is provided via information expert mobile
agents where those agents are published to topics of a

Topic Based Agent Migration Scheme via
Publish/Subscribe Paradigm

Mustafa Akif Karzan, Nadia Erdogan

messaging middleware. Consumer hosts subscribe to topics
that they interest. Messaging middleware notifies subscriber
hosts with mobile agents when producer hosts publish to the
topic. With this approach a mobile agent migrates from
source host to target host without knowing the destination
address which identifies the network location of target hosts.
Applying publish/subscribe paradigm system automatically
becomes scalable. Multiple and dynamically changing
destination hosts can be notified. This achieves decoupled
inter platform agent migration and also a new service
oriented architecture for decentralized, peer-to-peer systems
via mobile agents.

Organization of the remainder of this paper is as follows.
Section II talks about publish/subscribe paradigm and why
we adopt it in our research. Section III is about mobile agent
concept. Section IV explains system architecture how we
design this communication infrastructure. Section V defines
implementation considering used technologies and section
VI gives conclusion.

II. PUBLISH/SUBSCRIBE MODEL
 Publish/Subscribe is a communication/messaging pattern
well adapted to deployment of scalable and loosely coupled
systems. It integrates producer and consumer applications. It
offers scalability and dynamic network topology support.
Applications attached to the system do not know the overall
network topology and even they are not notified with the
information of the entities newly attached to the system or
detached from the system. Publish/Subscribe paradigm
involves messaging middleware, producers and consumers.
In this communication system, consumers subscribe to events
or a pattern of events that they are interested in. Producers
publish the events that they generate and messaging
middleware or message broker notifies interested subscribers
of events when they are published by the producers via store
and forward function. As stated in [6] Publish/Subscribe is an
event based messaging where it varies by subscription
schemes such as topic-based and content-based. Topic based
scheme groups subscribers of same type of event of interest.
Content based scheme improves topic based scheme
subscription by considering the actual content of the event of
interest.
 This interaction paradigm provides decoupling in space,
time and synchronization between producers and consumers
of information. Space decoupling involves preventing
producers and consumers interact directly. Instead they
communicate over a message broker. Thus producers do not
know how many subscribers are there that are interested in
their events or even if there exists any subscribers. Also
subscribers do not know who is publishing the event of
interest in advance even if there is any. Decoupling in time
provides both producers and consumers must not be active at
the same time which means a producer can publish its events
when subscribers are not connected or subscribers can be
notified when producer is not connected. Synchronization
decoupling prevents publish and notify actions to be in a
synchronized manner. Thus producers are not blocked on
producing an event or subscribers are not blocked on
notification they can get notified asynchronously.

 Separating direct interaction of producers and consumers
of information with a neutral mediator provides loose
coupling in space, time and synchronization, increases
scalability and offers flexibility in terms of dynamic network
topology.
 In this research we prefer publish/subscribe paradigm as a
communication infrastructure to produce a loosely coupled,
scalable and flexible system. With the adoption of this
pattern, our system inherits these properties naturally. Also
we propose an ecosystem with mobile agents that realize a
topic based migration scheme. This allows several distinct
topics and several publishers to same or different topics.
Consumers may interest in multiple topics. This again fits
best with publish/subscribe pattern which brings consumers
and producers together by subject of interest not by physical
network address. Consumers know what they need to
consume but they may not know who provides it. Producers
know what they produce but may not know who needs it. So,
meeting point is a topic based intermediary to serve or get
served without knowing (having reference to) each other in
advance.

III. MOBILE AGENT CONCEPT
 Mobile agent is an intelligent computation that can move
within the network or in other words can migrate from one
computer to another on behalf of the user or another entity.
Mobile agent has autonomy, social ability, learning,
reactivity and mobility properties. Mobile agent transports its
code and data (state) to target host and continues its
execution on its last state. Mobile agent concept differs from
process migration systems by its autonomy and reactivity.
Mobile agents act different on different hosts according to the
state (data) of the host.
 Mobile agent concept converts client/server paradigm to
relocatable computation which reduces network traffic
especially there are vast amounts of data to be processed. It
provides distributed peer to peer systems rather than
centralized systems. Asynchronous execution on different
hosts is achieved. Target host may execute other tasks while
migrated agent is executing its tasks. Moreover mobile
agents adapt dynamically to the execution environment.
They do not take same actions for distinct hosts if it is not
required. They take actions according to the state of target
host. Mobile agent concept also provides some level of fault
tolerance on dynamic network topology depending on
connections between hosts. Furthermore changing agent’s
source is enough to maintain this mobile computation. It does
not require any configuration change on target hosts. This
brings flexibility on update procedures. Real time processing
capabilities are improved when executing locally rather than
communicating with a remote host and executing afterwards
and communicating results with remote host again [7].
Mobile agents and multi agent systems are well adopted
when designing distributed peer to peer systems by their
nature. In our research we prefer mobile agents because of
these properties plus mobile autonomous computation needs.
Especially when we consider e-commerce applications
depending on the vast amount of data to be processed, local
computation is required due to efficiency concerns for many

aspects like network load, real time operations …etc. Mobile
agents look best as a solution for this type of problems when
their autonomy, reactivity and mobility features are noticed.

Publish/subscribe paradigm and mobile agent concept are
very coherent when we look at their properties. Both suit well
with distributed and peer to peer systems which increase
productivity, scalability and flexibility to dynamic network
topologies. In our research we propose a communication
infrastructure bringing publish/subscribe paradigm and
mobile agent concept together to produce a decoupled,
scalable and flexible system with autonomous, reactive and
mobile software entities.

IV. SYSTEM ARCHITECTURE
The system implemented allows for migration of agents

between hosts by means of the publish/subscribe
communication mechanism. In particular, agents are
transmitted from a source host to a target host in the form of
ACL messages. Due to the communication paradigm, both
the source and the target hosts are completely decoupled.
Because we perform topic based publish subscribe scheme,
source and target hosts do not need to know each other in
advance. They only know the mediator between them.
Publish/Subscribe pattern makes this system decoupled in
space, time and synchronization. Also system becomes
highly scalable and flexible to dynamic network topology.
Instead of sending transactions between hosts sending agent
itself reduces the network traffic while increasing the system
performance. Thus new type of mobile agent concept
emerges. System architecture is shown in figure 1.

Fig. 1. System architecture overview

 A source host acts as a service producer and it is capable of
generating agents that can present specific services. After a
service providing agent is started, it publishes itself to a
predefined topic on the messaging middleware. A target host
is a service consumer that needs the help of service providing
agent for its own purposes. A target host must subscribe to
topic(s) on the messaging middleware to be notified of
service providing agents. Subscription and notification
handling operations are handled by a local agent, called
HandlerAgent, on behalf of its host. A HandlerAgent is
expected to be aware of its host’s intentions; it subscribes to
the topics its host is interested in. When a service providing
agent is published on a subscribed topic, the messaging

middleware notifies the HandlerAgent with an ACL message
that carries the service providing agent as a payload in a
special form. The HandlerAgent extracts the service
providing agent from ACL message and carries out
operations that activate the agent on the local host. From this
point on, the service providing agent evaluates the conditions
and state of this new environment, provides a service specific
for this local host and terminates when it is done. In this
manner, the agent travels from one host to another in the
form of a special message, without the need to know the
identification of the target in advance. Source and target
hosts are connected via a mediator through selected topic(s).
In other words, a topic on the mediator is the meeting point
for the service producing and service consuming hosts. Hosts
realize directory lookup on the messaging middleware given
a topic name as a key; a service providing agent before the
publishing operation and a HandlerAgent during a
subscription operation. The messaging middleware returns a
reference to the topic that hosts are interested in. Thus, a
meeting point for those hosts is constructed.

Figure 2 shows this system in more detail.

Fig. 2. System details

 This architecture relies on programming languages like
java that highly supports code to be transferred between
distinct machines on the network. The presented architecture
achieves topic based inter platform migration between hosts
of the same type of agency like JADE without any
modification or between hosts of different agencies like
JADE – JAM (two different Java based agent platforms), that
support the same programming language with minor
modifications in the application design for the APIs that the
platform provides.
 Service providing agent is called publisher agent as it
implies its role explicitly. Supporting standards to achieve
inter platform agent migration or even agent communication
FIPA ACC (Agent Communication Channel) must be used.
Also to achieve inter platform or even inter host
communication, ACL messages should be used. Considering
these points, the presented architecture offers wrapping
publisher agents in ACL messages as payloads and getting
these agents out of the platform or host by using ACC
channel as described in FIPA specifications. On the other
hand, a standard way of making computer systems
communicate on a network in a loosely coupled manner with
enterprise-wide standards is using Enterprise Messaging
System (EMS). This is valid not only for agent systems but
also for legacy software systems and agent to legacy software
systems. Thus, the architecture combines all these industry
standards to achieve agent migration in a highly standard
way. Agent-MOM (message oriented middleware) Gateway
is considered to integrate agent systems and enterprise
systems. This gateway simply transforms agents into objects
that an EMS/MOM system can interpret. Gateway

communicates with EMS/MOM via standard protocol like
TCP or language specific standard protocol like RMI. In this
way, publishing an agent wrapped in an ACL message to the
topic of the EMS/MOM is achieved. Message oriented
middleware notifies a subscribed entity by sending the object
on its topic to MOM-Agent gateway by TCP, RMI, …etc.
communication protocol. Gateway again transforms the
object into an ACL message and contacts to HandlerAgent on
the agency through ACC. The HandlerAgent communicates
with AMS of local agency to start the incoming agent.

Runtime scene of the system is show in figure 3.

Fig. 3. Message flow between components

 Conforming to the agent concept, we need to construct
behavior(s) for the agent tasks. For this reason we need to
design a behavior to cope with publish primitive of publish
subscribe paradigm for the publisher agent. We call this
behavior as PublishCommand. PublishCommand behavior
must be added to agent’s behavior list. With this behavior
added to the agent, agent gains capabilities of serializing and
publishing itself to EMS/MOM topic through Agent-MOM
gateway. PublisherAgent (PA) delegates publish
responsibility to the gateway to handle protocol conversion to
make the message understandable by EMS/MOM.
HandlerAgent subscribes to EMS/MOM topic through
agent-mom gateway for the same reason. EMS/MOM
notifies subscribed HandlerAgent with PA in a message
again through gateway. HandlerAgent deserializes
incoming agent to form it back and collects some information
from incoming agent needed for white page services.
HandlerAgent constructs descriptors for published agent to
register with the AMS (Agent Management Service) of the
local agency. After registering published agent with the local
agency, HandlerAgent starts it. Published agent starts to
work then. As a standard agent communication, publisher
and subscriber agents communicate over FIPA subscribe
protocol which is an interaction protocol. Given architecture
does not support direct communication between publishers
and subscribers. Realization of this protocol includes

EMS/MOM components and all conversions defined above.
This scheme achieves not only inter platform agent
migration per topic basis but also achieves agent-enterprise
software communication in a standard way per topic basis.

V. IMPLEMENTATION
 In this work we have implemented a prototype to see how
an agent migrate from one host to another via
publish/subscribe paradigm. We preferred java as an
implementation language due to its advantages over mobile
code. JADE (Java Agent Development framework) as an
agent platform is preferred due to its fame on researchers on
this topic and also because it is a java based agent framework.
Figure 4 shows layered structure. Achieving a loosely
coupled communication with a messaging service, JMS (Java
Messaging Service) is used for this purpose. One another
thing what we need here is a gateway to integrate JADE and
JMS. JMS as a new MTP (Message Transport Protocol) is
integrated to JADE platform [8] by Currie et al. We chose
Open JMS as a JMS provider which is supported by jade-jms
gateway. In this work we proposed a topic based agent
migration scheme via publish/subscribe paradigm. Therefore
we proposed a solution including JADE platform for agent
implementation and services, JMS as a messaging protocol
and jade-jms gateway to integrate JMS as an MTP to JADE
platform. This solution is composed of migrating JADE
agents via JMS publish/subscribe model within JADE
platform and inter JADE platforms. In our implementation
we wrap JADE agents in FIPA ACL messages as payloads.
Agent serializes and adds itself as a serialized payload to
ACL message. Agent bearing ACL message is published to
Open JMS topics created before via jade-jms gateway. Open
JMS notifies subscribed target hosts via agent bearing ACL
message. Subscription to JMS provider topics and handling
notifications are managed by HandlerAgent component on
target host. HandlerAgent design includes JMS provider
topic subscriptions via jade-jms gateway and picking
migrated agents from ACL messages, registering them to
AMS (Agent Management System) if it is an inter platform
migration and starting migrated agent. After starting,
migrated agent works autonomously and terminates on the
target host when it is done.

Fig. 4. Layered Structure

VI. CONCLUSION
We propose a scalable, decoupled, efficient and flexible

multi agent ecosystem with service oriented architecture
given mobile agents that achieves topic based agent
migration. We call this system, Information Expert
Ecosystem which is a persistent system and resultant of
interactive relations of information expert agents and their
environments (hosts) that provide execution runtime.

Information expert agents are agents that have information
on a specific subject and have ability to solve problems
related to the subject and can consult on that subject. Source
host is a host or a subsystem that generates information
expert agents and target host is a host or a subsystem that
needs the help/service of the information expert agent.
Information expert ecosystem is composed of information
expert agents that have the ability to serve on a specific
subject, source hosts that generate information expert agents
and target hosts that need service or consultancy on specific
subject. This ecosystem brings together service seeker hosts
and service producer hosts. Thus hosts or subsystems that
need each other come together without knowing each other in
advance through this ecosystem. Also topic based
publish/subscribe scheme is adopted for agent migration
which differs than existing agent migration schemes and
achieves inter platform agent mobility.

REFERENCES
[1] J. Ametller, S. Robles and J. Borrel, “Agent Migration over FIPA ACL

Messages,” Mobile Agents for Telecommunication Applications Lecture
Notes in Computer Science Volume 2881, 2003, pp 210-219.

[2] S. Malik, N. Qureshi, A. Ali, H. Ahmad, H. Suguri, “Inter Platform Agent
Mobilityin FIPA Compliant Multi-Agent Systems,” IEEE International
Conference on Active Media Technology, 2005. (AMT 2005).
Proceedings of the 2005, pp. 393-396.

[3] M. Paraschiv, A. Stefanescu, A. Almasi, “Agent Based Implementation of
a P2P Publish/Subscribe System,” Computer Science Master Research,
2011.

[4] Z. Shen, R. Li, J. Luo, “Mobile Agent Based Middleware using
Publish/Subscribe Mechanism in Wireless Sensor Networks,”
International Conference on Communication Software and Networks,
2009.

[5] O. K. Sahingoz, N. Erdogan, “AGVENT: Agent Based Distributed Event
System,” Proceedings of 30th The Conference on Current Trends in
Theory and Practice of Computer Science (SOFSEM 2004) Prag, Czech
Republic, 2004.

[6] P. Eugster, P. Felber, R. Guerraoui, A. Kermarrec, “The many faces of
Publish/Subscribe,” ACM Computing Surveys, Vol. 35, No. 2, June
2003, pp. 114–131.

[7] V. Pham, A. Karmouch, “Mobile Software Agents: an Overview,” IEEE
Communications Magazine, 1998.

[8] E. Curry, D. Chambers, G. Lyons, “A JMS Message Transport Protocol
for the JADE Platform,” IEEE International Conference on Intelligent
Agent Technology, 2003, IAT, 2003, IEEE/WIC, pp. 596-600.

Mustafa Akif Karzan was born in Istanbul, TURKEY
in 1983. He has BSc. degree in Electronics and
Communications Engineering field from Faculty of
Electrical and Electronics Engineering in Istanbul
Technical University, Istanbul, Turkey since 2008. He
works on multi-agent systems and specifically on agent
communication and migration architectures.
 He is currently MSc. Student in Computer Science
field in the Informatics Institute in Istanbul Technical

University, Istanbul, Turkey.

Nadia Erdogan has BSc. degree in Electrical
Engineering, Computer branch from Bosphorus
University, Istanbul, Turkey since 1978. She has MSc.
Degree in Computer Science from Bosphorus University.
She has doctoral degree from Institute of Science in
Istanbul Technical University. She works on distributed
systems, agents systems and parallel programming fields.
 She is working as an instructor at Computer

Engineering department in Faculty of Computer and Informatics in Istanbul
Technical University in Istanbul, Turkey.

