
R. Lee & N. Ishii (Eds.): Soft. Eng. Research, Manage. & Appli. 2009, SCI 253, pp. 145–157.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

An Agent-Based Web Services Market

Ali Durmus and Nadia Erdogan

Istanbul Technical University
Istanbul, Turkey
alidur@gmail.com,erdogan@itu.edu.tr

Abstract. Agent Based Web Services Market (AWSM) is a framework for agents to present
and sell their capabilities as web services. Agents take certain roles and cooperate to constitute
agent societies execute their functionality as web services. The roles they possess determine
which web service they can provide. Roles in an agent society are a collection of services and
can be taken and be left dynamically by agents at runtime. Service provider agents in AWSM
register their services as web services. Client that needs web services can apply AWSM to find
a web service according to services information, service level parameter and cost criteria. The
system organizes a tender to determine the best matching web service and provider agent. The
client then can call the web service that is provided by the awarded agent. Service level and
performance of this call is registered by system to assess the awarded agent’s performance and
commitment and to later use this information in future tenders.

1 Introduction

Currently, there are several web services that carry out different tasks in the internet.
They either work alone or cooperate with other web services to fulfill their tasks.
They can be called by other applications; they can refer to other web services as well.
Web services are sold by companies whose main aim is to profit by providing service
in the market. They create and present services. They may as well buy other compa-
nies’ services and use them to provide their own services. Bids may be carried out to
determine the best suitable service providers. Companies in markets are very dynamic
in real life. They may change their structure and business fields. An agent based ap-
proach to the implementation of a framework that meets the needs of a web services
market fits well in this dynamic environment. Web services are provided by agents
which carry the roles appropriate for those services.

We describe the design and implementation issues of a new agent-based web ser-
vices market. Agents carry roles which are composed of services that are published as
web services. A client looking for a service calls a particular web service of the system,
providing it’s criteria for the request. The system puts out to tender the request and de-
termines the suitable agents that provide that service and are currently available on the
market. The details of the implementation will be presented in following sections.

1.1 Service Oriented Architectures

Service Oriented Computing is a paradigm based on services for application devel-
opment [1]. Service Oriented Architectures (SOA) have very widespread usages.

146 A. Durmus and N. Erdogan

They are used in individual services like book reservations, as well as in complex ser-
vices such as hotel and flight reservation. Services can carry out simple requests or
complex business process functionalities. SOA aggregates small services to form
large and complex applications. SOA focus on small service functionalities that do
their task and have interfaces that show how to interact with other services. In hetero-
geneous network environments, a service is encapsulated and its standard interface
enables it to interact with other programs or applications.

• Technology independence: Services can be called in a standard way by applica-
tions located in environments of different information technology.

• Loose coupling: Providers and consumer of services do not need to know the in-
ternal structure or context of each other.

• Reusability: Since services focus on individual functions, tasks which will be
carried out are divided into very small services which can also be used in other im-
plementations as well.

Service oriented programs are designed to carry out functions that can be called in
different environments or between different environments. Although SOA solves in-
teraction issues between different environments and divides larger problems into
small ones, it is not as good at questions of coordination, orchestration, cooperation,
and adaptation, which are superiority of agent systems. Thus, advantages of service
oriented architectures and agent oriented architectures can complement each other ef-
fectively. This approach has been adopted in some recent work in literature [2, 3].

2 Motivations and Background

Companies that sell services need a web services market to publish, to receive re-
quests for and to sell their services. Both representation and implementation of the
dynamic structure of companies and of the market is a big challenge. For example,
consider modeling a travel agency company. The company sells flight tickets and has
hired an employee with the sales representative role to provide this service. So, here
we see that a service is associated with a role. Next, assume that the company makes
agreements with some hotels to make reservations for them. As the company does not
have the resources to hire a new employee, the former employee is now in charge of
this task as well, leading to a change in the sales representative role to include hotel
reservations service as well. This case shows how role definitions may need to be
modified at runtime. As the company’s sales go up, a new employee with the cus-
tomer care role is hired to increase customer satisfaction, so as to profit. Thus a new
role, customer care role, is injected into the system. Now, assume that conditions lead
to the dismissal of the new employee and the first employee is asked to take the cus-
tomer care role too. This is an example of how an entity may acquire more than one
role dynamically at runtime. The contrary may also be true, resulting in the loss of
certain roles carried during execution. Several companies similar in structure to
this travel agency company may create and take part in a market to sell their services
and they may even enter and leave it from time to time, thus requiring a dynamic
execution environment.

 An Agent-Based Web Services Market 147

As the above example shows, there are several open issues to be solved. Assigning
services roles, acquiring and leaving roles at runtime, and changing role definitions at
runtime are some of them.

Web services and classical programming techniques do not provide solutions to
these problems. A web service is a very static entity which cannot change its structure
and it is not good at cooperation and coordination.

The need for dynamism, cooperation and coordination leads us to use web service
and agents together. As stated in [4], agents can enhance the capabilities of a web ser-
vice architecture in the following aspects:

• A web service knows only about itself while agents are often self-aware and gain

awareness of other agents and their capabilities as interactions among the agents
occur.

• Web services, unlike agents, are not designed to use and reconcile ontologies,
while agents can make extensive use of ontologies.

• Agents are inherently communicative, whereas web services are passive until in-
voked.

• A web service, as currently defined and used, is not autonomous. Autonomy is a
characteristic of agents, and it is also a characteristic of many envisioned Internet
based applications.

• Agents are cooperative, and by forming teams and coalitions they can provide
higher-level and more comprehensive services. Current standards for web services
do not provide for composing functionalities.

There are examples on using web services together with agents in the literature.
Rykowski, Wojciech [3] propose a Virtual Web Service (VWS) system which makes
statically provided web services more dynamic. VWS users consume web services
which are provided by one or more agents. The system includes two types of agents;
private agents and public agents.

Wang, Wang, Deng, Zhao, Yung, Gao [5] use agents and web services together in
Web-service-agents-based Securities Trading Simulation System (STSS). Agents are
wrapped as Web Services communicating and interacting with each other in an open
environment. The system makes use of advantages of web services in communication
and makes use of advantages of agent in autonomy and intelligence.

Richards, Splunter, Brazier, Sabou [6] propose to use agents in automatic web ser-
vices composition. Web services are defined semantically by using DAML-S and
Agent Factory uses these descriptions in its design process to derive a Web service
configuration.

Vall, Ramparany, Vercouter[7] use agent and web service together in pervasive
computing environment with smart device to compose web service dynamically. They
use semantic service description to abstractly describe services’ functionality. Agents
use these descriptions to form services.

In the works cited above, the use of agents makes individual web services more
dynamic and intelligent. In our work, we need not only dynamic, autonomous and in-
telligent web services, but also dynamic companies (agent societies) to provide those
services. Entities (agent societies) in system should be autonomous and dynamic in

148 A. Durmus and N. Erdogan

structure. Agents (people) can apply agent society for some positions (roles). The po-
sitions (set of roles) provide the agent with the ability to perform certain services. An
agent society can accept or reject an agent’s application. An agent society owns a set
of roles that are composed of services and these may be modified at runtime.

We propose to use role-based agents to meet the above stated requirements of a
web services market and companies taking part in that market. The concept of a
“role” associated with an agent enhances the dynamic behavior of the agent, and
also extends the dynamic nature of agent societies which represent compa-
nies/organizations. Dynamic changes in the internal structure of companies can now
be easily modeled through assignment and manipulation of the roles carried by
agents. Agent societies can change their role definitions dynamically at runtime. The
behavior of an agent can be altered by making it acquire or leave roles dynamically at
runtime, thus easily adapting to new environmental conditions.

3 Agent Web Services Market Framework

Agent Web Service Market (AWSM) is a framework where companies/organizations
can provide web services and customers can search for and purchase them. A role

Fig. 1. AWSM Framework Architecture

 An Agent-Based Web Services Market 149

Fig. 2. AWSM Internal Structure

based agent system supports the framework. Service providers are organizations with
well defined behaviors that cooperate/interact to fulfill the goal of the organization. In
AWSM, each of these behaviors is represented by a role. These roles are defined by
the organization, which also specifies how and in which context roles interact. Roles
are played by agents. Thus, an agent may participate in an organization by acquiring a
certain role in that organization. An agent can also play multiple roles in an organiza-
tion and different roles in other organizations as well. There exists a strong correlation
between roles and services; actually an agent that plays a certain role fulfills the ac-
tivities expected of that role through well-defined web services. An agent may acquire
several roles (provide several services) or lose some of its roles (cease providing par-
ticular services). The agent together with its roles is seen and manipulated as a single

150 A. Durmus and N. Erdogan

entity and agents that cooperate to fulfill the goals of an organization form an Agent
Society that is composed of agents, roles and services. Agents can dynamically enter
and leave agent societies, thus adapting to conditions of real-life environments Each
agent society has an AgentSocietyManager, to which agents consult in order to regis-
ter their services as web services, to take and leave roles, or to attend biddings. Role
definitions are given in XML files.

Figure 1 depicts the architecture of the framework. An AWSM Servlet resolves
communication issues with clients. The AWSM Agent creates web service definitions
for agents’ services, while the AWSM Manager agent is responsible of finding re-
quested web services, arranging bids, and logging histories of service calls. A client
looking for a particular web service addresses the AWSM Manager Agent, providing
parameters which include descriptive information of the requested service, cost condi-
tions and service level information. AWSM is built upon the JADE agent framework
[8]. The internal structure of AWSM is depicted in Figure 2.

3.1 AWSM Servlet

The AWSM Servlet running in a web server is the interface between clients that
request web services and organizations that provide those services. Client requests
expressed as SOAP [9] messages are transferred to corresponding agents by the
AWSM Servlet. The modules (Figure 2.) the AWSM Servlet consists of and their
functionality is stated below:

3.1.1 Message Module
• Receive /Reply HTTP/SOAP request messages
• Transmit requests and related information to an AWSM agent
• Transform request results into a SOAP messages
• Prepare HTTP/SOAP replies and send them to requesters

3.1.2 Call Monitor Module
This module monitors service calls. It sends service calls information to AWSM
Manager Agent. Service calls in system, except for findService, contain key values
which describe services and call instance. Call statistics are gathered by using these
key values and forwarded to AWSM Manager Agent.

3.2 AWSM Agent

The AWSM agent is the gateway between agents and the web. It converts agent
services into web services by creating their descriptions in Web Service Definition
Language (WSDL) [10] and sends relevant information about thus converted web ser-
vices to the AWSM Manager agent. The AWSM agent also transmits service request
to agents. The AWSM Agent is responsible of the following tasks:

• Forward the information received from AWSM Servlet to related agents.
• Convert an agent’s service proposal into a WSDL description and publish it.
• Create AWSM Manager agent at system startup.
• Keep the AWSM Manager agent informed about agents that provide services.

 An Agent-Based Web Services Market 151

3.3 AWSM Manager Agent

The AWSM Manager agent handles service discovery requests initiated by web
clients. This agent, after being created by the AWSM agent, registers findservice to
the system as a web service it provides. This web service is called by clients who
want to locate services that match their request criteria. The AWSM Manager agent
evaluates requests it receives, arranges and finalizes bids to find appropriate services
that meet the requests and sends results to clients. The bidding process will be
described in detail in the following sections. The AWSM Manager agent consists of
following modules (Figure 2.):

3.3.1 Service Registry Module
This module is responsible for registering and removing web services. It keeps
information about services, such as the identity of the service provider agent, service
name, service description, and service wsdl path. Other modules interact with service
registry module to get service information. To register and remove agents and
services the calls listed below are used.

registerService(serviceName,agentId,serviceInformation)
deregisterService(serviceName,agentId)

3.3.2 Service Match Module
This module is responsible for finding suitable candidate services which match
requested service criteria. It uses serviceName, serviceDescription, keywords and
previous similar service search. The following calls are used to find services that
match request criteria.

matchByServiceName(serviceName)
 Finds services which possess the same name.

matchByServiceDescription(serviceDescription)
 Finds services which have similar description.

matchByKeyword(keywords)
 Finds services which are described by similar keywords.

matchBySimilarSearch(serviceName,serviceDescription,keywords)

All service requests and results are registered in the system. This information is
later used to shorten the matching process when service requests with similar criteria
are received. The last three methods calculate similarity by calculating the percentage
of words that are similar with input words.

3.3.3 Call History Module
This module is responsible for gathering and storing service call history information
on performance details such as availability rate and response time of previous service
calls that have completed. This module interacts with AWSM Servlet to get service
call details. The agent’s activity is monitored to assess its performance, i.e. how satis-
factory has been the service provided, and to use its performance in new tenders. The
assessment is based on the agent’s average response time and the average availability

152 A. Durmus and N. Erdogan

rate for previous calls. The fulfillment rate of previous commitments of the agent is
also considered. The historical performance of a service provider agent is calculated
by the call given below, each assessment contributing equally.

calculateHistoricalPerformance(serviceId)

3.3.4 Bidding Module
This module is responsible for service bidding. After a client’s request for a service is
receieved, bidding module starts a bidding process. It interacts with the other three
modules to gather information necessary to organize a bid for the requested service.
After locating candidate service provider agents, it announces a tender to determine the
best fit for the request. The bidding process will be described in detail in Section 5.

3.4 Web Service Agent

Agents that take part in agent societies (members of an organization) provide web
services, attend bids and fulfill service requests they have accepted in the system.
They carry roles which determine their ability to provide certain services. A role may
support one or more services. After receiving a new bid proposal request, an agent
decides whether to attend the bid or not by consulting the AWSMSocietyManager.
Since several agents in an agent society may carry similar roles, which means they
may provide the same service, it may be the case that more than one agent in the
agent society will receive the same bid proposal request. As it may not be desirable
for two agents in the same society to attend the same tender, AWSMSocietyManager
makes a decision on which agent participates the bid. Also, the
AWSMSocietyManager may conclude that it is not useful for the society to attend
new tenders based on the current work load and reaches its decision based on the
above considerations. The agent carries out the web service if it is awarded the bid.

3.5 Client

Clients are outer components that request and consume web services. A client may be
any application that is capable of calling web services. Clients refer to the findservice
web service provided by the AWSM Manager, providing request criteria, to locate a
suitable web service provider agent. If one that meets requested conditions is
determined, awardId which specifies service provider agent is returned and the client
can proceed with the service call over awardId.

4 Services, Roles and Agents in AWSM

The main contribution of AWSM is the role based agent model that supports the
system. Agent roles are closely associated with the services they provide. The
dynamic nature of agents and their ability to take or leave roles during their lifetime
fits very well into the concept of real world services market. The following sections
elaborate on the relations between agents, roles and services.

 An Agent-Based Web Services Market 153

4.1 Service-Role-Agent Relation

In AWSM, a role is a triple that consists of services, protocols and permissions. The
details of a service are the determined by the problem definition. System design is
based on services at atomic level. A protocol defines the nature of interactions
between roles and agents. Permissions describe roles’ privileges to access resources.
Permissions and privileges are represented by XML documents.

S= {s1, s2, s3, …, sn}, where S is the set of all services in the system.
Services carry out actions to fulfill the responsibilities of a role. Services can be

registered as a web service by agents. A single or a set of services may belong to a
role. An agent may carry a single role (ri) or a multiple of roles.

Role= {Services, Protocols, Permissions}
R= {r1, r2, r3, …, rn}, where R is the set of all roles in the system and ri is an

individual role which can consist be fulfilled by one or more services. Thus, as an
example, three roles, r1, r2, and r3 can have the following composition:

r1 = {s1, s2}
r2 = {s1, s4}
r3 = {s5}
Agents that belong to a certain organization form an agent society. Each agent

society is managed by an AWSMSocietyManager agent.

Agent Society: One or more agents form an agent society that is considered to be
compatible with an organization or a company in real life. Agents that compose a
society have certain responsibilities they carry out. Agents in a society can gain roles
with the permission of AWSMSocietyManager. After acquiring a role, an agent can
register services that its role supports as web services. Agents can attend web service
bids with the approval of AWSMSocietyManager. AWSMSocietyManager records
agents’ previous performance in tenders. AWSMSocietyManager also requests
historical call performance values of its agents from the AWSM Manager Agent
occasionally.

Agents in an Agent Society: Agents are included in an agent society in order to
provide certain services and they are assigned roles which give them the rights and
ability to fulfill these services. Agents need the approval of AWSMSocietyManager
before they can participate in a society.

Roles in Agent Society: The AWSMSocietyManager agent is responsible of role
administration.

4.2 Service Definition and Registration

As stated above, a role can consist of more than one service. Services can be added or
deleted from a role definition at runtime. Web service definition can be extracted
from service classes that are added or deleted from role definitions at runtime. Java
annotation mechanism is used to define services. Annotation is a mechanism for asso-
ciating a meta-tag with program elements and allowing the compiler or the VM to ex-
tract program behaviors from these annotated elements and generate interdependent
codes when necessary.

154 A. Durmus and N. Erdogan

Table 1. Annnotation Classes and Their Descriptions in AWSM.

Name Description
WebService To define web service and its’ properties such

as service name, keywords etc.
WebServiceOperation To define web service operations and its’ prop-

erties such as operation name and description
WebServiceParameter To define operation input parameters.
WebServiceResult To define operation output properties.

The annotations defined in the system are listed in Table 1. Annotations to define

services and operations are as the following:

//Web service annotation to define service and its properties
@WebService(serviceName="InvoiceService",serviceDescription="invoice detail",

keywords="invoice detail, invoice information")
public class InvoiceService extends Service {

 public String serviceName="InvoiceService";
 public String getServiceName() {
 return serviceName;

}
//Operation annotation to define operation and its properties

 @WebServiceOperation(operationName="invoiceDetail",operationDescription
"invoice detail", keywords="invoice detail,invoice information")
 //Service Result annotation to describe operation output
 @WebServiceResult(resultName="invoiceDetailResult")
 //Service Parameter annotation to define operation input
 public String invoiceDetail(@WebServiceParameter(parameterName =
"invoiceId") String invoiceId){
 return new String("InvoiceId:"+invoiceId+" detail");

}
}

An agent gets a role after its application for that role is accepted. Next, it forms a
service definition XML document according to service classes. RoleServiceManager
class converts the class definitions into XML service definitions by using the annota-
tions described above and through other programming methods. The agent sends this
definition to Directory Facilitator (DF). AWSM Agent that listens on DF receives the
service definition and converts it into WSDL and stores it as a web server. After this
procedure completes, AWSM Agent sends the service definition to AWSM Manager
Agent, which has the responsibility of locating/matching web services according to
the requests of web service clients. AWSM Manager Agent registers the service and
stores detailed information about the agent that provides service.

5 The Bidding Process in AWSM

The AWSM Manager announces bids to determine services that meet call request
criteria specified by clients. Firstly, a list of candidate services is generated following
the steps described in the following section. Next, the procedure for the bidding
process is executed to find the most suitable web service and its provider agent.

 An Agent-Based Web Services Market 155

The aim of the bidding process is to determine the best fit service and provider
agent. The criteria that are considered are as follows:

• Do candidate services fit the requested service?
– Service Name match is used
– Service Description match is used
– Keywords match is used

• How much does the candidate provider satisfy requested criteria (quality of ser-
vices, commission rates, etc.)
– Requested criteria are used in bidding

Even though those criteria would be sufficient to determine agents that meet the re-
quested criteria, they cannot evaluate how the winner agent fulfills commitments. To
overcome insufficiency, historical performance of service provider agents is taken
into account as well in bidding process to evaluate fulfillment of commitments.

5.1 Service Request Criteria

When applying for a web service, a client is required to specify the set of parameters
listed below so that the most suitable service registered in the framework can be
determined.

serviceName: The name of service the client is requesting
serviceDescription: The description of service the client is requesting. AWSM
Manager agent uses this information to locate candidate services in it’s service
repository , in case a match with the requested service name can not be possible.
keywords: Keywords that will help to recognize appropriate web services
commisionRate: The commission rate that the client is willing to pay for the service
call. A maximum value (commisionRate max) should be specified.
fixedCommisionValue: The fixed commission value that client is willing to pay for the
service call. If the commission value calculated by using commisionRate exceeds the
specified fixedCommisionValue, the client agrees to pay the fixedCommisionValue,
not the calculated commission value. fixedCommisionValue max value should be
specified.

The following are the parameters that determine the service level quality:
invocationCount: The number of times the service will be invoked monthly. Both of
invocationCountmax and invocationCount min values need to be specified.
availabilityRate: Required availability rate of service. availabilityRatemin value
should be specified.
responseTime: Required response time of service. responseTimemax value should be
specified.
averageResponseTime: Required average response time of service.
AverageResponseTimemax value should be specified.

5.2 Determining Service Provider Candidates

AWSM applies three methods to determine a list of candidate service provider agents:

156 A. Durmus and N. Erdogan

ca: Match service with the parameter serviceName
cb:Search service repository according to the serviceDescription and
keywords and find matches.
cc: Return services that were selected on a previous similar service request

With the execution of each method, candidate agents are determined and C, the set of
candidate service provider agents, is computed.

C= {ca, cb, cc}

5.3 Bidding Process

When the AWSM Agent receives a request with the parameters stated above, it
initializes a bidding process following the procedure described below:

1. Determine a set of candidate service providers that match the request criteria,
2. Get performance history data of candidates and calculate their performance values,
3. Start bidding by calling for proposals from candidates
4. Receive bids from bidders,
5. Evaluate bids by using their offers and historical performance values. Choose the

best n (system parameters) bids. If there are no suitable bids, end the bidding proc-
ess with failure.

6. If there are n bids, repeat the bidding process k times, each time starting from step
3. k is the system parameter that shows how many times new proposals for bids are
requested.

7. Send the winner agent an “awarded” message with a newly generated awardId.
awardId will be used with web service calls by the client.

8. Send a result message to the web service client with related information.

5.4 Service Calls by Client

Clients use awardId to be logged and be authorized when calling the awarded agent’s
web services. It is not allowed to call services with an invalid awardId. The call and
its performance data such as service response time are logged in AWSM to be used in
later tenders. The performance of agent’s service should be consistent with the
proposal it has made to win the tender. If it difference is above a predefined limit, it
will produce a negative effect on the agent’s historical performance in future tenders.

6 Conclusion

This paper describes the design and implementation issues of a new web services
market framework supported by role based agents. The framework provides dynamic
web services and allows its clients to find favorable web services through competitive
bidding.

Integrating the agent model of computation with web services results in an envi-
ronment where web services are more dynamic and autonomous. Cooperation, coordi-
nation and configuration of services can be accomplished easily and the burden is not
reflected to consumers.

 An Agent-Based Web Services Market 157

Using role-based agents contributes to system modeling, flexibility, and reusabil-
ity. With the presented framework, agent societies (organizations) gain the ability to
provide services and easily modify their internal structures dynamically via agents
that can take or leave roles at runtime. A prototype of the framework has been com-
pleted on JADE platform. Currently work on the implementation of real world ser-
vices and performance measurements of the system are in progress.

References

1. Papazoglou, M.P.: Service-Oriented Computing: Concepts, Characteristics and Directions.
In: Proceedings of Fourth International Conference on Web Information Systems Engi-
neering, WISE 2003 (2003)

2. Blake, M.B.: Forming Agents for Workflow-Oriented Process Orchestration. In: Work-
shop on Electronic Commerce, Agents, and Semantic Web Services in conjunction with
the International Conference on Electronic Commerce, ICE 2003 (October 2003)

3. Rykowski, J., Cellary, C.: Virtual Web Services-Application of Software Agents to Per-
sonalization of Web Services. In: ICEC 2004, Sixth International Conference on Electronic
Commerce (2004)

4. Huhns, M.N.: Agents as Web Services. IEEE Internet Computing 6(4), 93–95 (2002)
5. Wang, Y., Wang, H., Deng, J., Zhao, X., Yung, K., Gao, S.: Web-Service-Agents-Based

Securities Trading Simulation System. In: PACIS 2005 Proceedings. Paper 32 (2005)
6. Brazier, F.M.T., Richards, D., Sabou, M., Van Splunter, S.: Composing Web Service

Using An Agent Factory. In: Proceedings of AAMAS Workshop on Web Services and
Agent-Based Engineering (WSABE), Melbourne, Australia, pp. 57–66 (2003)

7. Valle, M., Ramparany, F., Vercouter, L.: A Multi-Agent System for Dynamic Service
Composition in Ambient Intelligence Environments. In: Gellersen, H.-W., Want, R.,
Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468. Springer, Heidelberg (2005)

8. http://jade.tilab.com
9. http://www.w3.org/tr/soap/

10. http://www.w3.org/tr/wsdl

	An Agent-Based Web Services Market
	Introduction
	Service Oriented Architectures

	Motivations and Background
	Agent Web Services Market Framework
	AWSM Servlet
	AWSM Agent
	AWSM Manager Agent
	Web Service Agent
	Client

	Services, Roles and Agents in AWSM
	Service-Role-Agent Relation
	Service Definition and Registration

	The Bidding Process in AWSM
	Service Request Criteria
	Determining Service Provider Candidates
	Bidding Process
	Service Calls by Client

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

