
1

Parallel Genetic Algorithm to Solve Traveling Salesman Problem

on MapReduce Framework using Hadoop Cluster

Abstract- Traveling Salesman Problem (TSP) is

one of the most common studied problems in

combinatorial optimization. Given the list of

cities and distances between them, the problem

is to find the shortest tour possible which visits

all the cities in list exactly once and ends in the

city where it starts. Despite the Traveling

Salesman Problem is NP-Hard, a lot of methods

and solutions are proposed to the problem. One

of them is Genetic Algorithm (GA). GA is a

simple but an efficient heuristic method that can

be used to solve Traveling Salesman Problem. In

this paper, we will show a parallel genetic

algorithm implementation on MapReduce

framework in order to solve Traveling Salesman

Problem. MapReduce is a framework used to

support distributed computation on clusters of

computers. We used free licensed Hadoop

implementation as MapReduce framework.

Keywords-Hadoop, MapReduce, Traveling

Salesman Problem, Parallel Genetic Algorithm

I. INTRODUCTION

The Traveling Salesman Problem (TSP) is a well-

known and important combinatorial optimization

problem. The goal is to find the shortest tour that

visits each city in a given list exactly once and then

returns to the starting city. In contrast to its simple

definition, solving the TSP [1] is difficult since it is

an NP-complete problem. It has many application

areas such as planning, logistic and network

routing, chip design and manufacturing.

There are numerous approaches to solve TSP. In

this paper, we examine Genetic Algorithm (GA)

solution. GA is a heuristic solution which yields

near optimal solutions within a reasonable time.

Although GA is time efficient and a good

approximation for TSP, sometimes it can stuck to

local optima or it takes considerable time when the

number of cities increases.

The inherent parallel nature of evolutionary

algorithms makes them optimal candidates for

parallelization [2]. There are many studies on

parallelization of Genetic Algorithms on a

computer cluster. MPI-based parallelization is one

of the most studied methods. MapReduce [3, 10]

parallelization is another way of parallelization

which is studied in this paper.

MapReduce is a framework that is comprised of

map and reduce functions. It enables users to

develop large-scale and fault tolerant distributed

applications. Applications developed on

MapReduce framework are naturally self-fault

tolerant. Hadoop [8] is a software implementation

of MapReduce framework. Hadoop runs on a

commodity hardware cluster which is much cheaper

than a specialized workstation. Its base approach is

to transfer the program code to the data node

instead of transferring data across the network. As a

result, it overcomes the data transferring bottleneck

of the distributed applications.

In the next section, we give a detailed description of

the TSP and its application areas. The third section

covers the Genetic Algorithm and how it can be

utilized as a solution for TSP. Later we describe

parallelization methods of GA and how GA can be

expressed as a MapReduce job. At the conclusion

of paper, we report our experimental results and

comparisons to related works.

II. TRAVELING SALESMAN PROBLEM

Traveling Salesman Problem is one of the most

studied combinatorial problems because it is simple

to comprehend but hard to solve [5]. The problem is

to find the shortest tour of a given number of cities

which visits each city exactly once and returns to

the starting city [4].

In a complete weighted undirected graph G (V, E)

where cities are represented by vertices and

distances are presented by weighted edges, TSP is

to find the minimized Hamilton cycle that starts

from a specified vertex, visits all the other vertices

exactly once, and ends at the same specified vertex.

At the first glance, TSP seems to be limited for a

few application areas; however it can be used in a

lot of problem solutions. Some of the application

areas are; printed circuit manufacturing, industrial

robotics, time and job scheduling of the machines,

logistic or holiday routing, specifying package

transfer route in computer networks, and airport

flight scheduling.

As a solution of TSP, there are two main

approaches. The first tries to find an optimal

solution that guarantees the quality of solution;

however it is very slow and mostly infeasible for

larger problem sizes. The second one tries to find a

solution within a reasonable time without any

guarantee for an optimal solution [6]. Its goal is to

get better performance with a lack of optimality.

2

Our approach in this study is to find a near optimal

solution in an acceptable time.

The exact solution would be to try all permutations

and choosing the cheapest one using brute-force

search. Even though this method guarantees the

best solution for a small number of cities, it

becomes impractical even for 20 cities.

III. GENETIC ALGORITHM FOR TSP

Genetic Algorithms are well suited for

combinatorial optimization problems. Because of

their ease of use, and efficient results, they are very

popular in solving NP-Hard problems. The

algorithm is inspired from natural evolution where

always the best individuals have a chance of

survival.

The algorithm has five main stages. Firstly, an

initial population is generated. Next, fitness of all

individuals in the population is evaluated.

According to the fitness values of individuals, good

ones are selected for the reproduction of the new

population. After selection operation, crossover

between selected individuals is carried out to

produce the next generation. The last step is to

mutate individuals with a given probability for

diversity of search directions. If the resulting

generation has a solution which is optimal, then the

algorithm is terminated. Otherwise, fitness

evaluation, selection, crossover and mutation

operators are applied on the next generation

iteratively.

Creating an initial population is the first step of a

genetic algorithm. For TSP, it means creating a list

of tours which visit every city exactly once and

return to starting city.

While creating a tour – it is a solution for the

problem – another consideration is encoding the

solution. In our work, permutation encoding is

used. Every city has an integer identifier that ranges

from 0 to N where N is the problem size. After one

of the cities is picked up as starting city, another

city among the unvisited cities is selected until all

cities are visited.

After the initial population is created, the next step

is fitness evaluation of individuals. First, the path

length of each tour is calculated. After the

calculation of path length of all individuals, the

fitness value of each individual is assigned by

dividing its path length by total path length.

Selection operator is applied to individuals in the

population. Rank selection with elitism is used as a

selection operator. Rank selection ranks the

population and every individual receives a rank

value. The worst one has a rank of 1; the second

worst a rank of 2 and so on. The best individual has

a rank of N which is the number of individuals in

the population. Next, each individual is assigned a

probability to be chosen for crossover operation in

order to generate next population.

One of the drawbacks of the genetic algorithm is

that it can get stuck in local optimum. In order to

avoid this situation, we propose preventing

consanguineous marriage. Our policy in this

respect is selecting two individuals that have

different gene orders over a particular percent for

the crossover operation. Setting a percentage value

too high prevents the algorithm from converging.

Otherwise, if the percentage value is minimized too

much, it has no effect on avoiding from local

optima. After some experimentation, we have

chosen the percentage value as %20. Therefore, if

two parents have similarity over %80, they cannot

be chosen for the crossover.

The next stage is to make crossover between

selected two parents. Several crossover methods

have been proposed for TSP. Some of the most

common methods are Partially Mapped Crossover,

Order Crossover and Edge Crossover. In this study,

we used the Greedy Crossover method.

The Greedy Crossover procedure is simple. For a

pair of parents, one of the cities is picked up as a

starting city; the shortest edge that is presented in

the parents, leading from the current city and not

introducing a cycle is chosen. If the shortest edge

leads to a cycle, the other edge from the other

parent is chosen. On the other hand, if both edges

from parents lead to a cycle then we randomly

choose a city that does not lead to a cycle. In this

manner, selection of subsequent cities continues

until the tour is completed.

When the crossover stage is completed, a mutation

operation is applied to individuals in the next

generation with a certain probability which is

specified as 2.1% in this study. In the mutation

process, randomly chosen two genes are replaced

with each other.

When the next population is produced, it is

determined whether convergence is obtained or not.

If the solution satisfies the termination condition,

the algorithm is terminated. Otherwise fitness

evaluation, selection, crossover and mutation stages

are repeated until convergence is obtained.

IV. PARALLEL GENETIC ALGORITHMS

As mentioned above, Genetic Algorithm is

comprised of fitness evaluation, selection,

crossover and mutation phases. The most time

3

consuming stage in the algorithm is fitness

evaluation. Especially if the population size is very

large, fitness evaluation turns into a big problem to

be solved in sequential GA. Another problem

encountered in a sequential genetic algorithm is that

it sometimes gets stuck in a local search space [7].

To overcome the problems described above,

Parallel Genetic Algorithm (PGA) is used. Fitness

evaluation problem can be solved using multi-core

or super computers. If getting stuck in sub-optimal

search space is the problem, PGAs provide an

appropriate solution for the problem.

The calculation of fitness evaluation, the use of

single or multiple population, in case of multiple

populations, the way individual exchange is carried

out are some of the criteria according which PGAs

are classified. PGAs are classified into Master-

slave, multiple populations with migration and

multiple populations without migration.

In master-slave parallelization, the most time

consuming part of the genetic algorithm, that is

fitness evaluation, is calculated in parallel. In this

class of PGAs, all stages of the genetic algorithm

except for fitness evaluation are performed on a

master node in a sequential manner. Master node

sends the individuals to the slave nodes, which

calculate the fitness of the given individuals and

return the results back to master node. When the

master node gets the fitness of all individuals in the

population, selection, crossover and mutation

operations are applied globally.

Even though Master-slave parallelization outcomes

the fitness evaluation problem, the other parts of the

algorithm are still processed sequentially. Also, the

local search problem still remains.

Multiple populations parallelization method which

is the mostly applied method, uses multiple sub-

populations [7] as the name indicates. All the

genetic operators are applied to sub-populations

separately. Sub-populations evolve independently

of each other.

In multiple populations without migration

parallelization method, some individuals of the sub-

populations are shared between each other. So

search direction traced by each sub-population is

transferred to other sub-populations.

Multiple populations with migration parallelization

method is the method we have used. It uses

migration operator in order to share search direction

between sub-populations. Some of the individuals

from one sub-population are transferred to other

sub-populations at regular intervals [7].

Migration operator has some parameters that need

to be optimized: The interval that migration

operator is applied; the number and characteristics

of individuals transferred and replaced should be

determined.

Migration interval determines how frequently the

selected individuals are transferred to other sub-

populations. As stated above, sub-populations

evolve separately and some selected individuals are

migrated to other sub-populations at determined

intervals.

While migrating individuals, selecting the kinds of

chromosomes to be transferred and specifying the

kinds of chromosomes in the other sub-population

with which they are to be replaced is an important

process. In this study, the best chromosomes are

selected and migrated to other sub-populations.

Accordingly, the worst chromosomes in other sub-

populations are replaced with the newly migrated

chromosomes.

V. MAPREDUCE FRAMEWORK

MapReduce is a distributed computing framework

proposed by Google for processing large data sets

on a cluster. It enables users to develop and run

distributed programs easily.

Network bandwidth bottleneck is the most

encountered problem in distributed applications [8].

MapReduce framework overcomes the network

bandwidth bottleneck through data locality that is

by collocating running code and data.

Another problem in distributed applications is

failure of a node or failure of connection to a node.

MapReduce has self failure detection and recovery

procedure. Hence, a developer concentrates totally

on its application with no concern on failures.

MapReduce framework runs in slave-master model.

In traditional master-slave programming models, a

developer should consider the coordination of

nodes. On the other hand, MapReduce framework

handles coordination by itself, using RPC calls

between master and slave nodes.

MapReduce framework, as the name indicates,

consists of map and reduce functions which are

written by the user. Map function reads key-value

pairs from file system, groups them according to

their keys and creates intermediate key-value pairs

[3]. Reduce function receives a key and a list of

values that are associated with the key. It performs

a set of operations and the resulting key-value pairs

are written back to file system by reducer.

4

Hadoop [11], free licensed implementation of

MapReduce architecture, is used in this study as a

MapReduce framework. It provides two main

concepts; computational architecture for

MapReduce jobs and Hadoop Distributed File

System (HDFS) [12] for input and output data of

MapReduce jobs. Hence, Map functions read their

inputs from HDFS and create intermediate key-

value pairs. Reduce functions receive intermediate

key-value pairs and after performing certain

operations they write results back to HDFS.

Hadoop cluster [11] has five main components,

namely NameNode, DataNode, Secondary

NameNode, JobTracker, and TaskTracker.

NameNode is responsible for managing data on

HDFS. DataNode, as the name suggests, stores data

and interacts with NameNode. Secondary

NameNode runs as a back-up for NameNode.

TaskTracker communicates with client and runs the

client’s MapReduce jobs via TaskTracker and

coordinates TaskTrackers to complete job

consistently. TaskTracker is responsible for the

execution of map and reduce tasks which constitute

the MapReduce job. NameNode, Secondary

NameNode, JobTracker are the master part of

MapReduce framework and they all run on a master

machine. DataNode and TaskTracker are slave

components which run on slave machines. The

Hadoop cluster has one NameNode, one Secondary

NameNode and one JobTracker, while the cluster

can have any number of DataNodes and

TaskTrackers.

VI. METHOD – MAP-REDUCING GA

Static population with migration parallelization

method is used to parallelize the genetic algorithm.

Sub-populations evolve on their own. And they

exchange good individuals between each other at

regular intervals as shown in Fig. 1.

 Figure 1: Static populations with migration

Iterative MapReduce is used to implement Parallel

GA. Each evolution phase is implemented as a

MapReduce job. Each job has N number of map

and reduce tasks where N is the number of sub-

populations. At the end of a job, individuals are

written back to HDFS file system as shown in Fig.

2. Before starting the next evolution phase, it is

checked out whether convergence has occurred or

not. If it does, client terminates the program and the

result is presented as an optimal solution.

Otherwise, client starts the next MapReduce job

and the sub-populations develop until the next

exchange phase.

Figure 2: MapReduce implementation of static
populations with migration

MapReduce framework uses string class for value

and integer for key, which are not convenient for

GA. Therefore, we have implemented our own

chromosome input and output format. Our

Chromosome class implements Hadoop’s Writable

interface, and overrides readFields and write

functions of the interface. As a result, individuals

are directly written to and read from HDFS without

any interpretation.

The main components we have implemented for

our MapReduce application are Driver class,

Mapper function, Reducer function and Partitioner

class which directs individuals that share the same

population identifier to the same

reducer/population.

Driver class is the program entry point. Client sends

jobs to JobTracker, and decides to terminate a

program via this class. It is also used to set the

initial Hadoop environment parameters such as the

number of map and reduce tasks, input/output

format and directory, etc.

Driver Class

BEGIN

 Run Job1: Creates initial population in parallel

 FOREACH max generation number

 Run Job i: evolve population

 END FOR

 Run job N: write resulting populations HDFS in

 a readable format to HDFS

END

Map function is used to read individuals from

HDFS file system with their population identifier

5

and group individuals according to their population

identifier.

Hadoop has its default partitioner as hash

partitioner which produces the partition number

using chromosome’s gene order in our case. So it

sends the individuals which have the same gene

order to same reducer (sub-population). However,

this approach is not convenient for our problem.

Therefore, we replace it with our partitioner which

shuffles individuals according to their population

identifiers. As a result, all individuals that share the

same population identifier are sent to same reducer.

Reducer receives the individuals that belong to

same population. Population evolves for a specific

iteration number. Firstly, rank selection is applied

to select suitable parents for crossover. Using

greedy crossover, a new population is obtained.

Next, mutation is applied for recently generated

individuals with a certain probability. After

evolution for determined iteration, the new

population is written back to HDFS file system.

The best individuals in each population are written

with different population identifiers. So, for the

next iteration, they are sent to other populations.

Each sub-population is assigned to a different

reduce task and reduce functions evolve sub-

populations until migration process starts.

After iteration has completed, all reducers write the

best individual in their sub-populations to the file

system. Before starting the next evolution step,

client program reads the best individuals and

decides if the convergence criteria have been

satisfied.

Reducer Class

BEGIN

 Receive individuals that all have the same id

 FOREACH evolution number

 FOREACH population size

 Apply rank selection

 Apply Greedy crossover

 Add new individuals to new population

 END FOR

 Apply mutation to new population

 END FOR

 Write population to HDFS

 FOREACH number of other sub-populations

 Change individual pop_id and write it to HDFS

 END FOR

END

VII. RESULTS AND EVALUATION

To assess the performance of our parallel

implementation, we compare it with a sequential

implementation of the genetic algorithm. The

sequential genetic algorithm (SGA) we have

developed is also compared with other

implementations [9].

Sequential GA runs on Intel Core Duo 2.4 GHz

machine including 3GB of RAM. Parallel GA runs

on a Hadoop cluster of 6 machines that are

described on Table 1.

Name CPU

(GHz)

Core CPU

Type

RAM

(GB)

Master 3.0 2 P4 2.0

Slave1 3.2 2 P4 2.0

Slave2 3.0 2 PD 2.0

Slave3 2.13 2 Duo 3.0

Slave4 2.33 4 Quad 3.5

Slave5 2.8 4 I5 2.5

Table 1: Machines on Hadoop Cluster

The problem instances we have used in this study

are taken from TSPLIB library [13]. The problems

are asymmetric, that is, the distance from node i to

node j and the distance from node j to node i could

be different. The results are obtained by execution

of the algorithms for at least 10 times. Population

size of sequential GA and each sub-population size

of MapReduce GA are set to 100. The other GA

parameters; crossover probability and mutation

probability are set to %99 and %2.1 respectively.

SGA is compared with Edge Recombination

crossover (ERX), Generalized N-Point crossover

(GNX) and Sequential Constructive crossover

(SCX) that are implemented in [9]. Time and

optimal solution accuracy comparison of the

algorithms are shown in Fig. 3 and Fig. 4

respectively. For this experiment, maximum

generation number is set to 10.000.

Figure 3: Solution Time for ERX, GNX, SCX and SGA in
seconds for TSPLIB instances

0

100

200

300

400

500

600

Ti
m

e
(s

ec
)

Problems

ERX

GNX

SCX

SGA

6

The time requirements of four algorithms are

shown in Fig. 3. ERX is the most time consuming

algorithm. GNX algorithm takes the same with

SGA for small problem sizes. For larger problem

sizes, it takes more time than SGA. SCX and SGA

take almost the same time for the solutions.

Figure 4: Average solution accuracy of algorithms as
percentage for TSPLIB instances

Results in Fig. 4 show that the SGA finds the

optimal solution faster than the others always. Also

it finds the better solution than the other algorithms.

Next, we compare SGA with the parallelized

MapReduce GA. We set maximum generation

number as 50.000 in this experiment.

Figure 5: Percentage of average solution accuracy for
TSPLIB instances

Since each sub-population in MapReduce GA

searches solution space in a different direction,

MapReduce GA always finds better solutions than

SGA Fig. 5.

Figure 6: Solution Times of SGA and HADOOP in
seconds for TSPLIB instances

Fig. 6 shows the time required for both sequential

and MapReduce GA. Sequential algorithm obtains

solution faster than MapReduce GA for small sized

problems. This is true because JVM creation time

for map and reduce tasks dominates the solution

time. However, when the problem size increases,

sequential GA solution time increases dramatically.

MapReduce GA has almost the same run time for

all problem sizes and it hammers the sequential GA

for large problem sizes.

VIII. CONCLUSION

We used genetic algorithm in order to solve

Traveling Salesman Problem. And we parallelized

the algorithm on Hadoop Cluster. Static population

with migration method is used as the parallelization

method.

We compare sequential GA with other studies. Our

sequential GA always gives better solutions than

the others in terms of quality and time.

MapReduce parallel genetic algorithm comparison

with sequential genetic algorithm shows that

MapReduce GA finds better solutions and takes

shorter time than SGA when the problem size

increases.

The maximum problem size used in this experiment

is 171. Even though, this study shows that the

Hadoop parallelization gives better results than

sequential algorithm, we consider examining still

larger problem sizes to compare results with other

parallel implementations. Using a larger Hadoop

cluster is in our future work plan.

We used 10 sub-populations that is, 10 map/reduce

tasks run parallel for each Job. Increasing or

decreasing the number of tasks may also reveal

interesting results.

IX. REFERENCES

[1] E. L. Lawler, J. K. Lenstra, A. H. G.

RinnooyKan, and D. B. Shmoys (1985), The

Traveling Salesman Problem, John Wiley &

Sons,Chichester

[2] E. Cant´u-Paz., Efficient and Accurate Parallel

Genetic Algorithms. Springer, 2000

[3] Abhishek Verma, Xavier Llor`a, David E.

Goldberg and Roy H. Campbell, Scaling Simple

and Compact Genetic Algorithms using

MapReduce in International Conference on

Intelligent Systems Design and Applications, 2009

0
10
20
30
40
50
60
70

Ex
ce

ss
 (

%
)

Problems

ERX

GNX

SCX

SGA

0

2

4

6

8

10

Ex
ce

ss
 (

%
)

Problems

SGA

Hadoop

0

200

400

600

800

1000

1200

Ti
m

e
(s

ec
)

Problems

SGA

Hadoop

7

[4] Fan Yang, Solving Traveling Salesman Problem

Using Parallel Genetic Algorithm and Simulated

Annealing, 2010

[5] Adewole Philip, Akinwale Adio Taofiki,

Otunbanowo Kehinde, A Genetic Algorithm for

Solving Travelling Salesman Problem, in

International Journal of Advanced Computer

Science and Applications, 2011

[6] Siddhartha Jain, Matthew Mallozzi, Parallel

Heuristics for TSP on MapReduce, Brown

University, 2010

[7] Mariusz Nowostawski, Riccardo Poli, Parallel

Genetic Algorithm Taxonomy, in Knowledge-

Based and Intelligent Information & Engineering

Systems, 1999

[8] Tom White, Hadoop: The Definitive Guide,

O’Reilly, 2009

[9] Zakir H. Ahmed, Genetic Algorithm for the

Traveling Salesman Problem using Sequential

Constructive Crossover Operator, in International

Journal of Biometrics & Bioinformatics Volume

(3): Issue (6)

[10] J. Dean and S. Ghemawat. Mapreduce:

Simplified data processing on large clusters.

Commun. ACM, 51(1):107–113, 2008.

[11] http://hadoop.apache.org

[12] Chuck Lam, Hadoop in Action, Manning, 2011

[13]http://www.iwr.uni-

heidelberg.de/groups/comopt/software/TSPLIB95/

