
agent meeting scheduler system [2]. The
system uses a multi-agent paradigm, where independent
agents are responsible for autonomously deciding how the
task is to be achieved and actually performing the necessary
set of actions, including handling interactions with other
agents. Each agent knows its user's preferences and
calendar availability in order to act on behalf of its user.
Agents negotiate by having one agent propose a meeting,
which the other agents accept or reject, based on whether or
not it fits their own schedules. In Section 2, we describe the
distributed multi-agent meeting scheduler system, with the
internal architectures of the agents involved. Section 3
focuses on the meeting scheduling protocol in detail. In
Section 4, we discuss the results of our basic experiments. In
Section 5, we discuss system features and Section 6 gives
conclusions.

2. A Distributed Multi-Agent Meeting
Scheduler System

In the system we present, each individual is
associated with a different agent. The agents manage
the scheduling process on behalf of the individuals
they represent, with no human interaction. Each agent
has access to calendar and preference information of
its user that are kept at different sites, in accordance
with the distributed nature of the problem.

A meeting has a date, a start time, and duration and it is

A Distributed Multi-Agent Meeting Scheduler System

 Ali Durmus, Nadia Erdogan

 Electrical-Electronics Faculty, Department of Computer Engineering

 Istanbul Technical University

 Ayazaga, 34469, Istanbul, Turkey.

scheduled when all agents reach an agreement on values for
these attributes. As, in real life scheduling process, finding a
suitable location is another problem; locations where
meetings can be arranged are also taken into account.
Physical state information, such as capacity, calendar, and
equipment possessed, of all locations are held in a central site.

The system consists of two types of agents:
scheduler agents, which negotiate with one another
on behalf of their users, and a location agent that
holds location information and negotiates with
scheduler agents. Our system does not have a fixed
central control. This means that there is not a
specialized control agent and each agent is able to try
to schedule a meeting via negotiation. Thus, a
scheduler agent can be in the organizer role when its
user requests a meeting and coordinates the meeting
scheduling process, or it can be in the invitee role, as
a participant of a meeting. Several meetings can be
undergoing scheduling. Therefore, an agent can
simultaneously be involved in scheduling any
number of meetings, acting as an organizer for some
and an invitee for others.

We have classified invitees into two groups:
important invitees and regular invitees, to meet real
world requirements. Important invitees have to attend
a meeting; therefore a meeting can only be scheduled
only if all of the important invitees agree on a time
slot. Attendance of regular invitees is not a necessity,
but a certain number of them may be required to
attend in certain cases.

2.1. Internal Architecture of Scheduler Agent

The architecture of a scheduler agent, as it is seen in Figure
1 , consists of the following components:
Preference Module: This module receives requests from
the negotiation module and from the user interface to query
user preferences about calendars and meetings. It also
receives data from the user interface to update the preference
database.
Preference Database: It holds user's meeting preferences. It
provides information on calendar days or time intervals when
the user wants no meetings. The database also holds
additional information on the degree of privacy, showing the
extent to which preference information can be exposed to
other agents.
Calendar Module: This module receives requests from the
negotiation module to query and update calendar information.
It also receives requests from the user interface that query

calendar information.

Figure 1: Internal Architecture of Scheduler

Agent

Calendar Database: It contains personal calendar
information.
Negotiation Module: It is the most important module in the
agent structure. It receives requests and data as input from the
user interface and coordinates the scheduling process by
communicating proposals to other agents in the system. It
also negotiates with other agents on their further meeting
requests as an invitee. It keeps the information that it receives
from other agents for a certain meeting scheduling session at
the negotiation database and uses them to produce new
meeting time proposals and counter meeting time proposals.
If acting as an invitee, it produces acceptance and rejection
responses to other agents’ request messages.
Negotiation Database: This database holds information
gathered from the messages of other agents for each meeting
scheduling session. The negotiation module uses these data
to reason about other agents’ calendar information.
User Interface: This is the human interface to the system as
it is shown Figure 2. It receives data and requests from the

User Interface

Preference

Module
Calendar

Module
 Negotiation

 Module

User

Preference

DB

Calendar

 DB

Other Agents

Negotiation

 DB

user to schedule a meeting and it forwards them to the
negotiation module. It also receives queries and update
requests from the user about preference and calendar
information. It forwards the requests to the target modules
and presents the resulting information to the user.

Figure 2 : User Interface of Scheduler Agent

2.2. Internal Architecture of Location Agent

The architecture of the location agent, as it is seen in

Figure 3, consists of the following components:
Location Module: This module receives queries and
update requests to query and update physical information of
locations where meetings can be held
Location Database: It holds physical information of
locations where meetings can be held. Physical information
includes capacity and equipment present.
Calendar Module: This module receives requests form the
negotiation module and from the user to query and update
calendar information.
Calendar Database: It holds calendar information of
locations.
Negotiation Module: It receives messages from other
agents to schedule a meeting and replies with acceptance or
rejection messages, according to the location calendar and its

physical information. It produces a counter proposal in some
cases.
Negotiation Database: This database holds information,
gathered from other agents’ messages, for each meeting
scheduling session.

Figure 3 : Internal Architecture of Location Agent

User Interface: It enables the user to query and update the
location and calendar database by means of the location
module and calendar module.

3. The Meeting Scheduling Protocol

Before presenting the meeting scheduling algorithms, we

want to focus on certain decision criteria that influence the
efficiency and speed of the scheduling process.

Search Bias: Distributed meeting scheduling can be
thought of as a distributed search process because agents
search for a suitable time interval in their calendar by using
their calendar and preference information to make a proposal
or a counter proposal for a meeting time. There are three
types of search bias: linear early, linear least dense, and
hierarchical, that can be used in searching a calendar [3].

 In the system we present, we have used linear early

User Interface

Location

Module

Calendar

Module

Negotiation

Module

User

Location

DB

Calendar

DB

Other Agents

Negotiation

DB

search bias, as it is the s implest and the easiest to implement.
We have implemented it making an agent start searching its
calendar at the earliest possible scheduling opportunity,
skipping over any intervals overlapping with already
scheduled meetings, and negotiating with the earliest free
interval on the calendar long enough to accommodate a
meeting.

Counter Proposal: An invitee agent can be a passive
attendant who replies questions with simply yes or no, or can
be an active attendant who makes a counter proposal for the
meeting time when it rejects an agents’ proposal. The ability
to make a counter proposal by taking agents’ calendar and
preference information into account shortens the distributed
meeting scheduling process [4]. In the system we present, an
invitee who rejects a proposal produces a counter proposal,
giving the nearest later time when it can meet, in accordance
with the linear early search bias.

3.1. The Meeting Scheduling Algorithm

A user who requests a meeting supplies the following

information to the organizer agent initially through the user
interface:

• Meeting name and objectives
• Meeting length in hours
• Initial and final date of the time interval. For

example, between 11.03.2002 and 15.03.2002.
• Initial proposed time interval for the meeting

(optional)
• Attendants of the meeting: important and regular

invitees separately
• Equipment needed at the meeting (for example,

projector, television, computer...)
• Desired location that user prefers the meeting to

take place in (optional)
Location of attendants, that is the traveling distance
between two appointments, is ignored in our algorithms.

1. The organizer agent receives data and meeting
scheduling request from the user. If the user specifies
initial time slot, the organizer agent takes it as an
initial proposal. If not, by using its calendar and
preference information it tries to find the earliest time
slot where the meeting will fit. If it can’t find one, the
scheduling process ends with failure. If it finds one, it
announces the meeting to all invitee agents and the
location agent through a proposal message.
Messages that are sent to invitee agents and the
location agent have a different format. The organizer
agent blocks that particular time slot in its calendar.

2. An invitee agent that receives the announcement
proposal evaluates the bid by using its calendar and
preference information. After the evaluation, it either
accepts or rejects the proposal.
• If the proposed time slot is free in its calendar, it

accepts the proposal. It blocks the proposed
time slot in its calendar and unblocks time slots
that were previously blocked for this meeting.
Next, it sends an acceptance message to the
organizer agent.

• If the proposed time slot is not suitable for the
invitee agent, it tries to find a counter proposal
time slot by using the features of the meeting,
its calendar and preference information. It
sends the organizer agent a message that
contains the counter proposal if it can find a
free time slot. The message also contains
conflicting time intervals that caused the
rejection of the organizer agents’ proposal if the
agent’s degree of privacy permits to send
reasons. The invitee agent unblocks time slots
that were previously blocked for this meeting
and blocks the counter proposal time slot in its
calendar if it has created one.

3. The location agent that takes the proposal evaluates

the bid by using its calendar, desired property of the
meeting place and the features of available locations.
If it can find a suitable location for the meeting at the
proposed time slot, it sends the organizer agent an
acceptance message. If it can’t find a suitable
location, it tries to find a counter proposal time slot in
its calendar. Then, it sends the organizer agent a
message that contains rejection response and a
counter proposed time slot, if found. The location
agent unblocks time slots that were previously
blocked for this meeting and it blocks the counter
proposal time slot in its calendar if it has sent one.

4. The organizer agent evaluates the response
messages:

• If it receives acceptance messages from all invitee
agents and the location agent, it sends them a
confirmation, meeting successfully scheduled
message and commits blocked time slots in its
calendar for this meeting.

• If it receives acceptance messages from all
important invitee agents, a predefined ratio of
regular invitee agents, and the location agent, it
sends them successfully a meeting successfully

scheduled message. It sends cancellation
messages to the regular invitee agents that have
rejected the meeting and commits blocked time
slots in its calendar for this meeting.

• If it doesn’t receive an acceptance message either
from the location agent or at least from one
important invitee agent or from a predefined ratio
of regular invitee agents, it evaluates the counter
proposals of invitee agents and the location agent,
using the criteria we’ve mentioned above. The
counter proposals that are common are sent to
invitee agents and the location agent. The agents
that receive these new proposals send responses
in yes or no format, according to their evaluations.
If a common counter proposal is not present, the
organizer agent stores reasons of rejection from
invitee agents at the negotiation database. Next, it
tries to find a new free time slot by using the
information resulting from re jection arguments,
its calendar and preference information, and the
meeting information supplied by the user. It
chooses the farthest time from the proposed time
returned by invitees if it fits its calendar or tries to
find another time slot beyond that time. As it is
known that invitees respond with the closest time
to the proposed time slot in their counter proposal
according to the linear early search bias, the
earliest time the organizer should propose in the
next iteration is the farthest time from the
proposed time slot. This saves a number of extra
iterations because if the yes/no strategy was
chosen, with no counter proposals, the organizer
would have to step through its calendar for each
available time slot and get a negative response
until it reached the nearest available times of the
invitees. If it cannot find a suitable time slot, it
sends cancellation messages to all agents
involved and unblocks time slots that were
previously blocked for this meeting in its calendar.
Otherwise, it continues at step 2 with the new
proposal.

5. The agents that receive a successfully scheduled
message commit blocked time slots in their calendars
for that meeting. The agents that receive a
cancellation unblock time slots that were previously
blocked for this meeting in their calendar.

The algorithm does not allow for cancellation of
prescheduled meetings.

Figure 4 : State Transition Diagram of an

Organizer Agent

3.2 State Transition of Agents During Scheduling

We will use state transition diagrams to describe state
evolution of agents during the negotiation protocol. Figure 4
and Figure 5 show the state transitions of an organizer and an
invitee agent respectively. For each transition there is an input
and output message, in the a/b format, where a represents a
condition that exists or an input message that is received and
causes an output message b to be sent. The symbol “-
“ indicates the absence of an input or an output message.

When an organizer agent is in the initial state, it receives a
meeting-scheduling request from its user. It sends a proposal
message to the invitee agents and the location agent and
enters a waiting state. On each newly received message, the
agent passes into an evaluation state where message content
is evaluated and the presence of certain conditions are
checked. If all reply messages have not been received yet, the
agent goes back to the waiting state.

If messages from all participants for that meeting are
received and the proposal is accepted, it sends meeting
successfully scheduled message to all participants and goes
to the end state. However, if the proposal is rejected, it enters
the search new proposal state. In this state, if a new proposal

can be produced, it sends this proposal to all participants and
goes back to the waiting state. Otherwise, it sends a cancel
meeting message to all participants and enters the end state. A
similar analysis is relevant for the state transition diagram of
an invitee agent that is shown in Figure 5.

Figure 5 : State Transition Diagram of an Invitee

Agent

4. Experimental Results

We have implemented the above-proposed meeting

scheduling protocol using the JATLite agent system [5]. In
the system, independent autonomous agents, each located on
different computers, communicate and negotiate with each
other over the network in order to schedule meetings in a
distributed way. We have identified some experimental
variables, such as the duration and the number of participants
of a meeting, the time interval when a meeting should be
scheduled, number or locations where a meeting can be held,
that we think effect the scheduling process and have carried
out a number of experiments with those variables as
parameters. We consider the scheduling process between 8
agents that act on behalf of their users and a location agent.
Each agent owns a calendar of 1,2,3, or 5 days, depending on

the experiment, each with time slots being initially free.
Possible durations of meetings are 30, 120, or 180 minutes
and meetings may be requested to be scheduled in the next 1,
2, 3, or 5 days (time intervals) of the calendar. If not
otherwise stated, experiments involve 8 agents, each trying to
schedule meetings of the same duration and in the same time
interval concurrently, with the remaining 7 agents expected
to take part as invitees.

We have observed that, in situations where concurrent
scheduling of several meetings is taking place, some
meetings block time slots that cause other meetings to be
abandoned due to lack of available times within the meeting's
time interval. However, those blocked slots might be released
later. Therefore, we have slightly modified the scheduling
algorithm by starting a new iteration in case of a scheduling
failure. As blocked time slots that cause a proposal to be
rejected might later become free, a second attempt to
schedule a meeting may lead to success. In real life, however,
one cannot judge if further iterations will result in more
meetings scheduled successfully as all information is
distributed and there is no central controller agent that has
access to all the information that guides the scheduling
process. As concurrent scheduling of several meetings would
be a rare situation, we think real life scheduling need not be
carried out with iterations. In the following experiments, the
actual time to schedule a meeting is directly proportional to
the number of iterations required to schedule it. The
following discussion is on the results we have obtained from
those experiments.

In 5 days

In 3 days
In 2 days

In 1 days

1 2 3 4 5 6

1

2

3

4

5

6

7

8

Number of Iteration

Meetings Scheduled Successfully

(1,8)

(1,3)

(2,8)

(1,2)

(2,5)

(3,8)

(1,1)

(2,2)

(3,4)

(4,5)

(5,6)

(6,8)

Figure 6 : Results for Experiment 1

Experiment 1: Scenario: All 8 agents concurrently

request meetings with the remaining 7 agents as invitees. The
length of the meeting is kept constant at 30 minutes and there
is a single meeting location. The basic parameter of the
experiment is the time interval in which meetings can be
scheduled and it is varied to 1, 2, 3, and 5 days. Figure 6.
plots the number of scheduled meetings for each number of
iterations determined experimentally. As expected, decrease
in the time interval increases the number of iterations for
successful scheduling. All of the eight meetings were
scheduled in a single iteration when the time interval was the
longest. However, as the time interval was shortened, more
iteration was necessary. For example, for the time interval of
2 days, the first iteration was able to schedule two meetings
only, and three more were added with each following
iteration.

Experiment 2: Scenario: All 8 agents concurrently
request meetings with the remaining 7 agents as invitees. The
parameters of the experiment are the length of a meeting and
the time interval in which it can be scheduled. The length of
meetings is varied to 30, 120, and 180 minutes. The time
interval is varied to 1, 2, and 3 days. No iteration is applied.
Figure 7 plots the number of meetings of different lengths
scheduled successfully for different time intervals. As the
number of available time slots increases for decreasing
lengths of meetings, we observe that a greater number of
shorter meetings can be scheduled in a certain time interval
when compared with the numb er of longer meetings in that
time interval.

meeting length 180 min.

meeting length 120 min.

meeting length 30 min.

1 2 3

1

2

3

Days

Meetings Scheduled Successfully

(2,0)

(3,1)

(1,0)

(2,1)

(3,2)

(1,1)

(2,2)

(3,3)

Figure 7 : Results for Experiment 2

Experiment 3: Scenario: In this experiment, the length of

a meeting is kept constant at 30 minutes. The parameters of
the experiment are the number of agents involved in the
scheduling process and the time interval in which meetings
are to be scheduled. The number of agents that
simultaneously request meetings to be scheduled are varied
to 8, 6, and 4 while the time interval is varied to 1, 2, and 3
days. As observed in Figure 8, since the number of time slots
for a particular meeting duration is constant, as the number of
agents increases, the number of meeting successfully
scheduled decreases for each time interval

8 participants

6 participants

4 participants

1 2 3

1

2

3

4

Days

Meetings Scheduled Successfully

(1,1)

(2,2)

(3,3)

(1,2) (2,2)

(3,3)

(1,2)

(2,4)

Figure 8 : Results for Experiment 3

5. System Features

The distributed multi-agent system that we have presented

in this paper has the following features:
Consistency with the characteristics of the problem:
The system is in consistence with the characteristics of real
life meeting scheduling process, as meeting scheduling in
real life is distributed in nature, with autonomous participants.
Autonomous: Agents make their decision autonomously
when they receive a request from their environment. When
they make their decision they use both their knowledge and
the users’ knowledge that the agents act on behalf of. The
agents act autonomously on behalf of users and don’t need
their intrusion.
Intelligent: Agents in the systems make decision by using
users’ data, data gathered from other agents during the
meeting scheduling process and rules defined in the meeting
scheduling algorithms. This causes agents in the system to be
intelligent.
Learning: Agents in the systems try to make inference from
information gathered from other agents supplied as rejection
reasons. They try to learn parts of other agents’ calendar in
order to use that new knowledge in search of new proposals.
Collaborative: Distributed meeting scheduling process
requires participation of all attendees. Agents in our system
work collaboratively to solve the meeting-scheduling
problem successfully.
Flexibility: The system presents two kinds of flexibility. One
of them is supplied by JATLite message router that enables
agents to connect/disconnect to system any time. Their
message is not lost while they are in disconnected state.
Agents can also connect to the system from any place on the
network, which means that their IP can change between
connections. The second flexibility is that new agents can
easily be added to system. They only need to register to the
system in order to be part of it.

6. Conclusion

In this paper, we have presented a new distributed multi-
agent meeting scheduler system, with its design and
implementation details, and a new meeting scheduling
protocol. We have used some techniques in our protocol to
shorten the meeting scheduling process time. One of the
techniques is the use of counter proposals that give the
organizer agent clues on nearest available time slots of
invitees and eliminates several unproductive attempts. Also,
agents in our system expose some private information,

explaining why when they reject a meeting proposal. The
organizer agent that acquires other agents’ calendar
information uses this information to produce better proposals,
which, in turn, shortens scheduling time. We believe that our
approach of distributed scheduling in a dynamic domain can
successfully be applied to a wide variety of scheduling
problems.

References
[1] Eaton, P. S., E. C. Freuder, R. J. Wallace, "Constraints and
Agents: Confronting Ignorance", AI Magazine, Summer
1998, 51-65.
[2] Ali Durmus, " A Distributed Multi-Agent Meeting
Scheduler System", Msc. Thesis, Istanbul Technical
University, Institute of Science and Technology, 2002.
[3] Sandip Sen and Edmund H. Durfee : Unsupervised
Surrogate Agents and Search Bias Change in Flexible
Distributed Scheduling. Proceeding, First International
Conference on Multi-Agent Systems p.336-343 San
Franscisco, CA June 1995.
[4] Sandip Sen : An automated distribut. meeting scheduler.
IEEE Expert 12(4) p.41-45.
[5] JATLite (Java Agent Template, Lite) –
http://cdr.stanford.edu/ ProcessLink/ Papers/

