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Parallel Genetic Algorithm to Solve Traveling Salesman Problem 

on MapReduce Framework using Hadoop Cluster 
 

Abstract- Traveling Salesman Problem (TSP) is 

one of the most common studied problems in 

combinatorial optimization. Given the list of 

cities and distances between them, the problem 

is to find the shortest tour possible which visits 

all the cities in list exactly once and ends in the 

city where it starts. Despite the Traveling 

Salesman Problem is NP-Hard, a lot of methods 

and solutions are proposed to the problem. One 

of them is Genetic Algorithm (GA). GA is a 

simple but an efficient heuristic method that can 

be used to solve Traveling Salesman Problem. In 

this paper, we will show a parallel genetic 

algorithm implementation on MapReduce 

framework in order to solve Traveling Salesman 

Problem. MapReduce is a framework used to 

support distributed computation on clusters of 

computers. We used free licensed Hadoop 

implementation as MapReduce framework.  

 

Keywords-Hadoop, MapReduce, Traveling 

Salesman Problem, Parallel Genetic Algorithm 

 

I. INTRODUCTION 

 

The Traveling Salesman Problem (TSP) is a well-

known and important combinatorial optimization 

problem. The goal is to find the shortest tour that 

visits each city in a given list exactly once and then 

returns to the starting city. In contrast to its simple 

definition, solving the TSP [1] is difficult since it is 

an NP-complete problem. It has many application 

areas such as planning, logistic and network 

routing, chip design and manufacturing.  

 

There are numerous approaches to solve TSP. In 

this paper, we examine Genetic Algorithm (GA) 

solution. GA is a heuristic solution which yields 

near optimal solutions within a reasonable time. 

Although GA is time efficient and a good 

approximation for TSP, sometimes it can stuck to 

local optima or it takes considerable time when the 

number of cities increases. 

 

The inherent parallel nature of evolutionary 

algorithms makes them optimal candidates for 

parallelization [2]. There are many studies on 

parallelization of Genetic Algorithms on a 

computer cluster. MPI-based parallelization is one 

of the most studied methods. MapReduce [3, 10] 

parallelization is another way of parallelization 

which is studied in this paper. 

 

MapReduce is a framework that is comprised of 

map and reduce functions. It enables users to 

develop large-scale and fault tolerant distributed 

applications. Applications developed on 

MapReduce framework are naturally self-fault 

tolerant. Hadoop [8] is a software implementation 

of MapReduce framework. Hadoop runs on a 

commodity hardware cluster which is much cheaper 

than a specialized workstation. Its base approach is 

to transfer the program code to the data node 

instead of transferring data across the network. As a 

result, it overcomes the data transferring bottleneck 

of the distributed applications. 

 

In the next section, we give a detailed description of 

the TSP and its application areas. The third section 

covers the Genetic Algorithm and how it can be 

utilized as a solution for TSP. Later we describe 

parallelization methods of GA and how GA can be 

expressed as a MapReduce job. At the conclusion 

of paper, we report our experimental results and 

comparisons to related works. 

 

II. TRAVELING SALESMAN PROBLEM 

 

Traveling Salesman Problem is one of the most 

studied combinatorial problems because it is simple 

to comprehend but hard to solve [5]. The problem is 

to find the shortest tour of a given number of cities 

which visits each city exactly once and returns to 

the starting city [4]. 

 

In a complete weighted undirected graph G (V, E) 

where cities are represented by vertices and 

distances are presented by weighted edges, TSP is 

to find the minimized Hamilton cycle that starts 

from a specified vertex, visits all the other vertices 

exactly once, and ends at the same specified vertex. 

 

At the first glance, TSP seems to be limited for a 

few application areas; however it can be used in a 

lot of problem solutions. Some of the application 

areas are; printed circuit manufacturing, industrial 

robotics, time and job scheduling of the machines, 

logistic or holiday routing, specifying package 

transfer route in computer networks, and airport 

flight scheduling.  

 

As a solution of TSP, there are two main 

approaches. The first tries to find an optimal 

solution that guarantees the quality of solution; 

however it is very slow and mostly infeasible for 

larger problem sizes. The second one tries to find a 

solution within a reasonable time without any 

guarantee for an optimal solution [6]. Its goal is to 

get better performance with a lack of optimality. 
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Our approach in this study is to find a near optimal 

solution in an acceptable time. 

 

The exact solution would be to try all permutations 

and choosing the cheapest one using brute-force 

search. Even though this method guarantees the 

best solution for a small number of cities, it 

becomes impractical even for 20 cities. 

 

III. GENETIC ALGORITHM FOR TSP 

 

Genetic Algorithms are well suited for 

combinatorial optimization problems. Because of 

their ease of use, and efficient results, they are very 

popular in solving NP-Hard problems. The 

algorithm is inspired from natural evolution where 

always the best individuals have a chance of 

survival.  

 

The algorithm has five main stages. Firstly, an 

initial population is generated. Next, fitness of all 

individuals in the population is evaluated. 

According to the fitness values of individuals, good 

ones are selected for the reproduction of the new 

population. After selection operation, crossover 

between selected individuals is carried out to 

produce the next generation. The last step is to 

mutate individuals with a given probability for 

diversity of search directions. If the resulting 

generation has a solution which is optimal, then the 

algorithm is terminated. Otherwise, fitness 

evaluation, selection, crossover and mutation 

operators are applied on the next generation 

iteratively. 

 

Creating an initial population is the first step of a 

genetic algorithm. For TSP, it means creating a list 

of tours which visit every city exactly once and 

return to starting city.  

 

While creating a tour – it is a solution for the 

problem – another consideration is encoding the 

solution. In our work, permutation encoding is 

used. Every city has an integer identifier that ranges 

from 0 to N where N is the problem size. After one 

of the cities is picked up as starting city, another 

city among the unvisited cities is selected until all 

cities are visited. 

 

After the initial population is created, the next step 

is fitness evaluation of individuals. First, the path 

length of each tour is calculated. After the 

calculation of path length of all individuals, the 

fitness value of each individual is assigned by 

dividing its path length by total path length.  

 

Selection operator is applied to individuals in the 

population. Rank selection with elitism is used as a 

selection operator. Rank selection ranks the 

population and every individual receives a rank 

value. The worst one has a rank of 1; the second 

worst a rank of 2 and so on. The best individual has 

a rank of N which is the number of individuals in 

the population. Next, each individual is assigned a 

probability to be chosen for crossover operation in 

order to generate next population. 

 

One of the drawbacks of the genetic algorithm is 

that it can get stuck in local optimum. In order to 

avoid this situation, we propose preventing 

consanguineous marriage.  Our policy in this 

respect is selecting two individuals that have 

different gene orders over a particular percent for 

the crossover operation. Setting a percentage value 

too high prevents the algorithm from converging. 

Otherwise, if the percentage value is minimized too 

much, it has no effect on avoiding from local 

optima. After some experimentation, we have 

chosen the percentage value as %20. Therefore, if 

two parents have similarity over %80, they cannot 

be chosen for the crossover. 

 

The next stage is to make crossover between 

selected two parents. Several crossover methods 

have been proposed for TSP. Some of the most 

common methods are Partially Mapped Crossover, 

Order Crossover and Edge Crossover. In this study, 

we used the Greedy Crossover method. 

 

The Greedy Crossover procedure is simple. For a 

pair of parents, one of the cities is picked up as a 

starting city; the shortest edge that is presented in 

the parents, leading from the current city and not 

introducing a cycle is chosen. If the shortest edge 

leads to a cycle, the other edge from the other 

parent is chosen. On the other hand, if both edges 

from parents lead to a cycle then we randomly 

choose a city that does not lead to a cycle. In this 

manner, selection of subsequent cities continues 

until the tour is completed. 

 

When the crossover stage is completed, a mutation 

operation is applied to individuals in the next 

generation with a certain probability which is 

specified as 2.1% in this study. In the mutation 

process, randomly chosen two genes are replaced 

with each other. 

 

When the next population is produced, it is 

determined whether convergence is obtained or not. 

If the solution satisfies the termination condition, 

the algorithm is terminated. Otherwise fitness 

evaluation, selection, crossover and mutation stages 

are repeated until convergence is obtained. 

 

IV. PARALLEL GENETIC ALGORITHMS 

 

As mentioned above, Genetic Algorithm is 

comprised of fitness evaluation, selection, 

crossover and mutation phases. The most time 
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consuming stage in the algorithm is fitness 

evaluation. Especially if the population size is very 

large, fitness evaluation turns into a big problem to 

be solved in sequential GA. Another problem 

encountered in a sequential genetic algorithm is that 

it sometimes gets stuck in a local search space [7]. 

 

To overcome the problems described above, 

Parallel Genetic Algorithm (PGA) is used. Fitness 

evaluation problem can be solved using multi-core 

or super computers. If getting stuck in sub-optimal 

search space is the problem, PGAs provide an 

appropriate solution for the problem.  

 

The calculation of fitness evaluation, the use of 

single or multiple population, in case of multiple 

populations, the way individual exchange is carried 

out are some of the criteria according which PGAs 

are classified. PGAs are classified into Master-

slave, multiple populations with migration and 

multiple populations without migration. 

 

In master-slave parallelization, the most time 

consuming part of the genetic algorithm, that is 

fitness evaluation, is calculated in parallel. In this 

class of PGAs, all stages of the genetic algorithm 

except for fitness evaluation are performed on a 

master node in a sequential manner. Master node 

sends the individuals to the slave nodes, which 

calculate the fitness of the given individuals and 

return the results back to master node. When the 

master node gets the fitness of all individuals in the 

population, selection, crossover and mutation 

operations are applied globally.  

 

Even though Master-slave parallelization outcomes 

the fitness evaluation problem, the other parts of the 

algorithm are still processed sequentially. Also, the 

local search problem still remains.   

 

Multiple populations parallelization method which 

is the mostly applied method, uses multiple sub-

populations [7] as the name indicates. All the 

genetic operators are applied to sub-populations 

separately. Sub-populations evolve independently 

of each other.  

 

In multiple populations without migration 

parallelization method, some individuals of the sub-

populations are shared between each other. So 

search direction traced by each sub-population is 

transferred to other sub-populations. 

 

Multiple populations with migration parallelization 

method is the method we have used. It uses 

migration operator in order to share search direction 

between sub-populations. Some of the individuals 

from one sub-population are transferred to other 

sub-populations at regular intervals [7]. 

 

Migration operator has some parameters that need 

to be optimized: The interval that migration 

operator is applied; the number and characteristics 

of individuals transferred and replaced should be 

determined.  

 

Migration interval determines how frequently the 

selected individuals are transferred to other sub-

populations. As stated above, sub-populations 

evolve separately and some selected individuals are 

migrated to other sub-populations at determined 

intervals. 

 

While migrating individuals, selecting the kinds of 

chromosomes to be transferred and specifying the 

kinds of chromosomes in the other sub-population 

with which they are to be replaced is an important 

process. In this study, the best chromosomes are 

selected and migrated to other sub-populations. 

Accordingly, the worst chromosomes in other sub-

populations are replaced with the newly migrated 

chromosomes. 

 

V. MAPREDUCE FRAMEWORK 

 

MapReduce is a distributed computing framework 

proposed by Google for processing large data sets 

on a cluster. It enables users to develop and run 

distributed programs easily.  

 

Network bandwidth bottleneck is the most 

encountered problem in distributed applications [8]. 

MapReduce framework overcomes the network 

bandwidth bottleneck through data locality that is 

by collocating running code and data. 

 

Another problem in distributed applications is 

failure of a node or failure of connection to a node. 

MapReduce has self failure detection and recovery 

procedure. Hence, a developer concentrates totally 

on its application with no concern on failures. 

 

MapReduce framework runs in slave-master model. 

In traditional master-slave programming models, a 

developer should consider the coordination of 

nodes. On the other hand, MapReduce framework 

handles coordination by itself, using RPC calls 

between master and slave nodes. 

 

MapReduce framework, as the name indicates, 

consists of map and reduce functions which are 

written by the user. Map function reads key-value 

pairs from file system, groups them according to 

their keys and creates intermediate key-value pairs 

[3]. Reduce function receives a key and a list of 

values that are associated with the key. It performs 

a set of operations and the resulting key-value pairs 

are written back to file system by reducer. 
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Hadoop [11], free licensed implementation of 

MapReduce architecture, is used in this study as a 

MapReduce framework. It provides two main 

concepts; computational architecture for 

MapReduce jobs and Hadoop Distributed File 

System (HDFS) [12] for input and output data of 

MapReduce jobs. Hence, Map functions read their 

inputs from HDFS and create intermediate key-

value pairs. Reduce functions receive intermediate 

key-value pairs and after performing certain 

operations they write results back to HDFS. 

 

Hadoop cluster [11] has five main components, 

namely NameNode, DataNode, Secondary 

NameNode, JobTracker, and TaskTracker.  

NameNode is responsible for managing data on 

HDFS. DataNode, as the name suggests, stores data 

and interacts with NameNode. Secondary 

NameNode runs as a back-up for NameNode. 

TaskTracker communicates with client and runs the 

client’s MapReduce jobs via TaskTracker and 

coordinates TaskTrackers to complete job 

consistently. TaskTracker is responsible for the 

execution of map and reduce tasks which constitute 

the MapReduce job. NameNode, Secondary 

NameNode, JobTracker are the master part of 

MapReduce framework and they all run on a master 

machine. DataNode and TaskTracker are slave 

components which run on slave machines. The 

Hadoop cluster has one NameNode, one Secondary 

NameNode and one JobTracker, while the cluster 

can have any number of DataNodes and 

TaskTrackers. 

 

VI. METHOD  –  MAP-REDUCING GA 

 

Static population with migration parallelization 

method is used to parallelize the genetic algorithm. 

Sub-populations evolve on their own. And they 

exchange good individuals between each other at 

regular intervals as shown in Fig. 1. 

 

 Figure 1: Static populations with migration 

Iterative MapReduce is used to implement Parallel 

GA. Each evolution phase is implemented as a 

MapReduce job. Each job has N number of map 

and reduce tasks where N is the number of sub-

populations. At the end of a job, individuals are 

written back to HDFS file system as shown in Fig. 

2. Before starting the next evolution phase, it is 

checked out whether convergence has occurred or 

not. If it does, client terminates the program and the 

result is presented as an optimal solution. 

Otherwise, client starts the next MapReduce job 

and the sub-populations develop until the next 

exchange phase. 

 

 
Figure 2: MapReduce implementation of static 
populations with migration 

MapReduce framework uses string class for value 

and integer for key, which are not convenient for 

GA. Therefore, we have implemented our own 

chromosome input and output format. Our 

Chromosome class implements Hadoop’s Writable 

interface, and overrides readFields and write 

functions of the interface. As a result, individuals 

are directly written to and read from HDFS without 

any interpretation.  

 

The main components we have implemented for 

our MapReduce application are Driver class, 

Mapper function, Reducer function and Partitioner 

class which directs individuals that share the same 

population identifier to the same 

reducer/population. 

 

Driver class is the program entry point. Client sends 

jobs to JobTracker, and decides to terminate a 

program via this class. It is also used to set the 

initial Hadoop environment parameters such as the 

number of map and reduce tasks, input/output 

format and directory, etc. 

 

Driver Class 

BEGIN 

   Run Job1: Creates initial population in parallel 

   FOREACH max generation number 

      Run Job i: evolve population 

    END FOR 

    Run job N: write resulting populations HDFS in                           

    a readable format to HDFS  

END 

 

Map function is used to read individuals from 

HDFS file system with their population identifier 
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and group individuals according to their population 

identifier.  

Hadoop has its default partitioner as hash 

partitioner which produces the partition number 

using chromosome’s gene order in our case. So it 

sends the individuals which have the same gene 

order to same reducer (sub-population). However, 

this approach is not convenient for our problem. 

Therefore, we replace it with our partitioner which 

shuffles individuals according to their population 

identifiers. As a result, all individuals that share the 

same population identifier are sent to same reducer.  

Reducer receives the individuals that belong to 

same population. Population evolves for a specific 

iteration number. Firstly, rank selection is applied 

to select suitable parents for crossover. Using 

greedy crossover, a new population is obtained. 

Next, mutation is applied for recently generated 

individuals with a certain probability. After 

evolution for determined iteration, the new 

population is written back to HDFS file system. 

The best individuals in each population are written 

with different population identifiers. So, for the 

next iteration, they are sent to other populations. 

Each sub-population is assigned to a different 

reduce task and reduce functions evolve sub-

populations until migration process starts. 

After iteration has completed, all reducers write the 

best individual in their sub-populations to the file 

system. Before starting the next evolution step, 

client program reads the best individuals and 

decides if the convergence criteria have been 

satisfied.  

Reducer Class 

BEGIN 

   Receive individuals that all have the same id 

   FOREACH evolution number 

      FOREACH population size 

         Apply rank selection 

         Apply Greedy crossover 

         Add new individuals to new population 

      END FOR 

      Apply mutation to new population 

   END FOR 

   Write population to HDFS 

   FOREACH number of other sub-populations 

      Change individual pop_id and write it to HDFS 

   END FOR 

END 

VII. RESULTS AND EVALUATION 

 

To assess the performance of our parallel 

implementation, we compare it with a sequential 

implementation of the genetic algorithm. The 

sequential genetic algorithm (SGA) we have 

developed is also compared with other 

implementations [9].  

 

Sequential GA runs on Intel Core Duo 2.4 GHz 

machine including 3GB of RAM. Parallel GA runs 

on a Hadoop cluster of 6 machines that are 

described on Table 1. 

 

Name CPU 

(GHz) 

Core CPU 

Type 

RAM 

(GB) 

Master 3.0 2 P4 2.0 

Slave1 3.2 2 P4 2.0 

Slave2 3.0 2 PD 2.0 

Slave3 2.13 2 Duo 3.0 

Slave4 2.33 4 Quad 3.5 

Slave5 2.8 4 I5 2.5 

Table 1: Machines on Hadoop Cluster 

The problem instances we have used in this study 

are taken from TSPLIB library [13]. The problems 

are asymmetric, that is, the distance from node i to 

node j and the distance from node j to node i could 

be different. The results are obtained by execution 

of the algorithms for at least 10 times. Population 

size of sequential GA and each sub-population size 

of MapReduce GA are set to 100. The other GA 

parameters; crossover probability and mutation 

probability are set to %99 and %2.1 respectively. 

 

SGA is compared with Edge Recombination 

crossover (ERX), Generalized N-Point crossover 

(GNX) and Sequential Constructive crossover 

(SCX) that are implemented in [9]. Time and 

optimal solution accuracy comparison of the 

algorithms are shown in Fig. 3 and Fig. 4 

respectively. For this experiment, maximum 

generation number is set to 10.000. 

 

 
Figure 3: Solution Time for ERX, GNX, SCX and SGA in 
seconds for TSPLIB instances 
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The time requirements of four algorithms are 

shown in Fig. 3. ERX is the most time consuming 

algorithm. GNX algorithm takes the same with 

SGA for small problem sizes. For larger problem 

sizes, it takes more time than SGA. SCX and SGA 

take almost the same time for the solutions.  

 
Figure 4: Average solution accuracy of algorithms as 
percentage for TSPLIB instances 

Results in Fig. 4 show that the SGA finds the 

optimal solution faster than the others always. Also 

it finds the better solution than the other algorithms. 

 

Next, we compare SGA with the parallelized 

MapReduce GA. We set maximum generation 

number as 50.000 in this experiment. 

 

 
Figure 5: Percentage of average solution accuracy for 
TSPLIB instances 

Since each sub-population in MapReduce GA 

searches solution space in a different direction, 

MapReduce GA always finds better solutions than 

SGA Fig. 5. 

 
Figure 6: Solution Times of SGA and HADOOP in 
seconds for TSPLIB instances 

Fig. 6 shows the time required for both sequential 

and MapReduce GA. Sequential algorithm obtains 

solution faster than MapReduce GA for small sized 

problems. This is true because JVM creation time 

for map and reduce tasks dominates the solution 

time.  However, when the problem size increases, 

sequential GA solution time increases dramatically. 

MapReduce GA has almost the same run time for 

all problem sizes and it hammers the sequential GA 

for large problem sizes. 

 

VIII. CONCLUSION 

 

We used genetic algorithm in order to solve 

Traveling Salesman Problem. And we parallelized 

the algorithm on Hadoop Cluster. Static population 

with migration method is used as the parallelization 

method.   

 

We compare sequential GA with other studies. Our 

sequential GA always gives better solutions than 

the others in terms of quality and time. 

 

MapReduce parallel genetic algorithm comparison 

with sequential genetic algorithm shows that 

MapReduce GA finds better solutions and takes 

shorter time than SGA when the problem size 

increases. 

 

The maximum problem size used in this experiment 

is 171. Even though, this study shows that the 

Hadoop parallelization gives better results than 

sequential algorithm, we consider examining still 

larger problem sizes to compare results with other 

parallel implementations. Using a larger Hadoop 

cluster is in our future work plan. 

 

We used 10 sub-populations that is, 10 map/reduce 

tasks run parallel for each Job. Increasing or 

decreasing the number of tasks may also reveal 

interesting results. 
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