

How to Solve the Inefficiencies of Object Oriented Programming :

A Survey Biased on Role-Based Programming

Yunus Emre Selcuk
Computer Engineering Department, Istanbul Technical University

Ayazaga, 34390, Istanbul, TURKEY

and

Nadia Erdogan
Computer Engineering Department, Istanbul Technical University

Ayazaga, 34390, Istanbul, TURKEY

ABSTRACT
This survey discusses the inefficiency of the OOP paradigm in
modeling real world objects that change with time and focuses
on the role concept as a solution. The most representative work
towards role support in OOP languages are presented, followed
by an evaluation and comparison according to various criteria.

Keywords: object oriented programming, role based
programming, design.

1. INTRODUCTION
In the class-based object-oriented programming (OOP)
paradigm, the relationship between an object and its respective
class is persistent, static and exclusive. This makes OOP
suitable for modelling only real world objects that can be
divided into distinct classes and never change their classes.
However, the real world mainly consists of objects which
constantly change and evolve. The best example is a human
being. More examples can be given in domains such as
production mechanisms and classification of technical
materials.
Modeling objects that change in time with the class hierarchies
of OOP is difficult. An object should be re-classified each time
it evolves. It is even more difficult to model an object which
can have different roles independent of each other. To classify
such objects, seperate classes must be defined for each possible
combination of roles. These classes are defined as intersection
classes and usually created by multiple inheritance.
Behavioural classification can be modeled with inheritance but
many OOP languages bind the identity of an object to only one
type permanently and invariably. This is not a mere
inconvenience but a major problem because it dictates to model
the dynamically changing real world objects with static classes.
If dynamic entities are modeled with a series of static objects,
the relation between the conceptual entity and these objects can
be lost or overlooked.
Specialization at the instance level is a better approach than
specialization at the class level when modeling evolving
entities. An entity can be represented with multiple objects,
each executing a different role that it is required to perform.
These objects do not simply change from one into other : An
entity can have multiple unrelated types. If multiple inheritance
is used to model all types, an exponantially growing tree of the
class hierarcy will be sparsely populated with necesary objects.
Moreover, name conflicts can occur as OOP provides only one
behavioral context for any object.

2. DETAILED DISCUSSION OF THE PROBLEM
With the traditional class hierarchy, where derived sub classes
inherit the variables and methods of the super class, only the
sharing of attributes and behaviour can be modeled. Remaining
properties stated below are hard to implement.

2.1. It is Hard to Model Evolving Entities :
If an object gains a new role or looses one, it needs to be re-
classified. This seemingly easy task consists of the following
steps :
• A new object of the new class is created
• Necessary members and methods of the old class are

copied to the new class.
• References of the old type should be converted to the new

type in the entire system (the biggest burden in large scale
applications).

• The old object is removed.

2.2. Class Hierarchy Grows Exponantially Where
Entities Can Assume Multiple Roles
The previously defined intersection classes, usually
implemented with multiple inheritance, grow exponentially
with each role. The work of embedding necessary functionality
into the intersection classes will be hard in some OOP
languages which do not support multiple inheritance.
Naming conflicts are inevitable in multiple inheritance. Even
though each language supporting multiple inheritance has a
way to prevent or resolve these naming conflicts, the task of
using these tools while maintaining both syntactic and semantic
correctness is still a big burden for programmers.

2.3. Class Hierarchies do not Support Context Based
Behaviour
When an object is accessed from a specific view point
representing one of its roles, it should act as this particular role
suggests. This is not possible in class hierarchies of class-based
inheritance.

2.4. Class Hierarchies are not Flexible in Restriction
of Access
All members and methods of a class are always accessed in the
same way. Members defined as public or private are always
accessible to objects having the right while they are
inaccessible by others. However, context based behavior
inherent in the real world suggests context based access.

2.5. Class Hierarchies cannot Model the
Representation of an Entity with Multiple Objects
A real world entity is usually represented by only one object
belonging to a particular class. If multiple objects are involved,
the fact that all these objects represent the same entity is lost.
Programmers need to implement additional mechanisms to
keep that information, such as a member for labeling purposes.

3. THE ROLE CONCEPT AS A SOLUTION
Although OOP is a widely accepted and powerful modeling
tool, its inherent inefficiencies have motivated researchers to
come up with new techniques. Among those, we’ve observed
that role based programming (RBP) approach is an elegant way
to overcome the inefficiencies of OOP. Other techniques
include schema evolution and object migration.
The role concept comes from the theoretical definition where it
is the part of a play that is played by an actor on stage. Roles
are different types of behavior that different types of entities
can perform. An entity can play some of these roles
simultaneously while acquiring or losing roles during its
lifetime. Therefore, an entity is defined with all of the roles it is
interested in.
The role concept with the above context was first proposed by
Bachman and Daya in 1977 [1]. The foundation of the
approach was built and examples were given in a COBOL-like
language. Work that applied these concepts to OOP started in
late 80’s and still continues.

3.1. Characteristics of Roles
The following requirements should be satisfied in order to
model the dynamic nature of real world entities:
• Some roles of an object can share commont structure and

behavior. For example, student and research assistant
roles of a person share name information. OOP can fully
satisfy only this requirement.

• Objects should be able to acquire and loose roles
dynamically. For example, an employee can be promoted
to leadership of a project but can later be dismissed if he
proves incapable.

• Roles can be won or lost independently of each other. For
example, a person can find a part-time job independent of
being a student.

• Entities behave just like their roles dictate. For example,
different answers are received if one is asked his phone
number, either home or work, according to his current
role. Polymorphism mechanism of OOP gives only
limited satisfaction to this requirement.

• An entity can have more than one instance of a role. For
example, an employee can be a group leader in more than
one project.

• An entity could switch between its roles any time it
wishes. This means that a programmer should be able to
access any of the roles of an object when he has a
reference to only one of its roles.

• Different roles should be allowed to have members with
same names without conflicts.

• There should be some sort of priority among roles because
of the previous property. It is also implied that previous
behavior, which is hidden by acquiring a new role, can
reappear by losing that role.

• Some dependency rules may be needed when acquiring or
loosing a role.

• Some restrictions may be needed among the primary
characteristics of roles. For example, some roles should be
defined as mutually exclusive.

4. ROLE BASED APPROACHES
This section scrutinizes the work, which aims to solve the
inefficiencies of OOP by implementing the role concept. They
all focus on the relational approach for roles and have a
hierarchy of roles, which stems from the object-level
inheritance relations among roles. However, we examine the
role hierarchy approach in a separate section as it differs from
the others by providing role support simply by a few special
classes and using no other mechanism but the ones supported in
Smalltalk.

4.1. Object Interfaces (Aspects)
Skarra and Zdonik [3] suggest the use of object interfaces as a
mechanism to solve the problems of OOP. The original term
used is aspects, which are augmented class interfaces similar to
the ones found in Java language. In order to avoid confusion
with aspect oriented programming paradigm and Java
interfaces, the term object face – or simply face – is used
instead of aspect. The face concept suggested in this work has
not been implemented in a programming language. Object
faces support the following properties while a Java interface
does not.
• Dynamically defined during runtime.
• A face can implement other faces.
• Different kinds of equity-checking operators are defined.
• Only permitted classes can implement a face.
• An object can have multiple instances of a face.
A face gives an object additional state and behavior, while not
changing its identity. An object may acquire a new face or drop
one of its faces. An object which has more than one face
belongs to all classes from which it has taken its faces. The
behavior of an object changes according to its face, through
which it is being accessed .

4.1.2. Object Model, Faces and Usage
The proposed model is inspired by the Emerald language [4].
Abstract data types and face implementations are separated: An
abstract type is a set of method signatures and defines an
interface; while an object is defined as an implementation,
which realizes the codes for the methods stated in the interface,
together with the additional presentation of itself. A face is a
set of method signatures and an object should have all the
methods defined in the face with the same signatures. A face is
created by augmenting an implementation with the base object,
which is to be extended. Each face of an object is in fact a role
of that object.
Abstract types are related to each other and to implementations
by the rule of conformity. Consider the abstract types of A and
B. If A provides all the method signatures (or maybe more),
than it is said that B conforms to A. B still conforms to A if B
is a class instead. As long as this rule of conformity is satisfied,
it is also said that B implements A. Abstract types can
implement each other.
Rule of conformity allows to declare a general type and to
create different specialized types sharing the common behavior.
Specialized objects conform to the general one and they can be

used in any context where the general object is expected. There
is not a class-based inheritance; instead, this defines an object
based inheritance mechanism. Moreover, additional super types
can be implemented without changing the definitions of
existing subtypes.
With the combination of abstract types, implementations and
rule of conformity; a mechanism for supporting roles is
proposed. A face can add new state and behavior as well as it
can import or redefine desired parts of the base object’s
interface. Non-redefined methods do not exist by default,
unlike class-level inheritance. The need for importing or
redefining all methods of the object’s interface for satisfying
the role of conformity still exists. This adds data and behavior
hiding properties but can also be perceived as extra work. The
face can access the base object’s members and methods by
using a special reference named base. this is another
operator that points to the face whose method is called.
Redefined or imported methods do not raise naming conflicts.
However, this or base object’s members can be renamed to
avoid semantic confusion.
A base object can have more than one instance of the same
interface. The distinction of faces is achieved by supplying
different values to their constructors.
To demonstrate the definition and usage of faces, we have used
a language representation similar to Java in Figures 1 - 3.
type Person /* abstract type... */ {

String name();

String phone(); };

implementation personlmpl

/* ...and its implementation */ {

String myName, myPhone;

public:

String name() { return my Name; };

String phone() { return my Phone; };

joeP personlmpl(String n, String p)

{ myName = n; my Phone = p; }};

Figure 1 : An abstract type and its implementation.
/* an employee aspect definition */

implementation emplmpl //class name

with type Employee //aspect name

extends Person //base object type {

int myEid;

String myDept, myPhone;

public:

emplmpl(int e, String d, String p)

{ myEid = e, myDept = d, my Phone = p; };
String phone()

{ if(my Phone != nil)return myPhone;

else return base.phone(); };

/* imported from Person */

Person::name; /* Code is same with Person’s as
not redefined here. */

Person::phone as homePhone; };

Figure 2 : An employee face of a Person object.
type Person /* abstract type... */ {

String name();

String phone(); };

implementation personlmpl

/* ...and its implementation */ {

String myName, myPhone;

public:

String name() { return myName; };

String phone() { return myPhone; };

joeP personlmpl(String n, String p)

{ myName = n; my Phone = p; }};

Figure 3: Creating and using an Employee face

4.2. Fibonacci
Fibonacci [5] is a strongly typed OODB programming
language derived from Galileo [6] by Albano et al. Fibonacci
has its own data model which supports inheritance and
persistency. It is also an interactive language, e.g. all given
commands or definitions give immediate response.

4.2.1. Object Mechanism and Usage
An object in Fibonacci can not directly be modified unless it is
done via one of its methods, e.g. roles. This rule can be
described as “Messages are sent to roles”. An object’s answer
to a received message completely depends on the role which
has received the message.
The dominating role in Fibonacci is always the mostly evolved
one, that is, the deepest role in the hierarchy. Therefore
delegation is done from bottom to top. If sibling roles are able
to answer a message, the more recently acquired role is used.
Fibonacci can also handle delegation in the opposite order.
Unused role objects are removed by the built-in garbage
collector, hence, explicit removal is not allowed. This presents
a black-box view of real world objects where they are only
accessed via the ports of a black-box. Methods of roles
constitute the connection points and a dispatcher module is
responsible from delegation. Fibonacci objects are composite
objects as seen in Figure 4. The whole object is the realization
of a real world object while rightmost cells are implementation
of roles. R1 to R4 are the methods of the composite object
which are implemented in role objects.

Figure 4. Internal Structure of an Object in Fibonacci
Fibonacci supports class-based inheritance between roles, too.
A subtype inherits all members and methods but they can be
overridden. Naming conflicts which may occur with multiple
inheritance is prevented according to the “most recent role is
the most dominant” rule.
An example of creating a person role and assigning it to an
object which utilizes this shorthand is given in Figure 5.
Immediate responses of the system is denoted by “ >>>”.
Role switching in Fibonacci is possible by role casting and
there are operators for comparison of objects. Equality of two
objects without considering their role types is checked with the
equality operator. The isAlso statement checks whether an
object has a particular role and isExactly statement checks
if two role objects are from the same type.

Let Person = IsA PersonObject With

 const Name : String;

 const BirthYear : Int;

 Introduce : String;

End;

>> Let Person <: PersonO> bject = <Role>

hn = role Person

aniels”;

hYear = 1967;

t d me & “ and I was
tToString(BirthYear);

ntroduce:

s born in

t = ext john to Student

ntroduce &
nce student";

d

nt = <role>

 6 : Acquiring a role.

>>> true : Bool

ohn Daniels and I was born in
nce student" : String

orn in
nt" : String

orn in

uire new roles as shown in Figure 6.
posed

ds compliant object oriented
role support and it is still being improved by a

A persistent object of type T can be declared as d_Ref<T>
ator for persistent objects takes

Person> p = new(database,
, 1976, ...);

Figure
d_Ref<Employee> e = new(database, "Employee")

Figu

retu

 //returns 3300

ed with two statements:
transforms and as. Adding and removing types as well as

tly. The as operator is used for

The work by Gottlob, Schrefl ve Röck [10] shows how role
lemented in

A role hierarchy consists of a tree having objects from a special
nodes. The root of the tree is an

oes not inherit its super roles’

uld also be deleted when

oles via mutual

nd loosing roles

Let jo

 private

 let Name = “John D

 let Birt

 methods

In ro uce = “My name’s ” & Na
born in ” & in

end;

>>>Let john : PersonObject = <role>

john!I

>>> "My name is John Daniels and I wa
1967" : String

Figure 5 : Creating a person role.
let johnAsStuden

 private

 let Faculty = var "Science";

 methods

 Introduce = (me as Person) ! I
". I am a Scie

en ;

>>> let johnAsStudent : Stude

Figure

john = johnAsStudent;

john.Introduce;

>>> "My name is J
1967. I am a Scie

johnAsStudent.Introduce;

>>> "My name is John Daniels and I was b
1967. I am a Science stude

(johnAsStudent as Person)!Introduce:

>>> "My name is John Daniels and I was b
1967" : String

Figure 7 : Changing behaviour of an object with roles.
An object can acq
After this, the object’s behavior changes as it is sup
to. This is proven in Figure 7.

4.3. INADA
INADA [7] is an ODMG standar
language with
team in Kyushu University. As INADA is built on a distributed
object storage server, WAKASHI [8], it supports persistent
objects. Every INADA type is equal to a role.

4.3.1. INADA Extensions

object_name. The new oper
two additional parameters which come before the constructor:
First one is a reference to an ODMG database and the second
one is the name of the class. Figure 8 shows creation of an
object p of class Person to model a person.

d_Database dbobj;

d_Database *database = &dbobj;

main(){

database -> open("dbfile");

d_Ref<
"Person")Person("John", 30

//1976 : John’s home phone }

 8: Creating a persistent real world object

Employee ("sale", 3300)

transforms p; //3300 : John’s work phone

re 9: Giving a role to an object.

rn e->TelNo(); //returns 1976

return e as Person->TelNo();

Figure 10: Role switching in INADA.

Objects with multiple roles are support

reaching one of the roles of a persistent object is possible with
these commands. When a new role is to be added to a persistent
object, the transforms statement is used with the new
operator. A role is given to an object by adding a new type to
this object. An example is given in Figure 9. The pointer e of
this example and the pointer p of the previous example are
equivalent, pointing at the same persistent object. However,
they don’t act in the same manner because they represent
different roles of the object.
A persistent object can be reached via any of its roles and each
role of an object acts differen
role switching as given in Figure 10.

4.4. Extending OOP with Role Hierarchies

support with object-level inheritance can be imp
current OOP languages. The proposed model does not prohibit
class-based inheritance but suggests using it wherever
necessary. The extended OOP language is Smalltalk.

4.4.1. Role Hierarchies

class modeling roles as its
object from another special class modeling real world entities :
It represents the invariant properties of this entity and
determines how the entity can evolve. A new node is created
and added to the tree when a new role is acquired and it is
destroyed when this role is abandoned. An entire role hierarchy
represents a real world entity.
Role hierarchies extend OOP concepts in a natural way. Unlike
class hierarchies, a sub role d
methods and members. However, a method unknown to a sub
role is delegated to its super roles.
Adding a new role to the tree does not affect other roles.
However, children of a role sho
abandoning this role. This is semantically correct as these
children depend on this role to be meaningful.
Role hierarchies bring the following flexibilities:
• Sharing of knowledge between different r

parents
• Ease of modeling by ease of tracking evolving objects by

gaining a

• Modeling independent roles without an exponentially
growing number of intersection classes

• oles of the same type

4.4.2. Role Definition in Smalltalk and Their Usage
Role es. An object

ld

Methods of ObjectWithRoles and RoleType :

• Enabling differentiation of behavior according to the role
currently being used

• Limiting access to the object to only the current role

Support for multiple r

 hierarchies are implemented by three class
which can have roles and to become root of a hierarchy shou
belong to a subclass of ObjectWithRoles. The role objects
are similarly modeled by inheriting from RoleType. Multiple
roles from the same type are named as qualified roles and they
need to be further specialized. They are implemented with the
class QualifiedRoleType, which is created by regular
inheritance from RoleType. Information about these classes
are given in Table 1.

Table 1: Information about classes that give role support.

root Returns the root of hierarchy
roleOf Returns the parent of this role in

the hierarchy
as(“aRoleType”) Switch to the aRoleType role, if

any
existsAs(“aRoleType”)

bject
Checks if aRoleType exists in
this o

entityEquiv(anObject) Checks if anObject and this
represent the same entity.

Additional method for RoleType :
Abandon Leave this role

Methods of ObjectWithRoles and RoleType for
oles : qualified r

as(aQualifiedRoleType,
qualifyingObj)

Switch to the
aQualifiedRoleType which is

e qualifyingObj. qualified by th
existsAs(
aQualifiedRoleType,

bj)

qualifyingO

True if object has the
aQualifiedRoleType role, which
is qualified by the
qualifyingObj.

Additional method for QualifiedRoleType :
qualifier() fying object Return the quali

T new role type class
RoleType is used. This method’s parameters include the

eOf method of a role object returns the parent role
role

need to access the aRoleType role of the role

Usin
11 in

son();
rsonSmith.setName(“Smith, Anne”);

534”);

1”);

);

 { /*TRUE*/ }
 /*FALSE*/ }

studentSmith))

mpSmith.roleOf().

.
ial consideration by defining
entation. This is necessary

d attaching them to a

sub classes via class-level

different approaches that provide
relational role support: Multiple typed objects, role hierarchies,
object faces and co are represented by

e language built on top of

o define a , defRoleType method of

super role and class structure (members and methods) of the
role to be created. To abandon a role, its abandon method is
called.
Role switching is possible in the following three ways:
1. rol

2. root method of a role object returns the root of the
hierarchy

3. Role casting : accessing a desired role from a particular
one. If we
object anObject, we use anObject as: aRoleType.
g roles with these mechanisms are demonstrated in Figure
 a Java-like language.

//Create root of hierarchy :
personSmith = new Per
pe
personSmith.setPhoneNo(“312-4

//Define an employee role :
empSmith = new Employee();
mpSmith.newRoleOf(personSmith); e

empSmith.setPhoneNo(“304-560

//define a student role :
studentSmith = new Student();
tudentSmith.newRoleOf(personSmith s

//checking for equivalency :
anEmployee = empSmith;
Student = studentSmith; a

if(aStudent == studentSmith)
yee) {if(aStudent == anEmplo

if(aStudent.entityEquiv(
{ /*TRUE*/ }

 if(aStudent.entityEquiv(anEmployee))
{ /*TRUE*/ }
//role switching :
System.out.println(empSmith.getPhoneNo());

//prints 304-5601
System.out.println(e

getPhoneNo()); //prints 312-4534
personSmith = new Person(studentSmith.root());
System.out.println(depMgSmith.root().

getPhoneNo());//prints 312-4534
if(personSmith.existsAs(“Employee”)) /*TRUE*/

EmployeeSystem.out.println(personSmith.as(“
”).getPhoneNo());//prints 304-5601

System.out.println(empSmith.getName());
//prints Smith, Anne

//When Smith graduates :
studentSmith.abandon();

igure 11: Examples for usage of rolesF
Qualified roles are taken into spec
a separate class for their implem
since simply creating several instances an
parent role does not tell anything about the semantic
connection among the qualified roles and the parent. Moreover,
any information used for separating these qualified roles from
each other can not be stored this way. We need to know what
qualifies these roles and how.
Both class-level inheritance and object-level inheritance are
allowed in role hierarchies. Roles may have sub roles via
object-level inheritance or
inheritance. Leaves of a class hierarchy can be the roots of
separate role hierarchies.

5. EVALUATION
We have identified four

mposite objects. These
the work done in INADA [7], role hierarchies [10], aspects [3]
and Fibonacci [5], respectively. Other works in literature can
be placed into one of these groups.
[10] uses a few special classes for role support and a
hierarchical approach while [3] uses a language which has not
been implemented. [7] is a C++ - lik
an OODB engine. [5] has a unique structure which favors a
black-box approach.
The concept of having multiple faces in [3] is similar to the
concept of having multiple types in [7]. In both of them, a sub

type imports only the needed methods and members of its
super type and throws out the rest. This causes the advantages
and disadvantages of both approaches to be more or less the
same, so [3] is chosen for further discussion in this section.
The approach presented in [5] can be implemented more easily
by using composite objects. Fibonacci is a language derived

raditional class-level inheritance. However,

]. A

.

In this paper, we ha ciency of the OOP
paradigm in modelin t change with time

pproaches

Role Hierarchies [10] Object Faces [3] Fibonacci [5]

from Galileo and we think that this decreases its portability into
other systems. However, its fundamental idea of using a
dispatcher may be implementable. The same argument is true
for INADA which is based on a propriety persistent object
storage module.
The acquisition of a role is called object-level inheritance
instead of the t
these two different inheritance mechanisms do not completely
obsolete each other as both have non-overlapping strengths.
Therefore, it is better to use both of them in any role based
system. [10] has the flexibility of using sub roles which inherit
from a super role either in object-level or class-level and
extends the traditional concepts of OOP in a natural way.
The relationship between a real world entity and its roles are
considered to be hierarchical in explicit terms in [10
hierarchy is not imposed in [3] although the multiple types of
an object are assumed to be modeled as a linked list. This can
be viewed as a hierarchy of depth one. However, if it is
possible to give an object face as an argument to the extends
statement, role hierarchies can also be constructed in [3].
Having more than one role objects of the same class, a
fundamental characteristic, is only allowed in [10] and [3]
Table 2 summarizes this discussion through a comparison of
the four approaches.

6. CONCLUSION
ve presented the ineffi
g real world objects tha

and have focused on the role concept as a solution. We have
also presented the most representative work towards role
support in OOP languages. Considering their properties pointed
out in the previous section, we conclude that [10] and [3]
possess the most elegant, flexible and natural means for
implementing role support to a new system. As future work, we
consider to focus further on the role concept and extend the
Java language with role capabilities.

Table 2: Comparison of Role Based A

REFERENCES
[1] C.W. Bachman, M. Daya “The Role Concept in Data
Models”. Proc. Intl. Conf. Very Large Databases, 1977
(VLDB’77) p.464-476.
[2] Lieberman, Henry, “Using Prototypical Objects to
Implement Shared Behavior in Object-Oriented Systems".
Proc. ACM OOPSLA Conf., New York, USA (OOPSLA
’86). p. 214-223.
[3] A.H. Skarra, S. B. Zdonik. “Aspects: Extending Objects to
Support Multiple, Independent Roles”. Proc. ACM OOPSLA
Conf., 1986, New York, USA (OOPSLA ’86). p483–495.
[4] B.A. Hutchinson, et al. “Object Structure in the Emerald
System”. Proc. ACM OOPSLA Conf., 1986, New York,
USA (OOPSLA ’86). p.76-86
[5] A. Albano, et. al. “An Object Data Model with Roles”.
Proc. Intl. Conf. Very Large Databases, 1993, Calif., USA
(VLDB ’93), p39–51.
[6] A Albano, et. Al. “Galileo: A Strongly Typed, Interactive
Conceptual Language”. ACM Trans. Database Systems, Vol.
10, No. 2, 1985. p. 230-260.
[7] M. Aritsugi, A. Makinouchi. “Multiple-Type Objects in an
Enhanced C++ Persistent Programming Language”. Software-
Practice And Experience Vol. 30 No. 2 Feb 2000 p151–174
[8] G. Yu, et. al. “Transaction management for a distributed
object storage system WAKASHI - design, implementation and
performance”. Intl. Conf. Data Engineering, p. 460-468, New
Orleans, 1996
[9] J. Eliot, B. Moss “Working with Persistent Objects : to
Swizzle or not to Swizzle”. IEEE Trans. Software Eng.,
Vol.18 No. 8 Aug. 1992
[10] George Gottlob, et al. “Extending object-oriented systems
with roles”. ACM Trans. on Information Systems Vol. 14,
No. 3, July 1996, p268–296

 INADA [7]
Implementation INADA language with

OODBMS)
In any OOP language by In a theoretical language. A new language

alileo WAKASHI (using a few classes descendant of G
Relation between roles

set-fashion
ked by Adding/removing types,

set-fashion
Role hierarchy, tree
based.

Adding/removing faces, Role hierarchy lin
a dispatcher.

Support for hierarchy No Naturally Possible Yes
Application to an costly with less cost costly ostly
existent OOP language

Possible but Possible Possible but Possible but c

Inheritance for roles el Only object-level Object and class-level Only object-level Object and class-lev
Qualified roles No Yes Yes No
Data hiding Yes Yes Yes Yes, best.
Delegation Yes, random overned by rules al casting if

rmity applies
 governed by rules Yes, g Manu

confo
Yes,

