
Metrics-Based Analysis of Thread Behavior

Using an Aspect-Oriented Programming Approach

Oral Alan

Information Technologies Institute

Research Center for Advanced Technologies

On Informatics and Information Security

Kocaeli, Turkey

oral.alan@bte.tubitak.gov.tr

Nadia Erdoğan

Computer Engineering Department

Faculty of Electrical and Electronic Engineering

İstanbul Technical University

İstanbul, Turkey

 nerdogan@itu.edu.tr

Abstract—Understanding thread behavior makes multi-

threaded programming easier. Thread behavior can be

observed by calculating metrics that are driven from thread

state changes and time durations spent in those states. This

paper presents the design and implementation of a new thread

profiler that builds on aspect-oriented programming (AOP)

approach and its use on multi-threaded applications. The new

profiler differs from existing profilers in that it adopts a

metrics based approach, calculating certain metrics for threads

profiled. Also presented is a method to retrieve exact time

information at the machine level from the JVM context. The

paper concludes with a description of results obtained for

thread profiling and metric calculations and a comparison of

the overhead the profiler introduces with that of other

profilers.

Keywords: threads, thread profiling, aspect-oriented

programming, metrics-based analysis, dynamic metrics, multi-

threaded programs

I. INTRODUCTION

Performance concerns in a multi-threaded application
naturally lead to issues related to thread behavior. To
diagnose the cause of poor performance, one needs to
observe thread behavior and gather information as the
program executes in order to determine modifications in
thread characteristics or resources that would result in better
performance.

One of the most important problems in developing multi-
threaded programs is that the behavior of threads on a real
system cannot be predicted until they are run, and detailed
information about the runtime behavior of threads is usually
not available. If exact time and event information can be
collected, metrics-based approaches can present useful
information about the complex system being analyzed, and
useful metrics that represent the behavior of threads can be
calculated.

This paper presents an approach based on exact time and
thread state information to analyze the behavior of multi-
threaded applications. For this purpose, an aspect-based
thread profiler has been developed, namely Java Aspect-
Oriented Thread Profiler (JAOTP), which uses aspect-
oriented programming to profile threads. To deal with the

problem of collecting exact time information, a technique
that uses the Java Native Interface (JNI) is applied. Through
calls to native methods, information on timing and
instantaneous cycle count of a logical processor is retrieved.

II. PERFORMANCE ISSUES OF MULTI-THREADED

SYSTEMS

With recent advances in multi-processor based
computers, threads and systems that use threads effectively
have become more important. A thread is a small and simple
unit of resource usage that corresponds to a logical flow in
program execution. A thread of execution is the smallest unit
of processing that can be scheduled by an operating system.
In most cases, a thread is contained inside a process.

Multi-threading allows multiple threads to exist within
the context of a single process. These threads share process
resources but are able to execute independently, each with a
certain responsibility. Thus, the multi-threaded programming
model provides developers with a useful abstraction of
concurrent execution: with responsibilities shared among
threads, the process can handle more than one job at the
same time. In addition, multi-threading allows a single
process to enable parallel execution on a computer system
that has multiple CPUs or CPUs with multiple cores. This is
because the threads of the program naturally lend themselves
to truly concurrent execution on one or more processors.

With the recent advent of symmetric multiprocessor
(SMP) systems, the effective use of threads on those systems
has become an important issue. Programmers needs to be
careful to avoid race conditions and other non-intuitive
thread behaviors. Otherwise, the performance of a multi-
threaded program where threads are not synchronized
correctly to coordinate their execution can easily fall below
the performance of a sequential program. Therefore,
programmers need tools to observe both the behaviors of
threads and the overall performance of the system during
program development.

Multi-threaded programs have complex behaviors that
cannot be predicted before a system starts running. In the
design phase of a system, architects and developers try to
answer questions about how the multi-threaded system will
behave. The runtime behavior of threads depends on several

concepts such as thread priority, logical processor choice, the
state of the thread and system delay. To understand and
observe the behavior of threads, relevant information must
be collected on the running system.

A. Metrics-Based Methods for Program Analysis

Metrics-based approaches to understanding the behaviors
of programs are generally divided into two classes: static and
dynamic analyses. Multi-threaded programs can also be
analyzed using these techniques. In the static approach, there
is no need to run the program as analysis is based on
examination of the model. Behavior is predicted using static
metrics such as complexity and lines of code. Dynamic
analysis, also called profiling, is better suited to
understanding thread behavior. The advantage of profiling is
that it is directly related to runtime information. The nature
of threads is itself complex, and this complexity increases
with the underlying systems.

B. Problems For Multi-Threaded Systems

Thread profiling introduces challenges due to certain
properties of the underlying systems and threads.
Realizations of measured events occur at high frequency, and
matching between the layers and the complex relationships
between threads are the most important challenges to
profiling multi-threaded systems accurately [1].

Due to the difficulties of profiling multi-thread
applications, the results can change for each follow-up.
Delays can be introduced according to the thread switching
policy of the operating system.

C. Metrics for Thread Behavior

Dynamic metrics are based on time and event
information. Accordingly, there must be an event that
represents thread behavior. This paper uses the state changes
of the threads as the basic profiling event. Time information
is calculated for each state, and the metrics [2] can be
constructed using this base information.

III. PROFILING METHODS

Operations to profile systems can be carried out before a
program is running on a processor [1]. The aim of these
operations is to add profiling information at that stage.

A. Compiler-Based Profiling Methods

The steps where profiling operations can be added are
shown in Figure 1 [1]. These methods cover source-to-source
transformation (shown as number 1 in Figure 1), static
binary code conversion (shown as number 2), and dynamic
binary code conversion (shown as number 3).

Figure 1. Steps Where Profiling Operations Can Be Added

Source–to-source transformation consists of transforming
the source code to another source for adding the profiling
logic based on the preliminary information that identifies
points where code can be added. Proteus [3] is an example of
source-to-source transformation. Static binary code
conversion uses source code compilation with pre-prepared
libraries that have profiling operations. Rational Purify and
Quantify [4] is an example.

Dynamic binary code conversion is the most difficult and
low-level way to add profiling information. It uses Just-in-
Time (JIT) compilation. The advantage of this method is that
profiling operations can be added to a program without
compiling and are utilized only at the required time. Profiling
can be disabled at desired times, thus reducing the profiling
workload induced.

Paradyn [5] is a system that measures the performance of
parallel programs and finds bottlenecks that reduce the
performance of the program. For the node that is profiled, if
there is a performance bottleneck that causes a performance
decrease, profiling is repeated on the given resources and
problems under that node. Paradyn uses hypotheses
generated in this way in a hierarchy to determine
performance problems in parallel systems.

B. Operating System Profiling

Applications use services offered by the underlying
operating system. These services provide access to shared
resources. Resources profiling may be possible using those
transition points that are captured with appropriate structures,
such as probes.

C. Virtual Machine Profiling

Virtual machines make it easy to profile threads. The
virtual machine is located between a user program and the
operating system. Byte code transformation is based on the
addition of profiling information to the byte code, similar to
adding profiling information using the transformation of
binary code.

IV. ASPECT-ORIENTED PROGRAMMING

Aspect-Oriented Programming (AOP) has emerged as a
programming approach that adds features missing from
object-oriented programming (OOP). The main difference is
that AOP separates cross-cutting concerns from the business
logic using a new unit of modularization called an aspect.
Cross-cutting concerns are system-wide concerns that are
used in most modules, and which have relations with other
concerns. It becomes difficult to design these relations with
OOP. By separating these concerns into separate aspects, the
system becomes easy to manage and the business logic is
simplified by eliminating the code that is related with other
concerns. In the AOP approach, aspects are the central units
of modularization and crosscut the system according to rules
that define when to activate or deactivate the aspect during
program execution.

The actual executing code that does the main job of the
cross-cutting concern in an aspect is called an advice. The
executing code of the aspect is applied according to rules
based on the definitions of certain points in the program code

called joinpoints. Joinpoints are places of interest where
aspects should begin operations in the program execution. A
method call, a method execution, or an object initialization
can be joinpoints. The rules that define the execution of an
advice on a joinpoint are called pointcuts. Advices are
executed according to pointcuts on the joinpoints.

Profiling is a cross-cutting concern, unrelated to other
modules and business logic, and can be defined as an aspect.
The profiler’s advice and joinpoints and the pointcuts can
change according to the aim of the profiler. Using profiling
as an aspect makes profiling modular and allows the advice
to be changed without changing the actual code being
profiled. Since it is separate from the other parts of the
system, profiling can be applied to other modules.

A. AspectJ

Several implementations of AOP have been adapted into
programming languages. The most widely used of these
implementations are AspectJ [6], Spring AOP [7] and JBoss
AOP [8]. AspectJ is an extension to the Java. Table I shows,
in nanosec. the additional overhead of AOP implementations
for a call before and after execution points [9].

TABLE I. AOP IMPLEMENTATION COMPARISON

AOP

Comparison

Aspect

Werkz
AspectJ

JBoss

AOP

Spring

AOP

Before,

args() target()
10 10 220 355

After,

args() target()
80 50 290 436

According to this table, AspectJ brings the least overhead

to the execution points. Consequently, JAOTP is
implemented using AspectJ because of its simplicity, its
similarity to the Java language, and its minimal overhead on
the source code.

V. JAVA THREADS

Threads are frequently used in Java programming, as in
all other current programming languages. Java offers an
application programming interface (API) for programmers to
use in developing multi-threaded applications. To understand
the behavior of Java threads, the states of the threads must be
identified and time information must be collected between
state transitions.

Figure 2. Thread States and Transitions

Figure 2 shows thread states and calls that result in state
transitions in Java. In JAOTP, these calls are treated as
joining points.

VI. JAOTP

The Java Aspect-Oriented Thread Profiler (JAOTP) is
discussed in this section. We present in detail design
decisions, the general architecture of the profiler and the
viewer, implementation issues, and its application.

A. JAOTP Architecture

JAOTP consists of two main modules: the JAOTP Core
and the JAOTP Viewer. The JAOTP Core is mainly
responsible for handling thread state transitions using
aspects. The JAOTP Viewer is a separate Eclipse-based
plug-in for viewing the results of the JAOTP Core and
calculating the metrics of the information that is received.
The JAOTP Core sends the information that it collects
through a socket connection to the JAOTP Viewer. The
general architecture of JAOTP is shown in Figure 3.

Figure 3. JAOTP General Architecture

A Thread Watcher Aspect is executed on the joinpoints,
as shown in Figure 3. When the aspect is allowed to run
according to pointcuts, the aspect calls the Thread Controller
to run additional operations for thread profiling. The Thread
Controller carries out operations in critical sections. Thus,
after capturing a thread state, another thread is not allowed to
operate until the thread registration is completed. The Thread
Controller registers thread state change information to
Thread Data, a map structure that holds thread state change
lists, one for each thread. Thread Data maintains data on the
thread number, the new thread state and instant time
information. The registration operation also triggers an
operation that calculates the time duration for the previous
state change by subtracting the old time instant value from
the new time instant value, and sets it into the previous time
value. This operation involves Java Native Interface (JNI)
calls to retrieve current time information from the
microprocessor. It also uses a shared library that must be
compiled under the platform on which the Java virtual
machine is running.

The JAOTP Core sends thread state change information
to the JAOTP Viewer over a socket communication. The
Viewer updates the Thread Data lists with the information it
receives. Next, the core sends ThreadStateTimer objects,
which hold the information that is captured, and the Viewer
adds them to the appropriate places in the lists. When the
communication finishes, the Viewer can calculate the
metrics using the information captured on the current state of

the system. The Viewer also displays detailed information
and calculated metrics about thread behaviors, allowing the
developer to observe and understand the system.

Table II shows the pointcut names and their execution
types as used in JAOTP according to Figure 3.

TABLE II. POINTCUTS AND TYPES USED IN JAOTP

Description Pointcut Name
Pointcut

Type

Thread Start Call start() call

Thread Start Call from Runnable

Interface
Runnable+.run() call

Thread Waiting Call wait() call

Thread Sleep Call sleep() call

Thread Notify Call notify() call

Notify Call For All Threads notifyAll() call

B. Retrieving Processor Time Information From The Java

Virtual Machine

Threads can change states very quickly. JAOTP and
metrics-based thread behavior analysis are dependent on
correct timing information. The Java application
development platform is a high-level development
environment. In the experiments carried out for this paper, it
was noted that thread transition tests on the basis of
milliseconds actually have no use because threads can be
switched in nanoseconds. Therefore, JAOTP is modified to
support time measurement at the level of nanoseconds to get
accurate results. To take measurements at nanosecond
accuracy requires getting down to the lowest machine level
in order to have instant access to the cycle number counter of
the microprocessors. Java provides an interface called (JNI)
to access such low-level features.

To obtain accurate time information between thread
transitions, the JAOTP shared library needs to be compiled
under the working environment that is used. Through this
library, JAOTP invokes C programming language
procedures that retrieve the logical processor number and the
instant cycle counter by allowing the execution of assembly
level machine codes that bring back this information. The
instant cycle counter is handled by the read time-stamp
counter (RDTSC) command [10] while the logical processor
number is taken by the CPUID commands [19] supported by
most general purpose microprocessors such as Intel Pentium
and AMD Opteron.

To calculate exact time information, it is also necessary
to know the processor's clock frequency. When JAOTP starts
execution, it first gets the processor frequency through a
procedure call by the shared library. With this information,
the exact time elapsed between two thread states changes can
be calculated according to equation (1), where the frequency
used is in MHz (1 MHz = 1,000,000 Hz).

nanosecond = (# cycle / # frequency) *1000 (1)

C. Usage of JAOTP

JAOTP is designed to be woven at compile time. The
JAOTP Core and the AspectJ library must be added to a

project that consists of one or multiple threads. The JAOTP
Viewer can work with the Eclipse IDE if the developer adds
the Viewer to the IDE. When the core is added to the project,
the source code of the project is woven by the thread aspect;
the joinpoints are found and the source code is woven into
byte code by the AspectJ compiler. After the multi-threaded
program starts, the Viewer developed with the Eclipse IDE
can be used whenever the developer wants to see the results
of the examination.

D. JAOTP Metrics

For each thread, JAOTP calculates three metrics that are
based on collected time and event information. State change
is the main event used in this work. Other metrics can be
derived from time and state information. The metric base can
be increased if another event type is collected. JAOTP uses
the three metrics stated below to gather information about
thread behavior:

• Response time: The total time elapsed between
thread creation and termination.

• Utilization: The ratio of thread running time to the
total response time.

• Critical time: the time in which a thread spends the
longest period of time in its life cycle.

• Critical state: the state in which a thread spends the
longest period of time in its life cycle.

VII. RESULTS

In this section, the usage of JAOTP on the producer-
consumer problem and Apache Tomcat web server [12] with
load testing is presented and the results are described.

A. Producer-Consumer Problem

The producer-consumer problem (also known as the
bounded-buffer problem) is a classic example of
synchronization and mutual exclusion in parallel
programming. The problem describes two processes/threads,
the producer and the consumer, which share a common,
fixed-size buffer; a producer thread inserts data into the
buffer, while a consumer thread deletes data from the buffer.
The problem is twofold: to make sure that the producer will
not try to add data into the buffer if it is full, and that the
consumer will not try to remove data from an empty buffer.
The problem can also be generalized to multiple producers
and consumers.

B. Apache Tomcat Web Server and Load Testing

Apache Tomcat is an open source servlet container which
provides a Java HTTP web server for Java web applications
to run. It is a very popular application that is widely used in
development and production environments.

Load testing is used to determine a system’s behavior by
simulating the environment with the same number of users.
In this work we used Apache JMeter [13], an open source
Java application, to provide test functional behavior and used
JAOTP on Apache Tomcat web server. We present the
results with different number of users simulated with Apache
JMeter. We need to use a web application that is close to

real-world applications on Tomcat to get the results of
JAOTP on production systems and compare with other
profilers. LightPortal [14] is an open source Java based
portal application that uses technologies such as Java Server
Pages (JSP) [15], Spring framework [16], Hibernate [17].
The application is deployed to Apache Tomcat and the
database is configured to run on MySQL [18], a widely used
open source database.

C. Test Applications

JAOTP was used on the producer-consumer problem and
on Tomcat web server to observe thread behavior. For the
producer-consumer problem two sets of experiments were
carried out: each with a varying number of producer and
consumer threads and a buffer of fixed length in one set and
a buffer of varying length in the second set. Tests were
carried out on a system a 2.66 GHz Intel Core 2 Quad CPU
and 4 GB memory, with Java 1.6.0_20 virtual machine
running on the Ubuntu 9.10 operating system.

Experiment Set 1: This set of experiments involve a

buffer of fixed length and varying number of threads, with
both equal and different number of producer and consumer
threads. Table III shows the computed metrics for two
threads of each type. Table IV gives the results for the case
where the number of threads is doubled. The results indicate
a rise in thread response times which can be explained by the
increase in the thread number and consequently increase in
waiting time due to mutual exclusion. However, the critical
time values increased in parallel with the response time. This
shows that the balance between the producer and consumer
threads has been preserved. Another observation is that the
utilization values decrease as the number of threads
increases, which can be explained by the longer periods of
wait states.

TABLE III. JAOTP METRIC RESULTS WITH TWO PRODUCER

THREADS, TWO CONSUMER THREADS AND A BUFFER SIZE OF FIVE

Thread

Response

Time

(ms)

Critical

Time

(ms)

Critical

State

Utilization

(%)

Producer-1 222.5 1.1 Waiting 0.159

Producer-2 220.6 6.9 Started 0.078

Consumer-1 221.9 1.5 Started 0.153

Consumer-2 151.4 0.5 Waiting 0.123

TABLE IV. JAOTP METRIC RESULTS WITH FOUR PRODUCER

THREADS, FOUR CONSUMER THREADS AND A BUFFER SIZE OF FIVE

Thread

Response

Time

(ms)

Critical

Time

(ms)

Critical

State

Utilization

(%)

Producer-1 246.9 1.1 Waiting 0.093

Producer-2 244.3 4.1 Started 0.052

Producer-3 203.4 7.8 Started 0.052

Producer-4 203.3 7.8 Started 0.052

Consumer-1 245.9 1.5 Started 0.091

Consumer-2 203.7 0.6 Waiting 0.061

Consumer-3 203.3 7.8 Started 0.061

Consumer-4 203.2 0.5 Waiting 0.054

In Table V, we see the metrics for the case where the
numbers of producer and consumer threads are different
while the buffer size remains the same. As expected, the
response times of the producer and consumer threads
increase. This is because the balance between the producer
and consumer threads has been destroyed, leading to longer
wait periods. Utilization rates of consumer threads have also
increased.

TABLE V. JAOTP METRIC RESULTS WITH TWO PRODUCER

THREADS, FOUR CONSUMER THREADS AND A BUFFER SIZE OF FIVE

Thread

Response

Time

(ms)

Critical

Time

(ms)

Critical

State

Utilization

(%)

Producer-1 274.2 3.4 Waiting 0.127

Producer-2 271.7 8.5 Started 0.055

Consumer-1 273.3 3.4 Waiting 0.127

Consumer-2 219.3 3.2 Started 0.056

Consumer-3 219.2 3.2 Started 0.067

Consumer-4 186.6 0.8 Waiting 0.067

Experiment Set 2: The second set of tests were run using

varying numbers of producer and consumer threads with
varying buffer sizes to discover how metrics behave and
whether they are useful in analyzing thread behavior. The
figures below show the results of metrics for a single thread;
the first producer thread and the first consumer thread are
selected as representatives. The numbers of threads of each
kind were changed, starting with a single thread and
increasing the number to 5, 10, 15, 20, 50, 100, 200, 500 and
1000. Each experiment was repeated for three buffer sizes,
20, 50 and 100. The results are depicted in Figures 4-9.

Figure 4. Response Time—Thread Number Graph for First Producer

Thread with Different Buffer Sizes

In Figure 4, the response time results are shown for
Producer Thread-1 with different buffer sizes. Increase in the
buffer size results in an improvement in performance,
decreasing thread response time.

Figure 5. Response Time—Thread Number Graph for First Consumer

Thread with Different Buffer Sizes

In Figure 5, the response time results are shown for
Consumer Thread-1 with different buffer sizes. Similar to the
Producer Thread-1, response time of the Consumer thread
decreases with increasing buffer size.

Figure 6. Critical Time—Thread Number Graph for First Producer

Thread with Different Buffer Sizes

 Figures 6 and 7 show change in critical time for the
Producer Thread-1 and Consumer Thread-1 respectively, as
the buffer size increases. The results show that buffer size
does not have an impact on critical time.

Figure 7. Critical Time—Thread Number Graph for First Consumer

Thread with Different Buffer Sizes

Figure 8. Utilization—Thread Number Graph for First Producer Thread

with Different Buffer Sizes

Figure 8 and 9 show change in utilization for the
Producer Thread-1 and Consumer Thread-1 respectively. In
both cases, we observe that as the buffer size increases, the
utilization of the threads generally increase as well.
According to the challenges in thread profiling there can be
some different situations on results like the experiment made
using hundred producer and consumer threads. There is a
dip in the figure and there may possibly be a thread
switching or a lock operation that changes every thread to
waiting. These situations can be seen when working with
threads so they must be ignored and the general result graph
made by all different experiments must be used to
understand thread behavior.

Figure 9. Utilization—Thread Number Graph for First Consumer Thread

with Different Buffer Sizes

In general, results obtained from the profiler show that
thread response times are closely related to buffer size.
Critical time is generally higher when the thread number is
low, as expected. Thread utilization decreased when the
buffer size and the thread number increased. Based on these
observations, the application developer may choose the right
number of threads and the best size for the buffer suitable for
its needs. The experiments show that the metrics defined can
be useful to understand the behavior of threads in a classical
problem by collecting profiling information.

Experiment set 3: The third test uses Apache Tomcat
web server with LightPortal web application deployed. The
test functional behavior is provided with Apache JMeter,
used to simulate the user number. In Table VI, the profiling
results of JAOTP are presented on Tomcat web server with 5
users simulated by JMeter. As can be seen in the table,
Tomcat creates certain internal threads such as http-8080-
Acceptor and TP-Processor, along with user threads that are
named as http-8080-i, where i vary between 1 and 5, the
number of users present in the experiment. To show the
utility of presented metrics, we have repeated the tests with
different numbers of users and report the results for the first,
last and the middle user. That is, if 10 users are present,
results for http-8080 threads 1, 5 and 10 are presented.

TABLE VI. TOMCAT WEB SERVER LOAD TESTING WITH FIVE USERS

Thread Name

Response

Time

(ms)

Critical

State

Utilization

(%)

Container Background

Processor
4337.5 Sleeping 0.00005

http-8080-Acceptor 3185.1 Running 0.67421

TP-Processor1 2147.9 Waiting 0.00014

TP-Processor2 2149.1 Waiting 0.00045

TP-Processor3 4301.6 Waiting 0.00150

TP-Processor4 2152.0 Running 0.99786

TP-Monitor 2157.6 Waiting 0.00002

http-8080-1 4296.5 Running 0.99962

http-8080-2 4572.8 Running 0.93923

http-8080-3 4302.7 Running 0.99820

http-8080-4 4297.0 Running 0.99952

http-8080-5 2405.8 Running 0.89647

The web server creates a new thread for each user (client)

and the thread fulfills the user request. The utilization rates
are very high, showing that the web server is working
healthy and its performance is good with these numbers of
users.

The results of response time and utilization metrics are
shown in Figures 10 and 11.

Figure 10. Response Time— User Number Graph

Figure 11. Utilization—User Number Graph

The results show that the performance of the web
application starts to decline after 100 users. This is clearly
seen with increase in the response time and decrease in the
utilization of the threads. This implies that the threads spend
more time in waiting state, rather than doing useful work.
Hence, the utilization metric provides a valuable input to the
assessment of behavior and can be used to tune the
application for better performance.

D. Comparison of the JAOTP With Other Profilers

One of the most important values for a profiler is how
much overhead it brings. Figure 12 shows a comparison of
JAOTP with the other well-known profilers JProfiler [19]
and NetBeans Profiler [20]. The comparison uses the JMeter
average sample time results with the LighPortal web
application. Results are listed in milliseconds.

Figure 12. Profiler Overhead Comparison

Compared to the other well-known profilers, JAOTP
seems to bring a higher overhead. However, as it provides
the software developer with more detailed results at the level
of thread state change, it may be more desirable to use
JAOTP to make certain design decisions if the application
requires profiling at such levels.

VIII. CONCLUSION

In this paper an aspect-oriented thread profiler was
developed and a method to find and record exact time
information was discussed. The profiler was tested on a
producer-consumer problem and Tomcat web server. Results
show that the aspect-oriented approach can be easily used,
and the metrics-based analysis method gives developers
results regarding how their threads behave in the
development phase of their programs. In addition, Java needs
to access some machine level information for such profiling;
the paper also presents the methods used to get such
information in the Java context. The overhead introduced by
JAOTP is measured to be slightly higher than that of other
profilers. However, JAOTP adopts a metrics-based approach,
computing specific metrics for each thread, different from
the other profilers. The information collected that consists of
native method calls and detailed state information is valuable
for thread profiling. The native calls use a shared library so
that platform dependency decreases according to the
platforms that the shared library supports.

The decision to implement the profiler with AOP
approach, using AspectJ, has proven to be helpful. This is
mainly because separating the nonfunctional profiling logic
of an application from its functional logic has helped to
achieve an efficient and effective profiler. As a result,
JAOTP is an easy to use thread profiler, with an easily
extensible modular structure.

JAOTP functionality provides several metrics that help
analyze thread performance and behavior. With these
metrics, the application developer can analyze various
aspects of program execution, in order to find out potential
bottlenecks or failure conditions. For example, JAOTP may
be used to monitor producer-consumer relationships. Also,
for the case where threads are dependent on resources, with
JAOTP it is possible to track the life cycles of threads,
determining the periods of time they are in a blocked state,
waiting for a resource to become available. In “input-
processing-output oriented” applications, such as a Web
application, utilization and response time metrics of JAOTP
allow to assess the performance of the system, showing how
long it takes to process user requests and produce results.

Having these conclusions, JAOTP, with its design and
implementation decisions, proves the suitability of AOP
techniques and the use of AspectJ for thread profiling.

IX. REFERENCES

[1] D. G. Waddington, N. Roy, D. C. Schmidt, “Dynamic Analysis and
Profiling of Multi-threaded Systems,” Proceedings of the 2nd
International Workshop on Social Computing Behavior Modeling and
Prediction, Phoenix, AZ, March 31-April 1, 2009.

[2] J. K. Hollingsworth, B. P. Miller, “Parallel program performance
metrics: A comparison and validation,” in Proceedings of
Supercomputing, November 1992.

[3] D. G. Waddington, B. Yao, “High Fidelity C++ Code
Transformation,” Proceedings of the 5th Workshop on Language
Descriptions, Tools and Applications, Edinburgh, Scotland, UK,
2005.

[4] IBM Corporation Whitepaper: Develop Fast, Reliable Code with IBM
Rational PurifyPlus, 2003.

[5] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R.
B. Irvin, K. L. Karavanic, “The Paradyn Parallel Performance
Measurement Tool,” IEEE Computer, vol. 28., n.11, p. 37-46, 1995.

[6] G. Kiczale, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G.
Griswold, “An Overview of AspectJ,” Lecture Notes in Computer
Science, 2072, p. 327-355, 2001.

[7] Aspect Oriented Programming with Spring,
http://static.springsource.org/spring/docs/2.5.x/reference/aop.html.

[8] JBoss AOP – Aspect-Oriented Framework for Java, JBoss AOP
Reference Documentation, http://www.jboss.org.

[9] AOPBenchmark,
http://docs.codehaus.org/display/AW/AOP+Benchmark

[10] Time_Stamp_Counter,
http://en.wikipedia.org/wiki/Time_Stamp_Counter

[11] CPUID, http://en.wikipedia.org/wiki/CPUID

[12] Apache Tomcat web server, http://tomcat.apache.org/

[13] Apache JMeter, http://jakarta.apache.org/jmeter/

[14] LightPortal, open source portal server and social collaboration
software, http://www.lightportal.org/

[15] Java Server Pages, http://java.sun.com/products/jsp/

[16] Spring Framework, http://www.springsource.org/

[17] Hibernate, http://www.hibernate.org/

[18] MySQL database, http://www.mysql.com/

[19] JProfiler,
http://www.ejtechnologies.com/products/jprofiler/overview.html

[20] NetBeans Profiler, http://profiler.netbeans.org

