
T. Yakhno (Ed.): ADVIS 2004, LNCS 3261, pp. 322–331, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Integrating Distributed Composite Objects
into Java Environment

Guray Yilmaz1 and Nadia Erdogan2

1 Turkish Air Force Academy, Computer Eng. Dept., Ye ilyurt,
34149 stanbul, Turkey

g.yilmaz@hho.edu.tr
2 Istanbul Technical University, Electrical-Electronics Faculty,

Computer Engineering Dept., Ayazaga,
80626 stanbul, Turkey

erdogan@cs.itu.edu.tr

Abstract. This paper introduces a new programming model for distributed
systems, distributed composite objects (DCO), to meet efficient
implementation, transparency, and performance demands of distributed
applications with cooperating users connected through the internet. It allows the
representation of an object as a collection of sub-objects and enhances the
object distribution concept by implementing replication at the sub-object level
and only when demanded. DCOBE, a DCO-based programming environment,
conceals implementation details of the DCO model behind its interface and
provides basic mechanisms. An important feature of the programming
framework is transparency.

1 Introduction

This paper introduces a new programming model for distributed systems, distributed
composite objects (DCO), to meet efficient implementation, transparency, fault
tolerance and performance demands of cooperative applications with users connected
through the internet. DCO model incorporates two basic concepts. The first concept is
composition, by which an object is partitioned into sub-objects (SO) that together
constitute a single composite object (CO). The second basic concept is replication.
Replication extends the object concept to the distributed environment. Sub-objects of
a composite object are replicated on different address spaces to ensure availability and
quick local access. Decomposition of an object into sub-objects reduces the
granularity of replication. To a client, a DCO appears to be a local object. However,
the distributed clients of a DCO are, in fact, each associated with local copies of one
or more sub-objects and the set of replicated sub-objects distributed over multiple
address spaces form a single distributed composite object.

A software layer, Distributed Composite Object Based Environment (DCOBE)
provides a programming framework that is based on the DCO model [5]. DCOBE is a
middleware built on Java Virtual Machine and presents functionalities that facilitate

Integrating Distributed Composite Objects into Java Environment 323

the development of internet wide distributed applications, through a well-defined
interface.

An important feature of the programming framework is transparency. Users of
DCOs acquire the benefits of a centralized environment as DCOBE takes care of
issues such as distribution and replication of object state, management of consistency,
and concurrency control. They are automatically programmed separately from the
application code, thus enabling developers to concentrate on the semantics of the
application they are working on.

The paper is organized into six sections. Section 2 presents the distributed
composite object model. The structure of a DCO is explained in Section 3. Section 4
presents developing steps of a DCO. Related work is explained in Section 5. Finally,
Section 6 presents our conclusion.

2 Distributed Composite Object Model

The DCO model allows applications to describe and to access shared data in terms of
objects whose implementation details are embedded in several sub-objects. Each sub-
object is an elementary object, with a centralized representation, or may itself be a
composite object. Several sub-objects are grouped together in a container object to
form a composite object.

The developer of the composite object distributes the object’s state between
multiple sub-objects and uses them to implement the features of the composite object.
SOs of a composite object are replicated on different address spaces to ensure
availability and quick local access. A CO is first created on a single address space
with its constituent SOs. When a client application on another address space invokes
an operation on a CO which triggers a method of a particular SO, the state of that SO
only, rather than that of the whole CO, is copied to the client environment. With this
replication scheme, SOs are replicated dynamically on remote address spaces upon
method invocation requests. The set of SOs replicated on a certain address space
represents the CO on that site. Thus, the state of a CO is physically distributed over
several address spaces. Active copies of parts, or whole, of a composite object can
reside on multiple address spaces simultaneously. We call this conceptual
representation over multiple address spaces a distributed composite object.

Fig.1 depicts a DCO that spreads over four address spaces. It is initially created on
Site2 with all of its sub-objects (SO1, SO2, and SO3), and is later replicated on three
other sites, with SO1 on Site1, SO2 and SO3 on Site3, and SO1 and SO3 on Site4.
The three sites contribute to the representation of the DCO. The set of address spaces
on which a DCO resides evolves dynamically as client applications start interactions
on the target CO.

Clients see the interface, which the developer has defined for the composite
object, rather than the interfaces from the collection of embedded sub-objects.
Therefore, from the client's point of view, a composite object is a single shared object
that has only one access point, a single interface. He is not aware of its internal
composition and, hence, has no explicit access to the sub-objects that make up its
state. This restriction is an important aspect of our model and allows the object

324 G. Yilmaz and N. Erdogan

developer to dynamically adapt composite objects to changing conditions. The
developer may add new sub-objects to a composite object to extend its design,
remove existing ones or modify the implementation of some, without affecting the
interface of the composite object. Thus, dynamic adaptation of the object over time
becomes possible, without affecting the applications that use it.

Fig. 1. A distributed composite object that spreads over three sites

Clients of a DCO are aware neither of its composition, nor of its distribution. As
the objects in our model are passive objects, a client accesses a DCO by invoking
methods in the interface provided by the object. Invocations are ordinary local object
invocations as the client has a local implementation of the object in its address space.
Multiple clients may access the same object simultaneously. When the state of an
object is modified, all replicas are kept consistent through consistency management
protocols that involve remote interactions.

3 The Structure of a DCO

We have defined an enhanced object structure to deal with implementation issues and
thus provide the object developer and its clients with complete transparency of
distribution, replication and consistency management. This structure includes two
intermediate objects, namely, a connective object and a control object, which are
inserted between the container object and each target sub-object.

Connective and control objects cooperate to enable client invocations on DCOs. A
connective object is responsible for dynamic client to object binding which results in
the placement of a valid replica of a sub-object in the caller's address space. A control

composite
object

sub-object
management
interactions

Site 3

SO1

CO CO

CO

application1

container
object
sub-object

method
call

SO1

SO2

SO3

SO2

SO3

application2

application3

Site 1 Site 2

Site 4

CO

SO1

SO3

Network

application4

distributed
composite
object

Integrating Distributed Composite Objects into Java Environment 325

object is a wrapper that controls accesses to its associated replica. It implements
coherence protocols to ensure consistency of sub-object state. A client object
invocation follows a path through these intermediate objects to reach the target sub-
object after certain control actions.

An Automatic Class Generator (ACG) that has been developed in the context of
this work is used to generate classes for connective and control objects from interface
descriptions of sub-objects. Hence, the developer has to focus only on the design of
the sub-objects that make up a composite object. The others are generated
automatically, according to the coherence protocol specified by the developer.

3.1 Connective Object

The connective object is the target of all local client invocation requests. Structurally,
it is an object with the same abstract type and implements the same interface as the
sub-object it is associated with. For a client invocation to be possible, it is necessary
that the client bind to that object. Each connective object contains a reference that
points to the control object of the referenced sub-object. If the reference is bound, it
means the control object is already present. The connective object forwards the
invocation request to the control object. It is the control object's task to make a valid
replica of the sub-object available locally. In case the reference is null, a copy of the
control object is fetched and the reference is updated.

3.2 Control Object

The control object is located between the connective object and the local
implementation of the sub-object and exports the same interface as the sub-object. It
receives both local and remote invocation requests and directs them to the local sub-
object. Consistency problems arise as sub-object replicas on different address spaces
are modified. The control object is responsible for the management of consistency of
object state and concurrency control to ensure mutually exclusive access. It
implements certain coherence and access synchronization protocols before actually
allowing a method invocation request to execute on the sub-object it is associated
with. The system uses entry consistency [4] for memory coherency.

There are two approaches in the synchronization of write accesses to objects so
that no client reads old data once a write access has been completed on some replica:
write-update and write-invalidate [2]. Write-update broadcasts the effects of all write
accesses to all address spaces that hold replicas of the target object. In the write-
invalidate scheme, on the other hand, an invalidation message is sent to all address
spaces that hold a replica before doing an update. Upon receipt of an invalidation
message, objects are simply marked invalid, but not immediately retrieved. Clients
ask for updates as they need them. DCO model implements both coherence protocols.
The developer chooses the one which suits the requirements of his application the best
and the control object’s class is generated accordingly by the ACG.

The interface of a control object is divided into two parts. The first part is identical
to that of the sub-object and its methods are called by the connective object to access
the sub-object replica. The second part is an upcall interface that is used to implement

326 G. Yilmaz and N. Erdogan

the coherence and access synchronization protocols. Control objects on different sites
communicate through this interface to keep the object state consistent.

The control object implements a method invocation request in three main steps.
They are briefly explained below, omitting specific details.

Step 1. Get access permission: This step involves a set of actions, possibly
including communication with remote control objects, to obtain access permission to
the sub-object. It is blocking in nature, and once activity is allowed, it proceeds to
step 2. The control object recognizes the type of the operation the method invocation
involves, either a write (W) operation that modifies the state of the object or a read (R)
operation that does not, and proceeds with this information. The object developer
specifies the access type of each method with an appropriate keyword (R/W) that
follows the method signature in the interface declaration of a sub-object. For a R-type
of invocation request, the actions are similar for both types of coherence protocols.
They result in the placement of a valid sub-object copy in the local address space if
one is not already present and return a permission to proceed, if currently there is no
active writer to the object and the list of pending requests is empty. The client is
added to the valid list of the target sub-object. If those conditions do not hold, the
client is suspended temporarily and the request is queued in a waiting list.

A W-type of invocation request is queued for both coherence protocols, if a writer
is already active or the pending list of requests is not empty. Otherwise, for the write-
invalidate protocol, all reader clients in the valid list are sent an invalidation message
and the valid list is purged. The operation returns a valid copy of the target sub-object
on the caller's address space, if not already present, along with its ownership granting
write access permission to the invoker.

Step 2. Invoke method: This is the step when the method invocation on the local
sub-object takes place. After receiving permission to access the target sub-object, the
control object issues a call which received from the connective object.

Step 3. Complete invocation: This step completes the method invocation after
issuing update requests for remote replicas on the valid list to meet the requirements
of write-update protocol. After the call returns, the control object activates invocation
requests that have blocked on the object. The classical multiple-reader/single-writer
scheme is implemented, with waiting readers given priority over waiting writers after
a write access completes and a waiting writer given priority over waiting readers after
the last read access completes.

4 Developing a New DCO

In this section, we will demonstrate with an example how a DCO is created and how
it is accessed from a remote Java application. No language extensions or system
support classes are required during coding. The developer generates code as he does
for a conventional centralized application. As an example, we assume a DCO named
Employee, whose state and implementation is distributed between three sub-objects:
Person, Account, and Job. Fig.2 shows the class definition a developer would
prepare for the container object Employee.

Integrating Distributed Composite Objects into Java Environment 327

public class Employee {
 //Definitions of the sub-objects and other variables

Connective_Account bankAccount;
Connective_Person person;
Connective_Job job;
float amount;
.....

 public Employee() {
 bankAccount = new Connective_Account();
 person = new Connective_Person();

 job = new Connective_Job();
 amount = 0;

}

 public void deposit_BankAccount(float amount) {
bankAccount.deposit(amount);

}
public void withdraw_BankAccount(float amount) {

bankAccount.withdraw(amount);
}

 public float balance_BankAccount() {
 amount = bankAccount.balance();
 return amount;
 }

..........................
}

Fig. 2. Container class definition for DCO Employee

 public class Sub_Account {
 float total = 0;
 public void deposite(float amount) {
 total = total + amount;
 }
 public void witdraw(float amount) {
 total = total - amount;
 }
 public float balance() {
 return total;
 }
 }

Fig. 3. Code for sub-object class Sub_Account

In this example, for clarity, we have only included methods that utilize the sub-
object class Account and their contents are extremely simplified as to include only a
single method invocation on the target sub-object. Actually, there is no restriction on
the semantics of the methods of a DCO. Next, the class definitions and interface
descriptions for each sub-object are prepared. Class definitions are typical Java
definitions, except for the prefix ‘Sub_’ that precedes the name of the class. Fig.3
shows the code for sub-object Sub_Account.

328 G. Yilmaz and N. Erdogan

Interface descriptions list the methods the sub-object implements for internal use.
At this point, the developer is required to identify, for each method, the type of
operation its invocation involves using an appropriate symbol: W (short for Write) for
one that modifies the state of the object and R (short for Read) for one that does not.
This is the only difference between an RMI and DCO interface description. Fig.4
shows the interface description for sub-object Sub_Account.

 public interface Sub_Account {
 public void deposit_W(float amount);

public void withdraw_W(float amount);
 public float balance_R();
 }

Fig. 4. Interface description for class Sub_Account

The next step involves the generation of class definitions for connective and
control objects of each sub-object. The Automatic Class Generator creates them
automatically using the information extracted from interface descriptions of the sub-
objects. Fig.5 and Fig.6 show the class definitions for the connective object and the
control object generated respectively from interface Account.

public class Connective_Account {
 int obj_id;

Control_Account control_object;

 public Connective_Account() {
 control_object = new Control_Account ();
 obj_id = control_object.get_id();
 }

 public void deposite(float amount) { }

 public void witdraw(float amount) { }

 public float balance() {
 if (control_object == null) (1)

control_object = (Control_Account)
dcobe_server.get_control_object(obj_id);(2)

 return control_object.balance();(3)
}

}

Fig. 5. Class definition for the connective object; Connective_Account

The connective object of Sub_Account is named as Account and implements
the same interface as Sub_Account because a method invocation on a sub-object is
actually directed to its connective object first. It contains a pointer to the control
object. Whenever one of its methods is activated, it first checks the binding of the

Integrating Distributed Composite Objects into Java Environment 329

reference to the control object ((1) in Fig. 5). If the reference has not yet been bound,
a call is issued, which returns copies of both the control object and the sub-object (2).
The method invocation is then forwarded to the control object (3).

public class Control_Account {
 Sub_Account subObject;

int obj_id, server_id;

public Control_Account() {
 subObject = new Sub_Account();
 server_id = dcobe_server.get_serverId();

obj_id = dcobe_server.
 register_object(this, subObject);(1)

 }

 public void deposite(float amount) { }

 public void witdraw(float amount) { }

 public float balance() {
 access_right(R); (2)
 float account = subObject.balance();(3)
 access_end(server_id, R);

return account;
}

}

Fig. 6. Class definition for the control object; Control_Account

The control object registers the sub-object and, in return, receives a unique
identifier, obj_id ((1) in Fig.6), which is used by the connective and control objects on
successive accesses to the sub-object. Control object implements coherence protocols
to ensure consistency of the sub-object’s state. After getting access permission
through a lock (2), the method is invoked on the sub-object (3). The control object
also includes internal methods (upcalls not presented in Fig.6) that may be invoked by
DCOBE_Server in order to check the status of the lock on the sub-object and block a
lock request from a remote node until the lock is explicitly released.

After completing the class definitions for a composite object class, these class files
are made available to other nodes by an HTTP-server so that they may be
dynamically loaded from remote addresses. The following piece of code first
instantiates a composite object in an application program. Immediately afterwards,
connective objects, control objects and the sub-objects are automatically created on
that node (1). Second, the newly created composite object is registered with a name
(2), and third, in order to make class definitions dynamically loadable, class base
information is also registered (3).

(1) employee = new Employee();
(2) dcobe_server.register(employee, “John”);
(3) dcobe_server.register_class(“Employee”,

“http://Class_Base/”);

330 G. Yilmaz and N. Erdogan

For a DCO to be accessible from a remote node, a user has to bind to the object
through a lookup operation, that is, a registered composite object needs to installed in
its address space. With this process, connective objects are also installed on the
requesting node automatically. However, a local method invocation on the object
becomes possible only after the control object and a replica of a sub-object is loaded.

The following piece of code loads the class Employee dynamically (4), and
binds to one of its instances, John, (5). Now, the remote user is ready to invoke a
method on the distributed composite object (6). Only a replica of the sub-object
bankAccount will be loaded to the user’s address space. In addition, according to
the coherence protocol, all other replicas of bankAccount will either be invalidated
or updated after this method completes.

(4) Employee = dcobe_server.load_class(“Employee“);
(5) employee = dcobe_server.lookup(“John”);
(6) employee.deposit_BankAccount(1000);

5 Related Work

Our work has been influenced closely by the SOS [1] and Globe [6] projects, which
support state distribution through physically distributed shared objects. The SOS
system is based on the Fragmented Object (FO) model [3]. The FO model is a
structure for distributed objects that naturally extends the proxy principle. FO is a set
of fragment objects local to an address space, connected together by a connective
object. Fragments export the FO interface, while connective objects implement the
interactions between fragments. A connective object embodies the consistency and
coherence properties of the distributed object and provides an internal communication
substrate for the FO. Even though the work hides the cooperation between fragments
of a FO from the clients, the programmer is responsible to control the details of the
cooperation. He has to decide if a fragment locally implements the service or is just a
stub to a remote server fragment. FO hides data replication and consistency
management from the user, but those details are exposed to the implementer.

One of the key concepts of the Globe system is its model of Distributed Shared
Objects (DSOs) [6]. A DSO is physically distributed, meaning that its state might be
partitioned and replicated across multiple machines at the same time. However, all
implementation aspects are part of the object and hidden behind its interface. For an
object invocation to be possible, a local object is bound in the client’s address space.
A local object may implement an interface by forwarding all invocations, as in RPC
client stubs, or through operations on a replica of the object state. Local objects are
partitioned into sub-objects, which implement distribution issues such as replication
and communication, so developers concentrate on the semantics of the object.

The major difference between our work and above projects is that, they both do
not support the composite object model and caching is restricted to the state of the
entire object. However, the DCO model allows the representation of an object as a
collection of sub-objects and enhances the object distribution concept by
implementing replication at the sub-object level, providing a finer granularity. To the
best of our knowledge, there is no programming framework that supports replication

Integrating Distributed Composite Objects into Java Environment 331

at the sub-object level. Also, in both projects, deciding where and when to create a
replica is left to the application. Even though Globe provides a general mechanism for
associating replication strategies with objects, at present, a developer has to write his
own implementation of a replication sub-object. DCO, in contrast, replicates sub-
objects at all sites they are used and management of consistency of state and
concurrency control is transparent to both object developers and users. Dynamic
loading of sub-objects is also a feature that is not supported by either of the projects.
Another important difference is that, DCO developer may add new sub-objects to a
composite object to extend its design, remove existing ones or modify the
implementation of some sub-objects without affecting its users.

6 Conclusion

In this study, we proposed a new object model, distributed composite object, for
internet-wide collaborative computing. This distributed composite object model
allows users to describe applications in terms of a single composite object whose
implementation details are embedded and encapsulated in different types of sub-
objects. In this model, a distributed object is not an entity running on a single
machine, possibly with full copies on other machines, it is partitioned on several sub-
objects and these sub-objects are replicated across multiple sites at the same time.

Applications are developed using Java language as centralized manner and made
available on the internet. Applications are dynamically deployed on client nodes and
the distributed objects are transparently shared among applications. This allows users
to deal with the diverse environments that exist in a wide area network and to separate
applications from the implementation of the objects. Application programmers may
really concentrate on the application specific logic. This approach makes distribution
and replication almost transparent to the application programmers.

References

1. Shapiro, M., Gourhant, Y., Herbert, S., Mosseri, L., Ruffin, M. and Valot, C.: SOS: An
Object-Oriented Operating System-Assessment and Perspectives. Computing Systems, Dec.
2(4) (1989) 287-338.

2. Mosberger, D.: Memory consistency models. Operating Systems Review, Jan. (1993) 18-26.
3. Makpangou, M., Gourhant, Y., LeNarzul J.P. and Shaphiro, M.: Fragmented Objects for

Distributed Abstractions. in: T.L. Casavant and M. Singhal (eds.), Readings in Distributed
Computing Systems, IEEE Computer Society Press (1994) 170-186.

4. J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Techniques for reducing consistency-related
communication in distributed shared-memory systems. ACM Transactions on Computer
Systems, Aug. 13(3) (1995) 205–243.

5. Yılmaz G., Distributed Composite Object Model for Distributed Object-Based Systems.
PhD Thesis, Istanbul Technical University Institute of Science and Technology, Istanbul,
Turkey (2002).

6. Bakker, A., Kuz, I., Steen, M.V., Tanenbaum, A.S. and Verkaik. P.: Design and
Implementation of the Globe Middleware. Technical Report IR-CS-003, June (2003).

	Introduction
	Distributed Composite Object Model
	The Structure of a DCO
	Connective Object
	Control Object

	Developing a New DCO
	Related Work
	Conclusion
	References

